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Abstract. In computational mathematics, when dealing with a large linear discrete problem (e.g., a linear system)
arising from the numerical discretization of a partial differential equation (PDE), knowledge of the spectral distribution
of the associated matrix has proved to be useful information for designing/analyzing appropriate solvers—especially,
preconditioned Krylov and multigrid solvers—for the considered problem. Actually, this spectral information is
of interest also in itself as long as the eigenvalues of the aforementioned matrix represent physical quantities of
interest, which is the case for several problems from engineering and applied sciences (e.g., the study of natural
vibration frequencies in an elastic material). The theory of multilevel generalized locally Toeplitz (GLT) sequences
is a powerful apparatus for computing the asymptotic spectral distribution of matrices A, arising from virtually
any kind of numerical discretization of PDEs. Indeed, when the mesh-fineness parameter n tends to infinity, these
matrices A, give rise to a sequence { Ap }r, wWhich often turns out to be a multilevel GLT sequence or one of its
“relatives”, i.e., a multilevel block GLT sequence or a (multilevel) reduced GLT sequence. In particular, multilevel
block GLT sequences are encountered in the discretization of systems of PDEs as well as in the higher-order finite
element or discontinuous Galerkin approximation of scalar/vectorial PDEs. In this work, we systematically develop
the theory of multilevel block GLT sequences as an extension of the theories of (unilevel) GLT sequences [Garoni
and Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications. Vol. 1., Springer, Cham,
2017], multilevel GLT sequences [Garoni and Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and
Applications. Vol. II., Springer, Cham, 2018], and block GLT sequences [Barbarino, Garoni, and Serra-Capizzano,
Electron. Trans. Numer. Anal., 53 (2020), pp. 28-112]. We also present several emblematic applications of this theory
in the context of PDE discretizations.
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1. Introduction. The theory of generalized locally Toeplitz (GLT) sequences stems
from Tilli’s work on locally Toeplitz (LT) sequences [66] and from the spectral theory of
Toeplitz matrices [2, 17, 18, 19, 20, 49, 53, 67, 69, 70, 71]. It was then carried forward in
[40, 41, 62, 63], and it has been recently extended in [3, 4, 5, 6, 7, 9]. This theory, especially in
its multidimensional version [41, 62, 63], is a powerful apparatus for computing the asymptotic
spectral distribution of matrices arising from the numerical discretization of continuous
problems such as integral equations (IEs) and, especially, partial differential equations (PDEs).
Experience reveals that virtually any kind of numerical method for the discretization of PDEs
gives rise to structured matrices A,, whose asymptotic spectral distribution, as the mesh-
fineness parameter n tends to infinity, can be computed through the theory of GLT sequences.
We refer the reader to [40, Section 10.5], [41, Section 7.3], and [16, 62, 63] for applications of
the theory of GLT sequences in the context of finite difference (FD) discretizations of PDEs;
to [40, Section 10.6], [41, Section 7.4], and [11, 16, 33, 55, 63] for the finite element (FE)
case; to [13] for the finite volume (FV) case; to [40, Section 10.7], [41, Sections 7.5-7.7],
and [27, 35, 36, 37, 38, 56] for the case of isogeometric analysis (IgA) discretizations, both in
the collocation and Galerkin frameworks; and to [31] for a further application to fractional
differential equations. We also refer the reader to [40, Section 10.4] and [1, 59] for a look at
the GLT approach for sequences of matrices arising from IE discretizations.

It is worth emphasizing that the asymptotic spectral distribution of PDE discretization
matrices, whose computation is the main objective of the theory of GLT sequences, is not
only interesting from a theoretical viewpoint but can also be used for practical purposes. For
example, it is known that the convergence properties of mainstream iterative solvers, such
as multigrid and preconditioned Krylov methods, strongly depend on the spectral features
of the matrices to which they are applied. The spectral distribution can then be exploited to
design efficient solvers of this kind and to analyze/predict their performance. In this regard,
we recall that noteworthy estimates on the superlinear convergence of the conjugate gradient
method obtained by Beckermann and Kuijlaars in [10] are closely related to the asymptotic
spectral distribution of the considered matrices. More recently, in the context of Galerkin and
collocation IgA discretizations of elliptic PDEs, the spectral distribution computed through the
theory of GLT sequences in a series of papers [27, 35, 36, 37, 38] was exploited in [25, 26, 28]
to devise and analyze optimal and robust multigrid solvers for IgA linear systems. In addition
to the design and analysis of appropriate solvers, the spectral distribution of PDE discretization
matrices is of interest also in itself whenever the eigenvalues of such matrices represent relevant
physical quantities. This is the case for a broad class of problems arising in engineering and
applied sciences such as the study of natural vibration frequencies for an elastic material; see
the review [47] and the references therein.

In [8], starting from the original intuition in [63, Section 3.3] and based on the recent
contributions [3, 6, 7,9, 39, 42, 45, 46], the theory of block GLT sequences has been developed
in a systematic way as an extension of the theory of GLT sequences. The focus of [8], however,
is only on the unidimensional (or unilevel) version of the theory, which allows one to face only
unidimensional PDEs (i.e., ordinary differential equations). In this work, we complete [8]
by covering the multidimensional (or multilevel) version of the theory, also known as the
theory of multilevel block GLT sequences. Such a completion is of the utmost importance in
practical applications; in particular, it provides the necessary tools for computing the spectral
distribution of multilevel block matrices arising from the discretization of systems of PDEs [63,
Section 3.3] and from the higher-order FE or discontinuous Galerkin (DG) approximation of
scalar/vectorial PDEs [12, 34, 44, 47]. In addition to developing the theory of multilevel block
GLT sequences, we also present some of its most emblematic applications in the context of
PDE discretizations.
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The present work is structured as a long research article in book form. Chapter 2 collects
the necessary preliminaries. Chapters 3 and 4 cover the theory of multilevel block GLT
sequences, which is finally summarized in Chapter 5. Chapter 6 is devoted to applications.
The exposition in this work is conducted on an abstract level; for motivations and insights we
recommend that the reader takes a look at the extended introduction of [8]. Needless to say,
the reader who knows [8] will be certainly facilitated in reading this work.

2. Mathematical background. This chapter collects the necessary preliminaries for
developing the theory of multilevel block GLT sequences.

2.1. Notation and terminology.

2.1.1. General notation and terminology.

e A permutation o of the set {1,2,...,n} is denoted by [¢(1),c(2),...,0(n)].

e O,, and I,,, denote, respectively, the m x m zero matrix and the m x m identity matrix.
Sometimes, when the size m can be inferred from the context, O and I are used instead of
O,, and I,,,. The symbol O is also used to indicate rectangular zero matrices whose sizes
are clear from the context.

e Forevery s € Nandevery o, 8 =1, ..., s, we denote by ESZ the s x s matrix having 1 in
position (a, 8) and 0 elsewhere.

e The eigenvalues and the singular values of a matrix X € C™*™ are denoted by \;(X),
j=1,...,m,and 0;(X), j = 1,...,m, respectively. The maximum and minimum
singular values of X are also denoted by 0 p,x (X ) and op,in (X)), respectively. The spectrum
of X is denoted by A(X).

e If 1 < p < o0, the symbol | - |, denotes both the p-norm of vectors and the associated
operator norm for matrices:

1/p .
|X|p — (221 |I7|p) ) lf 1 < p < 00, x € (Cm’
max;—1,..m ||, if p= o0,

, X e cmxm,

The 2-norm | - |2 is also known as the spectral (or Euclidean) norm; it will be preferably
denoted by || - ||

e Given X € C™*™ and 1 < p < o0, || X]||, denotes the Schatten p-norm of X, which is
defined as the p-norm of the vector (o1 (X),..., 0, (X)). The Schatten 1-norm is also
called the trace-norm. The Schatten 2-norm || X ||2 coincides with the classical Frobenius
norm (Zznjzl |2:;]2)'/2. The Schatten co-norm || X ||so = 0max(X) is the classical 2-norm
|| X||. For more on Schatten p-norms, see [14].

e R(X) and I(X) are, respectively, the real and imaginary parts of the (square) matrix X,
ie, RX) = % and (X)) = XEiX* , where X* is the conjugate transpose of X and i
is the imaginary unit.

o If X, Y € C™*¢, their componentwise (or Hadamard) product X o Y is the m x ¢ matrix
defined by (X oY);; = @y, fori=1,... . mandj=1,...,¢

e If X € C™*™, we denote by X T the Moore-Penrose pseudoinverse of X.

e C.(C) (resp., C.(R)) is the space of complex-valued continuous functions defined on C
(resp., R) and with bounded support.

o Letw; : D; - Cri*"i ¢=1,...,d,setr = (r1,...,rq)and N(r) = r1 - - - rq. We define
the tensor-product function w; ® - - - @ wy : Dy X -+ X Dg — CN()*xN(r) a5 follows: for
every (§1,...,8q) € D1 X -+ x Dy,

(w1 @ @wa)(1,. .., &) =wi(§1) @+ @wala),



http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: MULTIDIMENSIONAL CASE 117

where ® denotes the tensor (Kronecker) product of matrices (see Section 2.2.2).

e If z € Cand e > 0, we denote by D(z,¢) the open disk with center z and radius ¢, i.e.,
D(zye) ={w € C: |lw—2z| <e}. If S C Cande > 0, we denote by D(S,¢) the
e-expansion of S, which is defined as D(S,¢) = |, g D(z,€).

e Y g is the characteristic (indicator) function of the set F.

e A concave bounded continuous function ¢ : [0,00) — [0, 00) such that ¢(0) = 0 and
» > 0on (0, 00) is referred to as a gauge function. It can be shown that any gauge function
¢ is non-decreasing and subadditive, i.e., p(z + y) < ¢(z) + ¢(y) forall z,y € [0, 00);
see, e.g., [40, Exercise 2.4].

e If g : D — C is continuous over D, with D C CF for some k, then we denote by wg(+) the
modulus of continuity of g,

wg(6) = sup [g(x) —g(y)l, >0
x,yeD
‘X7Y‘<X>S6

e If x,y € R? are such that x; < y; foralli = 1,...,d, then the symbol [x, y) denotes the
hyperrectangle [x,y) = [x;,yi) X - - - X [24, Yq). Similar meanings have the symbols (x,y],
(x,y). [x yl.

e Ji;, denotes the Lebesgue measure in R¥. Throughout this work, unless stated otherwise, all
the terminology from measure theory (such as “measurable set”, “measurable function”,
“a.e.”, etc.) is always referred to the Lebesgue measure.

e LetD CRF letr >1and1 < p < oo. A matrix-valued function f : D — C"*" is said to
be measurable (resp., continuous, a.e. continuous, bounded, Riemann-integrable, in L? (D),
in C*°(D), etc.) if its components f,3: D — C, o, f = 1,...,r, are measurable (resp.,
continuous, a.e. continuous, bounded, Riemann-integrable, in LP (D), in C*°(D), etc.). The
space of functions f : D — C™*" belonging to L”(D) will be denoted by LP(D,r) in
order to emphasize the dependence on r. For the space of scalar functions L” (D, 1), we
will preferably use the traditional simpler notation L?(D).

o Let f,, f: D C R¥ — C"*" be measurable. We say that f,,, converges to f in measure
(resp., a.e., in LP(D), etc.) if (f,n,)ap converges to fo s in measure (resp., a.e., in LP(D),
etc.)foralla, 5 =1,...,7.

e If D is any measurable subset of some R* and r € N, then we set

img) ={f:D — C™": fismeasurable}.
If D = [0,1]¢ x [, 7], we preferably use the notation img) instead of SDT(DT):
Sm((;) = {r:[0,1]* x [-m,7]¢ = C"™*" : k is measurable}.

e We use a notation borrowed from probability theory to indicate sets. For example, if
f,g : D C RF — C™", then {omax(f) > 0} = {x € D : onax(f(x)) > 0},
wedllf — gll > €} is the measure of the set {x € D : || f(x) — g(x)|| > ¢}, etc.

e A function of the form f(0) = >21__ f; e with f_,,..., f, € C"™*" is said to be a
(matrix-valued) trigonometric polynomial. If f_, # O,. or f; # O, then the number g is
referred to as the degree of f.

e A sequence of matrices is a sequence of the form { 4,, },,, where A,, is a square matrix of

size d,, such that d,, — oo as n — oo.

2.1.2. Multi-index notation. A multi-index ¢ of size d, also called a d-index, is simply
a (row) vector in Z<; its components are denoted by i1, ..., 44.
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e 0,1, 2, ...are the vectors of all zeros, all ones, all twos, . .. (their size will be clear from
the context).
e For any d-index m, we set N(m) = H?Zl m;, and we write m — oo to indicate that

min(m) — oo. The notation N(a) = H;i:1 a; will be actually used for any vector
with d components and not only for d-indices.

e If h, k are d-indices, then h < k means that h,. < k, forallr = 1,...,d, while h £ k
means that b, > k,. for at leastone r € {1,...,d}.

e If h, k are d-indices such that h < k, then the multi-index range h, ...,k (or, more
precisely, the d-index range h, ..., k) is the set of cardinality N(k — h 4+ 1) given by
{j €Z%: h < j < k}. We assume for this set the standard lexicographic ordering:

2.1 {”.[Hﬁwndwhdmwwﬁ

Ja—1=ha—1,....ka—1 Gi=h1,....k1
For instance, in the case d = 2, the ordering is

(hlah2)7 (h15h2 + 1)a ceey (h17k2),
(h1 +1,h2), (h1 +1,ha+ 1), ..., (h1 + 1, ko),
......... , (k1 ho), (K he + 1), .., (ky, ka).

e When a d-index j varies over a d-index range h,, . . . , k (this is often written as j =h,, . . ., k),
it is understood that j varies from h to k following the specific ordering (2.1). For
instance, if m € N¢ and we write x = [2;]™,, then x is a vector of size N(m) whose
components x;, ¢ = 1,...,m, are ordered in accordance with (2.1): the first component
is x1 = ®(1,...,1,1), the second component is x(; ... 1,2), and so on until the last component,
which i8S Ty, = T(im,,...,mg)- Similarly, if

,,,,,

(2.2) X = [2i5]i521,

then X is an N(m) x N(m) matrix whose components are indexed by a pair of d-indices
%, J, both varying from 1 to m according to the lexicographic ordering (2.1).

e If h, k are d-indices such that h < k, then the notation Z;?:h indicates the summation
overall jinh,..., k.

e If ¢, 5 are d-indices, then ¢ < 7 means that ¢ precedes (or equals) 7 in the lexicographic
ordering (which is a total ordering on Z%). Moreover, we define

o f4 ifi=<j,
ZAJ_{j7 if i > 5.

Note that 7 A j is the minimum among 2 and j with respect to the lexicographic order-
ing. In the case where ¢ and j are 1-indices (i.e., normal scalar indices), it is clear that
i A j = min(i, j).

o Let {an, }nene be a family of numbers parameterized by a d-index n. The limit of a,, as
n — oo is defined, as in the case of a traditional sequence {a,, } nen, in the following way:
lim,, o ay, = a if and only if for every ¢ > 0 there exists IN such that a,, € D(a,¢) for
n > IN. Moreover, we define

limsup a, = lim ( sup am>, liminf a,, = lim ( inf am).
—00 n—=00\ m>n n—oo n—oo \ m>n
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e Operations involving d-indices that have no meaning in the vector space Z? must be
interpreted in the componentwise sense. For instance,

1§ = (i1j1,- - 1djd)s
ai/j = (air /g1, ..., 0dafja), aeC,
min(¢, 3) = (min(iy, j1), ..., min(ig, jq)),
imodm = (iy modmy,...,igmodmy),

etc.

e When a multi-index appears as subscript or superscript, we sometimes suppress the brackets
to simplify the notation. For instance, the component of the vector x = [z;]; ", correspond-
ing to the d-index < is denoted by x; or x;, .. ;,, and we often avoid the heavy notation
L(i,emria)

e Forevery s € Nand n € N9, we denote by IL,, , the permutation matrix given by

I, ®el
I, ®el n
Hn,s: . :Zek®ls®e£7
. k=1

I, ®el
where ® denotes the tensor (Kronecker) product (see Section 2.2.2) and e;, 2 = 1,...,n,
are the vectors of the canonical basis of CV(™) , which, for convenience, are indexed by a
d-index 2 = 1,...,n instead of a linear index ¢ = 1,..., N(n). For every s,r € N and
n € N? we define the permutation matrix
(23) Hn,s,r = Hn,s @ Ir-

e Forevery s € N and every £,k = 1,..., s, we denote by Eéz) the N(s) x N(s) matrix
having 1 in position (£, k) and 0 elsewhere.

e A d-variate r X r matrix-valued trigonometric polynomial is a finite linear combination,
with coefficients in C™*", of the d-variate Fourier frequencies

eik-@ _ ei(k191+...+kd0d)7 kc Zd7

that is, a function of the form
N
f(e): Z fkelk.ev f*Na"'afNe(CTXT; NeNd
k=—N

A number of examples in order to help the reader become familiar with the multi-index
notation are presented in [41, Section 2.1.2].

2.1.3. Multilevel block matrix-sequences. Recall from Section 2.1.1 that a sequence
of matrices is a sequence of the form {4, },, where n varies in some infinite subset of N
and A,, is a square matrix of size d,, — co. A d-level r-block matrix-sequence is a special
sequence of matrices of the form { A, },,, where:
e 71 varies in some infinite subset of N;
e n = n(n) is a d-index with positive components which depends on n and satisfies n — co

asn — oo;

e A, is a square matrix of size N (n)r.
Recall from Section 2.1.2 that n — oo means that min(n) — co.
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2.2. Preliminaries on matrix analysis.

2.2.1. Matrix norms. For the reader’s convenience, we report in this section some
matrix-norm inequalities that we shall use throughout this work. Given a matrix X € C™*™,
important bounds for || X || in terms of the components of X are the following [40, pp. 29-30]:

|z < [IX]l,  4,i=1,....m, X eC™m,
m
||XH < ‘X|1|X|oo < maX(‘X‘l, |X‘oo) < Z ‘xij|7 X e gmxm,
ij=1

Since || X || = omax(X) and rank(X) is the number of nonzero singular values of X, we have
X< 1X]1 < rank(X) [ X < m[| X[, — X eCm™
Another important trace-norm inequality is the following [40, p. 33]:
X[ < Y Jayl, X ecmm
i,j=1

A bound for the Frobenius norm in terms of the spectral norm and the trace-norm is provided
by the following inequality:

m m

Q4 (X2 = | > 0l(X)* <\ |omax(X) D 0o(X) = VIX[[ X1, X eC™ ™,
i=1 i=1

If 1 < p, g < oo are conjugate exponents, i.e., 1 /p + 1/q = 1, then the following Holder-type
inequality holds for the Schatten norms [14]:

2.5) IXY ) < IX[lY ], XY eCmom,
Moreover, for 1 < p < oo, we have
(2.6) [AXB|, < A [IXIp1Bll,  A,X,BeC™ ™.

This inequality actually holds for all unitarily invariant norms and not only for the Schatten
norms; see [ 14, Proposition IV.2.4].

2.2.2. Tensor products and direct sums. If X, Y are matrices of any dimension, say
X € C™*™2 and Y € C“**, then the tensor (Kronecker) product of X and Y is the
m1ly X moly matrix defined by
$11Y e xlmzY
XY = [;Y] : :
xmllY .’)Smlm2Y
and the direct sum of X and Y is the (mq + £1) X (mz + ¢2) matrix defined by
. X O
X@Y—dlag(X,Y)—[O Y}'

Tensor products and direct sums possess a lot of nice algebraic properties.
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(i) Associativity: for all matrices X,Y, Z,

XoY)®Z=X® (Y ® 2),
XaYV)aZ=Xa(YaZ2).

(ii) If X1, X2 can be multiplied and Y7, Y5 can be multiplied, then

(X19Y1)(X2®Ys) = (X1 X)) ® (Y1Y2),
(X1 01)(X2@Y2) = (X1X2) ® (V1Ya).

(iii) For all matrices X, Y,
(XQY) =X*"®Y", XV =XxTeyT
(XaY) =X"aY", Xy =xTavT.
(iv) Bilinearity (of tensor products): for each fixed matrix X, the application
Y= XQY
is linear on C#*¢2 for all ¢1, 05 € N; for each fixed matrix Y, the application
X—= XY

is linear on C™1*"™2 for all mq,mo € N.
From (i)-(iv), a lot of other properties follow. For example, if v is a (column) vector and X, Y
are matrices that can be multiplied, then (v@ X)Y = (v X)([1]®Y) = v (XY). If X,V
are invertible, then X ® Y is invertible with inverse X 1 @ YL If X , Y are normal (resp.,
Hermitian, symmetric, unitary), then X ® Y is also normal (resp., Hermitian, symmetric,
unitary). If X € C™*™ and Y € C**¥, then the eigenvalues and singular values of X ® Y’
are given by

NN (Y):i=1,....m, j=1,...,4},
{0:(X)o;(Y):i=1,....,m, j=1,...,4},

and the eigenvalues and singular values of X @ Y are given by

{MNX), \Y):i=1,...,m, j=1,..., 0},
{0s(X), 0;(Y):i=1,....m, j=1,...,(}

see [40, Exercise 2.5]. In particular, for all X € C™>*™ Y € C*t and 1 < p < oo, we have
X @Y, =1 X5 1Y,

(IX]E+[[Y[B) /P, if 1 <p < o0,

2.7 XaY|,={(X]p Y =
@D X @Yl =|1X] Y1), {maX(X”wHY'OO), e
and

rank(X ® Y) = rank(X)rank(Y"),
(2.8) rank(X @ Y) = rank(X) + rank(Y").
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In addition to the properties considered so far, we need to highlight two further properties
of tensor products that can be found in [41, Section 2.5]. The first one is the multi-index

formula for tensor products: if we have d matrices X;, € C™*% Lk =1,...,d, then
(2.9 (X1 ® X2 @+ ® Xa)ij = (X1)irj (X2)iago +* (Xa)iaja
fori=1,...,mandj=1,...,€ where m = (my,ma,...,my) and £ = ({1,4s,... Lg).

Note that (2.9) can be rewritten as follows:
X1®Xo® @ Xg=[(X1)iry (X2)izjo  (Xd)iggali=1,...om -
j=1,...8

The second property is a natural upper bound for the rank of the difference of two tensor
products formed by d factors. More precisely, suppose we have 2d matrices X1, ..., X4,
Y1,..., Yy, with X;)Y; € C™*™i foralli = 1,...,d, then,

rank(X; — Y;
rank(Xl@"'(g)Xd*Yl®"'®Yd)SN(m)Z#,
i=1 v

where m = (my, ..., mq).
Concerning the distributive properties of tensor products with respect to direct sums, it
follows directly from the definitions that, for all matrices Xy, ..., X4, Y,

2100 XeX® - 0Xy)RY=X:12Y)®(X20Y)d - & (Xa®Y).

DEFINITION 2.1 (Permutation matrix). Let  be a permutation of the set {1,...,m}. The
permutation matrix 11 associated with < is the m X m matrix whose rows are egT( 1) e?(m)
(in this order), where e, . . . , e, are the vectors of the canonical basis of C™.

LEMMA 2.2. For every m € N? and every permutation o of the set {1,...,d}, there
exists a unique permutation matrix I, that depends only on m and o and satisfies

2.11) Xo) @+ @ Xpa) = imio (X1 © - @ X,

for all matrices X, € C™>*™1 | . X4 € C™Maxmd,
Proof. The existence of a matrix II,,., with the required properties has already been

proved in [41, Lemma 2.6]. We prove the uniqueness. Suppose that IL,,., is another
permutation matrix that depends only on m and o and satisfies (2.11) for all matrices
X; e Cmxma 0 Xy € C™Max™md This immediately implies that

o (X1 @+ @ XI5y = Mo (X1 @ -+ @ X)IIZ,
for all matrices X; € C™*™t . X, ; € C™¢*™d_ and hence
o X2 = Mo XTIT, .,
for all matrices X € CN(m)xXN(m) pecause
span(X; ® - @ Xg: X3 € C™X™ . Xy € CMaXMd) = CN(m)xN(m)

Indeed, CN(m)*N(™m) = span(F;; ¢ 4,5 = 1,...,m), where E;j = E;,j, ® -+~ @ E; .,
and E;, ;, is the my x mj, matrix having 1 in position (ik, jx) and O elsewhere, so that E;jis
the matrix having 1 in position (¢, j) and O elsewhere. Thus,

(2.12) X=prxP",  P=10F Tmn.,
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for all matrices X € CN(™)*N(m)  Considering that P is the product of two permutation
matrices, it is itself a permutation matrix, say PT = 11, with 7 being a permutation of
{1,...,N(m)}. Hence, by definition, the columns of P are e,(),...,er(n(m)) (in this
order), with ey, ..., € (m) being the vectors of the canonical basis of CN(™) Let E;; be the
N(m) x N(m) matrix having 1 in position (¢, j) and 0 elsewhere forallé,j = 1,..., N(m).
By (2.12),foralli,j = 1,..., N(m), we have

T T T pT T
eiej = Eij = PEZ]P = Peiej P = eT(i)eT(j),

which implies that 7(¢) = ¢ and 7(j) = j forall 4,5 = 1,..., N(m). Hence, 7 is the identity
permutation, PT =11, = IN(m) = P, and ﬂm;g =ILn,0. 0
REMARK 2.3 (The permutation matrix I';, 5). Let m, s € N¢, and let o be the permuta-
tion of the set {1,...,2d} givenby 0 = [1,d + 1,2,d + 2,...,d, 2d]. In what follows, we
denote by (m, s) the 2d-index (mq,..., Mg, $1,...,84)-
o If s =1, thenIl(y, 5).c = In(m)- Indeed, by definition, IL(,, 1), is the unique permutation
matrix that satisfies

X1®0Xi1®0Xo®@ Xg120® - ® Xg® Xog
=M 1) (X1 @ X2 @+ @ Xg ® Xag1 @ Xaya @ -+ © Xoa) [y, 1),

forall X; € C™*™1 X4 € Cmaxma X, € CY*¥Y .. Xoq € C'*1. Considering
that X411, ..., Xoq4 are scalars, the previous equation becomes

(Xag1- Xog)( X1 @ Xo® -+ ® Xg)
= (Xgt1 Xoa) m 1) (X1 @ X2 ®@ -+ ® Xd)H(Tm,1);o

forall X; € C™>*™i . X4z € Cmaxma X, € CYXY 0 Xog € CYXL, which is
equivalent to

(X10Xo®---®@Xy) =Him1)(X1@Xo @ ® Xd)H(Tml);g

forall X; € C™*™i ... Xy € C™aX™d, Since I (m,) satisfies the previous equation,
we conclude that Iy, 1),0 = IN(m)-
o If d =1, then Il (4, 5).0 = U(sn,s);[1,2] = Lms- This is obvious because I, satisfies the
same equation satisfied by I, ).[1,2], due to the fact that o = [1,2] is the identity.
In what follows, the matrix 1T, 4., will be denoted by 'y, s.
LEMMA 2.4. For every m € N? and every permutation o of the set {1,...,d}, there
exists a permutation matrix Vo, of size my + ... + mgq such that

XU(l) D XU(?) S D Xa(d) = Vm;o’(Xl BXoB--- EBXd)V":';;U

for all matrices X1 € C™1>*™1 X, € C™2x™m2_ X, € Caxmd,
Proof. See [41, Lemma 2.7]. 0

2.3. Preliminaries on measure and integration theory.

2.3.1. Measurability. The following lemma is derived from the results in [14, Sec-
tion VIL.1]. It will be used essentially everywhere in this work, either explicitly or implicitly.

LEMMA 2.5. Let f : D C R* — C"*" be measurable and g : C" — C be continuous
and symmetric in its v arguments, i.e., g(A1,...,A\r) = g(Ap(1), -5 Ap(ry) for all permu-
tations p of {1,...,r}. Then, the function x — g(A1(f(X)),..., A\ (f(x))) is well-defined
(independently of the ordering of the eigenvalues of f(x)) and measurable. As a consequence:
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e the function x — g(o1(f(x)),...,0.(f(x))) is measurable;

e the functions x — Y ._, F(\;(f(x))) and x — >_._, F(0:(f(x))) are measurable for
all continuous F : C — C;

e the function x — || f(x)||p is measurable for all p € [1, co].

REMARK 2.6 (Existence of an ordering for the eigenvalues A;(f(x))). Let the matrix-
valued function f : D C R¥ — C"*" be measurable. In the case where all the eigenvalues
of the matrix f(x) are real for almost every x € D, one can define the eigenvalue function
Ai(f(x)) as a measurable function taking the value of the ith largest eigenvalue of f(x).
In general, even if f is continuous, we are not able to find r continuous functions acting as
eigenvalue functions; see [ 14, Example VI.1.3]. Thus, a convenient ordering on the eigenvalues
Ai(f(x)) cannot be prescribed beforehand. In such cases, A;(f(x)) has not to be intended
as a function in x but as an element of the spectrum A(f(x)) ordered in an arbitrary way.
Lemma 2.5 is then important as it allows us to work with the spectrum as a whole, without
having to specify which ordering we are imposing on the eigenvalues \;(f(x)). In what
follows, when we talk about the ith eigenvalue function \;(f(x)), we are implicitly assuming
that this function exists as a measurable function; more precisely, we are assuming that there
exist r measurable functions \;(f(x)), ¢ = 1,...,r, from D to C such that, for each fixed
x € D, the eigenvalues of f(x) are given by A1 (f(x)), ..., Ar(f(x)).

2.3.2. Essential range of matrix-valued functions. If f : D C R*¥ — C"™" isa
measurable matrix-valued function, then the essential range of f is denoted by ER(f) and is
defined as follows:

ER(f)={2€C: m{3je{l,...,r}: \j(f) € D(2,¢)} >0 foralle > 0}
={ze€C: pp{minj—1 __,|A;(f) —z| <e} >0 foralle > 0},

where we recall that, according to our notation,
{Jje{l,....r}: N(f) e D(z,e)} ={xeD: 3je{l,...,r}: N\j(f(x)) € D(z,¢)}
and

{min;—; _,|\;j(f) —z|<e}={xe€D: minj—1 __,|\(f(x)) —z| < e}

Note that ER(f) is well-defined because the function x +— minj—1 __, |A;(f(x)) — 2| is
measurable by Lemma 2.5. It can be shown that ER(f) is closed and A(f) C ER(f) a.e. [8,
Lemma 2.2]. In the case where the eigenvalue functions )\j(f) :D—C,j=1,...,r,are
measurable, we have

ER(f) = J ERM (/).

2.3.3. LP-norms of matrix-valued functions. Let D be any measurable subset of some
RF,letr > 1, and let 1 < p < oco. For any measurable function f : D — C"*" we define

VR
Il = { ([, 1FG)lIzdx) ", i 1< p < o,
esssup,cpllf(X)[l, if p=oo.

Note that this definition is well-posed by Lemma 2.5. In the case where r = 1, it reduces to
the classical definition of LP-norms for scalar functions. As highlighted in [29, p. 164], for
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every p € [1, 00| there exist constants A, B, > 0 such that, for all f € L?(D,r),

Al fILe < Z I fesllze < Byl Lo if 1 <p<oo,
Aso|[ flle = | max lfupllze < Booll e if p = oo.

This means that LP(D,r), which we defined in Section 2.1.1 as the set of functions
f D — C™" such that each component f,3 belongs to LP(D), can also be defined as
the set of measurable functions f : D — C"*" such that ||f||.» < oo. Moreover, if we
identify two functions f, g € LP(D,r) whenever f(x) = g(x) for almost every x € D, then
the map f — || f||z» is a norm on L? (D, r) which induces on L? (D, r) the componentwise
LP convergence, that is, f,, — f in LP(D,r) according to the norm || - || z» if and only if
(fm)ap = fapin LP(D) foralla, 5 =1,...,r

2.3.4. Convergence in measure and the topology Tieasuree The convergence in mea-
sure plays a central role in the theory of multilevel block GLT sequences. A basic lemma
about this convergence is reported below [15, Corollary 2.2.6].

LEMMA 2.7. Let fr, Gm, [, g : D C RF — C"*" be measurable functions.

o If fr, — f in measure and g,, — g in measure, then o fp, + g, — af + Bg in measure
forall o, 8 € C.

o If frn — [ in measure, g,, — g in measure, and ui(D) < oo, then fp,gm — fg in
measure.

Let ¢ : [0,00) — [0,00) be a gauge function, let D C R¥ be a measurable set with
0 < pr(D) < oo, and let

img) ={f:D — C™": fismeasurable}.

Suppose first that » = 1. If we define

1 (1)
P =
oewe ) = 157 [ 211D fem.
1
dtfleasure(fa g) = prﬁeasure(f - g)a f7g € mgj)y

then dfeasure is a complete pseudometric on smg) such that a sequence {f,}m C img)
converges to f € zmg) according to dieasure if and only if f,,, — f in measure. In particular,
dieasure (f g) = 0if and only if f — ¢ in measure, that is, if and only if f = g a.e. The
topology induced on 93?531) by dfeasure 18 the same for all gauge functions ¢; it is denoted by

Tmeasure> and it is referred to as the topology of convergence in measure on ?IRS).
Suppose now that r > 1. If we define

ﬁrﬁeasure(f) = ﬁmax pmeasure(faﬁ) f € gn(r)
Czlfleasure(f? g) = pmeasure(f - 9)7 fa g e m(r)

then dﬁf,easure is a complete pseudometric on zmg> such that a sequence {fm}m C Dﬁg)
converges to f € smg> according to d%easure if and only if f,, — f in measure. In particular,
Jffleasure(f, g) = 0if and only if f — ¢ in measure, that is, if and only if f = g a.e. The
topology induced on Sﬁg) by cffleasure is the same for all gauge functions ¢; it is denoted by
Tmeasure> and it is referred to as the topology of convergence in measure on zmg).
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Now, let
21 903
prﬁeasure / =1 : fe i)ﬁ(r)
(r)
d[ﬁea;ure(f’ ) pmea@ure(f g f’ g E m[s *

As highlighted in [8, Section 2.3.4], dfcasure is another pseudometric on Dﬁg), which is
metrically equivalent to cifleasure because

1 .
; prﬁeasure(f) S prfleasure(f) S TQPfleasure(f)'

In particular, dfeasure induces on Sﬁg) the topology Timeasure Of cOnvergence in measure, and it
is complete on E)ﬁg), just as (irﬁeasure. Throughout this work, we will use the notations

Pmeasure = Pmeasures Ameasure = Aineasures 'l/)(m) =

For the next lemma, see [8, Lemma 2.4].
LEMMA 2.8. Let g,,, g : D C R¥ — C"*" be measurable functions defined on a set D
with 0 < (D) < oo. If

- 21 Foi(gm — 9))

m—oo (D) Jp r

= F(0), VFeC.(R),

then g, — g in measure.
REMARK 2.9. Let f : D — C"*" be a measurable function defined on a set D C R*
with 0 < (D) < oo, and assume that

T F(o;
/ > =1 F(o;(f)) — F(0), VF € Cu(R).
Then f = O, a.e. Indeed, by Lemma 2.8, the previous equation implies that f — O, in
measure, i.e., f = O, a.e.

