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Abstract. In computational mathematics, when dealing with a large linear discrete problem (e.g., a linear system)
arising from the numerical discretization of a differential equation (DE), knowledge of the spectral distribution of
the associated matrix has proved to be useful information for designing/analyzing appropriate solvers—especially,
preconditioned Krylov and multigrid solvers—for the considered problem. Actually, this spectral information is of
interest also in itself as long as the eigenvalues of the aforementioned matrix represent physical quantities of interest,
which is the case for several problems from engineering and applied sciences (e.g., the study of natural vibration
frequencies in an elastic material). The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus
for computing the asymptotic spectral distribution of matrices An arising from virtually any kind of numerical
discretization of DEs. Indeed, when the mesh-fineness parameter n tends to infinity, these matrices An give rise to a
sequence {An}n, which often turns out to be a GLT sequence or one of its “relatives”, i.e., a block GLT sequence
or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of
DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar/vectorial DEs.
This work is a review, refinement, extension, and systematic exposition of the theory of block GLT sequences. It also
includes several emblematic applications of this theory in the context of DE discretizations.
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1. Introduction. The theory of generalized locally Toeplitz (GLT) sequences stems
from Tilli’s work on locally Toeplitz (LT) sequences [79] and from the spectral theory of
Toeplitz matrices [2, 21, 22, 23, 24, 59, 64, 80, 82, 83, 84]. It was then carried forward
in [50, 51, 75, 76], and it has been recently extended in [3, 4, 5, 6, 7, 8, 55, 56]. It is a
powerful apparatus for computing the asymptotic spectral distribution of matrices arising
from the numerical discretization of continuous problems, such as integral equations (IEs)
and, especially, differential equations (DEs). Experience reveals that virtually any kind of
numerical method for the discretization of DEs gives rise to structured matrices An whose
asymptotic spectral distribution, as the mesh-fineness parameter n tends to infinity, can be
computed through the theory of GLT sequences. There exist many other applications of
this theory including, e.g., the analysis of signal decomposition methods [28] and geometric
means of matrices [50, Section 10.3], but the computation of the spectral distribution of DE
discretization matrices remains undoubtedly the main application. In Section 1.1, we take
an overview of this main application. In Section 1.2, we describe some practical uses of the
spectral distribution. In Section 1.3, we illustrate the key ideas behind the notion of GLT
sequences, with a special attention to the so-called block GLT sequences, so as to give readers
the flavor of what we are going to deal with in this work. In Section 1.4, we outline the
contributions and the structure of the present work.

1.1. GLT sequences: the tool for computing the spectral distribution of DE dis-
cretization matrices. Suppose we are given a linear DE, say

Au = g,

with A denoting the associated differential operator, and suppose we want to approximate the
solution of such DE by means of a certain (linear) numerical method. In this case, the actual
computation of the numerical solution reduces to solving a linear system

Anun = gn,

whose size dn increases with n and ultimately tends to infinity as n→∞. Hence, what we
actually have is not just a single linear system but a whole sequence of linear systems with
increasing size, and what is often observed in practice is that the sequence of discretization
matrices An enjoys an asymptotic spectral distribution, which is somehow connected to the
spectrum of the differential operatorA associated with the DE. More precisely, it often happens
that, for a large set of test functions F (usually, for all continuous functions F with bounded
support), the following limit relation holds:

lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

µk(D)

∫
D

∑s
i=1 F (λi(κ(y)))

s
dy,

where λj(An), j = 1, . . . , dn, are the eigenvalues of An, D is a subset of some Rk, µk(D) is
the k-dimensional volume of D, κ : D ⊂ Rk → Cs×s, and λi(κ(y)), i = 1, . . . , s, are the
eigenvalues of the s× s matrix κ(y). In this situation, the matrix-valued function κ is referred
to as the spectral symbol of the sequence {An}n. The spectral information contained in κ can
be informally summarized as follows: assuming that n is large enough, the eigenvalues of
An, except possibly for a small portion of outliers, can be subdivided into s different subsets
of approximately the same cardinality, and the eigenvalues belonging to the ith subset are
approximately equal to the samples of the ith eigenvalue function λi(κ(y)) over a uniform
grid in the domain D. For instance, if k = 1, dn = ns, and D = [a, b], then, assuming we

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: UNIDIMENSIONAL CASE 31

have no outliers, the eigenvalues of An are approximately equal to

λi

(
κ
(
a+ j

b− a
n

))
, j = 1, . . . , n, i = 1, . . . , s,

for n large enough. Similarly, if k = 2, dn = n2s, and D = [a1, b1]× [a2, b2], then, assuming
we have no outliers, the eigenvalues of An are approximately equal to

λi

(
κ
(
a1 + j1

b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , s,

for n large enough. It is then clear that the symbol κ provides a “compact” and quite accurate
description of the spectrum of the matrices An (for n large enough).