2.3.5. Multivariate Riemann-integrable functions. A function a : [0,1]¢ — C is said
to be Riemann-integrable if its real and imaginary parts (a), S(a) : [0, 1] — R are Riemann-
integrable in the classical sense. Recall that any Riemann-integrable function is bounded by
definition. We report below a list of properties possessed by Riemann-integrable functions
that will be used in this paper, either explicitly or implicitly.

e Ifa,3 € Canda,b : [0,1]% — C are Riemann-integrable, then aa + 3b is Riemann-
integrable.

e Ifa,b: [0,1]¢ — C are Riemann-integrable, then ab is Riemann-integrable.

e Ifa : [0,1]¢ — C is Riemann-integrable and F : C — C is continuous, then F'(a) :
[0,1] — C is Riemann-integrable.

e Ifa: [0,1]¢ — C is Riemann-integrable, then a belongs to L>°([0, 1]¢) and its Lebesgue
and Riemann integrals over [0, 1] coincide.

e Ifa: [0,1]¢ — Cis bounded, then a is Riemann-integrable if and only if a is continuous
a.e.

Note that the last two properties imply the first three. The proof of the second-to-last property

can be found in [57, pp. 73-74], while the last property is Lebesgue’s characterization theorem

of Riemann-integrable functions [57, p. 104]. Note that the proofs in [57] are made for the
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case d = 1 only, but the generalization to the case d > 1 is straightforward. A further property
of Riemann-integrable functions that will be used in this paper is reported in the next lemma
[41, Lemma 2.5].

LEMMA 2.10. Let a : [0,1]? — R be Riemann-integrable. For each n € N consider
the partition of (0,1]? given by the d-dimensional hyperrectangles

1—1 1 i1—1 41 ta—1 iq .
Lim = == ,— | X x =1, i=1,...,n,
n n ny  n ng Nd
and let
Qin € [ inf a(x), sup a(x)} , i=1,...,n.
XEl; n x€l; .
Then
n 1 n
Z(Li,nX]iwn —a a.e. in|0, 1]d asmn — oo, liln m Zaiv” = / a(x)dx.
i=1 noee Nin) S 7 [0,1]¢

2.4. Singular value and eigenvalue distribution of a sequence of matrices.

2.4.1. The notion of singular value and eigenvalue distribution. We here introduce
the fundamental definitions of singular value and eigenvalue (or spectral) distribution for a
given sequence of matrices.

DEFINITION 2.11 (Singular value and eigenvalue distribution of a sequence of matrices).
Let {A,},, be a sequence of matrices with A,, of size dy,, and let f : D C RF — C™*" be a
measurable matrix-valued function defined on a set D with 0 < pu(D) < oc.
o We say that { A, },, has a (asymptotic) singular value distribution described by f, and we

write {Aptn ~o [, if

d r

1 _ 1 > im1 Floi(f (%))

(2.13) lim N ;F(O—J(An)) = D) /D . dx, VF €C.(R).
In this case, the function f is referred to as the singular value symbol of { A, }n.

o We say that { A, },, has an (asymprotic) eigenvalue (or spectral) distribution described by
f, and we write {Ap}r, ~x f, if

LY L[ L PO e9)
(2.14) lim_ i 7:21 F(\(AR)) ) /D . dx, VYF e C.(C).
In this case, the function f is referred to as the eigenvalue (or spectral) symbol of { A, } .

Note that Definition 2.11 is well-posed by Lemma 2.5, which ensures that the functions
x = yi_ F(oi(f(x))) and x +— Y., F(X\;(f(x))) are measurable. In this work, when-
ever we write a relation such as {4, }, ~, for {A,}, ~ f,itis understood that f is as in
Definition 2.11, that is, f is a measurable function taking values in C"*" for some r > 1 and
is defined on a subset D of some R¥ with 0 < 114 (D) < oo.

REMARK 2.12 (Informal meaning of the singular value and eigenvalue distribution). The
informal meaning behind the spectral distribution (2.14) is the following: assuming that f
possesses 1 a.e. continuous eigenvalue functions \;(f(x)), ¢ = 1,...,r, then the eigenvalues
of A,,, except possibly for o(d,,) outliers, can be subdivided into r different subsets of
approximately the same cardinality, and, for n large enough, the eigenvalues belonging to
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the ith subset are approximately equal to the samples of the ith eigenvalue function \;(f(x))
over a uniform grid in the domain D. For instance, if k¥ = 1, d,, = nr, and D = [a, ], then,
assuming we have no outliers, the eigenvalues of A,, are approximately equal to

/\i<f(a+jb;a)), j=1,...m,  i=1,...,m

for n large enough. Similarly, if k = 2, d,, = n?r, and D = [ay, b1] X [az, b2], then, assuming
we have no outliers, the eigenvalues of A,, are approximately equal to

b1 —a b —a o )
Ai(f(“l"’]l 171 17a2+32 2n 2))7 ]1,]2:1,...,71, 2:13"'37'3

for n large enough; and so on for £ > 3. A completely analogous meaning can also be given
for the singular value distribution (2.13).

REMARK 2.13 (Rearrangement). Let D = [a1,b1] X --- X [ag,bx] C R¥, and let
f D — C"*" be a measurable function possessing r real-valued a.e. continuous eigenvalue
functions A;(f(x)), 7 =1,...,r. Compute for each p € N the uniform samples

. bi—a . b —ag . . )
Ai(f(al—i_jl 1,0 17"'aak+]k P ))a ]17"'a]k:1a"'7p7 Zzl,...,T,

sort them in non-decreasing order, and put them into a vector (¢1,2,...,5.,%). Let
¢, : [0,1] — R be the piecewise linear non-decreasing function that interpolates the samples
(So = S1,61,2, - - -, Sppr ) at the nodes (0, #, %, 1), e,
¢P(W):§ia ZZO)"'7Tpa
. i 141 .
¢, linear on [Mk}, z:O,...,rpk—l.
rp® rp

When p — oo, the function ¢, converges a.e. to a function ¢, which is non-decreasing on
(0,1) and satisfies

' _ 1 Y FOu(f(x))
(2.15) /OF((j)(t))dtuk(D)/D L . dx, VF e C.(C).

The proof of this result is omitted because it is rather technical; it involves arguments from
[40, solution of Exercise 3.1] and [6]. The function ¢ is referred to as the canonical rearranged
version of f. What is interesting about ¢ is that, by (2.15), if { A, },, ~x f, then {A,}, ~x &,
i.e., if f is a spectral symbol of { A, },, then the same is true for ¢. Moreover, ¢ is a univariate
non-decreasing scalar function, and hence it is much easier to handle than f. According to
Remark 2.12, if we have { A, },, ~» f (and hence also {A,, },, ~x ¢), then, for n large enough,
the eigenvalues of A,,, with the possible exception of o(d,,) outliers, are approximately equal
to the samples of ¢ over a uniform grid in [0, 1].

2.4.2. Clustering and attraction. In what follows, if S C C and £ > 0, we denote by

D(S, ¢) the e-expansion of S, which is defined as D(S,¢) = (J, g D(z,€).

DEFINITION 2.14 (Clustering of a sequence of matrices). Let { A, },, be a sequence of

matrices with Ay, of size d,, and let S C C be a nonempty subset of C.

o We say that { Ay, }r, is strongly clustered at S (in the sense of the eigenvalues), or equivalently,
that the eigenvalues of { Ay}, are strongly clustered at S, if, for every € > 0, the number
of eigenvalues of A,, lying outside D(S, ¢) is bounded by a constant C. independent of n,
that is, for every € > 0,

(2.16) #{ € {1,....d.} s N(Ay) € D(S,e)} = 0(1).
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o We say that { Ay, }, is weakly clustered at S (in the sense of the eigenvalues), or equivalently,
that the eigenvalues of { Ay}, are weakly clustered at S, if, for every € > 0,

(2.17) 05 € {1, dy}: Aj(An) € D(S,e)} = o(dy,).

By replacing “eigenvalues” with “singular values” and \;(A,,) with 0;(A;,) in (2.16)~(2.17),
we obtain the definitions of a sequence of matrices strongly or weakly clustered at a nonempty
subset of C in the sense of the singular values.

Throughout this work, when we speak of strong/weak cluster, sequence of matrices
strongly/weakly clustered, etc., without further specifications, it is understood “in the sense of
the eigenvalues”. When the clustering is intended in the sense of the singular values, this is
specified every time.

DEFINITION 2.15 (Spectral attraction). Let { A, },, be a sequence of matrices with A,, of
size dy,, and let z € C. We say that z strongly attracts the spectrum A(A,,) with infinite order
if, once we have ordered the eigenvalues of A,, according to their distance from z,

A (An) = 2[ < [A2(An) = 2[ < ... < g, (An) — 2],
the following limit relation holds for each fixed j > 1:
nhHH;O |A;j(A,) — 2| =0.

For the next theorem and its corollary, see [8, Theorem 2.12 and Corollary 2.13].

THEOREM 2.16. If {Ap}n ~» f, then { A}y is weakly clustered at the essential range
ER(f) and every point of ER(f) strongly attracts the spectrum A(A,,) with infinite order.

COROLLARY 2.17. If {An}n ~x f and A(A,) is contained in S C C for all n, then
ER(f) is contained in the closure S.

2.4.3. Zero-distributed sequences. A sequence of matrices {Z,, },, with Z,, of size d,,
is said to be zero-distributed if {Z,,},, ~ 0, i.e.,

lim S F(o;(Z) = F(0), YF€Cu(R).

It is clear that, for any r > 1, {Z,}, ~, 0 is equivalent to {Z,, },, ~» O,. Theorem 2.18

provides a characterization of zero-distributed sequences together with a sufficient condition

for detecting such sequences. For the related proof, see [40, Theorems 3.2 and 3.3].
THEOREM 2.18. Let {Z,, },, be a sequence of matrices with Z,, of size d,.

1. {Z,}n ~5 Oifand only if Z,, = R,, + N,, with nllrgo(rank(Rn)/d,L) = nl;rrgo |V, || = 0.

2. {Zn}n ~o Oif there exists p € [1,00) such that n11_>1r010(||Zn||g/dn) =0.

2.4.4. Sparsely unbounded and sparsely vanishing sequences of matrices. The no-
tions of sparsely unbounded and sparsely vanishing sequences of matrices play an important
role within the framework of the theory of multilevel block GLT sequences.

DEFINITION 2.19 (Sparsely unbounded sequence of matrices). A sequence of matrices
{A, }n with A,, of size d,, is said to be sparsely unbounded (s.u.), if for every M > 0 there
exists nyy such that, for n > nyy,

#{ie{l,...,d,}: 0:(4,) > M} <
dn -

(M),

where lim r(M) = 0.

M —o00
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For the proofs of the next three propositions, we refer the reader to Proposition 5.3 of [40]
and Propositions 2.2 and 2.3 of [45]. Note that the proof in [40] is made for d,, = n and the
proofs in [45] are made for d,, = sn for a fixed s € N, but the extension to the case of a
general d,, tending to infinity is straightforward.

PROPOSITION 2.20. Let {A,}, be a sequence of matrices with A,, of size d,,. The
following statements are equivalent.

1. {A}y s s.u.

2 Jim limsup #{ie{l,...,dn}: 0;(A,) > M} _
M—00 pn—oco dn

3. For every M > 0 there exists nyy such that, for n > nyy,

0.

Ap=Apr + Apns,  rank(A, ) <r(M)d,, | An] < M,

where lim r(M) = 0.

M—o0

PROPOSITION 2.21. If { Ay }n, {Al }n are s.u., then {A, A}, is s

PROPOSITION 2.22. If {Ap}n ~o [, then {A,},, is s.u.

REMARK 2.23. Let {A, },, be an s.u. sequence of Hermitian matrices with A,, of size
d,. Then, the following stronger version of condition 3 in Proposition 2.20 is satisfied [8,
Remark 2.19]: for every M > 0 there exists n s such that, for n > nyy,

An - An,M + An,Ma rank(An,M) S T(M)dru ||An,MH S Ma

where lim /o (M) = 0, the matrices An M and flm s are Hermitian, and for all functions
g : R — R satisfying g(0) = 0, we have

Q(An,JVI + An,M) = g(An,IM) + g(z‘in,M)-

Strictly related to the notion of sparsely unbounded sequences of matrices is the notion of
sparsely vanishing sequences of matrices.

DEFINITION 2.24 (Sparsely vanishing sequence of matrices). A sequence of matrices
{An}n with A, of size d,, is said to be sparsely vanishing (s.v.), if for every M > 0 there
exists ny such that, forn > nyy,

#{ie{l,...,d,}: 0;(A,) <1/M} <
dn -

(M),

where A}im r(M)=0.
—00
REMARK 2.25. If {4, },, is s.v., then { A },, is s.u. This follows from the fact that the
singular values of At are 1/01(A),...,1/0,.(A),0,...,0, where o1(A),...,0.(A) are the
nonzero singular values of A (r = rank(A)).
REMARK 2.26. A sequence of matrices {A,, },, with A, of size d,, is s.v. if and only if

lim limsup #lie{l,...,d,}: 0y(A,) <1/M} _

M—00 nsoco dn

0;

see [40, Remark 8.6].

Proposition 2.27 is the analog of Proposition 2.22 for s.v. sequences of matrices [40,
Proposition 2.3].

PROPOSITION 2.27. If {Ap}n ~o [, then {Ay}y, is s.v. if and only if f is invertible a.e.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: MULTIDIMENSIONAL CASE 131

2.4.5. Spectral distribution of sequences of perturbed/compressed/expanded Her-
mitian matrices. Theorem 2.28 reports from [9] a recent important result about the spectral
distribution of sequences of perturbed Hermitian matrices. It nicely extends previous results
obtained in [43, 48].

THEOREM 2.28. Let { X, }n, {Yn}n be sequences of matrices with X,,,Y,, of size d,,
and set A, = X,, + Y,,. Assume that the following conditions are met.

1. Every X,, is Hermitian and { X}, ~x f.
2 [Yalla = o).
Then {Ap}n ~x f.

REMARK 2.29. If ||Y,,|| < C for some constant C' independent of n and ||Y,,||1 = o(dn),
then Y,, satisfies the second assumption in Theorem 2.28 by (2.4).

Theorem 2.30 concerns the singular value and spectral distribution of sequences of
matrices obtained as a compression (or expansion) of another sequence of matrices. For the
proof, we refer the reader to [52, Theorem 4.3 and Corollary 4.4].

THEOREM 2.30. Let { X, },, be a sequence of matrices with X,, of size d,, and let { P, }
be a sequence such that P, € C%*on PP, =15, 6 < d, and b,/d, — 1asn — oc.
o We have {X .}, ~o fifand only if {P X, Pp}n ~o [

o In the case where the matrices X,, are Hermitian, we have { X}, ~x f if and only if

2.5. Approximating classes of sequences.

2.5.1. Definition of a.c.s. and the a.c.s. topology 7.

DEFINITION 2.31 (Approximating class of sequences). Let {4, }, be a sequence of
matrices with Ay, of size dy,, and let {{ By, m }n }m be a sequence of sequences of matrices with
By,m of size d,,. We say that {{ By, m }n }m is an approximating class of sequences (a.c.s.) for
{A,}n if the following condition is met: for every m there exists n, such that, for n > n,,

An = Bn,m + Rn,m + Nn,ma rank(Rn,m) < C(m)dna HNn,mH < w(m),

where n,,, ¢(m), w(m) depend only on m and lim c(m) = lim w(m) = 0.
m—0o0 m— o0

Roughly speaking, {{ By, ;m }n }m is an a.c.s. for { A, },, if, for all sufficiently large m, the
sequence { By, ., },, approximates (asymptotically) the sequence {A,, },, in the sense that A4,,
is eventually equal to B,, ,,, plus a small-rank matrix (with respect to the matrix size d,,) plus
a small-norm matrix.

It turns out that, for each fixed sequence of positive integers d,, such that d,, — oo,
the notion of a.c.s. is a notion of convergence in the space of all sequences of matrices
corresponding to {d,, }», i.e.,

(2.18) & ={{A.}n: A, € C>* forevery n}.

To be precise, for every ¢ : [0, 00) — [0, 00) and every square matrix A € C**¢, let

1 Vi
p7(A) = 7 Z@(%’(A))
i=1
and define
pfcs({An}n) = hm Sup pW(An)7 {An}n S g];
(2.19) dfes {An}n, ABntn) = pies.({An — Buln), {An}n ABn}n € 6.

THEOREM 2.32. Let ¢ : [0,00) — [0, 00) be a gauge function. Fix a sequence of positive
integers d,, such that d,, — 0o, and let & be the space (2.18). The following properties hold.
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1. dfcs in (2.19) is a complete pseudometric on & such that dgcs ({An}n, {Bn}n) = 0 if
and only if { A,, — By}, is zero-distributed.

2. Suppose {Ap}n € & and {{Bpnm}n}tm C &. Then, {{Bn m}tn}m is an a.c.s. for {An}n
if and only if we have dfcs.({An}ny{Bnm}n) = 0asm — oc.

Theorem 2.32 was proved in [7]. It justifies the convergence notation { By, 1, }n 28X
{4}, which will be used to indicate that {{ By, ;n }n }m is an a.c.s. for { A, },,. The topology
induced on & by the pseudometric dg. . is the same for all gauge functions ¢, it is denoted
by Tacs., and it is referred to as the a.c.s. topology. Throughout this work, we will use the
notations

oz
T l4z

Pacs. = p:fc_s,; dacs. = d;b_c_s,a ¢($)

2.5.2. Tycs. and Tipeasure- Theorem 2.33 highlights important connections between 7, s,
and Tieasure OT, t0 be more precise, between the pseudometrics dics. and dieasure inducing
these two topologies. Actually, the connections between 7, 5. and Tmeasure are so deep that
they may lead to a “bridge”, in the precise mathematical sense established in [22], between
measure theory and the asymptotic linear algebra theory underlying the notion of a.c.s.; a
bridge that could be exploited to obtain matrix theory results from measure theory results and
vice versa. For deeper insights on this topic, we suggest reading [7, Section 1]. For the proof
of Theorem 2.33, see [8, Section 2.5.2].

THEOREM 2.33. If {Ay}n ~o f, then pies ({An}n) = pheasure(f) for every bounded
continuous function ¢ : [0, 00) — [0, c0).

2.5.3. The a.c.s. tools for computing singular value and eigenvalue distributions.
The importance of the a.c.s. notion resides in Theorems 2.34 and 2.35, for which we refer the
reader to [45, Theorems 3.1 and 3.2].

THEOREM 2.34. Let { A, }, { Bn,m }n be sequences of matrices and f, fp, : D — C™*"
be measurable functions defined on a set D C R¥ with 0 < (D) < oco. Assume that:

1. {Bpm}tn ~o fm forevery m;
2. {Bumtn &5 {A )

3. fm — [ in measure.

Then {A,}n ~o [

THEOREM 2.35. Let {An}n,{Bn.m}n be sequences of Hermitian matrices, and let
fy fm : D — C"*" be measurable functions defined on a set D C R¥ with 0 < px(D) < oo.
Assume that:

1. {Bn,'rn}n ~X fmfor every my
2. {Bumtn 5 {A

3. fm — [ in measure.

Then {A,}n ~x f.

REMARK 2.36. Let {A, }, and { B,, },, be sequences of matrices with A,, and B, of size
dy,, and suppose that dycs ({An }n, {Bn}n) = 0 (which is equivalent to {A,, — By} ~5 0
by Theorem 2.32). By Theorems 2.34 and 2.35,

d {An}n ~y f = {Bn}n ~g [
e if the matrices A,, and B,, are Hermitian, then {A, },, ~x f <= {Bn}n ~x [.

2.54. The a.c.s. algebra. Theorem 2.37 collects important algebraic properties pos-
sessed by the a.c.s. For the proof, we refer the reader to [45, Theorem 2.3].
THEOREM 2.37. Let { Ap}n, { A Yns { Brym by { By, i I n be sequences of matrices such

that { By }n =3 {AnYn and { B, b =5 {A! Y. Then, the following properties hold.
a.c.s. ’
b {Bz,m}n = { A}
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o {aBnm+ BB, uin 25 (oA, + BAL Y, forall a, B € C.
o If{An}n, {A}}n are s.u., then { By, 1, B}, }n X {ALA b,
o If{Cy}y is s.u., then { By, 1, Cp}n, aex {4,Cr}n.
Another important algebraic property of a.c.s. is stated in the next theorem [39, Lemma 1].
THEOREM 2.38. Let s € N, let {A,, = [An 3515 ;1 }n and {BY™ = [BU))3 .1} be
sequences of block matrices, and suppose that
(BU", 25 (A, Y, =1

n,ij geee g9

Then {B{™ Y, 2<% {4,

2.5.5. A criterion to identify a.c.s. In practical applications, it often happens that a
sequence of sequences of matrices {{ B, m }n }m is given together with another sequence of
matrices {A,, },,, and one would like to show that {B,, ,,, }» 5% [A,},, without resorting to
Definition 2.31. A way for solving this problem consists in choosing a suitable gauge function
¢ and proving that dics ({ Bn.m }n, {An}n) — 0 as m — oo. Another criterion is provided
in the next theorem [40, Corollary 5.3].

THEOREM 2.39. Let { A, }n, { Bn.m }n be sequences of matrices with A,,, By, 1, of size
dn, and let 1 < p < oo. Suppose that for every m there exists n.,, such that, for n > n,,,

||An - Bn,mHg S E(man)dnv

where lim limsupe(m,n) = 0. Then {By.m}n =3 {A, 0.
Mm—=00 n—oo

2.5.6. An extension of the concept of a.c.s. We now provide a natural extension of the
a.c.s. notion. The underlying idea is that, in Definition 2.31, one could choose to approximate
{A,}», by a class of sequences {{ By, o }n}aca parameterized by a not necessarily integer
parameter «. For example, one may want to use a parameter € > 0 and claim that a given
class of sequences {{ By, ¢} }->0 is an a.c.s. for {A4,,}, as e — 0. Intuitively, this assertion
should have the following meaning: for every € > 0 there exists n. such that, for n > n.,

An = Bn,a + Rn,a + Nn,fsa rank(Rn,E) < C(g)dvu ||Nn,5|| < w(é)a

where n., ¢(¢), w(e) depend only on ¢ and both ¢(g) and w(e) tend to 0 as € — 0. This is in

fact the correct meaning.

For the definition of multilevel block LT sequences (Definition 3.10), we need the concept
of a.c.s. parameterized by a multi-index m — co. In what follows, a multi-index sequence of
sequences of matrices is any class of sequences of the form {{ By, m }n }mea Which satisfies
the following two properties.

1. M C N?forsome g > 1and M N{i € N?: ¢ > k} is nonempty for every k € N?.
We express the latter condition by saying that co is an accumulation point for M. This is
required to ensure that m can tend to oo inside M.

2. For every m € M, {B,, m}n is a sequence of matrices as defined at the end of Sec-
tion 2.1.1.

DEFINITION 2.40 (Approximating class of sequences as m — 00). Let {A,}, be a
sequence of matrices with Ay, of size dy,, and let {{ By, m }n } mem be a multi-index sequence
of sequences of matrices with By, p, of size d,,. We say that {{By, m }n}mem is an a.c.s. for
{A, }n as m — oo if the following property holds: for every m € M there exists Ny, such
that, for n > N,

(220) An = Bn,m + Rn,m + Nn,ma rank(-Rn,m) S C(m)dn; ||Nn,m|| S w(m)7
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where the quantities Ny, c(m), w(m) depend only on m and "%1_{11 c(m) = Tr{ll}noow(m) =0.

Note that an equivalent definition is obtained by replacing, in Definition 2.40, “for all
m € M” with “for all sufficiently large m € M?” (i.e., “for every m € M that is greater than
or equal to some 1m”"). Indeed, suppose the splitting (2.20) holds for m > . For the other
values of m, define n,,, =1, c¢(m) = 1,w(m) =0and R, s, = A, — By Npom = Oy, -
Then, we see that (2.20) holds for every m € M.

REMARK 2.41. Definition 2.40 extends the classical definition of a.c.s. (Definition 2.31).
Indeed, a classical a.c.s. {{ By, m }n }m for { A, },, is an a.c.s. also in the sense of Definition 2.40
(take M as the infinite subset of N where m varies). In addition, if {{ B, m }n},, cagisanacs.
for {A,, }, in the sense of Definition 2.40, then {{B,, m }n},, is an a.c.s. for {A,}, (in the
sense of the classical Definition 2.31) for all sequences of multi-indices {m = m(m)},, C M
such that m — oo as m — oo.

REMARK 2.42. Let { By m }n =5 {An}n and {B, . }n =3 {4} }, asm — oo. The
following properties hold.

° {B;’m}n 0% {A*},, asm — oo.
o {aBnm + BB, mtn =5 {ad, + BA,}, asm — oo forall a, 3 € C.
o If {A,}, and {4}, are s.u., then { By m B,y bn =5 {An A}
The proof of these results is essentially the same as the proof of the analogous results for
standard a.c.s.; see Theorem 2.37. Based on the topological results of Section 2.5.1, we can
give the following elegant characterization of a.c.s. parameterized by a multi-index m — oo.
A multi-index sequence of sequences of matrices {{ By, m }n fmen is an
a.c.s. for {A,}, asm — oo if and only if dycs ({An}ns {Bnm}n) = 0
as m — 00.
Throughout this paper, we write “{B,, m }n o8 {A,}n as m — oo to indicate that
{{Bn,m}n}tmemisanacs. for {4,}, as m — oo.

2.6. Multilevel block Toeplitz matrices. Given n € N?, a matrix of the form
[Aifijjzl c (CsN(n)st(n)’

with blocks Ay € C**® fork = —(n —1),...,n — 1, is called a d-level s-block Toeplitz
matrix. If s = 1 (resp., d = 1), it is simply referred to as a d-level (resp., s-block) Toeplitz
matrix. Given a function f € L ([—, 7]¢, s), its Fourier coefficients are denoted by
1 .
[ / fO)e ka0 € C5, ke,
(27T) [—m,m]d

where the integrals are computed componentwise. The nth (d-level s-block) Toeplitz matrix
associated with f is defined as

To(f) = [fi—j]fjoy € CN(m)xeN (),

We call {T},(f)}nene the family of (d-level s-block) Toeplitz matrices associated with f,
which in turn is called the generating function of {75, (f) }nend-

For each s € Nand n € N, the map Ty, (-) : L*([—m, 7]¢, 5) — CsN()*sN(n) ig Jinear,
ie.,

(221)  Tolaf+Bg) = aTn(f) + BTn(9), o B€C, fgel'(-m7]%s).

Moreover, it is clear from the definition that Ty, (I5) = Isn(n). If f € LY ([-m, 7], s), let f*
be its conjugate transpose. It can be shown that

(2.22) Tn(f) =Ta(f*),  feL'(-m7]%s), seN, neN
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In particular, if f is Hermitian a.e., then the matrices Ty, (f) are Hermitian.

Theorem 2.43 is a fundamental result about multilevel block Toeplitz matrices. It provides
the singular value distribution of multilevel block Toeplitz sequences generated by a matrix-
valued function f € L' ([—, w]¢, s) and the spectral distribution of multilevel block Toeplitz
sequences generated by a Hermitian matrix-valued function f € L!([—m, 7%, s). For the
eigenvalues it goes back to Szegd [49], and for the singular values it was established by
Avram [2] and Parter [53]. They assumed d = 1, s = 1, and f € L>([-7,7]%,5); see
[19, Section 5] and [20, Section 10.14] for more on the subject in the case of L°° generating
functions. The extension to d > 1, s = 1, and f € L'([—m,n]¢, s) was performed by
Tyrtyshnikov and Zamarashkin [69, 70, 71], and the final generalization to f € L!([—, 7], 5)
with arbitrary s,d > 1 is due to Tilli [67]. We also refer the reader to [40, Section 6.5] for
a proof of Theorem 2.43 based on the notion of approximating classes of sequences; the
proof in [40, Section 6.5] is made only for d = s = 1, but the argument is general and can
be extended to the case d, s > 1. Note that the extension to the case s = 1 and d > 1 was
performed in [41, Section 3.5].

THEOREM 2.43. If f € LY([-n,7]% s) and {n = n(n)}, C N% is any sequence
such that n — oo asn — oo, then {Tn(f)}n ~o f. If moreover f is Hermitian a.e., then
{Tn(f)}n ~A f

Important inequalities involving Toeplitz matrices and Schatten p-norms originally ap-
peared in [64, Corollary 4.2]. They have been generalized to multilevel block Toeplitz matrices
in [61, Corollary 3.5]. We report them in the next theorem for future use.

THEOREM 2.44. Let f € LP([—m,7]¢, s) and n € NY, then, using the natural convention
1/00 = 0, the inequality

n)\ /P
Tl < () 1l

holds for all p € [1, oc].

The next result provides an important relation between tensor products and multilevel
block Toeplitz matrices. Observe that, if f; € L'([-m, 7% s;), i = 1,...,d, and
s =(s1,...,84),then fi ® - ® fy € L*([~m, n]¢, N(s)) by Fubini’s theorem.

LEMMA 2.45. For every n, s € N% we have

Tn(fl & ®fd) = FZ’S[Tnl(fl) ®"'®Tnd(fd)]rn,s

for all functions f1 € L*([-m,w],s1),..., fa € L*([—m, 7], sa), where ', s is defined in
Remark 2.3.

Proof. The result has already been proved in the case where f1, ..., fg are matrix-valued
trigonometric polynomials; see [44, Lemma 4]. For general functions f; € L!([—7, 7], 51),

.., fa € LY([—m, 7], s4), simply take an s; X s; matrix-valued trigonometric polynomial p;

such that T, (f;) = Tn,(p;), and observe that T, (p1 ® - - @ pg) = Tn(f1 ® -+ ® fq); for
example, one can take p;(0) = Z?;il(nﬁl) (fi);€°. O

The next theorem shows that the product of multilevel block Toeplitz matrices generated
by functions in L ([—, ]9, s) is “close” to the multilevel block Toeplitz matrix generated
by the product of the generating functions.

THEOREM 2.46. Let f; € L>=([—n, 7| s) fori=1,...,q. Then,

lim ||qu:1Tn(fi)*Tn( g:1fi)H1

oo N(n) =0
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Proof. For ¢ = 2 the result is proved in [29, Proposition 2]. In the general case we proceed
by induction. Fix p > 3 and suppose that the result holds for ¢ = p — 1. If ¢ = p, using (2.5)
and Theorem 2.44, we obtain

alfian (10
- vt 1} (HT () Tty
+(p [ () ) Ealhyafy) - (Hfi)
< (H 9) Tl 1)) = Talfy-1£) 1
<HT (5))Talfyafy) - (Hﬁ)
< N(1n<H illim ) Wy TaFy) = Tl sl

<HT fz> (fy1fy) - ((Hfz) £y 1fp)>

Now, the first term on the right-hand side tends to zero as n — oo by [29, Proposition 2], and
the second term tends to zero as n — oo by the induction hypothesis. |

We end this section with a result highlighting the connection between multilevel block
Toeplitz matrices and block matrices with multilevel block Toeplitz blocks. It generalizes [39,
Lemma 3]. Recall that II,,  , denotes the special permutation matrix (2.3).

THEOREM 2.47. Let n € N% let fi; : [-m,m]? — C™" be in L'([—m,7]4,r),
fori,j = 1,...,s and set f = [fi;|{ ;_1. The block matrix T, = [Tn(fi;)I; ;=1 is
similar via the permutation (2.3) to the multilevel block Toeplitz matrix Ty, (f), that is,
M sr T Hgsr =Tn(f).

Proof. Since Ty, = >0 i Ef;) @ Tn(fij) and T (f) = 377 iy Tn(EZ(;) ® fij) by the

7,7=1
linearity of the map 7., (-), it is enough to show that

1

n,s,r

Oy (E@Tn(g)L ,, =Tw(E®g), VgeL'(-m7]%r), VEeC™".
By properties of tensor products (see Section 2.2.2),

H’nysﬂ“(E@)T ( ))HZ;sr
= Zek@;ls@eg@b

k=1
n

(E® Tn(g lZee®I Qer® I,
£=1

(er@Is@ep @) (E®Th(g))(e; @ I;@e,® 1)
1

k,

&
Il

eke{ QE® (eg ® IT)Tn(g)(el 02y Ir)
1

Il
NE

k,

&
Il
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=) ewe] ERgue= Y exe; ®(E®g)—e=Tn(E®yg),
k=1 k=1

as required. 0

2.7. Multilevel block diagonal sampling matrices. If n € N% and a : [0,1]¢ — C"™*",
then we define the nth (d-level r-block) diagonal sampling matrix generated by a as the
following multilevel block diagonal matrix of size N (n)r:

where we recall that 2 varies from 1 to n following the lexicographic ordering. Note that
D,,(a) can also be defined through a recursive formula: if d = 1, then

Do(a) = diag a(i);

i=1,...,n n
if d > 1, then
. 7
(2.23) Dn(a) = Dy, ...n,(a) = diag Dn,. n, (a(n—ll,@, . a:d>)
11=1,....,n1
where a(i1/n1,xa,...,2q) is the (d — 1)-variate function defined as follows:
a(z—l,xg, ... ,a:d) 20,147 — ¢y (z2y...,xq) — a(l—l,xg, . ,xd).
ny ni

If (C"X")[O’l]d denotes the space of all functions a : [0,1] — C"*", then the mapping
Dp(:) : (Cr>m)07 5 ¢rN(Mm)xrN(n) s Jinear, i.c.,

Daf0a -+ b) = aDp(a) + BDa(b), 0, B€C,  abe (€O

Moreover, it is clear from the definition that D,,(F) = T,(F) for all constant matrices
E € C™" and Dy(a)* = Dy(a*) forall a € (C™*7)01", The next result, which is the
version of Theorem 2.47 for multilevel block diagonal sampling matrices, highlights the
connection between multilevel block diagonal sampling matrices and block matrices with
multilevel block diagonal sampling blocks. It is a generalization of [39, Lemma 4].

THEOREM 2.48. Let n € N% let a;; : [0,1]% — C™", fori,j = 1,...,s, and set
a = [ai;]; j—y. The block matrix Dy, = [Dn(ai;)]; ;_ is similar via the permutation (2.3) to
the multilevel block diagonal sampling matrix Dy, (a), that is, Iy s » DplL}, . = Dp(a).
Proof. With obvious adaptations, it is the same as the proof of Theorem 2.47. |
For n, s € N, we denote by {xf"g ns = {x&"s), ...,z } the sequence of points
{xgtls),,xgg)js} = {1,...,1,2,...,2,...,n_1,...,n_l,l,...,l}.
n n'n n n_~—~—

In formulas,
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Similarly, for n,s € N9, we denote by {XE,Z) ns = {x(lns) LX) ) the sequence of
points
(n) _ (.(n1) (na) -
X o = (Ti, 5101 Tiysy)s i=1,...,ns.

Forn,s € N% and a : [0,1] — C, we denote by D, s(a) the d-level diagonal sampling
matrix given by

(n))

1,8 /°

Dy s(a) = diag a(x

1=1,....,ns

Note that D, s(a) can also be defined through a recursive formula: if d = 1, then

(2.24) D, s(a) = diag a(x(z)) = D, (aly),

) %
i=1,...,ns

as defined in [8, Section 2.7]; if d > 1, then

(2.25)
Dn,8<a) = Dnl ----- M yS15eeey Sd(a’) = ldlag Dnz ,,,,, Nd,82,.--,5d (a(xg?,ls)l y L2y e e 7xd))a
11=1,...,n181
where a(ml(ﬁg)l ,Ta,...,xq) 1s the (d — 1)-variate function defined as follows:
(n1) . d—1 C (n1)
a(:ril,sﬁxg,...,xd) :[0,1] — C, (x27...7md)»—)a(xil,sl,xg,...,xd).
If CI%11" denotes the space of all functions a : [0,1] — C, it is not difficult to see that

the operator Dy, 4(-) : clo1? _y ¢N(sn)xN(sn) enjoys the following properties: for every
n,s € N4 every a,b: [0,1]? — C, and every o, 3 € C,

(2.26) Dy, s(@) = Dy s(a)”,
(2.27) Dp s(ab) = Dy s(a)Dp s(b),
(2.28) Dy s(aa+ b) = aDp s(a) + BDn s(b).

LEMMA 2.49. Letn,s € N, and let a : [0,1]? — C. Then

(2.29) Di.s(a) = Tn s Dn(aln)Th
where I'y, ¢ is the permutation matrix defined in Remark 2.3.

Proof. Suppose first that a is a separable function, i.e., a(x) = ai(x1) - - - ag(zq) with
ai,...,aq: [0,1] — C. Then, by definition of I';, s (see Remark 2.3),

(n)y .

91,81

(na) )

’ ad(midasd

. ,8 ,
i=1,....ns i=1,....ns

D, s(a) = diag a(x(n)) = diag ai(z
= Dny 5 (a1) ® - @ Dnys4(ad) = Dny(arls,) ® - @ Dy, (aals,)
= Dnl(al) R, ®--® Dnd(ad) ® I,
=Ins [Dm(al) @ Dnd(ad) I, ® Isd] Fz,s
= Fn,s [Dn<a) & IN(s)] FZ’S = Fn,sDn(aIN(s))FZ’y
which completes the proof of equation (2.29) in the case where a is separable. By the properties
(2.26)—(2.28), equation (2.29) continues to hold if a belongs to the *-subalgebra of clo.1*
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generated by separable functions; in particular, it continues to hold if a is a linear combinations
of separable functions.

Suppose now that a : [0,1]¢ — C is an arbitrary function. We show that there exists a

linear combination b of separable functions such that b(x (n)) a(x; (n )) foralle =1,...,ns.
Once this is done, equation (2.29) is proved because, by the first part of the proof,

Dps(a) = Dy s(b) = Tp s Dn(bIn(s))Th o = TnsDn(aln(s))Th o

i

To prove the existence of a function b with the required properties, it suffices to find a linear
combination b of separable functions such that

b(i/n) = a(i/n), i=1,...,n,

because the set {xg? : 4=1,...,ns} coincides with {¢/n : i =1,... ,n} regardless of s.
In the following, we provide an explicit construction of a function b satisfying the required
properties. Fori = 1,...,n,letb;, : [0,1] — C be any function such that b; ,,(j/n) = 1

if j =iand b; ,(j/n) = 0if j # 4. Fori = 1,...,n, define b; , : [0,1]¢ — C by setting
bin(x) = biy ny (1) - biyny(xa), and note that b; ,,(j/n) = 1if j = ¢and b; »(j/n) =0
if j # 4. Finally, define

n
Za (2/1)b; m (
=1

and note that b satisfies all the required properties. a
Since I'y, s = I, formula (2.29) is a generalization of (2.24) to the d-level case.

We conclude this section by introducing a notation that we shall use later on. If n € N¢
and a : [0,1]? — C, the nth (d-level) arrow-shaped sampling matrix generated by a is the
symmetric N (n) x N(n) matrix denoted by Sy, (a) and defined as follows:

Sn(a) = [(Dn(a))inginglij—1 = [a(z Qjﬂng 1

i,J=

3. Multilevel block locally Toeplitz sequences. The theory of (scalar) LT sequences
dates back to Tilli’s pioneering paper [66]. It was then carried forward in [62, 63], and
it was finally developed in a systematic way in [40, Chapter 7] and [41, Chapter 4]. The
theory of block LT sequences was originally suggested in [63, Section 3.3], carried forward
in [45], and developed in a systematic way in [8, Chapter 3]. In this chapter, we address the
multidimensional version of the theory of block LT sequences, also known as the theory of
multilevel block LT sequences. The topic is presented here on an abstract level, whereas for
motivations and insights we refer the reader to the introduction of [8]; see also the introduction
of Tilli’s paper [66] and Section 7.1 of [40].

3.1. Multilevel block LT operators. Just as the theory of block LT sequences begins
with the notion of block LT operators, the theory of multilevel block LT sequences begins with
the notion of multilevel block LT operators.
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3.1.1. Definition of multilevel block LT operators.

DEFINITION 3.1 (Multilevel block locally Toeplitz operator).

o Letm,n,s €N, leta:[0,1] — C, and let f € L'([—m, 7], s). The (unilevel) block locally
Toeplitz (LT) operator is defined as the following ns X ns matrix:

LT’rTs(a’a f) = Dm(a’) ® TLn/mJ (f) @ Os(nmodm)

. )
dlag [a(m)T\_n/mJ(f):l D Os(nmodm)

i=1,....m
. 1
= diag a’(*)TLn/mJ (f) S Os(nmodm)-
i=1,....m m

It is understood that LT, (a, f) = O, if n < m and that the term O(; moam) is not
present if n is a multiple of m. Moreover, here and in what follows, the tensor product
operation ® is always applied before the direct sum &, exactly as in the case of numbers,
where multiplication is always applied before addition. Note also that in the last equality
we intentionally removed the square brackets in order to illustrate a notation that will be
used hereinafter to simplify the presentation (roughly speaking, we are assuming that the
“diag operator” is applied before the direct sum &®).

e Letm,n,s € N leta:[0,1]¢ — C, and let f; € L*([—m,7],8;) for j=1,...,d. The
multilevel block locally Toeplitz (LT) operator is defined as the following N (ns) x N(ns)
matrix:

LTTTs(a7f1 Q- ® fd)
- LT;Z}.’.’.‘,‘?’lZi{éh...,Sd (a(x15 M ’Id)7 f1 ® e ® fd)

_ 1T
- Fn,s

. m ., m Z.
dlag TLn1/m1J (fl) ® FTLQ ----- Nd,82,---,8d LTng?f.'.',;zd,iz Sq (a’( : y L2 e 7xd) ) f2 Q& fd>]‘—‘3;2 Nq,82,...,5d
1

o e A na/ma J\J 1) S ng, . nd; 82,0584 ng, g, 82,084 \ T\ o, 2 o a )y J2 S TS A [ ng,ng,sa,..,
i1=1,...,m1

2] Osl(nl mod m1)sang--Sang F'r7,,s~

This is a recursive definition, whose base case has been given in the previous item. For
example, in the case d = 2 we have

LTT?ZZ};IZ?GhSQ (CL, fl & f2)

_ 1T :
- Fnl,n2,51¢52 . 1ag
21:1,.

. 11 i
T[nl/mlj (fl) ® |: dlag a(iv 7)T[nz/m2j (f?) @ 052(n2 mod m2)
1

..m ia=1,...,mo my ma

@ Osl(nl mod m1)52n2:| Fn1,n2751,527

where we have used the fact that I'y,, 5, = I, s,; see Remark 2.3.
In Definition 3.1, we have defined the multilevel block LT operator LT (a, f) in the case

,S
where f is a separable function of the form f = f; ® - - - ® fyq with f; € L'([-m, 7], s;) for
j=1,...,d. We are going to see in Definition 3.3 that LT}";(a, f) is actually well-defined

(in a unique way) for any f € L'([—m, 7|%, N(s)). The crucial result in view of Definition 3.3
is Theorem 3.2. It shows that the multilevel block LT operator LT} (a, fi ® -+ ® fa)
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coincides with Dy, (@) ® Tp/m(f1 ® -+ @ fa) © O up to a permutation transformation
Hﬁf, )m depending only on m, n, s and not on the functions a, f1,..., fa.

(s)
n

THEOREM 3.2. For every m,n, s € N% there exists a permutation matrix Iy, ym, such

that

LT'rTLr,Ls(aafl K- fd)
=112, [ Do (@) @ T (f1 @+ @ fa) © Oy Nmin/mis) | ()™

forevery a : [0,1]% — C and every f1 € L*([—7, 7], 581),..., fa € L ([~7, 7], sa).

Proof. The proof is done by induction on d. For d = 1, the result holds with H&f%n = Ins.

Ford > 2,setv = (na,...,ng), p = (ma,...,mq), & = (s2,...,8q). By definition,
LT (a, fi @ ® fa) =

. )
Fg,s ) %lag Tl_nl/mlj (fl) & Fu,aLTxﬁa (a(mill7 > ) f2 X ® fd) ]-—‘;1;70
11=1,... my

G.1)
2] Osl(nl modml)SQng---sdnd:| Fn,87

where a(iy/my1,-) : [0,1]71 — C is the function (2, ..., z4) — a(i1/m1, T2, ...,24). By
induction hypothesis, setting N (v, u, o) = N(vo) — N(u|v/p]o), we have

L1, (a(22) fo e £a)
32 =T [DM (a(%)) ® Tyl (28 @ f0) & Onppo | [T

Let us work on the argument of the “diag operator” in (3.1). From Lemma 2.2, equation (3.2),
and properties of tensor products (see Section 2.2.2), we get

3.3) .
Tinym ) (f1) @ Ty o LTY (a(iﬁ ) o8- @ fd)Ff,a

i
= H(N(uo’),l_nl/mljsl);[Q,l] {FV,O'LT[/J;U (a(m7117 ) f2®® fd)Fz,a’ ® Tl_nl/mlj (fl)}
(TN (o), s fma fsr)s(21])
= (N (we),[ny /mi)si)i[2,1]

. {F,,y,,H,(M)J [Du (a(m—ll, )) T w/u)(f2@-® fa) & ON(V,;,L,O'):| (HL,&)TFZ,U

® TLnl/mlj(fl)}(H(N(ua),Lnl/mljsl);[zl])T
= (N o), [y /ma Jsr)i2,1] (Do LT © Lo, iy s )
: { |:Du(a<ila )) & TLU/HJ (f2 &R fd) D ON(U y,cr):| ®Tl_n /m j(fl)}
ml My 1 1

. (FU,O'H)(/(TI)L & Isl [n1/mq] )T(I_I(N(Ua')7 \_nl/mljsl);[Q,l])T'
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Using equation (2.10), Lemma 2.2, Lemma 2.45, and properties of tensor products and direct
sums (see Section 2.2.2), we obtain

(3.4)
i
[Du (a(mfll)) Ty (fa® - © fa) © ON(u,um] @ Ty o) (f1)

;
- D“(“< : )) RTwjpu)(f2® @ fa) @ Tinyymi) (J1) & ON@w,po) 1 fmi s,
mq

(N(ﬂ) Ln1/m1JS1, (lv/ulo));(1,3,2]
[ ) @ Tny ymy | (f1) @ T wju) (f2 ® - ®fd)]

( ), Lnafma)sn, N (/) o))i13.2]) T @ ON(wpo) na fmi s

(N (). L1 fma 1, N(Lw/ ) 0):[1.3.2]

11
' [D“ (")) © iy sos © Pioiay o) Tinom

“Tn/m) (i® - ® fd)F{n/mLs(ILnl/mlJSl ® F[V/HJ’0'>:|
(TN (), L fmn Jsr, Nl /do))i1,3,2)T @ ON(w o) n fma |1
T
= [T (), s s 51, N (Lo /i )o))iln,3,2] IN () @ L fmaJs2 @ Tlwlo)' Tingm),s)
53] IN(u,;L,o')Lnl/mleJ
11
' [D“ (“(mT’ )) @ Tin/m)(f1 @ @ fa) ® ON(VM-,G)Lm/mlJSl}

I () [ fma Jsr, N/ ido))il1,3.20 N ) @ Ty fmajss @ Tloju) o) Tingmy.s)

T
D IN(w o) s /s )51
Substituting (3.4) into (3.3), we arrive at
3.5

T, ) (1) & Tur LT (a (35, ) fo o 0 £2)TE,

s i s
= Pl | Du((257)) @ Tinjms (9 £2) © Oxtvparing | (P
where
P = TN we, im /mafsi2a] Too 1% @ Iy 1oy jm )

’ [H(N(M),Lnl/mljmN(LV/MJU));[L?)’?]
“(In) ® Ljny yma)sy @ Closu).o) Dingmls) @ INGpo)n fma o)
Combining (3.5) and (3.1), we obtain

LT:LT}s(aafl ®®fd)

<@P<S ) diag [Du(a(ml ) @ Tinjmi (1 8+ @ fa)

=1 11=1,....mq

I VA
- F'n,s

T
® ON(V»H»O')ULl/mlJSl:| (@ Pnf ) @ Osl(nl modmi)sana--SqNg Fn,s~
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From Lemma 2.4 and equations (2.10) and (2.23),

. i
diag [D"<“<ml1")) O Tip/m)(fr @@ fa) & ON(V%U)Lm/mlJm]

i1=1,....m1

mi

= @ { ( ( )) QT n/m|(f1® @ fa) © ON(u,u,cr)Lm/mlJﬁ}

i1=1
:VA‘?T)n é [D#<a<:;1,-)) ® Tin/m)(f1 ®"-®fd)]
=1

(Vi)

n,m

® ON(,p,0)[n1/m1Jmis:

= V'r(Li)n [Dm(a) ® TLn/mJ (fl Q- fd) 2 ON(V,;L,U)Lnl/mljmlsl] (V(s) )Ta

where
V'rsj'r)n Vh(m n,s);o
g = [1,m1—|—1, ,m1—|—2,...,m1,2m1],
h(m,n,s) = (N(p)N([n/m]s),.... N(m)N([n/m]s),
ma
N, o) fmafsi, o N, iy o) [ /ma Js1 ).
mi

Thus,

LT:LYZ'S(G?fl ®®fd)

_17, l( EB ) >

7.11

[Dm(a) @ Tnym) (f1 ® - ® fa) © ONGw o) /s Jmass]

mi
V(s) ( @ P(S) ) D 081(n1 modml)San...Sdnd‘| Fn,s

i1=1
miy
= F£7S |:( @ P,,(]f) )V(S) @ IS1(n1 modm1)52n2 sdnd:|
i1=1

. [D ( ) ® TLn/mJ (fl X fd) @ ON(I/,[L,O’) [n1/m1|misi+s1(ny mOdml)SQnQ“'Sd’rbd]

|: (s) (@ P s) > S Isl(nl modm,1)32n2'~-sdnd:| Fn,s~

211

This concludes the proof; note that the permutation matrix H( is given by

10 = 0 [ (€ P )i © Lo mameans ]

i1=1

and, moreover, the number N (v, i, o) |n1/mq m1s1+s1(np mod my)sang - - - sqng is equal
to N(ns) — N(m|n/m]|s). a

DEFINITION 3.3 (Multilevel block locally Toeplitz operator). Let m,n,s € N% let
a:[0,1¢ — C, and let f € L*([—n, 7% N(8)). The multilevel block locally Toeplitz (LT)
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operator is defined as the following N(ns) x N(ns) matrix:

LTm (a f) H'(ni)rn [Dm(a’) ® Tl_n/mJ (f) 2] ON(ns)—N(ml_n/sz)] (Hsf,)rn)Ta

s)

where Hsl ‘m 1S the permutation matrix appearing in Theorem 3.2.

REMARK 3.4. We note that LT (a, f) = LT} (a, g) whenever f = g a.e. Moreover,
suppose that f = f1 ® --- ® fq a. e with f; € Ll([ ,m),s;) for j = 1,...,d; then
LT3 (a, ) is equal to LT} (a, f1 ® - - - @ fa), as defined in Deﬁnition 3.1 This shows that
Deﬁnmon 33isan extenswn of Deﬁmtlon 3.1.

3.1.2. Properties of multilevel block LT operators. For every m,n,s € N% every
a,b:[0,1] — C, every f,g € L*([—m,w]% N(s)), and every a, 3 € C, we have

(3.6) LT (a, f)* = LT/ (@, f*),
(3.7) LT (o + Bb, f) = aLT(a, f) + BLTT, (b, f),
3.8) LT3 (a,af + Bg) = LT (a, f) + BLT, 7s(a>g),
(3.9) LT @, Pl = D@l [Ty (Dl
< Gy 2 ()l N (L /).
i=1

where in the last inequality we invoked Theorem 2.44.

REMARK 3.5. Let s € N%, leta : [0,1]% — C be a bounded function, and take any
sequence {fy}x C L'([—m, 7% N(s)) such that f;, — f in L*([-7, 7]¢, N(s)). By (3.8)
and (3.9), for every k and every n, m € N, we have

ILT s (a, f) = LT3 s a, fi)lle = [ILT3% (as f = fi)llh < N(n)llalloollf — frllLr-

By Theorem 2.39, this implies that {LT7™ (a, fx)}n =% {LTo(a, f)}n as k — oo for
every m € N? and every sequence {n = n( )}n € N¥ such that i — 00 as . — oo.

PROPOSITION 3.6. Let s € N4 let a; : [0,1]¢ — C be bounded, and let
fi € L®([—7, 7% N(s)) fori=1,...,q. Then, for every n,m € N¢,

azafz LTm <HazaHf1)

(3.10) <e([n/m|)N(n),

where

||Hg:1 Tw(fi) — Tk(H?:l fi) H1
N(k)

and limy,_, o £(k) = 0 by Theorem 2.46. In particular, for every m € N? and every sequence
{n =n(n)}, C N such that n — oo as n — oo,

q q
3.11) ({HLT (ai, ) } {LT&(Hai,Hfi)} >:0
i=1 i=1 n
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Proof. By Definition 3.3 and the properties of tensor products and direct sums, we have

azafz LTm (H Qj, Hfz)
Dy, (Hai) (HT[n/mJ fi) = Tin/m| (H )) ® ON(ns)—N(m|n/m|s) )
i=1 Pl
= HDm <Hai) 1 HTLn/mj(fz — Tin/m)| (H )
1=1 =1 _

o I Tingmy () = Ty (T £0)
| L] N{[rjm))

This proves (3.10). Since (k) — 0 as k — oo by Theorem 2.46, equation (3.11) follows
immediately from (3.10) and Theorems 2.18 and 2.32. ]

THEOREM 3.7. Let s € N% let a®9) : [0,1]* — C be Riemann-integrable and
f@9) € L([—m, 7|4, N(s)), fori =1,...,pand j = 1,...,q;. Then, for every m € N¢
and every sequence {n = n(n)},, C N? such that n — oo as n — oo,

(ST sen) 3 TTawre o)
n

i=1j=1 i=1j=1

where

(3.12) () (x Za(”( ) (%),

Proof. By Proposition 3.6 and Remark 2.36, it is enough to show that
p qi o qi o
{Z LT, (H a9 H f(m)) } Z H al) (x) f59) ().
i=1 j=1 j=1 i=1j=1

Note that
qi qi
(), Z L7 <H a9 T fu,j)) ),
Jj=1 Jj=1
i qi
G313 = (Z D, (H als )) ® Ty jrm) (H e ))> ® ON(ns)-N(mln/m]s)-
i=1

j=1 j=1

Recalling (2.21), for k = 1,. .., m, the kth diagonal block of size N (s|n/m|) of the matrix
(3.13) is given by

P 4
i N ALAYIE
Z <H a’ ”( ))TLn/mJ (H I ) = Tin/m] <Z IT(;, )/ ’J)) :
i=1 j=1
It follows that the singular values of Y7, LT, (TTIL, (™9, TIL, f9)) are

og<TLn/mJ <iﬁa(i’j)<i)f(i’j))>, ¢=1,...,N(s|n/m]), k=1,...,m,

i=1 j=1
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plus further N(ns) — N(m|n/m|s) = o(N(n)) singular values which are equal to 0.
Therefore, by Theorem 2.43, since Y &_; H?;l @3) (k) p3) e Lo°([—m, 7], N(s)), for
any F' € C.(R), we have

s & 1 (G 11)
~ lim N(njzvtgl/:z i n/mJ
= <@<M<Z 1o 2))
= i &7 o Z ("f@]ﬂla D () 100)) )as

P g
(m) (m)
oy Ay f )) > d@dx.
27T /[0 1]4 /[\—7r 7]d N ( (; ]:[

This concludes the proof. 0

THEOREM 3.8. Let s € N% let a®9) : [0,1]* — C be Riemann-integrable and
@9 e L([—n, 7|4, N(s)), fori = 1,...,pand j = 1,...,q;. Then, for every m € N¢
and every sequence {n = n(n)},, C N? such that n — oo as n — oo,

{ﬁiﬁﬂ%m“”,f@” )}~ %(Zﬂa 0700 (0)).

i=1j=1 i=1j=1

where a zs defined in (3.12).
Proof The proof follows the same pattern as the proof of Theorem 3.7. By Proposition 3.6
and Remark 2.36, it is enough to show that

(g e )} (G oo

Note that

(I),.)" (zp: LT, (f‘[ a9, ﬁ f@,j))) me),,
i=1 j=1 j=1
i qi
315 = %(Z D, (H a(i’j)) ® Ty jrm) (H f“’j))) ® ON(ns)-N(mln/m]s)-
i=1

j=1 j=1

Recalling (2.21) and (2.22), for k = 1,...,m, the kth diagonal block of size N(s|n/m|)
of the matrix (3.15) is given by

M G ([ =t (S T )

=1 5=1
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It follows that the eigenvalues of R(>_7_; LT (TTIL, o', TTI, f(9))) are

Ag@n/mj (%(Xp: ﬁa“’”(i)f“’”))), ¢=1,...,N(s|n/m]), k=1,....m,

i=1j=1

plus further N (ns)—N(m|n/m|s) = o(N(n)) eigenvalues which are equal to 0. Therefore,
by Theorem 2.43, since R(Y_7_, [TIL, a9 () f(9)) € L>°([-m, 7], N(s)), following
the same derivation as in (3.14) we obtain, for any F' € C.(C),

N(sn) P % 2
1 o o
lim —— F( X\, (§R< LT,TS< a(”), | I f(l,ﬁ))))
e N(Sn) z—; ( ; 7 ]1;[1 j=1
N(s)

“ @ o 2 PO I 00 0] e

=1 i=1 j=1

This concludes the proof. O

PROPOSITION 3.9. Let s € N%, et a : [0,1]¢ — C be a Riemann-integrable function and
f € LY([—n, 7% N(s)). Then, for every m € N and every sequence {n = n(n)}, C N¢
such that n — oo as n — oo, we have

{LTY(a, [)in ~o am(x)£(0),

where
o= $50(E
k=1

Proof. Take any sequence { f }» C L>®([—7, 7], N(s)) such that f, — f a.e. and in
LY([~m, 7%, N(s)). We have:
o {LT7"(a, fx)}n 2% {LT}"(a, f)}n by Remark 3.5;
o {LT7"(a, fx)}n ~o am(x)fx(0) by Theorem 3.7;
® 4, (X)f1(0) = am(x)f(0) ae. (and hence also in measure).
We conclude that { LT} (a, f) }n ~o am(x)f(6) by Theorem 2.34. 0

3.2. Definition of multilevel block LT sequences. The notion of multilevel block LT
sequences is formalized in the next definition.

DEFINITION 3.10 (Multilevel block locally Toeplitz sequence). Let s € N%, let {A,},
be a d-level N (s)-block matrix-sequence, let a :[0,1]% — C be Riemann-integrable and f €
LY([~m, 7%, N(8)). We say that { A} is a (d-level s-block) locally Toeplitz (LT) sequence
with symbol a(x) f(0), and we write { Ap }n ~rr a(x)f(0), if {LT7(a, f)}n X At
as m — oo.

In what follows, unless specified otherwise, whenever we write a relation such as
{An}n ~rr a(x)f(0), it is understood that {A,}, is a d-level s-block LT sequence as
in Definition 3.10, so in particular the function a : [0,1]¢ — C is Riemann-integrable and
f € Li([—m, 7%, N(s)).

3.3. Fundamental examples of multilevel block LT sequences. In this section we
provide three fundamental examples of multilevel block LT sequences: zero-distributed
sequences, sequences of multilevel block diagonal sampling matrices, and multilevel block
Toeplitz sequences. These may be regarded as the “building blocks” of the theory of multilevel
block GLT sequences because from them we can construct through algebraic operations a lot
of other matrix-sequences which will turn out to be multilevel block GLT sequences.

) (%)-

k
‘m
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3.3.1. Zero-distributed sequences. We show that any zero-distributed sequence is a
multilevel block LT sequence with symbol given by the zero matrix.

THEOREM 3.11. Let s € N%, and let {Zp},, be a d-level N (s)-block matrix-sequence.
The following statements are equivalent.
1. {Z,}n ~o 0.
2. {ON(sn)}n ﬂ) {Zn}'m
3. {Zn}n ~LT ON(s)-

Proof. (1 <= 2) By Theorem 2.32, we have {On(sn)}n —3 {Zn}n if and only if
dacs.{ON(sn) }n>{Zn}n) = 0if and only if {Z,, },, ~, 0.

(2 < 3) This equivalence follows from Definition 3.10 and the observation that
LT,T’S(O,ON(S)) :ON(sn) andOON(s) ZON(S). 0

3.3.2. Sequences of multilevel block diagonal sampling matrices. We are going to
see in Theorem 3.14 that {I'}} . Dy, s(a)Tns}n = {Dn(aln(s))}n ~rr a(X)In(s) Whenever
s € N4, a:[0,1]¢ — C is Riemann-integrable and n = n(n) — oo as n — oo. To prove
Theorem 3.14 we shall need the following lemmas; cf. [40, Lemma 5.6] and [41, Lemma 4.1].

LEMMA 3.12. Let C be an £ x { matrix and suppose that

IClp < et
where p € [1,00), € > 0, and ¢’ > 0. Then we can write C' in the form
C=R+N, rank(R)<emif,  |N||<ewr.

LEMMA 3.13. Let M be any infinite subset of N. For every m € M, let {x(m, k)}ena
be a family of numbers such that x(m, k) — x(m) as k — oo, where z(m) — 0 as m — oc.
Then there exists a family {m(k)}rene C M such that m(k) — oo and x(m(k), k) — 0 as
k — oo

THEOREM 3.14. Ifa : [0,1]¢ — C is Riemann-integrable, then it holds that
{ngDn,s(a)Fn,s}n = {Dn(aln(s))tn ~11r a(X)In(s) for every s € N? and every se-
quence {n = n(n)},, € N? such that n — oo as n — oco.

Proof. The proof consists of two steps. We first show that the thesis holds if a is continuous.
Then, by using an approximation argument, we show that it holds for any Riemann-integrable
function a.

Step 1. We prove by induction on d that if a € C([0,1]?) and w,(-) is the modulus of
continuity of a, then

FgﬁsDﬂqs(a)FH,s = LT::,ls(a7 IN(s)) + Rn,m + Nn,my

(3.16) 4 g I
rank(Rp,m) < N(sn) Z; o INaml < Z;w“(mi + F)
1= 1=

Since w, () — 0 as & — 0, the convergence { LT (a, In(s)) }n 3 {T'% «Dn,s(a)Tn s }n
(and hence the relation {I'}, Dy, s(a)Tn s}tn ~i1r a(X)Iy(s)) follows immediately from
Definition 2.40 (take 1., such that n > m? for n > n,,, and take ¢(m) = Zle 1/m; and
wim) = 0 wa(2/my)).

In the case d = 1, we have s = (s), m = (m), and n = n(n) = (d,,) for some
sequence of numbers {d,, },, such that d,, — oo as n — co. Considering that 'y, s = I, s,
equation (3.16) reduces to

an75(a) = LTdT:,s(CL?IS) + Rdn,m + Ndn,m7

1 m
kR m < ) N m < a(* 7)
fank(R ) < sm ([Nl < o (4
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This is nothing else than equation (3.15) from [8] with d,, in place of n, and it was already
proved in [8]. In the case d > 1, we have

(3.17)
LT::}S (a, IN(S)) = LT, (a> 131 X ® ISd)

N1,.0Md;815.00,8d

:rﬁs{ diag [Imnl/mlj

J1=1,....,mq

ma,...,mgq J1 . L T
® Fn27“-1nd;527---;5dLTn2,.7..,nd752,...7sd (a(ml ’ )7132 ® ® ISd)Fnz,...,nd,SQ,...,sd

@ Osl(nl modm1)82n2~~~sdnd:| Fn,sa

rgs{ diag [ diag
Ji=1,...om1 Liy=(j1—1)s1|n1/m1]+1,....5181 [n1/m1 ]

r LT ma a2 ) Iy )T
n2,...,MNd,82;..-,8d MN2,.eesNd,82,.4+,8d m1> ) £82:::8q N2,eeesNd,82,.44,8d

52 051 (n1 modm1)52n2~~»sdnd:| Fn,Sa

where, for any Z; € [0, 1], the function a(Z1, -) is defined as follows:
a’(ilv ) : [07 1]d71 - Cv (x27 s axd) = a(i'la L2y 7xd)'
Moreover, by (2.25),

(3.18)

PZ,S‘DTL,S(G’)F“7S = Fz,s [ diag Dn2g~wnd752guw5d(a(x’g?,ls)l7 ))1 Ins

7,1:1,...,1’1181

= Fz,s [ dlag [ dlag Dn2a»--»nd152v---,5d (a(xgl,ls)l ) ))‘|

J1=1,....,m1 |i1=(j1—1)s1|n1/m1]+1,....5181|n1/m1]

D diag Dnz-,-..,nd,52,--.,s(z(a(xg?,ls)lv ))1 |

iy=mysi|ni/mi]+1,...,n1s1

Forj; =1,...,mjandi; = (]1 — 1)81 Lnl/mlj +1,...,7151 Lnl/mlj, by the induction
hypothesis we have

T (n1)
(319) Fnz,...,nd,sz,...,sd‘D’ﬂz,-~~7’ﬂd’52,-~~,5d(a(xil,sl’ .))Fn2:~-~7nd752:~~75d
— ma2,...,Md J1 .
LTn27~»-,nd132,~»-,Sd <a<m1 ’ )’IST“Sd)

(n1)

_ 1T
- F’ng,...,’nd,52,...,San27~~-,nd7527~~~a5d (a(xil,sla '))Fnz,...,nd,32,...,sd
T J1
- Pn2v--~and752,--~,SdDn2a~-»nd152’»--»5d <a(m1 ) .>)Fn2,..»7nd752,~~75d
+ R[jl/ml] + Nl /ma]

MN2,y...,Nd,M2,...,Mqg MN2y.eeyNg,M2,..., Mg
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where
< m
k
rank(RUl/miL]d asmg) < S2M2 0 SdNg P
k=2 'k
1 m d 1 m
m k k
”Nh/ rlLde ..... md| <Zwa(11/m1,)( +n7k> Szwa(mkarnfk)-
k=2 k=2

Moreover, since for j1 = 1,...,m; and iy = (j1 — 1)s1|ni/m1| +1,..., 5181 |n1/m1| we
have

n 11— 1 n
G| |2 o] 2
mi S1 mi

and
L) _ | i( i — 1 +1)_J;1 < Gr=Dlm/m]
1,51 mq ni S1 mq - mq n1

< (1 = D(ni/mi — 1) <L m
maq ni

mq n1
we infer that

n J1 1 m
HDn%”"nd’s%‘“’sd(a(xl(’l,ls)l")) = Dy, (a(i’ >) H = wa(i * 7)

mi ny
Thus, recalling (3.19),

D7L2,-.~,7Ld,82,...7sd(a(l’(,nl) ))

21,817
mMa,.. Jr T
_Fn27~~,nd7527', LTnz, m:usz d(a(ml’.>7182msd>rn2v JMds82,000,8d
_ Dlir/m \Tlj1/m1,i1/n
7R7[’L217/...,71’L]d,7712,...,7nd +]V'r[z,l'ré ! 1/ 1]7
d m
k
(320)  rank(RTH, s mg) S S22 sama Y =
k=2 'k
d 1 m
AT . k
O S
P mg ng

Hence, by (3.17) and (3.18),
I} oD s(a)Ths — LT3 (a, Ings))

= F,Tl,s [ ~ diag [ diag

J1=1,...,m1 ili(j171)81 Lnl/mlJ‘Flwwajlsl Lnl/mlJ

[D((” )

_ ma g T
F”2v~-->”da32v~> LTH27, and7527 »Sd (a(ml’ )’ISQ' )FTLZ, ©Md;82,.-,5d

D dlag Dnz,,,.,nd,SQ,‘..,Sd(a(x('nl) )):| F'"ws

. 11,81
i1=m1s1|n1/mi|+1,...,n181
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= Fﬂ,s{ diag { diag
Ji=1,...m1 Liy=(j1—1)s1|n1/m1]+1,....j181|n1/m1]
(R[Jl/m;l]d — Lt N”[,gvl’rgmlﬁll/nl]>:|
D dlag Dnz,.“,nd,sz,.“,sd(a(xg’ln’ls)l? )) Fn75
11=m181 Lnl/m1J+1,m,n151
= Rn,m + Nn,ma
where
R =% ding ding ke
Ji=l,...om1 | i1=(j1—1)s1|[n1/m1]+1,....5181|n1/m1]
® diag Dn27»--»nd752,»--75d(a( E?,la)l ’)):|Fn,sa
i1=mys1|[ni/mi]+1,...,n151
Npm =TFL, { diag diag NYma. i /ml]
Ji=L,...om1 [i1=(j1—1)s1|n1/m1]+1,....5181[n1/m1 ]

2 Osl(n1 mod m1)52n2~~~sdnd:| Fn,s~

By (3.20), (2.7), and (2.8), we have

ni m
rank(Rp,m) < mis1 | — | Sang -+ - Sang Z — + $1(ny modmy)sang - - - Sqng
mq ng
k=2
d d
my mg
< 51”132n2"'3dnd27+51m132n2"'5dnd— Zf
b2 "k =1 'k

| Nl < i (f o),

and (3.16) is proved.

Step 2. Let a : [0,1]¢ — C be any Riemann-integrable function. Take any sequence of
continuous functions a,, : [0,1]¢ — C such that am — ain L'([0,1])¢ ) By Step 1, we have
{Dn(amIn(s))}n ~r @m(X)In(s). Hence, {LTE ,(am,In(s))}tn —F {Dn(@mIns))}n
as k — oo, i.e., for every m and every k € N¢ there i My, i such that, for n > ny, g,

D (amIns)) = LTF J(am, In(s)) + Rnmk + Nomoks
rank(Ry, m. k) < c(m,k)N(n), INpym k|l < w(m, k),

where limy o0 ¢(m, k) = limg o w(m, k) = 0. Moreover, we have { Dy, (@ In(s)) }n —

{Dn(aln(s))}n- Indeed,

1Dn(aly(s)) — Dr(amIn)lh = zn: a( ) am<7‘1)‘ — e(m,n)N(n),
where
(3.21) g(m,n) = ZJ\\TI((Z)) i a( ) - am(‘i)'
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By the Riemann-integrability of |a — a,, | and the fact that a,,, — a in L' ([0, 1]%), the quantity
g(m,n) satisfies

lim lim e(m,n)=N(s) lim |a(x) — @ (x)|dx = li_r>n N(s)|la — aml||r =0.

m— 00 — 00 m— oo [0,1]¢

By Theorem 2.39, this implies that { Dy, (amIn(s)) }n =3 {Dn(aln(s))}n. Thus, for every
m there exists n,,, such that, forn > n,,,

Dn(aIN(s)) = Dn(amIN(s)) + Rnm + Nom,
rank(Rp,m) < c¢(m)N(n), | Npy || < w(m),

where lim,,, oo ¢(m) = lim,,, o w(m) = 0. It follows that, for every m, every k € N?, and
every n > max(Nm, Nm k),

Dyp(aly(sy) = LT (a, In(e) + [LTE s(am, Ins) — LT o(a, In(s))]
+ (Rnm + Ramk) + (Noym + Nomok),

rank(Rp m + Rn,m.k) < (c(m) + c¢(m, k))N(n),

[Nnm + Nnm k|| < w(m) +w(m, k),

HLT'rI:,s(amalN(S))_LT (a IN(S) ”1

oS3 - (3)| e

where the last inequality follows from (3.7)—(3.9) and &(m, k) is defined as in (3.21) with “n”
replaced by “k”. Let {m(k)}rcne be a family of indices such that m(k) — oo as k — oo
and

lim e(m(k), k) = lim c(m(k),k) = lim w(m(k),k) = 0.

k— o0 k— o0 k— o0

Such a family exists by Lemma 3.13 (apply the lemma with z(m, k) = ¢(m, k) + ¢(m, k) +
w(m, k)). Then, for every k € N% and every n > max(nm, (k) Mn (k) k)

Dy(aln(s) = LTg o(a, Ins)) + [LTF s (@mrys Ins) — LT s(a, Ings))]
+ (Bnmk) + Bnmk) k) + (Nom) + Name) k)

rank( Ry, (k) + Rnomk).k) < (c(m(k)) + c(m(k), k))N(n),

[ Noom(te) + Nowm(ro) k|| < w(m(k)) +w(m(k), k),

HLTn,s(am(k)JN(s)) — LT} J(a,In(s)ll < e(m(k), k)N (n).

By Lemma 3.12, we can decompose LT (a,, k), In(s)) — LTE ,(a, In(s)) as the sum
of a small-rank term R,, 3, with rank bounded by ve(m(k), k) N(n), plus a small-norm

term N,, 1, with norm bounded by /e ). This shows that {LT% _(a, In(s))}n ==
{Dn(alns))}n as k — oo, hence { Dy, (aIN(S )}n ~rr a(X) Iy (s).-

3.3.3. Multilevel block Toeplitz sequences.

THEOREM 3.15. If s € N and f € L*([~m,7]¢, N(8)), then {Tp,(f)}n ~1r £(0) for
every sequence {n = n(n)}, C N9 such that n — oo as n — <.

Proof. The proof consists of three steps. We first show that the thesis holds if f is a
separable d-variate matrix-valued trigonometric polynomial. Then, by linearity, we show
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that it holds if f is an arbitrary d-variate matrix-valued trigonometric polynomial. Finally,
by using an approximation argument, we prove the theorem under the sole assumption that
f € LY([-m, 7], N(s)).

Step 1. We show by induction on d that if f is a separable d-variate matrix-valued trigonometric
polynomial of the form f = f; ® --- ® fq, with f; a univariate s; X s; matrix-valued
trigonometric polynomial of degree g;, then

a (2¢; + 1)m;
(322)  Ta(f) = LT f) + R, rank(Rpm) < N(sn) Y 20

n
i=1 v

Once this is done, the convergence {LT"(1, f)}n 2% [T (f)}n (and hence the relation
{T0(f)}n ~Lr f(8)) follows immediately from Definition 2.40 (take 7.y, such that n > m?,
for n > ny,, and take ¢(m) = 2?21(2% + 1)/m; and w(m) = 0).

In the case d = 1, we have s = (s), m = (m), and n = n(n) = (d,,) for some sequence
of numbers {d, },, such that d,, — oo as n — oc. In this case, equation (3.22) reduces to

(3.23) Ty, (f) = LT3 (1, f) + Ra, m; rank(Rg, m) < s(2¢ + 1)m,

where ¢ is the degree of f. This is nothing else than equation (3.17) from [8] with d,, in
place of n, and it was already proved in [8]. Inthe case d > 1, let f = f1 ® --- ® fq with
fj a univariate s; X s; matrix-valued trigonometric polynomial of degree ¢;. By induction
hypothesis,

LT’VZ?j:-.;’;IT,izw-,Sd(1’ f2 ® et ® fd) - Tng,...,nd(fQ ® e ® fd) - Rng,...,nd,'rng,...,md7

rank(R,,,

From the definition of LT,TS(I, f) and the properties of tensor products and direct sums, we
obtain

LT(L, f)

,8

= Fg,s [ dlag |:TLn1/m1J (fl)

J1=1,....mq

ma,...,Mq ( . ) T
® Fn2y~~~7nd752y~~-75dLTn2,‘7..,’;7,(1752,...,8(1 L, f2 ® ® fd F'I’LQ,...,TLd,SQ,...,Sd

S3) Osl(nl mod ml)Sanmsdnd‘| Fn,s

S H divg Tl (1)
Jji=1 1
® Fn2:~~-7nd752,~~75d [Tn2,<-~7nd (f2 - fd) - Rn2a-<-7nd7m27-~-7md}FZQ,.A.JLd,Sz,.A.VSd

2] 051(n1 mod m1)52n2---sdnd‘| Fn,s

= Fi,s “: dlag TLnl/mlj (fl) @ Osl(nl modml):|

ji=1,....,m1

T
& FnQ ..... MN,82,e-ry Sd [Tng ..... ng (f2 Q- ® fd) - an ..... NGy ,yeney md]rn2 ng,S2 Sq Fn,s

yeesd 82,40y
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=TL (Iniss ® Taoonasnsenssa)
AT (U 1) @ [T (2 @ @ fa) — Rmm]]
“(Inysy @ Ty nsisarsa) s
T (Tuyes ® T s >[ T (1 1) © Tooma (2 @~ ® ) — Rn,m}

T
. (In151 ®Fn2,...,nd752 ..... sd) Fn,sa

where Ry, = = LT (1, f1) @ Ry, ngma,...,my Satisfies

d
rank( Ry, m) < N(ns) Z M
n;
i=2

Using (3.23) with d,, = ni(n) = ni, we can decompose LT (1, f1) into the sum of

ni1,81
Ty, (f1) plus a small-rank matrix —R,,, ,,,, whose rank is bounded by s1(2¢; + 1)m;. Invok-

ing Lemma 2.45, we obtain

LT (1, f)

s T )| (T ()~ o) T a2 @20 f) = |
(Inys; ® Tng..omssznesa) Tss

T s © s ) | T 0) 9 Tl @@ f) = o
(Inys; @ Ty, nassaresa) s

ST T (1) @ T () @+ @ Ty (fa) — én,m} Fos

=Th(f1i®f2® @ fi) + Rnm,

where

Rn7m = FZ;,S(InlSl Y ]‘—‘n27~»-7nd-,327~»-75d) [7Rn17m1 & Tnz,..-,nd (f2 & Q fd)

T
- Rn,m} (Inlsl ® an,...,'rm,sz,...,sd) I—‘n,s
satisfies

. (2g; + Dm;
rank(Rym) < 51(2q1 + 1)mysans - - - sqng + N(ns) #
i=2 v

2qz

M&

z=1

This completes the proof of (3.22).

Step 2. Let f be any d-variate N(s) x N(s) matrix-valued trigonometric polynomial. By
definition, f is a finite linear combination of the d-variate Fourier frequencies ¢, j € Z,
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and so we can write f(0) = Y27___ f; €7 for some f; € CN(#)*N() Hence,

q q s
FO) = f670=3" 3" fuEy

q j=—qtk=1

q
= > D e EG) @ @ (9 ERD).

> fi)ew Tu((e2 ECY) @ - @ (€94 B,
o=

q
LT (L) = 3 S (e LT (1L (@M EPD) @ - @ (Wil B ).
j=—q £ k=1

The thesis now follows from Step 1 and Remark 2.42.

Step 3. Let f € L'([-m,m]¢, N(s)). Since the set of d-variate N(s) x N(s) matrix-
valued trigonometric polynomials is dense in L ([—7, 7]%, N(s)) (see, e.g., [40, Lemma 2.2]),
there is a sequence of d-variate N(s) x N(s) matrix-valued trigonometric polynomials
fm : [-m,@]* — CNGXNG) guch that f,, — f in L'([-m,7]? N(s)). By Step 2,
{Tn(fm)tn ~1r fm(0). Hence, {LTE (1, fr)}n 3 {Tn(fm)}n as k — oo, i.e., for
every m and every k € N¢ there is Ny, k such that, for n > n,, g,

Tn(fm) = LTTT,S(L fm) + Rn,m,k + Nn,m,kza
rank(Rn,m,k) < C(m7 k)N(n)7 ||Nn,m,k|| < w(m, k),

where limg_, o ¢(m, k) = limg_, oo w(m, k) = 0. Moreover, by Theorem 2.44,

1T (f) = Tn(fm)lls = [ITn(f = fm)llh < N[ f = fmllLr,

and so {1 (fim)}n 2% {T.(f)}n by Theorem 2.39. Thus, for every m there exists n.,, such
that, for n > n,,,

Tn(f) = Tn(fm) + Rn,m + Nn,ma
k(R m) < cCmIN(m), [ Nol| < w(m),

where lim,,, oo ¢(m) = lim,,, .o w(m) = 0. It follows that, for every m, every k € N%, and
every n > max (N, Nm k)»

T(f) = LTR (1, f) + [LT o(1, fm) — LT3 o(1, f)]

+ (Bn,m + Bnmk) + (Nnm + Nam k),
rank(Rp, i + Rnm k) < (c(m) + c(m, k))N(n),
[Nnm + Nemiel| < w(m) + w(m, k),

ILT o(1, fin) = LTy (1, )l = LT o (1, fn = Ol < N fin = FlL1,

where the last inequality follows from (3.9). Let {m(k)}xcne be a family of indices such that
m(k) — oo as k — oo and

lim ¢(m(k), k) = lim w(m(k),k)=0.

k— oo k— o0
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Such a family exists by Lemma 3.13 (apply the lemma with 2(m, k) = ¢(m, k) + w(m, k)).
Then, for every k € N? and every n > Max (M (k) Mo (k) ke )»

To(f) = LTy o(L, f) + [LT33 o(L, fngry) — LT (1, f)]

+ (Bnm(k) + Brm(e).ke) + (Nnm(e) + Nomie) k),
rank( Ry, (k) + Brnm(k),ke) < (c(m(k)) +c(m(k),k))N(n),
[N + N ey k| < w(m(k)) +w(m(k), k),

ILTE o (L, fnry) = LTy o(L, )l < N frnry — fll1-

By Lemma 3.12, we can decompose LT (1, frn(k)) — LT,’{S(L f) as the sum of a small-rank
term Ry, 1, with rank bounded by / | frk) — fllor N(n plus a small-norm term N, z,

with norm bounded by /1| fyn(k) — [l - ThlS shows that { LT* s(Lf)In 5 AT (f)}n as
k — oo, hence {Ty(f)}n ~1r f(0).

3.4. Singular value and spectral distribution of sums of products of multilevel block
LT sequences. The main results of this section are Theorems 3.17 and 3.18. In order to prove
them, we shall need the following lemma.
LEMMA 3.16. If {An by ~1r a(x) f(0), then {Ap}n ~o a(x)f(0) and {Apn}y is s
Proof We have:
o {LT7(a, f)}n =% {Ayn}, by definition of multilevel block LT sequences;
o (LT (0 Dn ~o am(0)(0) With am(x) = ity a()x (s s )(x) by Proposi-
tion 3.9,
e a4, (X)f(0) — a(x)f(0) a.e. (and hence also in measure) as m — oo by Lemma 2.10
because a(x) is Riemann-integrable.
We conclude that { A, },, ~» a(x)f(0) by Theorem 2.34 and Remark 2.41, and so { A, },, is
s.u. by Proposition 2.22. a
THEOREM 3.17. If {A%}, ~ip a9 (x) 09 (0), fori =1,...,pand j = 1,..., g
then

{zp: f—[ Ag,j)} Z H a9 (x) £ ().

i=1j=1 i=1j=1
Proof. Let
p P a4
Z H ALd), Apm = Z H LTyTs(a(i’j)a FOI),
i=1 i=1 j—l
p
Z H a9 (x) 9 (), Ko Z H ali) (x) £49)(9),
i=1 i=1 j=1

where

Z“(”( )Xt )

Since { LT} (a9, f(9))}, 225 2e% LAWY, by definition of multilevel block LT sequences,
we have:
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o {Anm}tn e {An}n by Lemma 3.16, Proposition 2.21, and Remark 2.42;
o {Anm}n ~o Km(X,0) by Theorem 3.7;
o km(x,0) = k(x,0) ae. (and hence also in measure) as m — oo by Lemma 2.10 because
each a(%7)(x) is Riemann-integrable.
We conclude that { A,, },, ~, x(x,0) by Theorem 2.34 and Remark 2.41. O
THEOREM 3.18. If{Asf"])}n ~rr aB) (%) f09(0), fori =1,...,pandj = 1,...,q;
then

P g P
{%<Z II Agm) } - %<Z H 269 (x) £9) (9 )>
i=1 j=1 i=1 j=1

Proof. The proof is essentially the same as the proof of Theorem 3.17. Define the matrices
Ay, Ap.m and the functions k(x,0), km(x,0) as in the proof of Theorem 3.17. Since
(LT, (al9), D)}, 225 {A%D by definition of multilevel block LT sequences, we
have:
o {(R(Apm)tn =5 {R(A,)}, by Lemma 3.16, Proposition 2.21, and Remark 2.42;
o {R(Anm)}n ~r R(km(x,0)) by Theorem 3.8;
o R(km(x,0)) = R(k(x,0)) a.e. (and hence also in measure) as m — oo by Lemma 2.10

because each a(»7)(x) is Riemann-integrable.

We conclude that {f2( A4, )}n ~x R(k(x,0)) by Theorem 2.35 and Remark 2.41. 0

3.5. Algebraic properties of multilevel block LT sequences. Proposition 3.19 collects
the most elementary algebraic properties of multilevel block LT sequences, which follow
from Definition 3.10, the properties of the multilevel block LT operator (see (3.6)—(3.8)), and
Remark 2.42.

PROPOSITION 3.19. The following properties hold.

If {An}n ~ir a(x)f(0), then { A, }n ~i1 a(x) f(6)" = (a(x)f())".
If {An}n ~rr a(x)f(0), then {aApn}n ~1r ca(x)f(0) forall o« € C.
IF{AD Y, ~r a(x)£i(0), i =1, 7, then {°1_y AW}, ~ur a(x) Y0, £:(6).
LAY, ~ir ai(X)F(0), i =1,...,r, then {37_, AD Y, ~ir S0 ai(x) £(6).

In Theorem 3.20, we show, under mild assumptions, that the product of multilevel block
LT sequences is again a multilevel block LT sequence with symbol given by the product of the
symbols. ~

THEOREM 3.20. Suppose that { An },, ~11 a(x) f(0) and {fln}n ~rr a(x)f(0), where
f e Lr([—m w4, N(s)), f € LI([—m,7]¢, N(s)), and 1 < p,q < oo are conjugate expo-
nents. Then

{AnAn}n ~LT a(x)&(x)f(@)f(@).

Proof. By Lemma 3.16, every multilevel block LT sequence is s.u., so in particular { A, },,
and {A,, }, are s.u. Since, by definition of multilevel block LT sequences,

(LT (a, f)n X {Ap ), asm — oo,
(LT3 (@, ))}n =5 {An}n asm — oo,
Remark 2.42 yields
(LT (a, f)LTR(a, in =5 {A,A,}, asm — oco.
Using Proposition 3.6, especially (3.11), we obtain

{LT" (aa ff)} bt — {A, An}n as m — 0o,
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0

hence {Ap Ay}, ~ir a(x)i(x)f(6)f(6).
14, 3.15, and 3.20, we immediately obtain the following

As a consequence of Theorems 3.
result.

THEOREM 3.21. If s € N%, a : [0, 1] — C is Riemann-integrable, and f € L*([—m,7]%,
N(8)), then we have {I‘E’SD",S(a)Fn’ST ()}n = {Dn(aln(s))Tn(f)}n ~rr a(x)f(0)
for every sequence {n = n(n)}, C N such that n — oo as n — <.

3.6. Characterizations and simplified definition of multilevel block LT sequences.
Theorem 3.21 shows that, for any a, f as in Definition 3.10, there always exists a d-level s-
block LT sequence { Ay, },, ~rr a(x) f(8). Indeed, it suffices to take A, = Dy (aln(s))Tn(f).
Theorem 3.22 shows that the sequences of the form { Dy, (aIn(s))Tn(f)}~ play a central role
in the world of multilevel block LT sequences. Indeed,

{An}n ~ra(x)f(0) = dacs.({An}n, {Dnlaly s)) n(f)}n) =

THEOREM 3.22. Let { Ay, },, be a d-level N (s)-block matrix-sequence, leta : [0,1] — C
be a Riemann-integrable function, and let f € L' ([—m, 7%, N(s)). The following conditions
are equivalent.

1 A{An}n ~ir a(x)f(6).
2. For all sequences {am Y, { fm }m, {{AS{”)}n}m such that
e ap, :[0,1] — C is Riemann-integrable and f,, € L*([—n, 7], N(s)),
® 4, (X)fm(0) = a(x)f(0) in measure,
° {Aglm)}n ~LT G (X) f (0),
we have {ASZ")},L s N
3. There exist sequences {am }m, {fm }m such that
e an, :[0,1)¢ < ||la|| = for all m, and a,, — a a.e.,
o fm i |[-m,T is a matrix-valued trigonometric polynomial with
[(fm)aslloc < esssupi_, njalfapl for all m and all o, 3 = 1,...,s, and fm, — f
a.e. and in L' ([, 7%, N(8)),
b {D (amIN s)) (fm)}n e {An}n
4. There exist sequences {am Ym, { fm }m, {{A;m) Yn }m such that
e ap, :[0,1] — C is Riemann-integrable and f,, € L*([—n, 7], N(s)),
e 4, (X)fm(0) = a(x)f(0) in measure,
o (AR Y0 ~ar am(3) n(8) and {A7 ] 55 {An ).
5. {Dn(aIN(s))Tn(f)}n 2% {An}n-
6. An = Dn(aln(s))Tn(f) + Zn for every n, where { Zp }, is zero-distributed.

Proof. (1 = 2) Suppose that {A,}, ~rr a(x)f(0), and let {am }tm, {fm}m,
{{A%m) }n }m be sequences with the properties specified in item 2. By Theorems 2.33 and 3.17,
we have

]d — (cN(s)xN(s)

da,c,s,({Aslm) }na {An}n) = pa.c.s.({Aglm) - An}n)
= pmeasure(am(x)fm(e) - a(X)f(H))
= dmeasure(am (X)fm(e)v a(x)f(@)),

which tends to 0 as m — oo because @, (X) fm (0) — a(x) f(0) in measure.

(2 = 3) Since any Riemann-integrable function is bounded by definition, we have
a € L*([0,1]%). Hence, by [40, Theorem 2.2], there exists a sequence of continuous
functions a,, : [0,1]¢ — C such that |la,,||ec < ||a| L~ for all m and a,, — a a.e. The
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sequence {a,, }., satisfies the properties in item 3. Note also that a,,, — a in L' ([0, 1]¢) by
the dominated convergence theorem.

Since f € L'([—m, 7% N(s)), by [41, Lemma 2.3] there exists a sequence of matrix-
valued trigonometric polynomials f,, : [—, 7] — CN($)*N(s) which satisfy the estimate
[(fm)asllec < esssupi_, rja|fap| forall mandall o, 3 =1,...,N(s), and fr, — f ae.
and in L!([—, ]¢, N(s)). The sequence { f,, }m satisfies the properties in item 3.

Since a,,(x)fm(0) — a(x)f(0) in L*([0,1]¢ x [, 7]¢, N(s)) (and hence also in
measure), item 2 and Theorem 3.21 imply that { Dy, (amIn(s))Tn(frn)}n =5 {An}n, and
the proof is complete.

(3 = 4) Simply note that, under the assumptions in item 3, a,, (X) f (0) — a(x) f(0)
in measure, and { Dy, (@ In(s)) T (frm) }n ~1T @ (X) fr (8) by Theorem 3.21.

(4 = DLet{Bn}n ~rr a(x)f(0). We can take, e.g., B, = Dy(aly(s))Tn(f) thanks
to Theorem 3.21. By Theorems 2.33 and 3.17,

da.c.s.({A(nm)}na {Bn}n) = pa.c.s.({Ar(nm) - Bn}n)
= Pmeasure (@m (X) fin (0) — a(x) f(6))
= dmeasure (am(x).fm(g)7 a(x)f(@)),

which tends to 0 as m — oo because a,,(X)fn(0) — a(x)f(0) in measure. Thus,
{AE{")}n 2% {Bp}n. and since {AE{”)}n 8% [A,}, by assumption, we conclude that
dacs.({An}n, {Bn}n) = 0. Considering that {LT}"(a, f)}n 2% {Bp}n, we obtain
(LT (@, f)bn =% {An}n, ies {An}n ~r a(x) f(6).

(5 <= 6) Item 5 is equivalent to dacs.({An }n, { Dn(aln(s))Tn(f)}n) = 0, which, by
Theorem 2.32, is equivalent to { Ay, — D (aln(s))Tn(f)}n ~o 0.

(2 = 5) Obvious (take a,, = a, frm, = f and AY™ = Dy (aly(s))Tn(f)).

(5 = 4) Obvious (take a,, = a, fr, = f and AZ" = Dy (alys)Tn(f)). O

REMARK 3.23. Suppose that 7, s € N¢ are such that N(r) = N(s), and let {4, },, be a
d-level s-block LT sequence with symbol a(x) f(0). Then, { A}, is also a d-level r-block
LT sequence with symbol a(x) f(0). Indeed, by Theorem 3.22, there exists a zero-distributed
sequence {Z, }, such that

An = Dp(aln(s))Tn(f) + Zn = Dp(aln@))Tu(f) + Zn,

and so { Ay}, is a d-level r-block LT sequence with symbol a(x) f(8). This remark shows
that the notion of d-level s-block LT sequences depends on N (s) but not on s. In other words,
the set of d-level s-block LT sequences coincides with the set of d-level r-block LT sequences
whenever N (s) = N(r). We can therefore give a simplified definition of multilevel block LT
sequences.

DEFINITION 3.24 (Multilevel block locally Toeplitz sequence). Let { Ay, }r, be a d-level
s-block matrix-sequence, let a : [0,1]% — C be Riemann-integrable, and f € L*([—=,7]%, s).
We say that { Ay}, is a d-level s-block locally Toeplitz (LT) sequence with symbol a(x) f(0),
and we write { Ap }n ~rr a(x)f(0), if {An — Dp(als)Th(f)}n is zero-distributed.

A d-level s-block LT sequence in the sense of Definition 3.10 is a d-level N (s)-block
LT sequence in the sense of Definition 3.24. Vice versa, a d-level s-block LT sequence in the
sense of Definition 3.24 is a d-level s-block LT sequence in the sense of Definition 3.10 for all
s € N% such that N (s) = s. From now on, unless specified otherwise, whenever we write a
relation such as {An },, ~rr a(x)f(8), it is understood that {A,, },, is a d-level s-block LT
sequence as in Definition 3.24, so in particular a : [0,1]? — C is Riemann-integrable and
f € Ll([fﬂa W]dv S)'
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4. Multilevel block generalized locally Toeplitz sequences. In this chapter we develop
the theory of multilevel block GLT sequences, by correcting/extending the results in [8, 46]
and [63, Section 3.3].

4.1. Equivalent definitions of multilevel block GLT sequences. Multilevel block GLT
sequences can be defined in several different ways. We begin with what we may call the
“classical definition”.

DEFINITION 4.1 (Multilevel block generalized locally Toeplitz sequences). Let { Ay},
be a d-level s-block matrix-sequence, and let  : [0,1]% x [—m, 7|4 — C*** be measurable.
We say that { Ap}n is a (d-level s-block) generalized locally Toeplitz (GLT) sequence with
symbol k, and we write { Ap }n, ~cr1 K, if the following condition is met.

For every m € N there exists a finite number of d-level s-block LT sequences
(AN~ a0 £597(0), i = 1,00 Ny, 5 = 1, My, i, such
that: o o

o« Y Nm H (W)( )f(”’)(e) — k(x, ) in measure;

o {3 "”A IS O

In what follows unless spec1ﬁed otherwise, whenever we write a relation such as
{An}n ~acrr K, it is understood that { A,, },, is a d-level s-block GLT sequence as in Defini-
tion 4.1, so in particular & : [0,1]¢ x [—7, 7] — C*** is measurable.

REMARK 4.2. It is clear that any sum of products of d-level s-block LT sequences is
a d-level s-block GLT sequence. More precisely, if {457}, ~ir a9 (x)£09)(6), for
1=1,...,pandj =1,...,q;, then

P 4
{1140} ~ar ST 00010
i=1j=1 i=1j=1

REMARK 4.3. If a : [0, 1]¢ — C***, then

Z D, a”E( ) Z Dy (a;;1, (E(s)).

1,j=1 7,7=1

Hence, by Remark 4.2 and Theorem 3.21 (applied with any s € N such that N (s) = s), if a
is Riemann-integrable, then

{D n ~GLT Z al] E(S (X).

i,j=1

REMARK 4.4. Let {An}n ~cir & and {Bn}n ~cir & Then, {A%}, ~cur «* and
{aAn~+BBn}n ~crr ak+BE forall a, 8 € C. This follows immediately from Definition 4.1,
Proposition 3.19, and Theorem 2.37.

In the remainder of this section, we present another equivalent definition of multi-
level block GLT sequences, which is illuminating for many purposes. Fix a sequence
{n =n(n)}, € N?such that n — oo as n — 0o, and set

(gz(s) _ {{An}n DA, € CN(n)sXN(n)s}’
9;)1((;) ={k:[0, 1]d X [77r,7r]d — C**¢: K is measurable},
E@ x MY = {({An}n, k) {Antn € P, ke MY

We make the following observations.
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e &) is a *-algebra with respect to the natural pointwise operations (i.e., { An}: = {A%},.,
afAn}tn + B{Bn}n = {aAn + BBn}tn, {Antn{Bn}n = {AnBn}ns), and it is also a
pseudometric space with respect to the pseudometric d,. s inducing the a.c.s. topology
Ta.c.s.-

° smﬁf) is a *-algebra with respect to the natural pointwise operations, and it is also a pseu-
dometric space with respect to the pseudometric dieasure inducing the topology Tyeasure OF
convergence in measure.

o &) x smf;‘) is a *-algebra with respect to the natural pointwise operations (that is,
{Antns )" = (ALY 0o 5 e An s )+ B Bu}ns€) = ({0 A+ BB }n, ari+BE),
{An}n, K){Bn}tn, &) = {AnBn}tn, k£)), and it is also a pseudometric space with re-
spect to the product pseudometric

(ddCS X dmeasure)(({An}nv H)a ({Bn}717 E)) = daAc.s.({An}na {Bn}n) + dmeasure(”a 6)

inducing the product topology Tacs. X Tmeasure-
Let A&S) be the *-subalgebra of &(*) x DJT((;) generated by the set of “d-level s-block LT pairs”

L5 = {({An}n,a(x)£(8)) € €@ x M+ {Ap}, ~ix a(x)F(8)}.

Using Proposition 3.19, it is not difficult to see that

AW _ { <Zp: lq‘[ A, Zp: lq‘[ a(i,j)(x)f(id)(g)) ;

i=1j=1 i=1j=1
Pty gy €N, {AED}, ~pp a9 (x) £ (8) for all ]}

We can now reformulate Definition 4.1 as follows.

DEFINITION 4.5 (Multilevel block generalized locally Toeplitz sequence). Let {Ap }n
be a d-level s-block matrix-sequence, and let  : [0,1]¢ x [—m, 7|4 — C*** be measurable.
We say that { Ay}, is a (d-level s-block) generalized locally Toeplitz (GLT) sequence with
symbol k, and we write { Ay}, ~acrr K if the pair ({ A}, k) belongs to the closure ofAEls)
in ((5’(5) X Djt((j‘), dacs. X dmeasure)- In other words, the set of “d-level s-block GLT pairs”

4.1) G\ = {({An}n, k) € €9 x MY+ {An}n ~air K}

is defined as the closure of.AEIS) in (&) x EJJTEIS), dacs. X dmeasure)-
In the light of this algebraic-topological definition of multilevel block GLT sequences, the
following theorem is obvious.
THEOREM 4.6. Let { Ay}, be a d-level s-block matrix-sequence, and let r : [0,1]% x
[—7, 7]? — C*** be measurable. Suppose that:
1. {Bp.m}n ~GLT Em for every m;
2. {Brmtn =5 {An}ns
3. Km — K in measure.
Then {An}n ~crr K-

4.2. Singular value and spectral distribution of multilevel block GLT sequences. In
this section we prove the main singular value and eigenvalue distribution results for multilevel
block GLT sequences.

THEOREM 4.7. If { Apn}n ~acrr K, then {Apn}n ~o K.

Proof. By definition, for every m € N there exist multilevel block LT sequences
{Agﬂ n ~LT a%’j)(x)f,(,f’j)(ﬂ),i =1,...,Nn,j=1,..., M, ;, such that
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. Z Mo ag,i’j)( )fﬁ,ﬁ’j)(e) — Kk(x, 0) in measure,

i {Z’L 1 H m ' A(%J)} ﬁ {An}n

Moreover, by Theorem 3.17

o {(SHILS Ani), ~o DI TL5 an” () £ ().
We conclude that {A,, },, ~, Kk by Theorem 2.34. O

REMARK 4.8. Any multilevel block GLT sequence {4, },, is s.u. This follows from
Theorem 4.7 and Proposition 2.22.

Using Theorem 4.7 we now show that the symbol of a multilevel block GLT sequence
is essentially unique and that the symbol of a multilevel block GLT sequence formed by
Hermitian matrices is Hermitian a.e.

PROPOSITION 4.9. If {An }n ~crr k and {Ap}n ~orr & then k = € a.e.

Proof. By Remark 4.4 we have {On(n)s}n = {An — An}n ~crr £ — &. Hence, by
Theorem 4.7, we also have {On (n)s}n ~o £ — &, i€,

SN F(o(k(x,0) - £(x,0)))

[—m,x]d J[0,1]¢ N(s)

dxdd,  VF € C.(R).

We conclude that k — & = O, a.e. by Remark 2.9. a

PROPOSITION 4.10. If {An}y, ~crr K and the A,, are Hermitian, then k is Hermitian
a.e.

Proof. Since the A,, are Hermitian, by Remark 4.4 we have {4, }, ~cLr ~ and
{An}n ~crr £*. Thus, by Proposition 4.9, k = x* a.e. 0

THEOREM 4.11. If { A} ~cir K and the A,, are Hermitian, then { A, }r ~ K.

Proof By definition, for every m € N there exist multilevel block LT sequences
{ASDY, ~orr aS ) (%) £59(60), i = 1,. .., Npps j = 1,..., My, ;. such that
. ZZ T HMm g 7(71{])( )féi’j)(e) — Kk(x, 0) in measure,

o [N I AR BN (A

Thus:
o {RN( Zq 1 H T A j))} 8% IR(Ap)}n by Theorem 2.37;
o {R( i Ag 3,2)} R( HMm N agrlzj)( )f( )(9)) by Theorem 3.18;

RO HM’” 59 00 157 0) — R, ) inmeasure.
We conclude that {R(An)}n ~xr R(k) by Theorem 2.35. Since the matrices A, are Hermitian,

we have R(A,,) = A, and (k) = « a.e. by Proposition 4.10. Hence, the spectral distribution
{R(An)}n ~x R(k) yields {An}n ~» K. d

We end this section with a spectral distribution result for (compressions of) multilevel
block GLT sequences formed by perturbed Hermitian matrices.

THEOREM 4.12. Let {Ap}y, ~cir K and Ay, = Xy, + Yo, Assume that
1. every X,, is Hermitian,
2. [Yallz = o(\/N(n))
Then {P}AnPntn ~ox k for every sequence {Py}, such that P, & CN(m)sxon
PP, =I5, 0, < N(n)s, and 6,/(N(n)s) — 1. In particular, {Ap}n ~ox K
(take P, = IN(n)s)~

Proof. {Y,,},, is zero-distributed by Theorem 2.18, so {Y;, }, ~crr Os by Theorem 3.11
(applied with any s € N such that N(s) = s). Since X,, = A, — Y,, and the matrices X,
are Hermitian, we have {X,, },, ~cur x by Remark 4.4 and {X,, },, ~ » k by Theorems 4.7
and 4.11. Consider the decomposition

PrAnPn = PiXp Py + PiY, Py
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Let P,, = [P, | O] be the N(n)s x N(n)s matrix obtained from P,, by adding zeros, and

observe that P BP,, = P*BP, & ON(n)s—s, forall B € CN(m)sxNn)s We have:

o {P;X,P,}n ~ox K by Theorem 2.30;

o [BrYnPrlls = [BrYnPrlla < [B5] Yall2[[Pall = [[Yalz = o(y/N(n)) = o(Von),
where the inequality follows from (2.6), while the second equality follows from the fact
that the nonzero singular values of P, and P are all equal to 1 due to the relation
Py Py = PP ® Onn)s—s, = 15, ® On(n)s—s, - In particular, { P;Yy, Py}, is zero-
distributed by Theorem 2.18.

We conclude that dycs ({PXnPntn,{PiAnPn}tn) = 0, the singular value distri-

bution {PfA,P,}, ~, &k follows from Remark 2.36, and the spectral distribution

{P} A, Pp}, ~ k follows from Theorem 2.28. O

As shown in this section, the theory of multilevel block GLT sequences allows one to
compute the spectral distribution of a given multilevel block GLT sequence {A, },, in the
case where A,, is either a Hermitian matrix or a (small) perturbation of a Hermitian matrix.
Similar results can be formulated in the case where A,, is either a normal matrix or a (small)
perturbation of a normal matrix. For the case of purely non-normal matrices, the main spectral
distribution results obtained so far are [30, Theorems 9 and 10], which are based on the
previous works [29, 32] and, especially, on Tilli’s pioneering paper [68].

4.3. Multilevel block GLT sequences and matrix-valued measurable functions. We
prove in this section that every s x s matrix-valued measurable function # : [0, 1]%x [~ 7]¢ —
C#*# is the symbol of a suitable d-level s-block GLT sequence {A,, },,. In combination with
results already proved before, this will allow us to show that the map associating with each
d-level s-block GLT sequence {A,, }, its symbol x is an isometry with respect to d, . on
the space ¥(*) of d-level s-block GLT sequences and dieasure ON the space Dﬁ((;) of s X s

matrix-valued measurable functions defined on [0, 1]¢ x [, 71]<.

LEMMA 4.13. Let {n = n(n)},, € N? be a sequence of d-indices such that n — oc as
n — oo, and let i : [0,1]% x [, 7|¢ — C5** be any measurable function. Then there exists
a sequence of d-level s-block GLT pairs ({Anm tn, Km) such that k., — K in measure.

Proof. By [41, Lemma 2.4], for every o, 6 = 1, ..., s there exists a sequence of measur-
able functions i, o : [0,1]% x [—7, 7]¢ — C such that k., 4 is of the form

N,

Km,ap(X,0) = aj m,ap(X)e
j=—Nmn

ij-0
b

with N,,, € N? and a; .05 : [0,1]¢ — C belonging to C°°([0,1]%), and K.y as — Kap a.€.
Take

s
Hnb(xa 0) = [HWL,tXﬁ(Xv 0)]2,6:1 = Z K‘m,(xﬂ(x’ B)ngﬁ)
a,B=1

= > Gjmas(x)eTES),
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Clearly, k., — & a.e. and hence also in measure. Moreover, { Ay, }n ~cLr Km by Theo-
rem 3.21 and Remark 4.4. O

THEOREM 4.14. Let {n = n(n)},, C N be a sequence of d-indices such that n. — co
asmn — oo, and let i : [0,1]% x [—m, 7|4 — C*** be any measurable function. Then there
exists a d-level s-block GLT sequence { Ay} ~arr K-

Proof. By Lemma 4.13, there exist d-level s-block GLT sequences {Ap, 1 }n ~GLT Km
such that £, —  in measure. Since {k, }» converges in measure, it is a Cauchy sequence
with respect to the pseudometric dmeasure inducing the convergence in measure. It follows that
{{An.m}n}m is a Cauchy sequence with respect to the pseudometric d, s inducing the a.c.s.
convergence because for each pair of indices m, m/, { Ap m — An.m’ tn ~GLT Km — Km bY
Remark 4.4, {Ap m — An,m/ }n ~o Km — ks by Theorem 4.7, and

da.c.s.({An,m}na {An,m’}n) = pa.c.s.({An,m - An,m’}n)
= pmeasure(ﬁm - Hm’)

= dmeasure(ﬁm7 Km’)

by Theorem 2.33. Since d, s is complete on the space & () of d-level s-block matrix-
sequences corresponding to the sequence of d-indices {n = n(n)},, C N (by Theorem 2.32),
we infer that {An m }n 8% A}, for some d-level s-block matrix-sequence {4y, },. We
conclude that {A,, },, ~grLr % by Theorem 4.6. 0

REMARK 4.15 (Isometry between d-level s-block GLT sequences and s X s matrix-
valued measurable functions). With the notation used in Definition 4.5, suppose we identify

two d-level s-block matrix-sequences {4y}, {Bn}tn € &) whenever their difference
{A,, — Bn} is zero-distributed and two measurable functions k, £ € zmﬁf) whenever their
difference x — & equals Oy a.e. Let (%) C £(%) be the subspace of &(*) consisting of d-level
s-block GLT sequences and consider the application J from ¢ (%) to EIRE;) that associates with
each {Ap}, €Y () its symbol x € fmgf). This application is well-defined by Proposition 4.9.
Moreover, if {4y}, ~crr K, then {By}, ~crr  is equivalent to {A,, — B}, ~» 0 by
Remark 4.4 and Theorems 3.11 and 4.7. This means that, after identification of two d-level
s-block matrix-sequences { Ay, }1, { Bn }n Whenever {4,, — By}, ~, 0, the application J is
still well-defined and, moreover, it is injective. By Theorem 4.14, J is also surjective. Finally,
by Theorems 2.33 and 4.7, given any gauge function ¢, if { Ay}, ~crr £ and { B} ~arr &,
then

dec.s.({An}n7 {Bn}n) = pefcs.({An - Bn}n) = prﬁeasure(ﬁ - g) = drfleasure(’%ﬂ 5)7

which means that J is an isometry with respect to d.. on ¢ (s) and A easure ON DJT((;).

4.4. The multilevel block GLT algebra. The next theorems are of fundamental impor-
tance. In particular, the first one shows that the set of d-level s-block GLT pairs gc(f) defined
in (4.1) is a *-subalgebra of &(*) x 931((;).

THEOREM 4.16. Let {Apn}y, ~crr & and { By} ~crr & Then
1. {A;}n ~GLT Ii*,'

2. {aAn + BBn}tn ~cur ak + BE forall a, § € C;
3. {Aan}n ~GLT Kif.

Proof. The first two statements have already been settled before (see Remark 4.4). We
prove the third one. By Definition 4.5, there exist ({ Ay m }n, fm)s ({Bn.m fn,&m) € Afis)
such that ({An.m}tns bm) = {Antn. k) and {Bnm}n:&m) = {Bnrln, &) in the space
(&) x imff), Tacs. X Tmeasure )s 1-€-»
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L4 {Anﬂn}n ﬂ {An}n and {Bn,m}n ac—b> {Bn}na

® k,, — K in measure and &,,, — & in measure.

Considering that every multilevel block GLT sequence is s.u. (see Remark 4.8), from Theo-

rem 2.37 and Lemma 2.7 we obtain

L4 {An,mBn,m}n ﬁ {Aan}n’

® Kmén — KkE In measure.

Since ({An.mBn,m tns Em&m) € A(s), by definition we have {A,, By, }» ~crr K& a0
THEOREM 4.17. If {An}n ~crr K and k is invertible a.e., then { Al },, ~crr 1.
Proof. Since k is measurable and invertible a.e., its inverse k1 is a well-defined mea-

surable function. Thus, by Theorem 4.14, there exists a d-level s-block GLT sequence

{Bn}n ~crr £ 1. By Theorem 4.16 we have { BpAp, — In(n)s}tn ~orr £ 'k — I, which

implies that { B, An — In(n)s}n ~o 0 by Theorem 4.7, since k" 1k — I, = Oy a.e. Hence,

{BnAn}, 25 {IN(n)s}n- Since k is invertible a.e., {Apn}, is s.v. by Theorem 4.7 and

Proposition 2.27. It follows that AL is s.u. (see Remark 2.25), and so, by Theorem 2.37,

{BpAn AL}, 5 {Af ), e,

(4.2) {BnAn Al — A6}, ~ 0.
Now we observe that, by definition of AIL,

Ap Al = IN(n)s + Sn, rank(Sp) = #{i € {1,...,N(n)s} : 0;(4,) = 0}.
Considering that { A, }, is s.v., we have

. rank(Sp,)
B )

=0.

Hence, from (4.2) we obtain
{Bn + Zn - A;rl}n ~o 07

where Z,, = B,Sy, is zero-distributed by Theorem 2.18. Thus, AL = B, + Z,, and it
follows from Theorems 3.11 and 4.16 that { Al },, ~grr £~ 0

THEOREM 4.18. If {Apn}n ~crr & and each Ay, is Hermitian, then { f (An)}n ~crr f(K)
for any continuous function f : C — C.

Proof. Since every A, is Hermitian by assumption and « is Hermitian a.e. by Proposi-
tion 4.10, it suffices to prove the theorem for real continuous functions f : R — R. Indeed,
suppose that we have proved the theorem for this kind of functions, and let f : C — C be any
continuous complex function. Denote by «, 5 : R — R the real and imaginary parts of the
restriction of f to R. Then, «, 3 are continuous functions such that f(z) = «(x) + i15(z) for
all z € R, and since the eigenvalues of A,, are real, we have f(A,) = a(4,) +i8(4,). In
view of the relations {«(Ay ) }n ~acrr (k) and {B(Ar)}n ~crr B(K), Theorem 4.16 yields
{f(An)}n ~crr a(k) +iB(k), and so {An}n ~crr f(k) because a(k) +18(k) = f(k) ae.
as k is Hermitian a.e.

Let f : R — R be a real continuous function. For each M > 0, let {p,, a}m be a
sequence of polynomials that converges uniformly to f over [—M, M]:

lim || f — pm. s lloo,—as,01) = 0.
m—00

Note that such a sequence exists by the Weierstrass theorem; see, e.g., [58, Theorem 7.26].
By replacing py, ar With pry. s + f(0) — prm,ar(0) if necessary, we may assume, without loss
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of generality, that p,,, a7(0) = f(0). Since any multilevel block GLT sequence is s.u. (by
Remark 4.8), the sequence { Ay, },, is s.u. Hence, by Remark 2.23, for all M > 0 there exists
nys such that, for n > nyy,

(43)  Ap=Any+Any,  rank(Anar) < (M)N(n),  |Anum| <M,

where (M) — 0 as M — oo, the matrices Am M and fln, a are Hermitian, and for all
functions g : R — R satisfying g(0) = 0 we have

Q(An,lvf + An,M) = Q(An,M) + g(/in,M)-

Taking into account that (f — py, ar)(0) = 0, for every M > 0, every m and every n > nay,
we can write

f(A'n.) = pm,M(An) + f(An) - pm,]\/I(A'n.)
= Pt (An) + (f = pmont) (Anoar) + (F = prar) (An,ar)
= pm,IVI(An) + Rn,m,M + Nn,m,Ma

where, in view of (4.3), Ry m.m = (f — pm,M)(An,M) and Ny v =(f — pm,M)(fln,M)
satisfy

rank(Ry, m, ) < rank(fln,M) <r(M)N(n),
| Nr it | < M = Prmna oo, [ 21,011

Choose a sequence {M,, },,, such that

4.4 My, — oo, ”f — Pm,M,, HOO,[—Mm,Mm] — 0.

Then, for every m and every n > nys,,

f(A

) pm M,, (An) + Rn,m,l\/fm + Nn,m,Mma
rank(Rp m M., )
|

r(Mp)N(n),

<
SHf Pm,M,, Hoo — My, Mp,]»

||Nn m, M,

which implies that

{Pmoar,, (An)bn =5 {F(An) -
Moreover, by Theorem 4.16,

{Pm,m,, (An) tn ~cLT P, (K)-
Finally, by (4.4),

1) = Pt ()]l = s 1(F = pon s, ) Aa()
<N = pmatlloo, (= pmljiw) — 0 2.,
which implies that
Pm,M,, (K) = f(K)

All the hypotheses of Theorem 4.6 are then satisfied and { f(An)}n ~crr f(K). d
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4.5. Topological density results for multilevel block GLT sequences. Theorem 4.6
admits the following simple but important converse, which will allow us to prove the main
result of this section (Theorem 4.20).

THEOREM 4.19. Let { Ay} ~crr K and { B m }n ~GLT Km for every m. Then

{Brm}n 5 {An}n <=  Km — Kk inmeasure.
Proof. By Remark 4.15,
daAC-S-({An}n? {Bnm}n) = dmeasure("% /fm)7

and the proof is complete. a
THEOREM 4.20. Let {An }n ~crr k. Then, for all functions a; p,, fim, ¢ =1,..., Np,
such that

® Qi [0,1]% — C*** is Riemann-integrable and f; ,, € L' ([—m, 7%, s),

) Ziv”i a; m( ) fi,m(0) — K(x,80) in measure,

we have {Z "t Dy, a,7m)Tn(f,-7m)} 8% L Ap Y. In particular, { Ay}, admits an a.c.s. of
the form

{{z z (.1, >Tn<eij~9Esg>}n}

a,f=1j=—N

-{{ % Dn<a§m)>Tn<eiﬂ'"’IS>}n}m,

j=—Nm

m

(4.5)

where N, € N9, agg?j :[0,1)¢ — C belongs to C*(]0, 1]¢),

(m) _ (m) p(s) _ 1(m) s
a; Z op 5 Bas = aap jla,6=1>

a,B=1
and
s N,, N,
Z Z (x) el GE(S) Z a;m) (x) €99 - k(x,0) a
a,B=13j j=—Nnm
Proof. Let a; y, fi’m, t=1,..., N, be functions with the properties specified in the

statement of the theorem. Then

{ZD alm fzm} NGLTZaim flm )

by Remark 4.3, Theorem 3.15 (applied with any s € N such that N(s) = s), and Theo-
rem 4.16. Therefore, the convergence

{ZD (@ Talfin)| 55 (A},

n

follows from Theorem 4.19 applied with

ZD @im)Tn(fim),  Em Zazm ) fi,m (6).
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To obtain for {A, }, an a.c.s. of the form (4.5), we use the result of this theorem in com-
bination with [41, Lemma 2.4]. The details are as follows. By [41, Lemma 2.4], for every
o, =1,...,sthere exists a sequence of measurable functions ., oz : [0, 1]¢ x [, 7]¢— C
such that x,,, 3 is of the form

Fm,ag(x,0) Z agg)J eJf

with N,,, € N¢ and agg)j : [0,1]¢ — C belonging to C°°([0,1]%), and K,y ap — Kap a-€.
Then, 377, 5, K/m,a,@Ec(jﬂ) = a1 KQBE&E = K a.e., and so, by the result of this theorem,

{Z Z AT ED ] 25 (4, O

a,f=1j=—N n

REMARK 4.21 (Topological density in the space of multilevel block GLT sequences).
With the notation introduced in Section 4.1, we recall that the set of d-level s-block GLT pairs

G5 = {({An}n, k) € £ x M) - (A}, ~arr 1}

is closed in (&%) x ?mgs), Tacs. X Tmeasure) by Definition 4.5. Consider the subset of gff)
consisting of the d-level s-block GLT pairs of the form

N
(ZD WLTR(£). Y ai(96)).
=1
5)

where a; : [0,1]¢ — C belongs to C>°([0, 1]%), ; is a trigonometric monomial in {eij'eESB :

jE€ Z¢ 1<a,B8< stforalli=1,...,N,and N € N. Then, according to Theorem 4.20,

this subset is dense in gff), i.e., its closure in (& (s) x zmﬁf% Tacs. X Tmeasure) cOincides precisely
: (s)

with G,

4.6. Characterizations of multilevel block GLT sequences. The next result is a char-
acterization theorem for multilevel block GLT sequences. All the provided characterizations
have already been proved before, but it is anyway useful to collect them in a single statement.

THEOREM 4.22. Let { Ay, },, be a d-level s-block matrix-sequence, and let r : [0, 1]%
[—7, 7]? — C*** be a measurable function. The following conditions are equivalent:

1. {An}n ~acrr k.
2. For all sequences {K, }m, {{Bn,m }n}m such that
e {Bpn.m}n ~cLr Km for every m,
® K,, — K In measure,
we have { Bp.m }n X L Ap .
3. There exist functions a; y,, fim, t =1,..., Ny, such that
® aim ¢ [0,1]7 — C belongs to C°°([0,1]%) and f; m is a trigonometric monomial
belonging to {eij'eESg 1 jezi 1<a,B<s),
. Z 1 aim (X) fim(0) = K(x,0) ae.,
L4 {Zizl D, ai,mIs)Tn(fi,m)}n ﬁ {An}n
4. There exist sequences {fm }m, {{Bn,m }n}m such that
e {Bpn.m}n ~aLr Km for every m,
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® K., — K In measure,
i {Bn,m}n e {An}n-

Proof. The implication 1 = 2 follows from Theorem 4.19. The implication 2 =—> 3 fol-
lows from the observation that we can find functions a; m,, fim.% = 1,..., Ny, with the first
two properties specified in item 3 (by [41, Lemma 2.4], as we have already seen in the proof of
Theorem 4.20), and, moreover, {Zfi"l Dy (a; mIs)Thn(fim)}n ~crLr Zii"l‘ @i m (X) fi.m(0)
(by Theorems 3.21 and 4.16). The implication 3 = 4 is obvious (it suffices to take
Brm = SN Dp(as,mI) T fim) and ki (%,0) = S0 45 o (X) fim (8)). Finally, the
implication 4 = 1 is Theorem 4.6. a

4.7. Sequences of multilevel block diagonal sampling matrices. We have encountered
in Section 3.3 and Remark 4.3 the three most important examples of multilevel block GLT
sequences, i.e., zero-distributed sequences, multilevel block Toeplitz sequences, and sequences
of multilevel block diagonal sampling matrices. Concerning the latter kind of sequences, we
have proved that { D, (a)},, ~cir a(x) whenever a : [0, 1]¢ — C*** is Riemann-integrable.
From a mathematical point of view, however, the GLT relation { D, (a)},, ~grr a(x) makes
sense for all measurable functions a : [0, 1] — C***, and it is therefore natural to ask whether
we can drop the Riemann-integrability assumption. In Theorem 4.23 we show that the relation
{Dy.(a)}n ~crr a(x) holds for all functions a : [0, 1]% — C*** that are continuous a.e. in
[0, 1]<. Since a function a : [0, 1] — C*** is Riemann-integrable if and only if a is bounded
and continuous a.e. (see Section 2.3.5), Theorem 4.23 is an extension of both Theorem 3.14 and
Remark 4.3. More precisely, in Theorem 4.23 we are dropping the boundedness assumption.

THEOREM 4.23. If a : [0,1]? — C*** is continuous a.e., then { Dy (a)}n ~crr a(x).

Proof. By looking at the decomposition of D,,(a) considered in Remark 4.3, it is
immediately clear that, in order to prove the theorem, it is enough to show that

{Dn(ajs)}n ~GLT a(x)-[s

whenever a : [0,1]9 — C is a scalar a.e. continuous function. Moreover, for an arbitrary
a.e. continuous function a : [0, 1] — C, we can write a = oy, — a_ + 1B, — i3_, where
oy, By : [0, l]d — R are nonnegative a.e. continuous functions; simply take

ay = max(R(a),0), a_ = —min(R(a),0),
B+ = max(S(a),0), 8- = —min(S(a),0).

Hence, by Theorem 4.16 and the linearity of D, (als) with respect to its argument a, it
suffices to prove the relation { Dy, (al,)}, ~crr a(x) in the case where a : [0,1] — Ris a
nonnegative a.e. continuous function.

Leta : [0,1]¢ — [0, 00) be a nonnegative a.e. continuous function. Denote by a,,, the
truncation of a at level m, i.e.,

am(x) = { a(x), if a(x) <

m, if a(x) >

m7

m.

Since a,, is bounded and continuous a.e., a,, is Riemann-integrable, hence
{Dn(amls)}n ~crr am(x)Is

by Theorem 3.14. Moreover, it is clear that a,,, — a pointwise, so

a,, — a 1n measure.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

170 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

We show that

{Dn(amls)}n e {Dn(als)}n,

after which the application of Theorem 4.6 concludes the proof. In order to show that
{Dp(amIs)}n 255 {Dp(als)}n, we observe that Dy, (amls) = Dp(anm) @ I, and that
Dy(al,) = Dy(a) ® I,. Therefore, since the convergence { Dy, (am)}n =55 {Dp(a)}n
was proved in [41, pp. 101-102], it is immediately clear from the definition of a.c.s. and the
properties of tensor products that { Dy, (@, Is) }r 25 { Dy (aly)} . d

4.8. Sequences of block matrices with multilevel block GLT blocks. This section is
devoted to proving the following theorem, which says that, up to a suitable permutation
transformation, a sequence of block matrices with multilevel block GLT blocks is a multilevel
block GLT sequence whose symbol is obtained by “putting together” the symbols of each
multilevel block GLT block. Recall that IT,, , ,- denotes the special permutation matrix (2.3).

THEOREM 4.24. Fori,j =1,...,s, let {Ap ij}n be a d-level r-block GLT sequence
with symbol ;; : [0,1]4 x [—m, 7|4 — C™". Set Ap, = [An i5]5 j—1 and k = [k);
Then {11, s, A Hn s.rJn 15 a d-level rs-block GLT sequence with symbol k.

Proof. The proof consists of the following two steps.

Step 1. We first prove the theorem under the additional assumption that A, ;; is of the form

i,j=1*

Lij
(46) n 17 Z D a/ zg f/ z])
where L;; € N, ag;; : [0,1]% — C"*" is continuous a.e., and fr;; : [, 7]¢ — C™*"
belongs to L*([—m, 7|%, 7). Note that the symbol of { Ay, ;; }, is

HU X, 0 Zafzj féz] )

By setting L = max; j=1,._s L;; and adding zero matrices of the form D,,(O, )T, (O;) in
the summation (4.6) whenever L;; < L, we can assume, without loss of generality, that

L
'I'L’Lj ZDTL Gy 2] ff zg) "ﬁzg X, 0 ZGZ'LJ f@ K% )
1

with L independent of 4, j. Then,

L
"lSTA HZST:ZHTLST CL@”) n(fzxi.j)]ij 1H£sr
£

Il
i

s
n,s,r Z Ez(;) Y Dn(aé,ij) (ff 1]) n 8,7

ij=1

=

S

Hn,s,r Z (El(;) ® Dn(af,ij))(ls ® Tn(fé,ij)) HZ s,r

=1

M= 1M

~
Il
—_

Z rsr (B @ Dy(ag,if) )G o s (L ® T (fr,i) )5 .

Il
th
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By Theorems 2.47 and 2.48,

Hn,S,T(Ei(;) 02y D’n( ))HT = Dn(Ez(JS) ® aéﬂ'j)?

n,s,r

Hn,sm(ls ® Tn(f ))HZ; s, Tn(Is ® fé,ij)~

It follows that

L s
s rAn HrTz” Z Z Dn(Ei(;) ® agij) Tn(Is ® fo,ij)-
0=11,j=1

Considering that E (s) ®ag,;; and I;® fp ;7 are rs X rs matrix-valued functions, Theorems 3.15,
4.16,and 4.23 1mp1y that {II,, 5, A Hn s.rJn is a d-level 7s-block GLT sequence with symbol

S

X 0 = Z E ®a€ zj )fl,ij( ) [HZ](X 0)]zg 1

l=11,j=1

Step 2. 'We now prove the theorem in its full generality. Since {A, ;;}n is a d level r-

block GLT sequence with symbol x;;, by Theorem 4.20, there exist functions al . ], fe i >

{=1,. LEJ ™) such that

. afﬁj) : [0,1]¢ — C™" belongs to C*°(]0,1]¢) and fz Qg : [=m, 7% — C™" is a trigono-
metric polynomial

. f#’”)(x 6) =1 aé’?}( VT (0) = kij(x,0) ace

(m)

o (AT =500 DalafITalf)}, 25 {An i}

Set AV = [Aglml)J]l j—1 and KM = [k gm]l j—1- We have

o (T AYVTE Y, ~oir £ by Step 1;

e (™) — K a.e. (and hence also in measure);

o {Il,, A (m)H£ srtn aex {Ilp s ARIT] , . }n because {AL’")} 2% {An}n by Theo-
rem 2.38.

We conclude that {Hms,rAan,S’r}n ~gLr K by Theorem 4.6. 0

4.9. Further possible definitions of multilevel block GLT sequences. In this section,
we discuss a couple of possible alternative definitions of multilevel block GLT sequences. We
will use the same notation as in Definition 4.5.

Fix a sequence {n = n(n)},, € N? such that n — 0o as n — occ. By Definition 4.5 and
Theorem 4.16, the set of d-level s-block GLT pairs

QC(IS) = {({An}mfi) : {An}n ~orr H} c &G x 93?&8)

is a closed *-subalgebra of &) x E)JT(SS). By Theorems 3.11, 3.15, and 4.23, gff) contains the
set

By = {{Tn(N}n: 5(x.0) = [(0)) : | € L'([=m7]", )}
U {({Dn(a)}n, k(x,0) = a(x)): a:[0, 1] — C*** is continuous ae.}
U {({Zn}n. £(x,0) = Oy) : {Zn}yn ~o 0}.

By the results in Section 4.5, the algebra generated by BEZS) is dense in gfﬁ. In conclusion,
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the set of d-level s-block GLT pairs gff) is the closed *-subalgebra of &%) x smfﬁ
generated by B(S), i.e., the smallest closed *-subalgebra of &%) x im&s) containing Bés).

Looking more carefully at the results in Section 4.5, we also note that if we let

Cc(ls) = {({Dn(als)}n, k(x,0) = a(x)I;) : a:[0,1]* — Cbelongs to C>([0,1]%)}
U A{({Ta(eP P ES)) iy k(x,0) = €9°EY)) - j €2, 1< a,B < s},

then

the set of d-level s-block GLT pairs gfls) is the closure of the subalgebra of &) x DJTEIS)
generated by C((is).

5. Summary of the theory. We conclude the theory of multilevel block GLT sequences
by providing a self-contained summary, which contains everything one needs to know in order
to understand the applications presented in the next chapter. It is assumed that anyone who
reads this summary is aware of the notation and terminology used throughout this work, which
will be only partially repeated here for the sake of brevity. The reader can find most of the
notation and terminology in Section 2.1.

Multi-index notation. A multi-index % of size d, also called a d-index, is a (row) vector in
7% its components are denoted by iy,...,i4. 0, 1, 2, ... are the vectors of all zeros, all
ones, all twos, ... (their size will be clear from the context). For any d-index m, we set
N(m) = H?Zl m;, and we write m — oo to indicate that min(m) — oo. The notation

N(a) = H;l:l a; will be used for any vector o with d components and not only for d-
indices. If h, k are d-indices, then h < k means that h,. < k, forallr =1,...,d. If h, k
are d-indices such that h < k, then the multi-index (or d-index) range h, ..., k is the set
{j €Z%: h < j < k}. We assume for this set the standard lexicographic ordering:

[ [ [Gsevdd) Ly ke }

Jd—1=hda_1,...,ka_1 G1=h1,.. k1

For instance, in the case d = 2 the ordering is

<h17h2>7 (h17h2 + 1), ey (hlak2)a (hl + 17h2>7 (hl + 1;h2 + 1)7 sy (hl + 17k2)a
......... by ha), (kisha 1), s (b, ko).

When a multi-index j varies over a multi-index range h, ...,k (this is often written as
J = h, ... k), itis understood that j varies from h to k following the lexicographic ordering.
For instance, if m € N and we write x = [z;]™,, then x is a vector of size N (m) whose
components x;, ¢ = 1,...,m, are ordered in accordance with the lexicographic ordering:
the first component is x1 = x(y,...1,1), the second component is x(y, .. 1,2y, and so on until
the last component, which is ¥, = Z(, ..., m,). Similarly, if X = [xij]fszl, then X is
an N(m) x N(m) matrix whose components are indexed by a pair of d-indices ¢, j, both
varying from 1 to m according to the lexicographic ordering. If h, k are d-indices such that
h < k, then the notation Zf: p, indicates the summation over all j in h,... k. If ¢, j are
d-indices, then ¢ < 7 means that ¢ precedes (or equals) 7 in the lexicographic ordering (which
is a total ordering on Z%). Moreover, we define

U
T=N 4, ifi- g
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Note that ¢ A j is the minimum among ¢ and j with respect to the lexicographic order-
ing. Operations involving d-indices that have no meaning in the vector space Z¢ must
always be interpreted in the componentwise sense. For instance, ij = (i1j1,---,%djd),
ai/j = (aiy/j1,...,aiq/jq) forall a € C, etc.

Matrix norms. Here is a list of important inequalities involving p-norms and Schatten
p-norms of matrices.

N1 || X[ < VIX[1]X]|oo < max(|X]1,|X]|c) forall X € C™*™,

N2. || X1 <rank(X)||X|| < m|X|| forall X € C™*™,

N3, 1 X[ < 3202, Jai| forall X € ™™,

N4. || X2 < /[ X][X]]; forall X € Cm>m.,
N5. |AXB]|, < | Al | X]|l,]|B| forall A, X, B € Cmxm.

Tensor products. If X € C™*™2 and Y € C’**2, the tensor (Kronecker) product of X
and Y is the my¢; X mols matrix defined by

$11Y .Z‘lmZY

$m11Y xmlmzY

Here is a list of important properties satisfied by tensor products.

P1. Associativity: (X ®Y)® Z = X ® (Y ® Z) for all matrices X, Y, Z.

P2. Bilinearity: (aX +8Y)@ (YW +nZ) =ay(X@W)+an(X @ Z)+ y(Y W) +
Bn(Y & Z) for all o, 8,7, n € C and for all matrices X, Y, W, Z such that X, Y are
summable and W, Z are summable.

P3. (X@Y) =X*®Y*and (X ®Y)T = XT ® Y7 for all matrices X, Y.

P4 (X@YV)(W®Z)=(XW)® (YZ) for all matrices X, Y, W, Z such that X, W are
multipliable and Y, Z are multipliable.

P5. | X @ Y|, = || X||p||Y], for all square matrices X, Y and all p € [1, co].

P 6. rank(X ® Y) = rank(X)rank(Y") for all matrices X, Y.

P7. If X € C™*™ and Y € C**!, the eigenvalues (resp., singular values) of X ® Y are
given by {\;(X)\;(Y) : i=1,....,m, j=1,...,0} (resp., {0;(X)o;(YV) : i =
1,...,m, j=1,...,0}).

P8. If X; e C™*% fori=1,...,dand we set m = (mq,...,mq) and £ = (£1,...,4g),
then

<X1®”'®Xd)’l:j:(Xl)iljl'”(Xd)idjw i:l,...,m, .7:1”‘8

P9. If X;,Y; e C™i*™i fori=1,...,dand m = (mq, ..., mg), then

rank(X; — Y;
rank(Xl®"'®Xd*Y1®"'®Yd)SN(m)Z#.
i=1 v

P10. Given m € N? and a permutation o of {1,...,d}, there exists a unique permutation
matrix IT,,., such that

Xo(l) X & Xa(d) = Hm;a(Xl ®--® Xd)sz,;g-

forall X; € C™*™ X, € CmaXma,


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

174 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

Special permutation matrices. For every s € N and n € N¢, we denote by IT,, s the
N(n)s x N(n)s permutation matrix given by

Is & E{
I, ®el n
Hn,s: . :Zek®ls®e£,
: k=1
I, ®el
where e;, i = 1,...,n, are the vectors of the canonical basis of CN(™) which, for conve-
nience, are indexed by a d-index 4 = 1,...,n. Forevery s, € Nand n € N%, we define the

permutation matrix
Hn,s,r = H'n.,s ® Ir~

With reference to P10, if m,s € N9, and o is the permutation of {1,...,2d} given by
o=[1,d+1,2,d+2,...,d,2d], we define I';;, s = Il s);,. In other words, Iy, s is the
unique permutation matrix such that

X19Xg110Xo@Xg42® - X4 @ Xog =T s(X1®---® XQd)an,s

forall X, € Cm1x™ X, € (Cmdxmd,Xd+1 € Cs1xs1 | Xoq € C8a%5d,

Sequences of matrices and multilevel block matrix-sequences. A sequence of matrices is
a sequence of the form {4, },, where A,, is a square matrix of size d,, such that d,, — oo
asn — oo. If {A,}, is a sequence of matrices with A,, of size d,,, we say that {4, },, is
sparsely unbounded (s.u.) if

#{i € {1, du} s 0i(An) > M} _

lim lim sup

0,

M—00 nosoco dn
and we say that { A, },, is sparsely vanishing (s.v.) if
; 1,....dn}: 0i(Ay 1/M
lim limsup#{ze{’ n} : 0i(An) <1/ }:0,

M=00 n—soo dnp,

A d-level r-block matrix-sequence is a sequence of matrices { Ay, },,, where
e 7 varies in some infinite subset of N;

e n=n(n) € NYand n — oo (i.e., min(n) — oo) as n — oo;

e A, is a square matrix of size N (n)r.

Singular value and eigenvalue distribution of a sequence of matrices. Let {4,,}, be a
sequence of matrices with A,, of size d,,, and let f : D C R¥ — C"*" be a measurable
function defined on a set D with 0 < px(D) < 0.

e We say that { A,, },, has a singular value distribution described by f, and we write { A, },, ~»

£, if

S o __1 iz Floi(f )
lim anF( i(A,)) = Hk(D)/D , dx, VFeC.(R).

In this case, f is called the singular value symbol of { A, } .
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e We say that { A,, },, has a spectral (or eigenvalue) distribution described by f, and we write
{An}n ~X fy if

FOAn) = s [ 22 O g vr e

In this case, f is called the spectral (or eigenvalue) symbol of {A,, },,.

When we write a relation such as {4, },, ~, for {A,}, ~x f,itis understood that {A, },
is a sequence of matrices and f is a measurable function defined on a subset D of some R¥
with 0 < p (D) < oo and taking values in C"*" for some r > 1. In what follows, “iff” is an
abbreviation of “if and only if”.
S1. If {A,},, ~» f,then {A,}, is s.u.
S2. If {A,}, ~o f,then {A,}, is s.v. iff f is invertible a.e.
S3. If {A,}, ~»x fand A(A,) C S forall n, then A(f) C S ae.
S4. If A, = X,, + Y,, € Cén>dn and

e cach X, is Hermitian and { X, },, ~» f,

o lim (d) /[ Yal2 =0,

then {A,}, ~a f.
S5. Let X,, € C4¥dn and P,, € C¥*% where PP, =I5, , 6, < dy, 0,/dn — 1.

o {X,}tn~o fIff{P: X, Pp}n ~o [

o If the matrices X, are Hermitian, then {X,, },, ~\ fiff {P} X, P, },, ~x f.

Informal meaning. Assuming that f : D C R*¥ — C" " possesses 7 a.e. continuous
eigenvalue functions A;(f(x)), i = 1,...,r, the spectral distribution {A,,},, ~» f has the
following informal meaning: all the eigenvalues of A,,, except possibly for o(d,,) outliers
(with d,, being the size of A,,), can be subdivided into r different subsets of approximately the
same cardinality and the eigenvalues belonging to the ith subset are approximately equal to
the samples of the ith eigenvalue function \;(f(x)) over a uniform grid in the domain D (for
n large enough). For instance, if kK = 1, d,, = nr, and D = [a, ], then, assuming we have no
outliers, the eigenvalues of A,, are approximately equal to

/\i<f(a—|—jb_Ta)), ji=1,...,n, i=1,...,m7

for n large enough. Similarly, if & = 2, d,, = n?r, and D = [a1,b1] X [az, b2], then, assuming
we have no outliers, the eigenvalues of A,, are approximately equal to

b1 —a by —a o )
Ai(f(a1+]1 1Tl 1,(12+j2 2n 2))7 31732:13"'771; Zzla"'7T7

for n large enough. A completely analogous meaning can also be given for the singular value
distribution {A,, },, ~o f.

Rearrangement. Assuming that D = [ay,b1] X - -+ X [az, by is a hyperrectangle in R¥ and
f D — C"*" is a measurable function possessing  real-valued a.e. continuous eigenvalue
functions X;(f(x)),7=1,...,r, compute, for each p € N, the uniform samples

b1 —a by —a ) . )
Ai(f(al—"_jl 1p 17"'aak+]k kp k)>7 jla"‘7]k:17"’vp7 Z:]-a"'a{n

sort them in non-decreasing order, and put them into a vector (¢,<a,. .. ,ngk). Let
¢, : [0,1] — R be the piecewise linear non-decreasing function that interpolates the samples
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12 .
(So = S1,61,52, - - -, Sy ) OVer the nodes (0, TR TR 1),ie.,
i , k
gbp(W):gi, 1=0,...,7p",
. i i+l , .
¢p linearon | —-, ——1, 1=0,...,7p" — 1.
rpk’ rp

When p — oo, the function ¢, converges a.e. to a function ¢, which is non-decreasing on
(0, 1) and satisfies

' 1 2z FOu(f(x)))
/0 F(qﬁ(t))dt—uk(D)/D - dx, VF e 0, (C).

The function ¢ is referred to as the canonical rearranged version of f. What is interesting
about ¢ is that if {4, },, ~» f, then {A,},, ~x ¢. In particular, if we have {A, },, ~x f (and
hence also {A, },, ~x ), then, for n large enough, the eigenvalues of A,,, with the possible
exception of o(d,,) outliers (d,, = size(A,,)), are approximately equal to the samples of ¢
over a uniform grid in [0, 1].

Clustering and attraction. In what follows, if f : D C R* — C"*" is a measurable
matrix-valued function, its essential range is denoted by ER(f) and is defined as

ER(f)={2z€C: m{3je{1,....,7}: X\j(f) € D(z,¢)} >0 foralle > 0}.

e Let {A,}, be asequence of matrices with A, of size d,,, and let S be a nonempty subset
of C. We say that {A,, },, is weakly clustered at S’ if

i € (L da} s Ai(4,) # D(S,2)}

n—00 dy,

=0, Ve >0.

e Let {A4,}, be a sequence of matrices with A,, of size d,,, and let z € C. We say that
z strongly attracts the spectrum A(A4,,) with infinite order if, once we have ordered the
eigenvalues of A,, according to their distance from z,

[A(An) = 2[ < Ao(An) — 2] <. <A, (An) — 2],
the following limit relation holds for each fixed 7 > 1 :

lim |\, (Ay) — 2| = 0.

n— oo

CA1l If {4}, ~x f, then {4,}, is weakly clustered at ER(f) and each z € ER()
strongly attracts A(A,,) with infinite order.

Zero-distributed sequences. A sequence of matrices {Z,}, such that {Z,},, ~, 0 is
referred to as a zero-distributed sequence. In other words, { Z, },, is zero-distributed iff

s

. 1 &
lim —
n—o0 d,, .

F(oi(Zn)) = F(0),  VF € Cc(R),

where d,, is the size of Z,,. Given a sequence of matrices {Z,, },, with Z,, of size d,,, the
following properties hold. In what follows, we use the natural convention C'/oo = 0 for all
numbers C.
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Z1. {Z,}n ~o 0iff Z, = Ry + Ny, with lim (d,,) " 'rank(R,,) = lim [|[N,|| = 0.
n—roo n—oo
Z2. {Z,}n ~o 0if there exists a p € [1,00] such that lim (d,,)~Y?(|Z,]|, = 0.
n—oo
Sequences of multilevel block diagonal sampling matrices. If n € N¢ and a : [0,1]¢ —

C#*4, then the nth multilevel block (or d-level s-block) diagonal sampling matrix generated
by a is the N(n)s x N(n)s block diagonal matrix given by

Dn(a) = diag a(i).

i=1,....n n

Each d-level s-block matrix-sequence of the form {D,,(a)}, withn = n(n) — coasn — oo
is referred to as a sequence of multilevel block (or d-level s-block) diagonal sampling matrices

generated by a. If n, s € N, we denote by {ng?};gl = {mgns), ..., 2.} the sequence of
points
n 1 1 2 2 -1 -1
{xgg)a"'axgzz)s}:{a"'a77"'77' 7n ) an ala a1}7
——— —— —_— ——— M

ie.,

n i — 1 1 .
mEQz(V—J—i—l)a 1=1,...,ns.
8 s n
Ifn,s € NYand a : [0,1] — C, we denote by D, s(a) the d-level diagonal sampling matrix
given by
(n))

1,8

Dy s(a) = diag a(x

i=1,...,ns
where {x{")}7%, = {x}") x4} is the sequence of points
i,8 Ji=1 — 1,87 714ns,s q p
(n) _ (nl) (nd) .
X'i,,s _( ilysl""’xid,sd% 74—1,...77748.

In what follows, we denote by E0 the space of all functions from [0, 1]¢ to the set E.
D 1. Forevery n € N? the map Dy, (-) : ((CSXS)[O’”d — CoN(n)xsN(n)

e islinear: Dy, (ca + 8b) = aDy(a) + D, (b),

e satisfies Dy, (a)* = Dy (a*).

D2 If n € N%, a5 : [0,1]% — C™", fori,j = 1,...,s, a = [a]{;—,, and Dy, =
[Dn(aij)]§ j—1. then we have Iy, s » DpIIL (= Dp(a).

D3. Ifn,s € N*and a: [0,1] — C, then Dy s(a) = I'n s Dn(aly(s))Th .

Multilevel block Toeplitz sequences. If n € N¢ and f : [-m, 7|9 — C*** is a function
in L'([—m, 7%, s), then the nth (d-level s-block) Toeplitz matrix generated by f is the
sN(n) x sN(n) matrix given by

Tn(f) = [fiilij=1
where the s X s blocks fj are the Fourier coefficients of f,

1 :
fr = (%)d/[ . f(0) e *0dg e C*°, kel
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and the integrals in the previous formula are computed componentwise. {7, (f)},, is the
(d-level s-block) Toeplitz sequence generated by f. In what follows, for any function f in
LP([—m, )¢, 5), we define

1/ .
|f||Lp:{ (Jp I5G0lgax) ", if 1 < p < oc,
esssupyeplf(x)[, i p=oc.

T 1. For every n € N the map T, (*) : Ll([ m, 74,
o islinear: T, (aof + Bg) = oTn(f) + BTn(9),
o satisfies To, (f)* = T (™).

T2. If f is Hermitian a.e., then 7T}, (f) is Hermitian for all n € N9,

T3. If 1 <p<ooand f € LP([—m, 7% s), then | Tn(f), < NZ%Z//: Il flle-

T4. If f € L'([-n, 7% s) and {n = n(n)},, € N%is such that » — oo as n — oo, then
{Tn(f)}n ~o f.Ifin addition f is Hermitian a.e., then {75, (f)}n ~x f.

T5. If fi,..., fy € L®([—m, 7%, s), then N(n) | TI, Tn(fi) — Tn(IT2, fi)l1 — O
asm — oo.

T6. If n € N?, fi; € L'([-m,7]%r), fori,j = 1,...,s, f = [fi]§,;—1. and T, =
[Tn(fij)]} j=1. then we have [T, o , TrIT}, o, = Tn(f).

T7. If n,s € N? then

Ta(f1 @ ® fa) = T3 o(Tay (f1) ® -+ @ Ty (fa))Tcs

forall f; € LY([—m,7],81),-.., fa € L*([-7, 7], s4).

Approximating classes of sequences. Let { A, },, a sequence of matrices and {{ By, .m }n }m
a sequence of sequences of matrices with A,, and B,, ,, of size d,,. We say that {{ By, ;m}n}m
is an approximating class of sequences (a.c.s.) for {4, },, if the following condition is met:
for every m there exists n,, such that, for n > n,,,

) — (CSN(n )XsN(n)

An = Bum + Rom + Nom, rank(Ry, ) < c(m)dy, | Npm || < w(m),
where n,,, ¢(m), w(m) depend only on m, and

lim ¢(m) = lim w(m)=0.
m— o0 m—r oo
We use the abbreviation “a.c.s.” for both the singular “approximating class of sequences” and
the plural “approximating classes of sequences”. It turns out that, for each fixed sequence of
positive integers d,, such that d,, — oo, the notion of a.c.s. is a notion of convergence in the
space & = {{A,}, : A, € C¥*dn for every n}. More precisely, for every gauge function
@ and every A € C**¢, let

1 ¢
=3 Z (0i(A
and define

Pies ({An}n) = limsup p(A,), {An}n €&,

n—o0

dies. ({An}n, {Bntn) = pf.c,s.({An = Bu}n), {An}n {Bn}n € &.

Then, df.. is a distance on & such that dfcs.({An}n, {Bn}n) = 0iff {A, — By, }, is zero-
distributed. Moreover, df.s. turns & into a complete pseudometric space (&, dy...), where
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the statement “{{B,, ,;, } n } m converges to { A, },,” is equivalent to “{{B,, 1, } n } m is an a.c.s.
for {A,},”. In particular, we can reformulate the definition of a.c.s. in the following way: a
sequence of sequences of matrices {{ By m }n }m is said to be an a.c.s. for { Ay} if {Bn.m}n
converges to {A,}y in (8,dScs) as m — oo, ie, if dics.({Bnmtn, {An}n) — 0 as
m — oo. The theory of a.c.s. may then be interpreted as an approximation theory for sequences
of matrices, and for this reason we will use the convergence notation { B, }n =% {A, }, to
indicate that {{By, s }n }m is an a.c.s. for {4, },,. In view of what follows, let D C R” be a

measurable set such that 0 < ux(D) < oo and, for every gauge function ¢, define

prﬁeasure / Zz 1 SO UZ ( )))dX7 f S fmg)7
d#leasure(f7 ) pmedsure(f g f7 g € mt([g)

Then, dfcasure is a distance on Dﬁg) such that dieasure (f,g) = 0iff f = g a.e. Moreover,

deasure tUIns Dﬁg) into a complete pseudometric space (SJT(DT), dieasure) Where the statement

“fm converges to f” is equivalent to “f,,, converges to f in measure”.

ACS1. If {A,}n ~o f,then ples ({An}n) = Pheasure (f) for all gauge functions .

ACS2. {A,}, ~, f iff there exist sequences of matrices {B,, m}n ~o fm such that
{Bn.m}n 2o {4, } and f,, — f in measure.

ACS 3. Suppose each A,, is Hermitian. Then, {A,}, ~» f iff there exist sequences of
Hermitian matrices { By, i }n ~x fm such that {B,, m}n Y% (A and f — f

in measure.
ACS4. If {By o }n 2% {A,}, and {Bmn 28% (A}, with A,, and A/, of the same size
dy, then

o {B; m}n =3 {45 s
e {aBnm+ BBy, i 2% oA, + BA! Y, forall a, 3 € C,
. {Bn,mB;L7m}n 2% {4, Al,},, whenever {A, },, {A]}, are s.u.,
e {By.mCn}n 25 {A,C,},, whenever {C,},, is s.u.
ACSS5. If A, = [An 5=y, BY = [BUD): ) and {B)}, 2% {AT)),, fori,j =

i,j=1° n,ij
1,...,s then {B{™}, 2% {A,},.
ACS6. Let p € [1 oo] and assume that for each m there is n,, such that, for n > n,,,
| Ay — Bomllp < e(m,n)(d,)'/P, where lim,, o limsup,,_, . £(m,n) = 0 and
d,, is the size of both A,, and B,, ,,,. Then {B,, 1 }n o {A}n-

Multilevel block generalized locally Toeplitz sequences. A d-level s-block generalized
locally Toeplitz (GLT) sequence { A, },, is a special d-level s-block matrix-sequence equipped
with a measurable function % : [0,1]? x [—7, 7]? — C***, the so-called symbol (or kernel).
Unless specified otherwise, the notation { A, }, ~gLr < means that { A,, },, is a d-level s-block
GLT sequence with symbol k. The symbol of a d-level s-block GLT sequence is unique in
the sense that if {A,},, ~cir & and {A,}, ~crr & then k = € ae. in [0,1]¢ x [—7, 71]<.
Conversely, if {A,}, ~cir # and k = £ ae. in [0,1]¢ x [—7, 7|9, then {An}, ~arr €
In addition, any measurable function « : [0,1]¢ x [, 7] — C**¢ is the symbol of some
d-level s-block GLT sequence { Ay, }p,.
GLT 1. If {A,}, ~cir K, then {Ap}, ~o k. If {An}n ~cLr & and the matrices A,, are

Hermitian, then  is Hermitian a.e. and {Ay, },, ~» .
GLT2. If {An}y ~cir £ With Ay, = X, + Vi, and

e every X, is Hermitian,

o« N(r)" 2|V llz 0,
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then { P} A, P}, ~ox k for every sequence { P, }, such that P,, € CN(n)sxon

P:P, =1Is,,0, < N(n)s,and 6,,/(N(n)s) — 1.

We have

o {Tu(f)}n ~otr 5(x,0) = [(0) if f € L' (-7, 7], 5),

e {Dy(a)}n ~crr K(x,0) = a(x) ifa : [0,1]% — C*** is continuous a.e.,

[ ] {Zn}n ~GLT K,(X, 0) = OS lff{Zn}n ~a 0

If {An}n ~gLT K and {Bn}n ~GLT f, then

o {A}}n ~aour K5,

o {aA,, + BBn}n ~crr ak + BE forall a, B € C,

L4 {Aan}n ~GLT Kf,

o {Al}, ~gr k1 if  is invertible a.e.

If {An}n ~crr & and each A,, is Hermitian, then {f(Ay)}n ~crr f(k) for every

continuous function f : C — C.

If {An i; }n is a d-level r-block GLT sequence with symbol 5, fori,j =1,...,s,

and Ap, = [Ap 5515 j—. then {IL,, 5 » ApIIL |}, is a d-level rs-block GLT sequence

with symbol x = [r;]? ;_;.

{An}n ~ocrr k iff there exist d-level s-block GLT sequences { By, m }n ~GLT Km

such that { By, }n 2% {An}, and K, — K in measure.

If {An}n ~grr K and {Bn}n ~arr &, then dacs ({A }n, {Bn} ) = medsure(’i 5)

for any gauge function ¢.

If {An}n ~crr K, then there exist functions a; p, fim, @ = 1,..., Ny, such that

® aim:[0,1]7 — C belongs to C>([0,1]%) and f; ,,, is a trigonometric monomial
in {eij‘eE(s) 1 j€2% 1<a,B<s),

i 27, " @im (%) fim (0) = K(x,0) ae.,

¢ {Zz lD abm ) (fbm)}n ﬁ>{An}n

6. Applications. In this chapter we present several emblematic applications of the theory
of multilevel block GLT sequences for the computation of the singular value and eigenvalue
distribution of sequences of matrices arising from the numerical discretization of PDEs. In
order to understand the content of this chapter, it is enough that the reader knows the summary
of Chapter 5 and possesses the necessary prerequisites, most of which have been addressed in
Chapter 2. Indeed, our derivations here will never refer to Chapters 14, i.e., they will only
rely on the summary of Chapter 5.

6.1. FD discretization of systems of PDEs. Consider the following system of PDEs:

6.1)

~V-AVu+b-Vo=f, in (0,1)¢,
c-Vu+pv =y, in (0,1)4,
u=v=0, ond((0,1)%),

9 9 9
Z aixl(agk U;C)—l-z k ;k_f, in (071)47

£,k=1
1o}
chi tpv=g,  in(0,1)",
el 8$k

u=uv=0, on 9((0,1)%),

where agy, by, ¢k, p, f, g are given functions, A = [(ng]zkzl, b = [bx]¢_, and ¢ = [cx]¢_,;.
In this section we consider the classical central FD discretization of (6.1). Through the theory
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of multilevel block GLT sequences we show that, under suitable assumptions on the PDE
coefficients, the corresponding sequence of (normalized) FD discretization matrices enjoys a
spectral distribution described by a 2 x 2 matrix-valued function. We remark that the number 2,
which identifies the matrix space C2*?2 where the spectral symbol takes values, coincides with
the number of equations that compose the system (6.1).

FD discretization. Problem (6.1) can be reformulated as follows:

Ay ——— + Sk -l— k in (0, ].)d,
83: 8:1:

k=1

u .
Z@c?"’pv:g, m (Ovl)da
k

u=v=0, on 9((0,1)%),

—1 al‘g
Letn € N%, seth = n+1 andx; = jh,forj = 0,...,n + 1." Let e, be the kth vector of
the canonical basis of R%. For j = 1,...,n, we have
0%u u(x; + hier) — 2u(x;) + u(x; — hieg)
akkaTci L ~ akk(xj) ! hiﬂ
U(Xite, ) — 2u(X;5) + u(Xi_e
:akk(xj) ( J+ k) ]52.7> ( J k)7
k
fork=1,...,d,
ou ou
9u o) @(Xj + hiey) — Tw(xj — hypex)
tk axgaa:k x=x; ki Qhk
1 U(Xj + hrep + hge[) — U(Xj + hrpep — hzeg)
~ agk.(xj)—
2hy, 2hy
_ U( — hier + hgeg) — u( — hre, — hgeg)
2hy
_ . U(Xjrerter) = WKjte,—er) = U(Xj—epte,) T U(Xj—er—e)
= aek(x3) Aheh ’
ol
forl,k=1,...,dwith £ # k,
du u(xj + hrer) — u(x; — hipeyr) U(Xjte,) — U(Xj—e,)
SkTm N ~ sk’(XJ) 2hk; - Sk(XJ) th ’

1Recall that operations involving d-indices that have no meaning in Z¢ must be interpreted in the component-
wise sense. In the present case, given n = (ni,...,nq) and j = (j1,...,Jq), the vector of discretization
steps h = %H and the grid point x; = jh are given by h = ( L ,hq) and

x5 = (jih1,. .., Jaha)-

i) = (s
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fork=1,...,d,
Ov V(Xjre,) — V(Xj—ey)
by —— ~b JTCk J— €k
k 8$k o, k(XJ) Qhk )
fork=1,...,d,
du U(Xjte,) — U(Xj—ey)
%o |, ~ ) 2hy, ’
fork=1,...,d,
(6.2) PUlx=x; = p(x5)v(x5).
Thus, for every j = 0,...,n + 1, we approximate the evaluations u(x;) and v(x;) by the
values u; and v;, where u; = v; = 0if j € {1,...,n} and the vectors u = (u1,...,u,)"
and v = (vq,...,vn)7 solve the linear system

d
Us — 2u; + u;_
j+er J j—ek
= arn(x;) 2
k

d
(A — Uj e, — Ui + Uj_e, —
Jjter+er Jjt+er—er J—er+er J—er—ey
— E agr(X4)

3
Pyt 4hohy
#k
¢ ) U d v v
jter — Uj—ep jter — Vj—ei _ )
+ Z Sk(xj)T + Z bk(xj)T = f(xj),
k=1 k=1
d u . — /LL .
> enloeg) SIS o plg)uy = (),
k
k=1
for 3 = 1,...,n. This linear system can be written in matrix form as follows:
u f
63) An M - [g] ,
where f = [f(x;)]7_1. & = [9(x))7=1
BTL O'n,
An |:Dn En:| I
d d
B, = Z Ko o (aek) + ZHn,k(Sk)v
£,k=1 k=1
d
C"n, = Z Hn,k(bk)7
k=1
d
D, = ZHn,k(Ck)7
k=1
En = In(p),
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and the matrices Ky, o (), Hp i (c), In () are defined for all functions « : [0,1]¢ — C by

1
ngk(oz) = hehk ( ] dliag Ot(Xj))Knll“ K’ k = 1, e ,d,
Jj=1,...n
1
Hy k(o) = hk( . dliag a(xj)>Hn’k, kE=1,...,d,
j=1,..,n

) = dive_atx)) 1

j=1,...n

with K, ¢x, Hp k, I, being defined by their actions on a generic vector w € RN () a5
follows:

(6.4) (Kn,kkW)j = —Wj_e;, + 2Wj — Wjte,, j=1,...,n,
fork=1,...,d,

1 .
(6.5) (Kn,fkw)j = _Z(wjfegfek —Wj—eptep, ~Wjter—ep +wj+eg+ek); J=1,...,n,

for 0,k = 1,...,d with £ # k,

1 .
(66) (Hn,kW)J = 5(_wj—ek + wj+ek)7 J= 17 e, n,
fork=1,...,d,
6.7) (Inw); = wj, j=1,...,n.

In (6.4)~(6.7), it is assumed that w; = 0 whenever ¢ ¢ {1,...,n}. Itis clear that I,, = In(p).
For the matrices Ky, o1, Hy, 1 we have the following result [41, Remark 7.4].
LEMMA 6.1. For every n € N% we have

Knykk:Tn(2—2COSQk), k:].,...,d7
Kn,Zk :Tn(siné)gsin&c), f,k: 1,...,d, 67&]{3,
Hn,k = —iTn(Sinek), k= 1,...,d.

In particular,
Koo = Tn(Hr), Lk=1,...,d,
where H(0) is the d x d symmetric matrix defined as follows:

H,(0) = {2. 2C.Osek7 l.fg =5

sinfysinf,, if { #k.
GLT analysis of the FD discretization matrices. In what follows, we assume that
n + 1 = ~n, where v € Q7 is a fixed vector with positive components and n varies in
the infinite subset of N such that m 4+ 1 = yn € N9, This assumption essentially says that
each stepsize h; = %H tends to 0 with the same asymptotic speed as the others. The linear
system (6.3) is equivalent to

nillN(n) O nillN(n) O nu| _ [n7'f i [nu]l _ [n7f
0] In(n) An 0] Inmy| V] | & = An v | g
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where

p n 2B, n1C,
(6.8) A, = {n‘an B, } )

In the main result of this section (Theorem 6.3), we show that {HnQAnHZ;Q}n is a d-level
2-block GLT sequence whose symbol x(x, 8) is a 2 x 2 matrix-valued function obtained by
replacing the d-level (1-block) GLT sequences {n 2By}, {n " Cr}n, {n 1 Dp}ns {En}n
appearing in (6.8) with the corresponding symbols.”> To prove Theorem 6.3, we need the
following lemma; see [41, statement and proof of Theorem 7.2]. Recall that S, (a) denotes
the nth (d-level) arrow-shaped sampling matrix generated by a, as defined at the end of
Section 2.7.

LEMMA 6.2. Let a : [0,1]¢ — C be continuous, and let f(0) = di—nfie €99 be a
d-variate trigonometric polynomial. Then,

15(@) 0 Ta(F) ~ Dal@)Ta()s, 1S0(@) 0 Ta(F) ~ Do0) Tl
< @lrleo + 1) o ()

min(n)

for everyn € N%, and

{Sn(a) o Tn(f)}n ~aur a(x)f(0)

for every sequence {n = n(n)}, C N such that n — oo as n — oc.
THEOREM 6.3. Suppose that the following conditions on the PDE coefficients are

satisfied:
e for every {,k = 1,...,d, the function ag, : [0,1]¢ — R belongs to C([0,1]?) and its

partial derivatives Qayy, /01, . . ., 0ag, /04 : [0,1]¢ — R are bounded,
e foreveryk =1,...,d, the functions by, cy, p : [0,1]? — R belong to C([0, 1]%).
Let~ € Q% be a vector with positive components and assume that n+1 = ~n (it is understood
that n varies in the infinite subset of N such that n + 1 = yn € N?). Then,

k7 (x,0) k3 (x,0)

(6.9) {Hn,QAnHEQ}n ~GLT £ (X70) = ’
kY (x,0)  p(x)
where
k7 (%, Z Yevkaek (%) Her (6),
£k=1
k{7 (x,0) = —i Z Vibe(x) sin O,
ngp =—i Z ’chk Sln Ok,

and H (0) is defined in Lemma 6.1. Moreover, we have
(6.10) {An}tn ~o 67 (x,0).

2We shall see in the proof of Theorem 6.3 that {n"2Bp }n, {n"1Cpn}n, {n "Dy }n, {En}n are indeed
d-level GLT sequences.
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If in addition c;, = —by, for every k = 1,. .. d, then we also have
(6.11) {Ap}n ~x 67 (x,0).

Proof. The proof consists of the following steps.
Step 1. Consider the sequences {n 2By }n, {n " 1Cpn}tn, {n " Dy}, {En}n, which “com-
pose” the sequence {An}n. In Step 2, we show that these sequences are d-level GLT sequences,
and precisely that

6.12) {n72Bp}n ~aur 5] (x,0),
(6.13) {0 C}n ~arr 613 (x.0),
(6.14) {0 'Dy}n ~aur 65 (x, ),
(6.15) {En}n ~arr p(x).

Once this is done, the GLT relation (6.9) follows immediately from GLT 6, and the singular
value distribution (6.10) follows from (6.9) and GLT 1. We then prove in Step 3 the eigenvalue
distribution (6.11) under the additional assumption that by, = —cy, forallk =1,...,d.

Step 2. To prove the GLT relations (6.12)—(6.15) it suffices to prove the following:

(6.16) {n_QKn’gk(OO}n ~acrr Yevee(x)Hep(0), 0 k=1,...,d, «a€C([0, 1}‘1),
(6.17) {n " Hp 1() }n ~crr —iyre(x) sin 6y, k=1,...,d, acC(]0,1]%),
(6.18) {In(a)}n ~crr a(x), a € C([0,1]%).

Actually, we only prove (6.17) because the proofs of (6.16) and (6.18) are completely analo-
gous. By T 3, the definition of H,, (), and Lemma 6.1,
”n_lHn,k(O‘) + 17k Dn () T (sin Oy,) | < vx|| diag a(xJ‘) — Dnp(a)

j=1,..mn

1T (sin O |

.....

As wy(1/min(n)) — 0 for n — oo, we have {n~'H,, () +ivk Dy () Ty (sinbx) }, ~o 0
by Z 1, and so GLT 3 and GLT 4 immediately yield (6.17).

Step 3. We prove the eigenvalue distribution (6.11) in the case where ¢, = —by, for all
k=1,...,d. In this case, we have D,, = —C,, and

A . ’rLiQBn nilCn
T l-nTlC, E, |’

Consider the symmetric approximation of Ap given by

n 2B, n'Ch,

where

d d
B, = Z Ko (ae), Cp = Zﬁnvk(bk)’
4

k=1 k=1
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and the matrices I~(n7gk(a), Hp, () are defined for all « : [0, 1] — C as follows:

~ 1 1

K, = 77 Pn Knok = 7——5n T (Her), Lk=1,...,d,
@) = 1 S(@) 0 Ko = 5 a(0) 0 T ()

Hpp(a) = hl—kSn(a) oHp k= —ihikSn(a) o T, (sin 6), k=1,...,d

Using T 3, Lemmas 6.1, 6.2, and the assumptions on the PDE coefficients, it can be shown that
both |A,, — Ap |1 and |A,, — A, | tend to 0 as n — oo, and, consequently, || A, — A, | — 0
asn — oo by N1. Thus, setting A7, = II,, 24, 11% , and A}, = II,, 24,I1Z ,, we have
|A2, — A%l = ||Ap — Ap|| — 0 as n — oco. Therefore, we finally obtain the estimate
|Al — Al |la < v/2N(n)||A,, — AL || = o(r/N(n)) as n — co. By GLT 2 applied to the
decomposition A/, = A/ + (A!, — A’)), taking into account the symmetry of A’ , and
the fact that { A/}, ~air £ (x,0) by (6.9), we infer that {A] },, ~» £ (x,8), which
immediately implies (6.11). a

6.2. Higher-order FE discretization of diffusion equations. Consider the diffusion
problem

-V - AVu = f, in (0,1)%,
u=0, on d((0,1)%),

(6.19) 9 0

o Z 7<aéq7u) = in (071)d>

<— fam1 0xy al'q
u=0, ond((0,1)%),

where ay,, f are given functions and A = [agq]z 4—1- In this section we consider the higher-
order FE discretization of (6.19). Through the theory of multilevel block GLT sequences we
show that the corresponding sequence of (normalized) FE discretization matrices enjoys a
spectral distribution described by a N (p—k) x N (p— k) matrix-valued function, where p; and
k; represent, respectively, the degree and the smoothness in the ith direction of the piecewise

polynomial functions involved in the FE approximation. Note that this result essentially proves
[44, Conjecture 2].

FE discretization. The weak form of (6.19) reads as follows [21, Chapter 9]: find u €
H}((0,1)4) such that

a(u, w) = f(w), Yw € H((0, 1)d),

where
a(u, w) = / (Vo) AVu,  f(w) = / fuw.
(0,1)4 (0,1)4

In the FE method [54], we fix a set of basis functions {¢1,...,pn} C HE((0,1)?) and
we look for an approximation of the exact solution in the space W = span(1, ..., ¢nN) by
solving the following discrete problem: find uyy € W such that

a(upw, w) = f(w), Yw e W.

Since {¢1,...,©n} is a basis of W, we can write uy, = Zjvzl u;p; for a unique vector
u = (uy,...,uxn)?. By linearity, the computation of uyy (i.e., of u) reduces to solving the
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linear system
Asnttu — f7

where f = (f(¢1), ..., f(pon)) " and A% is the stiffness matrix,

N
(6.20) AT = Ta(py, 0i)]1mg = l / (V)T AV,
(0,1)¢ ij=1
Tensor-product p-degree C* B-spline basis functions. Following the higher-order FE
approach, the basis functions ¢, . .., @ will be chosen as piecewise polynomials of degree
p; > 1in the ith direction, ¢ = 1,...,d. More precisely, forp,n > 1land 0 < k < p — 1,
let By (p.a]s -« Br(p—k)+k+1,[p,k) * R = R be the B-splines of degree p and smoothness Cc*
defined on the knot sequence
(621) {Tl, e 7Tn(p—k)+p+k+2}
1 1 2 2 -1 -1
:{07 aov ) 9 Ty Ty ey Ty 7n ) 7n 717“'71}
n n n n n n - —
1 ——— N—— N—— pr1
P p—k p—k
We collect here a few properties of By [ 1], - - - ; Br(p—k)+k+1,[p,k) that we shall need later on.

For the formal definition of B-splines as well as for the proof of the properties listed below,
see [24, 60].
e The support of the :th B-spline is given by

(622) Sllpp(Bi7[p7k]) = [Ti;Ti+p+1]7 1= 1,,n(p—k)+k+1
In particular, for the measure of the support we have

+1 .
623  p(supp(Bipa) < Fomsi=Lon(p— k) +k+ 1.

e Except for the first and the last ones, all the other B-splines vanish on the boundary of [0, 1],

i.e.,
(6.24) B 1p.#1(0) = B p)(1) = 0, 1=2,...,n(p—k)+ k.
° {B17[p7k], ce Bn(p_ka_,_l,[p,k]} is a basis for the space of piecewise polynomial functions

of degree p and smoothness C*, that is,

Vi,lp.k] = {’U € C’k([O, 1) : v

n

[2,e) €P, fori=0,...,n—1},

where P, is the space of polynomials of degree less than or equal to p. Moreover,
{Baipk)» - -+ » Bn(p—k)+k,[p.k] } 1 a basis for the space

Walph) = {w € Vo i)+ w(0) = w(1) = 0}.
e The B-splines form a non-negative partition of unity over [0, 1]:
(6.25) B; pk] > 0 over R, i=1,...,n(p—k)+k+1,

n(p—k)+k+1
(6.26) > Bipuw =1 over [0,1].

i=1
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e The derivatives of the B-splines satisfy

n(p—k)+k+1
6.27) > Bl < Con over R,
i=1

where C), is a constant depending only on p. Note that the derivatives B; (p,k] WAy not be

defined at some of the grid points 0, 2, 2, ..., =1 1 in the case of C* smoothness (k = 0).
In (6.27) it is assumed that the undefined values are excluded from the summation.
o Foreveryy = (Y1, -, Yn(p—t)+k+1) € RPP7OHHL we have
n(p—k)+k+1 2 1 ,n(p—k)+k+1 2
(6.28) Z YiBi (k) = / < Z yiBi,[p,k]) > % ||Y||27
=1 oy =t

where ¢, is a constant depending only on p.

o All the B-splines, except for the first £ + 1 and the last k£ + 1, are uniformly shifted-scaled
versions of p — k fixed reference functions 31, 1, - - -, Bp—k,[p,k]» Namely the first p — k
B-splines defined on the reference knot sequence

p+1
0,...,0,1,...,1,....m,...,m, n=|——-—|.
—— —— —— pfk

The precise formula we shall need later on is the following: setting

k+1
(6.29) v= {+W ,
p—k
then, for the B-splines B2, (p 1], - - - s Bht14+(n—v)(p—k),[p,k]» WE have

Biet14(p—k)(r—1)+a.lp.k (2) = By ppr) (@ — 7 + 1),
r=1,...,n—v, qg=1,....,p—k.

We point out that the supports of the reference B-splines 3, |, 1) satisfy

(630) supp(ﬁl,[p,k]) g supp(ﬁ&[p,k‘]) g ce g SuPP(Bp—k,[pﬁk]) = [05 77]

Figures 6.1 and 6.2 display the graphs of the B-splines By [, ), - - -, Br(p—k)+k+1,[p,k] fOT
the degree p = 3 and the smoothness £ = 1 and the graphs of the associated reference

B-splines ﬂ1,[p,k] , 62,[p’k].
Now, for p,n > 1 and 0 < k < p — 1, define the tensor-product p-degree Cck B-splines

Bi,[p,k:] = Bi1,[p1,k1] R ® Bid,[pd,kd]’ 1=1,... 7n(p — k) + k41,

where B; (p. k1> %5 = 1,...,n;(p; — kj) + kj + 1, are the B-splines B; 4,7 = 1,.. .,
n(p — k) + k + 1, corresponding to n = n;, p = pj;, k = k;. Let

Ti = (Tiys -5 Tig)s i=1,....np—k)+p+k+2,

where {7, : i; =1,...,n;(p; — k;) +p; + k;j + 2} is the knot sequence {7; : i =1,...,
n(p — k) +p+ k+ 2} in (6.21) corresponding to n = n;, p = p;, k = k;. As a consequence
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1
0.8
0.6 - ) /\ \ \ A A\ g
\
04+ (A
0.2 \ 1
0 - L = = L - \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FIG. 6.1. B-splines By [p 1] - - - » Br(p—k)+k+1,[p,k) Jor p = 3and k = 1, withn = 10.
1
0.8+ i
0.6 T 1
~_
041 N 1
- \\
I : Y |
0 e \ | | | | \\\\\
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIG. 6.2. Reference B-splines B1 [y k], B2,[p,k] for p = 3 and k = 1.

of (6.22)—(6.27), we have

(631) Supp(Bi,[p,k]) = [T’iaTi-‘rlH-l]’ 1= 1,,n(p—k:)—|—k+1,
p+1
(6.32) a(supp(Bi p.k))) < N(T), i=1,...,n(p—k)+k+1,
(6.33) B;pr =0 over 9([0,1]Y), i=2,....,n(p—k)+k,
(6.34) B; jpk) =0 over RY, i=1,....np—k)+k+1,
n(p—k)+k+1
(6.35) > Bippw =1 over [0,1]%,
=1

n(p—k)+k+1’ P

B‘
(6.36) Yoo kA

' D, ’ < Cp,n¢ over R,

=1

where ), is a constant depending only on p,. Note that the derivatives 0B; | k] /0, may
not be defined at some of the grid points j/m, 5 = 0,...,n, in the case of C° smoothness in
the /th direction (k; = 0). In (6.36) it is assumed that the undefined values are excluded from
the summation. The basis functions {¢1,...,on} = {¥1,. .., Pn(p—k)+k—1} are defined as
follows:

(6.37) Vi :Bi+1,[p,k]a 1= 1,...,n(pfk:)+kz— 1.
In particular, we have N = N(n(p — k) + k — 1).

Higher-order FE discretization matrices. The stiffness matrix (6.20) resulting from the
choice of the basis functions as in (6.37) will be denoted by A,, [, x](A):
(6.38)
n(p—k)+k—1 d
/(0 1)d(VBi—i-l,[p,k])TAVBj-i-l,[p,k] = Z An [p.k),eq(Ceq),

i,j=1 £,g=1

An,[p,k] (A) =
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where the matrix A,, [, k] ¢q(c) is defined for all functions a € L*((0,1)%) as follows:

OB, OB n(p—k)+k—1
1,[p,k] J+1,[p,k]
(6.39) A a) = / ax
n[p k] g (@) oy 0z e |
In the next lemmas, we investigate the structure of the matrix A, [p x).¢q() for a = 1

identically. This is necessary for the GLT analysis that we tackle below. In view of what
follows, for p,n > 1 and 0 < k < p — 1, we define the (p — k) x (p — k) blocks

M _ ]
Klpwy = /R/B/‘,[p,k} OB pat—0dt| (e
di,5=1
o _ | 1
Hip g = /R,Bi,[p,k] ()i (¢ = O] o ten
¢ [ 1k
Myl = /}R Biipk) ()i .1 (t — O)dt ,  lel,
dij=1
and the matrix-valued functions K, ), ks Kip.a) © [, 7] — CP=R)>P=k),
£ i el 4 —i
640)  npp(0) = DKy = Kl *Z(K o (K e w),
LeZ £>0
[0 o _ oll0 [[] \T_—ico
©4)  &uu(0) =D H) e =1 +Z( e —(ml )Te )
LEL
©42)  ppy0)=> ML =M+ Z( M e 4 (M9, )Te %e)_
ez £>0
Due to the compact support of the reference B- splines Br,p.k]s - - > Bp—k,[p,k] (s€e (6.30)),

there are only a finite number of nonzero blocks K (b k]’ H [[ﬁ K
series in (6.40)—(6.42) are actually finite sums.
NOTATION 6.4. From now on, we will use the following notation:

elfpon > 1,0 < k < p-—1, and X is a matrix of size n(p — k) + k — 1, we de-
note by X the principal submatrix of X corresponding to the row and column indices
Lwi=k+1,....,k+(n—v)(p—k), wherev =[(k+1)/(p — k)] as in (6.29).

o Ifp,n>1,0<k<p-—1,and X is a matrix of size n(p — k) + k — 1, we denote by X
any block diagonal matrix of the form

M [[]f] R Consequently, the

| Pk
X = X = Di(p—i)— © X @ [0],
)

where Dy, ,_i)—y is any real diagonal matrix, 6 € R, and it is understood that the block

Diy(p—r)—k is not present if k(p — k) —k = 0 (i.e, if k = 0 or k = p — 1). Note that X

has the following key properties:

— Its size (n + k)(p — k) is a multiple of p — k and is such that the difference
m+Ek)p—k)—(np—Fk)+k—1) = kip—k) —k+1 > 0 is independent of
n;

— It contains X as a principal submatrix in such a way that X is the principal submatrix
ofX corresponding to the row and column indices i,5 = k(p — k) + 1,...,k(p — k) +
(n—v)(p— k)
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— It satisfies the matrix identity X = P;:’[p,k]XPn,[p,k]’ where Py, 1) is the
(n+k)(p—k) x (n(p— k) + k — 1) matrix given by

@)

Pojpm = | Tn-ryen-1 |
OT

— Its eigenvalues (resp., singular values) are given by the eigenvalues (resp., singular
values) of X plus further k(p — k) — k + 1 eigenvalues (resp., singular values) that are
equal to 01, . .., O (p—r)—k, O (resp., |01, ..., |Op(p—r)—kl, |0]), where 01, . .., Op(p—i)—k
are the diagonal entries of Dy (p—k)—k-

Throughout this work, whenever we formulate a statement regarding X without further
specifications, it is understood that the statement holds for any X, whatever Dy,p,_p)—x
and é.

I]fp, n>10< kf < p—1, and X is a matrix of size n(p—k)+k—1, we denote by X0 (resp.,
X1) the matrix X corresponding to the choice Dy (p—r)—k = Ok(p—k)—k and 6 = 0 (resp.,
Dip—ry-x = Ik(p k)—k and 6 = 1). The matrix X0 satlsﬁes not only the matrix identity
X=r I, ]X P, (p.x)» but also the inverse matrix identity X0 = =P, pr X P, k]
Ifp,n> 1A0 <k <p-—1, and X is a matrix of size N(n(p — k) + k — 1), we define
the matrix X° of size N((n + k)(p — k)) as follows:

0 *
X - Pn,[Pyk]XPn,[p,kP

where Py (p k] = Pryjp1 k] @ @ Py pa,ka) a0d Py, p; k] IS the matrix Py [, 1) with
n,p, k replaced by n;, p;, k;. Using P8, it can be shown that Py, [, ) is a matrix of 0 and
1, in which every row possesses at most one 1 and every column possesses exactly one 1.
Moreover, by P4,

(6.43) Py ok Prp) = IN(nip—to)+e—1)-

The matrix X° has the Jollowing key properties:
— X is the principal submatrix of X0 corresponding to the indices k(p—k)—k+1,.. .,
k(p—k)+n(p—k)— 1. Indeed, foralli,j5=1,....n(p—k)+k—1,byP8
we have

(Xo)k(p—k:)—k:—i-i,k(p—k:)—k+j = (P, (p,k) X Pry [p 1] k(p—k)— ki ke (p— k) — -+

n(p—k)+k—1
= Z Xab (P p k) k(p—k)—k-+i.a(Pn, [p 1] )b, k(p—k)—k-+i
a,b=1
n(p—k)+k—1
= Y Xab(Prpi) kp—t)—k-+isa(Pro.fp) ) (p—kt) k4.5
a,b=1
n(p—k)+k—1
= Z XabH Ny [pr ko )k, (pr—kr)—kr+ir,ar (Pnrv[prykr])kr(pr_kr)_kr+j7‘7b7‘
a,b=1

= Xij.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

192 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO
-IFX=X1® - ®Xqwith X; of size n;(p; — k;) + k; — 1, then, by P4,

X0 = Pp iy X P jpi) = Prpi) (X1 @ @ Xa) P 1 = X7 @+ ® X,
X=X1® - ®Xs= P;h[pl,’fl]X?P”l’[phkl] Q- ® P;d;[Pd;kd]X‘and>[pd1kd]

= P 009X Py
Since any matrix X of size N(n(p—k)+k—1) can be written as a linear combination
of tensor products of the form X1 ® --- @ X4 with X; of size n;(p; — k;) + k; — 1,
we infer that the equalities

X0 = Popig X P, pp k)
X = PZ,[pvk]XOPn,[nk]v

actually hold for all matrices X of size N(n(p — k) + k — 1).
- Ific{1,...,(n+k)(p—k)} is an index such that the ith row of Py, [ k) is zero, then

the ith row and column of X0 are zero. This can be verified by direct computation.
e Ifpn>10<k<p-—1,and X is a matrix of size N(n(p — k) + k — 1), we define

1 _ %0 0
X' =X"4+ Ry, 1p k)

where RY. (p.k) 1S the N((n+k)(p—k)) x N((n+ k)(p — k)) diagonal matrix of 0 and

1 such that (R%,[p,k} )ii = Lif and only if the ith row of Py, [p 1) is zero. Note that

rank(Ry, () = N((n +k)(p — k)) = N(n(p — k) + k — 1),
(6.44) B ip i Pros) = O = Pr o iy B p k)
(6.45) (R, 1pk))” = Ry pk)»
(6:46)  Proip.k) Py (p k) T Bos 1p k) = IN((ntk) (p—k)-
The matrix X' has the following properties: R
— The eigenvalues (resp., singular values) of X' coincide with the eigenvalues (resp.,
singular values) of X plus further N((n + k)(p — k)) — N(n(p — k) + k — 1)
eigenvalues (resp., singular values) that are equal to 1. Indeed, if Py, [p 1) is the
square matrix of size N(n(p — k) + k — 1) obtained from P, [p, 1) by deleting the

zero rows, then Py, (p k) Is a permutation matrix and, by (6.46), and the definition of

0
Rn,[p,k]’ we have

det(X" — AI) = det(Pr,(p.u) X Py (1 + Bor jpi — M)
= det(Pr.ip. i) X Py jp s + B o) = AP fpk) P k) = Aoy 17)
= det(Pp,[p,k) (X — AI)P;’:,[]JJC] + (1 - )‘)R?l,[p,k])
= (1 = AN rtR eI =N(np=k) k=D ger( B, 130 (X — AP g)
=(1- )\)N((n+k)(p*k))*N(n(P*k)Jrk*l)det(X — )

)

and, similarly,

det((X1)* X1 — AI) = (1 — \)N (R (k) =N(n(p—k)+k-1)gey( X* X — \).
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— If X is invertible then X1 is invertible as well and

(Xl)—l —

—1

PrpsX P i + B pr = (X1
Indeed, by (6.43), (6.44), and (6.45), we have

—1 ~ —0
XX =X+ Ry ) (XY + R k)

= (Ptp X P p 1) + By ) (Pripad X~ P p s + By )

= P p ) X Py, pk]Pan,k]X*lP;,[p,k] + Pr o) X P .1 B (.1
+ Ry, o Prto k) X Pry iy + (Boy psg)
= P piiPripiy + B oy = I

LEMMA 6.5. Letp,n > 1and 0 < k < p — 1. Then,

(6.47) A

q—1 d
n,[pk],qq(1 ( M, [p, .k, ]> @ Ko, lpg kgl ® ( (0 Mn,.,[p,.,k,,.]>,
r=1

r=q+1
forq=1,...,d, and

(6.48) An,[p,k],qf(l) = An,[p,k:},@q(l)

—1
= - <® M"h‘a[?ra"%}) ”27 Pé:ké ( ® M”Tv[pm 7‘ )
r=1

r=0+1

d
®an’[pqvkq] ® ( ® Mnrf[prykr]>’

r=q+1

for1 < 0 < q < d, where the matrices K, [ 1}, Hp [p, k), My [p,x) are defined in terms of the
B-splines Bo [, 1], - -

oy Br(p—k)+k,[p,k] 0 follows:

n(p—k)+k—1
(6.49) Ko jpk] = / Bl k) (®) Bisa jp iy (T )dx]‘ 1 ;
)k
(6.50) Hyfpr] = / J+1 [p.] Bit1,pp( )dx} .
11];(1)716)4»]6*1
= _—/0 BJ-H,[p,k]( )Bz{+17[p,k](x)de,j_l ’
. n(p—k)+k—1
651) My pr) = /(;Bj-l,-l,[p,k](I)Bi+17[p7k](x)dl‘:|ij_l

Proof. We only prove (6.48) because (6.47) is proved in the same way. For convenience,

throughout this proof we write B; 1 instead of B; 1 [p k) and B;, 11 instead of B; |1 .

Inviewof(6.39),for1§€<q§dandi,j:1,...,;1(p—k)+k—1,wehave

0Biy1, \0Bji1
A 1)) = d
CipsarDig = [ Z5082 00 T e

k]
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d
= [ B @B BB ) TT BBy ()i
1 r=1
r#l,q

1 1
:/0 B£Z+1($e)3je+1($é)dxe/o Bi+1(24)Bj, 11 (q)dzg

d 1
xH/&Mwmmmm
0

r#t.q

= _(Hne,[pe,kz])izu( lq]q H Ny [pr k] rjr

U

((@ P, )®Hne[pm1®( ® ook )

r=~+1
® nqquv q ( ® M”T7p7‘7 7‘])) ’
r=q+1 j
where the last equality follows from P 8. a

LEMMA 6.6. Let p,n > 1 and 0 < k < p — 1. Then, for the matrices in (6.49)—(6.51)
we have

(6.52) Ko pi) = nTnv(Kips)s

(6.53) Hy o) = Tneo(Epiy)s

(6.54) My pr =1 Tosw (Bpoa)s

and

(6.55) K, pa = nTnsr(Kpr) + Bopors rank(Ry, 1, 1) < 2(p — k) (k + v),
6.56)  Hyipa) = Ttk (Epi) + Snfpis rank(S,, p.41) < 2(p — k) (k +v),

6.57) M, =1 "Tnwr(tpr) + Quiprs  1ank(Qupr) < 2(p — k) (k +v).

Proof. For the proof of (6.52)—(6.54), see [8, Lemma 6.10]. To prove (6.55), simply use
(6.52) and note that, in view of our Notation 6.4, K n,[p,k] 18 the principal submatrix of K 0, [p.k]
corresponding to the row and column indices i, j = k(p—k)+1,..., k(p—k)+(n—v)(p—k).
The proof of (6.56) and (6.57) is the same as the proof of (6.55). O

LEMMA 6.7. Let p,nn > 1 and 0 < k < p — 1. In view of Lemma 6.5, we define

q—1 d
An,ipk],qq(1) = <®Mnr,[m,kr]) ® Ky, lpg.kg] ® ( X Mn7-,[p7-,k7-}>’

r=1 r=q+1
forq=1,...,d, and

Ap o kgt (1) = Ary 11,0 (1)

-1 q—1
= _<®Mn7"[p7'ak’r]> ® H’ﬂb[pz,kz] ® < ® Mn,.,[p,.,k:,.])

r=1 r=~0+1

d
®an,[pq,kq1®( ® Mnr,[pr,kr])»

r=q+1
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for1 </l < q<d. Then, foreveryl,q=1,...,d,

~ nen
An,[p,k],éq(]-) = 7qrn+k,p7an+k((H[p,k])fq)l_‘£+k,p7k + En,[p,k]v

N(n)
d
Q(kii + Vi)
k(F, <N — _
k(B ) < N((n-+R)p — ) 30 S5
where v = (11, ...,vq), each v; is defined as in (6.29) with p;, k; in place of p, k, the matrix

Itk p—k is defined as in Remark 2.3 withn 4+ k,p — k in place of m, s, and

(6.58) (Hippi)eq =
(@721 Hipy k1) ©Kipekd @ (@t Hipr ) t=q,
—( @121 oy k1) @i k) @ (g1 iy r)) @ iy o) @ (=gt i) €< 4,
(@ ipr 1) @€k @ (R 1 Hipr ) Dl @ (R—p1 Hipr k) €3> G-

Proof. The result follows from (6.55)—(6.57) and the properties P9 and T 7. 0

GLT analysis of the higher-order FE discretization matrices. In what follows, we assume
that n = ~n, where v € Q% is a fixed vector with positive components and n varies in the
infinite subset of N such that n = vn € N¢ This assumption essentially says that each
stepsize h; = 1 tends to 0 with the same asymptotic speed as the others. The main result of
this sectlon is Theorem 6.8, which gives the spectral distribution of the normalized sequence
{n p,k]( )} n-

THEOREM 6.8. Suppose that ag, € L*((0,1)%), for every £,q = 1,...,d, and that
the matrix A(x) = [agq(x)]zqzl is symmetric for every x € (0,1)%. Let p > 1 and
0 <k <p-—1,let~ € Q% be a vector with positive components, and assume that n = yn
(it is understood that n varies in the infinite subset of N such that n = yn € N%). Then

d
(0972 Ay o1 (A} ~on By (%,60) = Zmaeq (Hip.a)eq(6),

where Hy, ) is defined in (6.58).

Proof. The proof consists of the following steps. Throughout this proof, the letter C'
denotes a generic constant independent of n.
Step 1. Let L'((0,1)¢,R%*4) be the space of functions L : (0,1) — R4*? such that
Lij € L*((0,1)4) forall 4, j = 1,...,d. Consider the linear operator

An,[p,k](') . Ll(((), l)d,RdXd) s RN(n(pfk}I»kfl)XN(n(pfk)+k:fl)’

n(p—k)+k—1
A pr)(L) = / (VBis1p)) LVBji1,pk)
(0,1)¢ ij=1
The next steps are devoted to showing that
(6.59)
{n - 2Fn+k p— kA p.k }(L)Fn+k,p—k}n ~OLT %7 Z VeVaLig(x)(Hip,k])eq(6),

£,g=1

where, according to our Notation 6.4, A?%[p,k] (L) = Pp [p.k)An,[p,k] (L)P;:_’[p’k]. Once this

is done, the theorem is proved. Indeed, since A(x) = [agq(X)]Z =1 18 symmetric for all
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x € (0,1)¢ by assumption, the matrix A% (.| (A) is symmetric as well. Hence, it follows
from (6.59) and GLT 1 that

{nd72Fz+k,p7kAgL,[p,k](A)anLk,pfk:}n ~o, AN (~) Z ’YZ’thafq [p,k])fq(e)

£,g=1

= nfpk (x,0),

which implies

which implies
(072 A i) ()} ~ox BT (%, 6)

by S 5 (taking into account that A,, [, x)(A) = o,k AO (k] (A) Py, [p,k); see Notation 6.4).

Step 2. We first prove (6.59) in the constant-coefficient case where L(x) = Eéfj) identically.

In this case, we have Ay, [p k) (Eéj)) = An.[p,k],tq(1). By Lemma 6.7,
d B .
n? 2L ok AY n.[p.k] (Eegq))rn%,wk =T kA patg (D ke ok

Ve
= N( q) Tn+k((H[p,k])Zq) + Fn,[p,k]v

where rank(Fy, (k) < Cn?~!. It follows from GLT 3 and GLT 4 that

i d ey
{ i 2Fn+k,p kAgL7[p,k](E[Sq))rn-i'k’@—k’}n ~GLT N(,-)(/I) (H[p,k])fq(9)7

which is (6.59) for L(x) = E{. .
Step 3. Now we prove (6.59) in the case where L(x) = a(x)Eéf;) with a € C(]0,1]9). Let
d _ d
Zn o) = 1" AY g (@B()) = 1 D i (@) A), g (Ef)).

Let v = (vy,...,v4), with v; defined as in (6.29) with p;, k; replaced by p, k. Taking
into account Notation 6.4 and the properties (6.31)—(6.36), forr, R = 1,...,n — v and
s,8=1,...,p— k, we have

|(2* ™ Zns [ ) - k>+<pfk><r—1>+s,k<pfk>+<P*’“><R*1)+S|
— ‘ n.[p.k) (@ ))k+(p_k)(r—1)+s k+(p—k)(R-1)+S
— (Dpskp— k(a) +(p—k)(r—1)+s,k(p—k)+(p—k)(r—1)+

)
( n,[p, k]( ))k+p k)(r—1)+s,k+(p—k)(R—1)+S

(k + 7\ | 9Brt14(p—k)(r—1)+5,[p,k]
4 - 5 (x)
© 1)d n -+ Ze

6Bk+1+(p k)(R-1)+S, [PJ“]( )dX

0z
k
< sz”écpq”q/ a(x) _a(n—lJr—Z)’dX
[Tk+14(p—k)(r—1)+8 Th+1+(p—k)(r—1)+s+p+1]
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< Cp, Cp,ung /

2
o555
[(r—1)/n, <r+p>/n1 n+

2 i+ 1
< Cp, Cpqnmqwa( max(p ) H = rj_ '
7

where w, (-) is the modulus of continuity of a and the last inequality is justified by the fact
that the maximum distance (in the co-norm) of a point x in the hyperrectangle [(r — 1)/n,
(r+p)/n] from the point (k+7)/(n+k) is not larger than max(2p/n) <2 max(p)/min(n).
It follows that, if we denote by Zy, the principal submatrix of Z, [, x) corresponding to the
indices k(p — k) + 1,...,k(p — k) + (n — v)(p — k), each entry of Z,, is bounded in
modulus by Cw,(1/ min(n)). Moreover, the number of nonzero entries in each row and
column of Z,, is bounded by a constant C' independent of n. This follows from the following
more general property:

for every L € L'((0,1)¢,R4*4), the number of nonzero entries in each

row and column of A, [, k(L) is bounded by (2|p|o + 1)¢ because

(Ap,pk)(L))i; = 0 whenever |é — j|oo > |P|oo; this is due to the fact

that, for |¢ — j]oc > |P|oo. the intersection of the supports of B; 1 [p k] and

Bj11.[p,k) has zero measure by the local support property (6.31).
(1/min(n)) — 0 as n — oo. Recalling that Z,, is the principal
submatrix of Z,, [p x) corresponding to the indices k(p—k)+1, ..., k(p—k)+(n—v)(p—k),
we arrive at

Zn,[pk] = Nn [pk] T Bn [p.k]s

where || Ny, (p k]| = [|Zn|| = 0asn — oo and rank(Ry, [p k) < Cn?~!. It follows from Z 1
that { Zy, [ k] } is zero-distributed. Since

; d
nt- QAO,[p k](aE[Eq)) n 2Dk p-r(a )Agz,[p,k](Elgq))+Z’n.,[p7k:]7

we infer from D 3 that

20 o kA 1 (0BG Dk p

2 d

=n 2Dn+k(aIN(P*k))Fn-s-km—kAgl,[p,k](Elgq))rn‘*kvp_k
+FT+kP kZn \[p.k ] n+k,p—k;

and we conclude that

ey
T kA ) (3 Prtipi b ~air 75000 (Hipag)ea(0)

by Step 2, GLT 3, and GLT 4. The previous relation is (6.59) for L(x) = a(x)EéZ).

Step 4. Now we prove (6.59) in the case where L(x) = a(x)EéZ) with @ € L'((0,1)%).
By the density of C([0,1]¢) in L!((0,1)?), there exist functions a,, € C([0,1]¢) such that
am — ain L1((0,1)%). By Step 3,

YeVq
N(v)

_ 2 d
{n? 2P£+k,p7k:A(r)L,[P,k] (a’mE[Sq))FnJrkyP*k}n ~GLT am (X)(Hp,k) ) rq(6)-

Moreover,

YeYq
N()

YeYq

am (%) (Hip.11)ea(8) = 575

a(x)(Hp,k])eq(0) in measure.
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We show that
d
{n - 2FT+kp kA n,[p, k](amEzgq))Fn+k7p—k}n
a.c.s. d
? {nd 2Fn+k,p—kAn,[p,k] (aEéq))Fan,pfk}w

Once this is done, the thesis (6.59) follows immediately from GLT 7. To prove (6.60), let
Py, 1p.k] = [Pn,[p,k)|O] be the square matrix of size N ((n+k)(p—k)) obtained from P,, [, x)
by padding with zeros. Taking into account that Hpn,[p,k] Il =1,by N3,N5, and (6.36), we
have

(6.60)

N d n d
1A, (g (@B — A2 1 i (@m B 11 = 1A%, i (@ — am) EE) 14
d *
||P A n,[p,k ]((afam)Eéq))P p,k:]”1
= ||Pn,[p,k] [An e (@ = am) ESD) @ O1B 1 1l
)

d
< An,p (@ — am) EG) |1
n(p—k)+k—1
OBit1,pk] ,_\ OBjt1,pk]
< a(x) = apm(x) DKL () TEILIPH () 4
132221 /(0 1)d [ } Oy Oxg
n(p—k)+k—1
OB y1,[p k] 0Bj11,p.k)
<[ Jat) -~ an(x) | TR )| | SE LA ()
/(0 1)d| | ”Z_I Oz Oy

< O, Cp ninglla — am||pr-

Thus, the a.c.s. convergence (6.60) follows from ACS 6.
Step 5. Finally, we prove (6.59) for an arbitrary L € L'((0, 1), R?*4). Write

Z qu éq )

l,q=1

and note that, by linearity,

p,k] Z A [pk: Leq )

£,q=1

Hence, by Step 4 and GLT 4,

Z VeYaLog (%) (Hip k) ) q(6),
Eq 1

(T kp e Am o k) (D) ko ke ~OLT 7

which concludes the proof. 0
REMARK 6.9 (Space-time higher-order FE-DG discretization of time-dependent diffusion
equations). Consider the time-dependent diffusion equation

Owu(t,x) — V- A(x)Vu(t,x) = f(t,x), (t,x) € (0,T) x (0,1)%,
(6.61) u(t,x) =0, (t,x) € (0,T) x 8((0,1)%),
u(t,x) =0, (t,x) € {0} x (0,1)%

If we discretize (6.61) by the space-time higher-order FE-DG approximation technique con-
sidered in [12], the resulting (normalized) FE-DG discretization matrices enjoy an asymptotic
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spectral distribution described by a (¢ + 1)N(p — k) X (¢ + 1)N(p — k) matrix-valued
function. This result was (only partially) proved in [12, Theorem 5.2] by a direct (complicated
and cumbersome) approach. By following step by step the proof of Theorem 6.8, we can give
an alternative (much more lucid and simpler) proof of [12, Theorem 5.2] based on the theory
of multilevel block GLT sequences.

REMARK 6.10 (Formal structure of the symbol). From a formal point of view (i.e.,
disregarding the regularity of A and w), problem (6.19) can be rewritten in the form

d Oay, Ou
_ q _ s 1 d
Z G, 8:1:55‘:1:,1 Z dxy dxy £ i 01

£,q=1

u =0, on 9((0,1)%).
The formal structure of the (singular value and spectral) symbol

d
ﬂ
’ff; )rc Z q ) (Hip,k))eq(6)

is deeply connected with the structure of the higher-order differential operator

=Y a(x) 325% (x)

£,q=1

associated with problem (6.19), whereas the lower-order differential operator
8@15
- Z L0955 (%)
axg axq

does not enter the expression of the symbol. For more insights into this topic, we refer the
reader to [41, Section 7.2]; see also [41, Remarks 7.4, 7.6, 7.9, 7.12].

6.3. Higher-order FE discretization of convection-diffusion-reaction equations. Sup-
pose we add to the diffusion equation (6.19) a convection and a reaction term. In this way, we
obtain the following convection-diffusion-reaction problem:

-V -AVu+b -Vu+cu=f, in (0,1)%,
u=0, on 9((0,1)%),

(6.62) d P 5 |
= _ZZ Ay (an )+qu8 +eu=f,  in (0,1)%

u =0, on 9((0,1)9),

Based on Remark 6.10 and the discussion in [41, Section 7.2], we expect the term b - Vu + cu,
which only involves lower-order derivatives of u, not to enter the expression of the symbol. In
other words, if we consider for problem (6.62) the same higher-order FE discretization as in
Section 6.2, the symbol of the resulting sequence of (normalized) FE discretization matrices
should be again HE;)k] (x, 0) as per Theorem 6.8. We are going to show that this is in fact the

case.
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FE discretization. The weak form of (6.62) reads as follows [21, Chapter 9]: find u €
H}((0,1)9) such that

a(u, w) = f(w), Yw € H((0, 1)d),
where

a(u,w) = / (V)T AVu + (Vu)Tbw + cuw),
(0,1)4

f(w) = /(071)01 fw.

In the FE method, we fix a set of basis functions {1, ..., on} C H((0,1)4), and we look
for an approximation of the exact solution in the space W = span(1, .. ., N ) by solving
the following discrete problem: find uy, € W such that

a(upw, w) = f(w), Yw e W.

. . . . N .
Since {¢1,...,¢n} is a basis for W, we can write uyy = ;7 u;p; for a unique vector

u = (uy,...,ux)?. By linearity, the computation of uyy (i.e., of u) reduces to solving the
linear system
Gstiffy — £
where £ = (f(¢1),...,f(pn))T and S is the stiffness matrix,
S = [a(pj, pi)] -

Note that S admits the following decomposition:

(6.63) G gStiff_y stifl
where
N
w—| [ (@p)Tave,
(0,1)¢ i,j=1

is the diffusion matrix and

73 = [/ (Vo) by, +/ C%‘%]

is the sum of the convection and reaction matrices.

N

4,5=1

GLT analysis of the higher-order FE discretization matrices. Following the higher-order
FE approach as in Section 6.2, the basis functions ¢, ..., ¢ are chosen as in (6.37). The
stiffness matrix resulting from this choice will be denoted by Sy, [p.x)(4, b, ¢). According to
(6.63), it can be decomposed as follows:

Sn,[p,k:] (Aa b, C) = An,[p,k] (A) + Zn,[p,k:] (ba C)a
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where
n(p—k)+k—1
Appk) (A) = /( )d(VBiJrl,[p:k])TAVBJ#L[ZLM] ;
0,1 .
’ 1,7=1

Zn pk)(b,c) = [/(O 1)d(VBj-l-l,[p,k:])TbBi-‘rl,[p,k]
n(p—k)+k—1
+ / CBj+1,[p,k1Bi+1,[p,k}]

(0,1)d

4,j=1

Note that A,, [ k) (A) is the same as in (6.38) and Theorem 6.8. The main result of this section
is Theorem 6.11, which shows that Theorem 6.8 holds unchanged with Sy, [, x1(4, b, ¢) in
place of Ay, [, k](A). This highlights a general aspect: lower-order terms such as b - Vu + cu
do not enter the expression of the symbol and do not affect in any way the asymptotic singular
value and eigenvalue distribution of PDE discretization matrices.

THEOREM 6.11. Suppose that ag, € L'((0,1)%), for £,q = 1,...,d, that b;,c €
L>((0,1)%), for q = 1,...,d, and that the matrix A(x) = [agq(x)]‘e{q:l is symmetric for
everyx € (0,1). Letp > 1and 0 < k < p — 1, let v € Q? be a vector with positive
components, and assume that n. = ~yn (it is understood that n varies in the infinite subset of
N such that n = yn € N%). Then
(6.64)

d
_ 1
{nd 2Srn,,[p,k] (A,b,C)}n ~o,\ HE;}"’] (Xa 0) = W Z ’W’anfl](x)(H[P,k])eq(BL
l,q=1

where Hy, 1) is defined in (6.58).
Proof. Throughout this proof, we make use of Notation 6.4, and we use the letter C' to
denote a generic constant independent of n. We are going to show that

(6.65) | Zn ok (b, 0)|| < O 4.
Once this is done, the thesis is proved. Indeed, it follows from (6.65) that

(6.66) 0?2 Zp pig (b, c)|| < Cn1,
192 Z,, (o 1y (b, 0|2 < Cn/271 = o(n¥/?).

Thus:
e the singular value distribution in (6.64) follows from Theorem 6.8 and ACS 2, taking into
account that, in view of (6.66) and the decomposition

(6.67) n* 28, k(A b, ¢) = n? %A, 1 (A) + 122, p ok (b, 0),

we have {n?"2A,, (p k) (A)}n =3 {09728, pa (4, D,0) }n,
o the eigenvalue distribution in (6.64) follows from S 4 applied to the decomposition (6.67),
taking into account Theorem 6.8.
It only remains to prove (6.65). We first note that the number of nonzero entries in each
row and column of Z,, [, 1] (b, c) is bounded by (2|p|oc + 1)% because (Zy, k) (b, ¢))ij = 0
whenever [t — j|oo > |P|oo. Indeed, for |2 — j|o > |P|oo, the intersection of the supports of
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Bit1,[p,k) and Bj 1 p &) has zero measure by the local support property (6.31). Moreover,
by (6.31)—(6.36), forevery i,5 = 1,...,n(p — k) + k — 1, we have

|(Zn,[p,k] (bv C))ij ‘ =

/ (VBji1pk) DBit1pk + / cBji1,[pk) Bit1,ip.k]
(0,1)¢ (0,1)¢

s

d
OBj11,[p.k)
< oo | =L By
/supp(B Z ! g HLlpk]

i+1,[p.k]) g—1

+ / 1] 1By 41,19 | Bis 1ol
supp(Bi 11, [p, k]

d
</ max b= 3 Cpyna + | el
SUPP(Bi+1,[p,k])E:1 »d

pr supp(Bi 41, (p, k]

d
p+1 p+1
< max b~ Z;cpqnqN(n) + el N (222
-

< Cn' 4,
and (6.65) is proved. 0

6.4. Higher-order FE discretization of systems of PDEs. Consider again the same
system of PDEs as in Section 6.1, i.e.,

—V - -AVu+b-Vo=f  in (0,1)¢
c-Vu+pv=y, in (071)d,
u=v=0, ond((0,1)9),

d d
0 ou ov .
(6.68) -y %(aqu) Y b=t in (0,17
l,q=1 q q=1 q
: d
Zcqal‘q +p’U g, n (071) )
q=1

where ayy, by, ¢q» p, [, g are given functions, A = [agq];‘iq:l, b = [bg]¢_;, and ¢ = [¢g]2_;.
In this section we consider the higher-order FE discretization of (6.68). Through the theory
of multilevel block GLT sequences we show that, under suitable assumptions on the PDE
coefficients, the corresponding sequence of (normalized) FE discretization matrices enjoys a
spectral distribution described by a 2N (p — k) x 2N (p — k) matrix-valued function, where
p; and k; are, respectively, the degree and the smoothness in the ¢th direction of the piecewise
polynomial functions involved in the FE approximation, while the number 2 in front of

N (p — k) coincides with the number of equations that compose the system (6.68).

FE discretization. The weak form of (6.68) reads as follows: find u,v € H((0,1)?) such
that, for all w € H}((0,1)%),

/ (Vw)TAVu+/ (Vo) 'bw :/ fw,
(0,1)¢ (0,1)¢ (0,1)¢

/ (Vu)Tcw—i—/ POW :/ quw.
(0,1)¢ (0,1)¢ (0,1)¢
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In the FE method, we fix a set of basis functions {1, ..., ox} C H}((0,1)4), and we look

for approximations uyy, vyy of the exact solutions u, v in the space W = span(p1,...,pN)
by solving the following discrete problem: find uyy, vyy € W such that, for all w € W,

/ (VU})TAV’U,W +/ (V’()W)wa :/ fw,
(0,1)¢ (0,1)¢ (0,1)¢

/ (Vuw)Tcw+/ PUWW :/ quw.
(0,1)¢ (0,1)¢ (0,1)¢

Since {¢1,...,pn} is abasis of W, we can write uyy = Zjvzl ujp; and vy = Zjvzl Vjp;
for unique vectors u = (u1, ...,ux)? and v = (vy,...,vx)?. By linearity, the computation
of uyy, vyy (i.e., of u, v) reduces to solving the linear system
(6.69) gift [“] = H :

v g

where f = [f(o 1)d f‘Pi] i]\;p g= [f(o 1)d ggoi] j\;l, and S5 ig the stiffness matrix, which has

the following block structure:

. Astiff(A) Hstiff(b)
stiff __
(670) S - |:Hstiff(c) Mstiff(p) )

where, for any W = [we,]§ ., W = [wg]l_;, w with weg, wg, w € L'((0,1)%),

q=1

_ N
6.71) AN (W) = / (Vw)TWWj] ;

[/ (0.1)7 ij=1

- N
(6.72) HY (w) = / (V%—)TW%} :

L/ (0,1 ij=1

- N
(6.73) M () = / WP ;p;

L/ (0.1)¢ i,5=1

Note that for any r, s # 0, the system (6.69) is equivalent to

—1
B(r,s) [7,_111‘,] — s |:T f:| :
g

where
B = s(r~ 1y @ In) S (Iy @ rly)
B r— 1IN ON Astiff(A) Hstiff(b) [N ON
=S ON IN Hstiff(c) Mstiff(p) ON TIN
B T_lsAStiff(A) sHStiff(b)
(6.74) = [ SHNT(C)  rs M ()

Higher-order FE discretization matrices. Following the higher-order FE approach as in
Sections 6.2 and 6.3, the basis functions ¢y, ..., @ are chosen as in (6.37). The stiffness
matrix S* resulting from this choice and its normalized version B(™*) will be denoted
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by Sy, p.k] (A, b, ¢, p) and B(T s

P (A, b, c, p), respectively. According to (6.70)—(6.73) and
(6.74), we have

A (A) H (b)
- n,[p,k] n,[p,k]
Sn,[p,k] (A7b7cap) - |:H ,[p,k]( ) Mn’[p’k] (p) ’

[(A,b,c,p) = { H5Anfpw) (A) - $H ok )],

(r,s) b
6.75 BC
©73) sHp pr)(c) 1My k) (p)
(

;[p,K]

where, for any W = [wgq]gﬁqzl, w = [wg]d_;, w with wey, we, w € L'((0,1)4),

n(p—k)+k—1

Anfp.e) (W) = /( . 1)d(VBi+1,[P,k])TWVBJ'-FL[PJ@]] :
ij=1

n(p—k)+k—1
Hy i) (W) = /(0 l)d(VB_’H-I,[p,k])TWBi+1,[p,k]‘| ;

4,j=1
n(p—k)+k—1

M p. iy (w) = / ijH,[p,k]Bm,[p,k}]
| J 0,1y

ij=1
Note that A, [ k(W) is the same as in (6.38) and Theorem 6.8 with the only difference that
A'is replaced by W. For the matrix H,, [, ) (W), we have the following decomposition:

d
Hy p s (W) =Y Hr p 1) g (w0),

q=1
where H,, [, k),q(w) is defined for all functions w € L' ((0,1)%) as follows:

n(p—k)+k—1
aBj-i—l,[p k]

6.76 H, = —B;
( ) n7[p,k],q(w) [/(O,l)d w a,Tq z+1,[p7k]]

In the next lemmas, we investigate the structure of the matrices Hy, [ x),q(w) and My, (5 ) (w)
for w = 1. This is necessary for the GLT analysis that we tackle below. In what follows, we
use Notation 6.4.

LEMMA 6.12. Let p,n > 1and 0 < k < p — 1. Then,

q—1 d
(6.77) H'n,[p,k],q(l) = <®Mnr,[pr,kT]) ® an,[pq,kq] (29 ( ® Mnr,[pr,kr]>a
r=1

r=q+1

i,5=1

forq=1,...,d, and

(6.78) w1 ® Mo, [p, ko]

where the matrices H,, , 11 and M, 1, ) are defined in (6.50) and (6.51).

Proof. We only prove (6.77) because (6.78) is proved in the same way. For convenience,
throughout this proof we write B; 1 instead of B; 1 p &) and B; 11 instead of B; 1 p, k.-
For¢g=1,...,dand4,5=1,..., n(p—k)+k—1,

OB;
(Hn p,k],¢(1))i; =/ i

Bita(x)d
oy Oy (%) By (x)dx
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d

= [ BB T BB )i
) r=1
r#q

d 1
:/0 B; +1(xq)Biq+1(xq)dqu/0 Bj, +1(xr) Bi, 41 (zr)day
=
d

= (anx[pqakq])iqjq H (Mnr;[Pr;k?r] )iTjT
r=1
r#q

<<® ”Hpmr)@H"q»[qu q]®( ® Ny [P Ky >>’
ij

r=q+1

where the last equality follows from P 8. a
LEMMA 6.13. Let p,n > 1 and 0 < k < p — 1. In view of Lemma 6.12, we define

q—1 d
H [p,k],q <®Mnh[l)w r]) ®H”qa[1’qv kq] ® < ® M"Ta[pr»kr]>’

r=1 r=q+1
d

M o) (1) = Q) M, 1y, 1,
r=1
Then, foreveryq=1,...,d,
N n,

Hn,[p,k],q(l) = Wj,ll)rn-l-k,P—an-i-k(g[p,k'],q)rz-i-k,p—k + Fn,[p,k};

d

ank(Fry 1) < N((n + ) (p — k) S 2 20)
=1

ni + ki

)

and

. 1
Mo (D) = iy Lotk Ttk (Hip. ) D st + G [k

2(k; + v;)
n; + k;

)

d
rank(Gr, pr) < N((n+k)(p—k)) Z

where v = (v1,...,1q), each v; is defined as in (6.29) with p;, k; in place of p, k, the matrix
'tk p—k is defined as in Remark 2.3 withn 4+ k,p — k in place of m, s, and

q—1 d
(6.79) §pklg = <® /‘[pmkr]) ® &lpgkg) © ( X M[pmk,-]>v
r=1 1

r=q+
(6.80) L = Q) tip, 1

with &, 1) and pp, 1) being defined in (6.41) and (6.42).

Proof. The result follows from (6.56)—(6.57) and properties P9 and T 7. O

LEMMA 6.14. Letp > 1 and 0 < k < p — 1. Suppose that n. = vn, where v € Q% is a
fixed vector with positive components and n varies in the infinite subset of N such that n =
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~An € N Then, for any W = [wgq]quzl, w = [wg]d_y, w with weq, we, w € L'((0,1)%),

(6.81)
{nd72F£+k,p*kAAgly[P1k](W)FnJrk,pfk}n ~GLT 3 Z VeYqWeq (X [p,k])éq(e)»
4,q=1
(6.82)
) d
{nd_1F£+k,p_kH27[p)k] (W)Fn-i-k,p—k}n NGLT Z ’quq P,k]’q(e)’
(6.83)

. 1
{ndrz+k7p_kM2,[p,k] (W) 'tk p—kfn ~GLT Ww(x)ﬂ[nk] (6).

Proof. Except for the fact that W is replaced by A, relation (6.81) is nothing else than
(6.59), which has been proved in the proof of Theorem 6.8. The proofs of (6.82) and (6.83)
are analogous to the proof of (6.81); they are left to the reader. 0

The last lemma shows that Hy, [, k],o(w) is “almost” skew-symmetric as long as the
function w is continuous. In this regard, we note that H,, 5, x),4(1) is skew-symmetric, as it is
clear from Lemma 6.12 and P 3.

LEMMA 6.15. Letp,n > 1and0 <k <p—1 Fori=1,... ,n(p—k)+k—1, lerx;
be any point in the support of the B-spline B; 1 p x). Then, for all functions w € C([0, 1]%)
andforq=1,...,d,

1
(684) ||H ka]q( )_An7[p7k](Q,U)H 7[Pk ()H<C (n) w(min(n))’

1
©89)  Hn ko) = Ho .o o ()] = € gt on ().

where C'is a constant independent of v and Ay, [ g (w) = diag; 1  p(p—k)tr—1 W(Xs)-

Proof. Throughout this proof, the letter C' denotes a generic constant independent of
n. Let Z = Hn’[p,k]’q(w) — A’n,[p,k] (w)Hn,[p,k],q(l)- By (6.31)-(6.36), forz,3 = 1,...,
n(p — k) + k — 1, we have

0Bji1pk
25l = | (10(30) —~ w(xi) TR ) (00
supp(B 41 [p k]) Lq
0Bji1pk
-/ 000) = o) || L2 (9 | B a0 ()
supp(Bit1,(p,k]) Lq
S max ()~ wsi)| Gy pa(supp(Bi )

xEsupp(Bit1,[p,k])

< G (D) (P2L) <

NTE;) W (minl(n) ) '

The number of nonzero entries in each row and column of Z is bounded by (2[p|s + 1)¢
because Z;; = 0 whenever |¢ — j|s > |P|so. Indeed, for |¢ — j|oo > |P|oo, the intersection
of the supports of B; 1 [p & and Bj 1 [p k) has zero measure by the local support property
(6.31). Thus, by N1,

mii(’n) ) ’

n
< q
121l < € )ww(
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which proves (6.84). The proof of (6.85) is completely analogous (simply repeat the above
steps using w(x;) in place of w(x;) and supp(B; 41 [pk]) in place of supp(Bit1,p.k))). O

GLT analysis of the higher-order FE discretization matrices. In what follows, we assume
that n = n, where v € Q% is a fixed vector with positive components and n varies in the
infinite subset of N such that n = 4n € NZ. This assumption essentially says that each
stepsize h; = - tends to 0 with the same asymptotic speed as the others. The main result of

this section is Theorem 6. 16, which gives the spectral distribution of the normalized sequence
{Bn J[p,kK] (A b, c, p)}n, where

n,n? ni=24 A) nilH b
is the normalized version of Sy, [ k] (A, b, c, p) defined by (6.75) forr = n and s = nd-1,
THEOREM 6.16. Suppose that agq, by, cq, p € L*((0,1)%), for every {,q =1,...,d, and
that the matrix A(x) = [agq(x)]‘éqzl is symmetric for every x € (0,1)% Letp > 1 and
0 <k <p-—1,lety € Q% be avector with positive components, and assume that n = ~yn
(it is understood that n varies in the infinite subset of N such that n = yn € N%). Then

K (,0) <k (x, 9)]

()
e k](x o= ¢(x,0) W (x,8)

[p,k] [p,k]
where
1 d
Kl (%, 0) = N > g (X) (Hip 1)) g (6),
£,q=1
1 d
S (%,0) = N > Vaba(%)Ep.11.4(6),
q=1
(v 1 &
¢ x, 0 —_— 3
o (,0) = N(‘Y); ¢q(X)E[p,k),q(0),
1
w[(;)k] (x,0) = WP(X)M[p,k](G),
and (Hip, 1)) eq(0), Ep.k).o(0), Lip 1) (8) are defined in (6.58), (6.79), (6.80), respectively. If
moreover ¢, = —b, € C([0,1]9), forall ¢ = 1, ..., d, then we also have
(6.86) {Bun o (A, ., ) b~ 073 (%, 0).

Proof. Keeping in mind Notation 6.4, define

0 — nd72491=[p7k] (4) ndilAHga[p,k} (b)
Bn.[p k:](Avbvc7p) d—1 770 daro
w n i g (©) My, g (0)

Since
Anpr)(A) = P p A ,[p, k] (A) Pr.[p k]
Hp (pk)(b) = Py, 1 i) H ,[p7 k(D) P p k]
Hy [pk) () = P 1p . [p k] (€) P [p k]
Mn,[p,k] (p) = P;:,[p7 [p k] (p)P, n,[p,k]
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we have
(6.87)

P 0

~ p o
Bg’»[p,k] (Aab,c,p) |: n,O[ch] :| -

n,[p.k] P [p.k]

By Lemma 6.14 and GLT 6,
{HTLB27[p7k] (Aa ba C, p)HZ;}n ~GLT T][(;/,)k} (X7 0)’

rr _ O
I, = Upyr2 Np—k) { "+8p k FTJrk k] )
n+tk,p—

(6.88)

Hence we obtain {Bn (p.k] (A,b,c,p)tn ~o n[p k] (x,0) by GLT 1, and thus it follows that
{Bn,[pk] (A;b,c,p)tn~0o n[(;’)k] (x,0) by S 5. It remains to prove that {Bm[p,k] (A,b,c,p)}n
~A n[(;_)k] (x, 0) under the assumption ¢, = —b, € C([0,1]¢) forall ¢ = 1,...,d. This as-

sumption ensures that IT,, B ok (A: b, €, p)IT} is “almost” Hermitian. More precisely, if x;
is any point in the support of the B-spline B; 1 [ ], by Lemma 6.15 we have

(6.89) I, By, (g (A, b, e, I =T, C, 1T + 10, Z, 1T
where
_ d A 2
_ n= 2AO [p, k](Aabvcvp) nt 12(1 1AO Ip, k](bq)Hﬁ,[p,k],q(l)
e D g o (DAY, g (€) nUM, i (0)

is symmetric (thanks to the relation H ookl (1) = Popr)Hn [p k) o(1) P, (p,k]» the skew-
symmetry of Hy, [ x).¢(1), and the hypothesis ¢, = —b, for g = 1,...,d) and Z,, is defined

by
0O Y,
with

d—1 A0 70
Yo =0 S (B g 0(00) = A 1y 0) B 11,4 (1)

=1

](nd 12( o], (b An»[lhk‘](bq)an[Pak]vq(1)>)P:;,[p,k]’

)

W, =n?"?

M=~

(ﬁg,[p,k],q(cq) = Hp) o, (DAY g (Cq))
1

d
= Pp ipk) (nd‘l > (Hutp k1.0(ca) = Hofp 1.0 () A 1 (Cq))>P:;,[p,k]'

q=1

=]
Il

By Lemma 6.15, N 5, and the continuity of ¢, = —b,

d
1Zn]| = max(| Yo, [Wal) < CY " wp, (™) —= 0.
qg=1
The thesis (6.86) now follows from GLT 2, taking into account (6.87)—(6.89). 0
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6.5. Higher-order isogeometric Galerkin discretization of eigenvalue problems. Let
RT be the set of positive real numbers. Consider the following eigenvalue problem: find
eigenvalues \; € R and eigenfunctions u;, for j = 1,2, ..., 0o, such that

-V AV’U,] = )\ijj, in Q,
(6.90)

u; =0, on 09,

where A = [a(q](é 41 and {2 is a bounded open domain in R with Lipschitz boundary. We
assume that as, € L'(Q) for all £, = 1,...,d, that A(x) = [agq(x)]?}qzl is symmetric
positive definite (SPD) for almost every x € €, and that b € L'(Q2) with b > 0 a.e. in .
It can be shown that the eigenvalues A; must necessarily be real and positive. This can be
formally seen by multiplying (6.90) by u; and integrating over £):

_ —Jo(V-AVuuy o (Vuy)T AV,

s
J Jo bu? Jo bu?

Isogeometric Galerkin discretization. The weak form of (6.90) reads as follows: find
eigenvalues \; € R™ and eigenfunctions u; € HJ (), for j = 1,2,..., 0o, such that

a(u;, w) = \j(bu;, w), VweH&(Q),

where
a(u;, w) :/(Vw)TAVuj, (buj, w) :/bujw.
Q Q

In the standard Galerkin method, we fix a set of basis functions {1, ..., 0N} C H3 (), we
define the so-called approximation space W = span(y1, . . ., ¢ ), and we find approximations
of the exact eigenpairs (\;,u;), j = 1,2, ..., 00, by solving the following (Galerkin) problem:
find \; v € R* and u;yy € W, for j = 1,..., N, such that

(6.91) a(ujw, w) = Ajw(bujw,w), Yw e W.
Assuming that the exact and numerical eigenvalues are arranged in non-decreasing order, then
the pair (A\; v, u;y) is taken as an approximation of the pair (\;,u;) forallj =1,..., N,
as prescribed in [65, Chapter 6], where one can find an error analysis for such a choice. The
numbers A;w/A; — 1, j =1,..., N, are referred to as the (relative) eigenvalue errors. In
view of the canonical identification of each function w € W with its coefficient vector with
respect to the basis {1, ..., N}, solving the Galerkin problem (6.91) is equivalent to solving
the generalized eigenvalue problem
(692) Astiffuj’w — )\j’meassuj’W’
where u; )y is the coefficient vector of u; 1y with respect to {¢1,...,¢n} and
A N
(6.93) A = [aps, i) o1 = { / (W%)TAV%} ;
Q ij=1
N
(6.94) M™ = [(bpj, 0i)l15=1 = [/ b@j%}
Q ij=1
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The matrices A% and M™ are referred to as the stiffness and mass matrices, respectively.
Due to our assumption that A is SPD a.e. and b > 0 a.e. in €2, both A% and M/™* are SPD
regardless of the chosen basis functions 1, . .., @nx. Moreover, it is clear from (6.92) that the
numerical eigenvalues A; ), j = 1,..., N, are just the eigenvalues of the matrix

I = (MmaSS)—lAstiff.

In the isogeometric Galerkin method [23, 51], we assume that the physical domain §2 is
described by a global geometry function G : [0, 1] — €, which is invertible and satisfies
G(9(]0,1]%)) = 9. We fix a set of basis functions {¢1, ..., @} defined on the reference
(parametric) domain [0, 1]% and vanishing on the boundary ([0, 1]%), and we find approxima-
tions to the exact eigenpairs (\;, u;), j = 1,2, ..., 00, by using the standard Galerkin method
described above, in which the basis functions 1, ..., ¢n are chosen as

(6.95) pi(x) :(@i(G_l(X)) = pi(%), x = G(x), i=1,...,N.

The resulting stiffness and mass matrices A% and A/™ are given by (6.93) and (6.94) with
the basis functions ; defined as in (6.95). If we assume that G and ¢;,¢ = 1,..., N, are
sufficiently regular, we can apply standard differential calculus to obtain for A*Uf and /™2
the following expressions:

N
(6.96) A = [/( : |det(Ja)|(Ve)T (Ja) T A(G) (Ja) ")V, ,
0,1)¢ o
’ i,j=1
N
(6.97) M™M= l / b(G)|det(JG)|@j¢i] ;
(0,1)¢ ij=1
where Jg is the Jacobian matrix of G,
[ac:i]d [aml}d
Jag = - = ~ .
0 i=1 Oi; ij=1

GLT analysis of the higher-order isogeometric Galerkin matrices. In the higher-order
isogeometric Galerkin approach considered herein, we choose the basis functions @1, ..., 9N
as the tensor-product p-degree C* B-splines

(6.98) B p.k]s -+ s Br(p—k)+k.[p,k]

introduced in Section 6.2. If, for any W = [wgq]?’q:l with wy, € L'((0,1)?) and any
w € L1((0,1)9), we define

n(p—k)+k—1
Ao = | [ (VBisa pas) W By e ,
(0,1)¢ =1
n(p—k)+k—1

M, p,k) (W) = [ / ij+1,[p,kJBi+1,[p,k}] ;
(0,1)¢

)

4,j=1

then the stiffness and mass matrices (6.96) and (6.97) resulting from the choice of the basis
functions as in (6.98) are nothing else than A, 1, ) (Ag) and M, [, k) (ba ), Where

699  Ag = |det(Je)| (Jo) TA(G)(Je) T,  bg = b(G)]|det(Jc)|.
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The main result of this section is Theorem 6.19. It gives the spectral distributions of the
normalized sequences

{(n?"% Ay 1px (Ac) b {n" My, p.1) (bG) I, {n L p.k) (A bG)}n,
where n. = yn for some v € Q¢ and

L pk)(Ac.bc) = (Mp pi(bc)) ™ Ap pr (Ac)

is the matrix whose eigenvalues are just the numerical eigenvalues produced by the considered
higher-order isogeometric Galerkin method. To prove Theorem 6.19, some preliminary work
is necessary. In what follows, we systematically use Notation 6.4.

LEMMA 6.17. Let p > 1 and 0 < k < p — 1. Suppose that n = ~yn, where v € Q¢
is a fixed vector with positive components and n varies in the infinite subset of N such that
n = yn € N9 Then, for any W = [wgq]zqzl, w with weg, w € L1((0,1)%),

(6.100)
d
_ - 1
{nd 2F£+k,p7k:A}l,[p,k](W)Fn‘i'kvp*k}n ~GLT N(')’) Z 'W'qulq(x)(H[p,k])@q(e)a
l,qg=1
(6.101)
1

{nd]-—‘z;.ykm_kMTll’[p,k] (w)rn+k,pfk}n ~GLT Ww(x)u[p,k] (0),

where Hyy, 1) and iy ) are defined in (6.58) and (6.80), respectively.
Proof. By Lemma 6.14, the relations (6.100) and (6.101) hold with A% (p.K] (W) and

19, ) inplace of AL, (W) and 17

. [pok] (w). Since, by definition (see Notation 6.4),

1 _ A0 0
An,[p,k] (W) - An,[p,k] (W) + R'n,,[p,k]7

M’rlz,[p,k] (w) = M‘rol,[p,k] (w) + R'(r)l,[p,k]’

with rank(REl’[p,k]) = o(n4), the relations (6.100) and (6.101) follow from Z 1, GLT 3, and
GLT 4. |

LEMMA 6.18. Letp > 1 and 0 < k < p — 1. Then, jup ) (0) is Hermitian positive
definite for all 0 € [, 71]%.

Proof. By Lemma 6.17, if we take n = (n, ..., n), thatis, ¥ = 1, then

{ndrz;+k,p7kM717.,[p,k:](1>F"l+k71’*k}’ﬂ ~GLT H[p,k] (0).
Since ndM}L_[p k] (1) is symmetric, we infer from GLT 1 that

(6.102) (N sy (10~ figp.1 ().

Now, by the discussion in Notation 6.4, the eigenvalues of M TIL (p.k] (1) coincide with the
eigenvalues of My, [, k) (1) plus further N((n+k)(p—k))—N(n(p—k)+k—1) eigenvalues
that are equal to 1. By (6.78), P7, and the positive definiteness of the matrix M, p;, ] for every
p,n>1land0 < k < p— 1, we have

d d
(6.103) Amin (M 1p.£] (1)) = Amin <® Mn,[p,.,k,.]> = [ Amin(Min,p, 1,)-

r=1 r=1
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By (6.28), for every p,n > 1, every 0 < k < p — 1, and every y € R™P~k)+k=1 e have

L n(p—k)+k—1 >
y" (nMy 1)y n/o ( > yiBi+1,[p,k](§7)> dz
i=1
n(p—k)+k—1 2
=n > YiBitipa > ¢y |I*.
=1

L2([0,1])
Hence, by the minimax principle for eigenvalues [14, Corollary III.1.2],

yT(nMn,[p,k])y

Amin (MM, [p k) = min ————=2== > ¢
T vz P ’
for all n. In view of (6.103), this implies that

(6.104)

)\mm(n My [pi (1)) > H Cp., =  Amin(n M1 b, k]( ) > mm( H cp,>

for all n. Taking into account that Awin(fi[p,k)(€)) is a continuous function of @ just as
p,k) (8), by (6.102), (6.104), and S 3 we have

Amin (K[p,x) (0)) > mln( H Cm)

for almost every @ € [—m, ]9, that is, for all @ € [—m, 7|9, thanks to the continuity
of Amin(1[p,k)(6€)). We then conclude that s, ) (€) is Hermitian positive definite for all
0 c [—m, 7 d

THEOREM 6.19. Let Q be a bounded open domain in R? with Lipschitz boundary and
suppose that the following conditions on the PDE coefficients and the geometry map are
satisfied:
agg € LY(Q) forallb,q=1,...,d;
be LY Q) and b > 0 a.e. in
Ax) = [azq(x)]‘},q:l is SPD for a.e. x € €);
|det(Jg)| > 0 a.e. in [0,1]% and (Ag)e, € L*((0,1)9) forall ¢,q = 1,...,d, where Ag
is defined in (6.99).
Letp>1and0 < k<p—1,letv € Qd be a vector with positive components, and assume
that m = ~n (it is understood that n varies in the infinite subset of N such that n = yn € N¢),
Then,

(6.105)
d
(072 A i) (Aa) b ~or K iy (5,0 Z e74(Ac )t (%) (Hip 1)) eq (0),
(6.106)

. 1 .
{ndMn,[p,k] (bG)}n ~o,\ Ng,)[p,k] (X7 9) = WbG (X)M[p,k] (0)3

(6.107)
(072 L o] (A, G I ~or (1 gy (% 0) T 5G4 (%, 0),
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where bg is defined in (6.99), while Hyp 1) and pp k) are defined in (6.58) and (6.80), respec-
tively.

Proof. We first note that it is enough to prove (6.105)—(6.107) with Ay, (5 k), Mn [p.k)»
L, 1p,k) replaced by, respectively, A;)[p)k], M}l,[nk]’ IA/}L,[pM, that is,

(6.108) {n?2AL g (Ac) }n ~on 5T 1y 4 (X, 0),
(6.109) (TN 1y (0G) b ~ox 1T iy (%6,
(6.110) (0721, 1 k(A bG) b ~on (1 g (5 0) T KT 4 (%, 0).

Moreover, (6.108) and (6. 109) follow 1mmed1ately from Lemma 6.17 taking into account the
symmetry of the matrices Al . lp, ](Ac;) and M >, ](bg) It only remains to prove (6.110).
Keeping in mind the dlscusswn in Notation 6.4, we note that

(M, p, k:](bG))_l(Al D, k:](AG)):(M:L,[p,k](bG))_lAl ok (Ac)

=(Pn ok Mn [pk](bG)P*,[p,k]+R8L,[p,k])_1(P [pk]A [pk(AG) [pk+R Pk])
=(Pn [pk(M k1 (06)) T P 1o k1 + B 1 1) (P ok Are (961 (AG) Pt 1 11+ B 1.1])
(Pr.p.) (M pi) (bc)) ™ A p.i (Ac) Py pk]+R p.k])

ffn,[p,k] (Ag,ba).

Thus,
n72f’il,[p,k](AG’bG) (1), ook (O ))71(71#21‘1;,[;7&](14@))
(6.111) ~ (n®M,, n.ip.k) (0G ))_1/2(”'1_21‘1;,[,),1@](AG))(ndMyll,[p,k](bG))_1/27

where X ~ Y means that the matrix X is similar to Y; note that M/ L (p.k (b) s positive defi-

nite because bg > 0 a.e. in [0, 1]¢ by the assumptions on b and G, hence (M}L DKl (bg))~1/?
is well-defined. By combining the equality in (6.111) with Lemmas 6.17, 6.18, and GLT 4,
we immediately obtain

(6.112)

(0T o il (p i) (A bG)Tnip ke p— ke b ~aLr (ug)[p,k] (%, 0))*1118)[177,9] (%,0).

The singular value distribution in (6.110) follows from (6.112) and GLT 1. Moreover, by
Lemmas 6.17, 6.18, GLT 4, and GLT 5 (applied with f(z) = |z|'/2), we have

{FrTerk,p—k(”dMl,[p,k] (bg))/*(n* 2 AL, n,[p,k] (AG))(nerlt,[p,k] (bc)) ™ Tk pktn
~ar (1 1y (5 0) T2 (G 1y (%, 0)) (1T 4y (%, €)) 712,

Considering that (n?M,, , 1(ba))/2(n42 A%, | 1 (Ac))(n?M,, 4 (bg))~/? is sym-
metric, from GLT 1 we get

{(n M n,[p,k] (bG))_l/z(”d_Q‘il J[p, k](AG))(ndMl [p.K] (bG))_l/Q}n
~ (u@[p k](X,O))*l/z(,gg)[p K (% 0))(/%:; o, k](x,e))*l/{

3Recall that Yg(X)Y ~! = g(Y XY ~1); see [50, Theorem 1.13].
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which is equivalent to

{(nerlb,[p,k] (bG))71/2(”d72A}1,[p,k] (AG))(ndM}L,[p,k] (ba))™*}n

o (1T 1y (3 0)) (5, (%.0))

by definition of the spectral distribution since

(1 1 (% 0) ™ (5 G 1 (%, 0))

~ (1 iy (5 0)) 2 (5 1y (5, 0)) (1G4 (%, 0)) 7112

for all (%, ) € [0,1]% x [—, «1]%. In view of the similarity in (6.111), we conclude that the
eigenvalue distribution in (6.110) is satisfied. O
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