The theory of GLT sequences is a powerful apparatus for computing the spectral symbol κ.
Indeed, the sequence of discretization matrices {An}n turns out to be a GLT sequence with
symbol (or kernel) κ for many classes of DEs and numerical methods, especially when the
numerical method belongs to the family of the so-called “local methods”. Local methods
are, for example, finite difference methods, finite element methods with “locally supported”
basis functions, and collocation methods; in short, all standard numerical methods for the
approximation of DEs. Depending on the considered DE and numerical method, the sequence
{An}n might be a scalar GLT sequence (that is, a GLT sequence whose symbol κ is a
scalar function)1 or a block/reduced GLT sequence. In particular, block GLT sequences are
encountered in the discretization of vectorial DEs (systems of scalar DEs) as well as in the
higher-order finite element or discontinuous Galerkin approximation of scalar DEs. We refer
the reader to [50, Section 10.5], [51, Section 7.3], and [20, 49, 75, 76] for applications of the
theory of GLT sequences in the context of finite difference (FD) discretizations of DEs; to [50,
Section 10.6], [51, Section 7.4], and [10, 20, 42, 49, 57, 67, 76] for the finite element (FE)
case; to [12] for the finite volume (FV) case; to [50, Section 10.7], [51, Sections 7.5–7.7], and
[36, 45, 46, 47, 48, 52, 57, 68] for the case of isogeometric analysis (IgA) discretizations, both
in the collocation and Galerkin frameworks; and to [40] for a further application to fractional
DEs. We also refer the reader to [50, Section 10.4] and [1, 72] for a look at the GLT approach
for sequences of matrices arising from IE discretizations.

1.2. Practical uses of the spectral distribution. It is worth emphasizing that the asymp-
totic spectral distribution of DE discretization matrices, whose computation is the main
objective of the theory of GLT sequences, is not only interesting from a theoretical viewpoint
but can also be used for practical purposes. For example, it is known that the convergence prop-
erties of mainstream iterative solvers, such as multigrid and preconditioned Krylov methods,
strongly depend on the spectral features of the matrices to which they are applied. The spectral
distribution can then be exploited to design efficient solvers of this kind and to analyze/predict
their performance. In this regard, we recall that noteworthy estimates on the superlinear
convergence of the conjugate gradient method obtained by Beckermann and Kuijlaars in [9]
are closely related to the asymptotic spectral distribution of the considered matrices. More
recently, in the context of Galerkin and collocation IgA discretizations of elliptic DEs, the
spectral distribution computed through the theory of GLT sequences in a series of papers
[36, 45, 46, 47, 48] was exploited in [34, 35, 37] to devise and analyze optimal and robust
multigrid solvers for IgA linear systems. In addition to the design and analysis of appropriate
solvers, the spectral distribution of DE discretization matrices is of interest also in itself
whenever the eigenvalues of such matrices represent physical quantities of interest. This is

1A scalar GLT sequence is a GLT sequence in the classical sense of this word, and it is usually referred to as a
GLT sequence without further specifications.
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the case for a broad class of problems arising in engineering and applied sciences, such as
the study of natural vibration frequencies for an elastic material; see the review [57] and the
references therein.

1.3. Key ideas behind the notion of GLT sequences. Following Tilli [80], in this
section we tell the story that led to the birth of LT sequences, that is, the eminent ancestors of
GLT sequences. Special attention is devoted to understanding the reason why it was necessary
to go beyond classical (scalar) LT sequences and introduce the notion of block LT sequences.
Our main purpose here is to illustrate the key ideas behind the notions of LT and block LT
sequences, without entering into technical details. For this reason, the forthcoming discussion
will be quite informal and, in particular, we will not provide justifications to all the assertions
we will make. Precise mathematical definitions and proofs will come only later on in this
work.

As it is known, a Toeplitz matrix is a matrix whose entries are constant along each
diagonal. Matrices with a Toeplitz-related structure arise in many different areas of pure and
applied mathematics whenever one deals with a problem that has some kind of translation
invariance. For example, they are encountered

when dealing with Markov chains [15, 29, 63], subdivision algorithms [65], Riccati
equations [14], reconstruction of signals with missing data [32], inpainting problems [26],
and, of course, numerical discretizations of constant-coefficient DEs; see [50, 51] and the
references therein. Any function f ∈ L1([−π, π]) generates a sequence of Toeplitz matrices
Tn(f) = [fi−j ]

n
i,j=1 via its Fourier coefficients

fk =
1

2π

∫ π

−π
f(θ)e−ikθdθ, k ∈ Z.

The asymptotic distribution of the singular values and eigenvalues of Tn(f) has been com-
pletely characterized in terms of the generating function f . More specifically, for all continuous
functions F with bounded support we have

(1.1) lim
n→∞

1

n

n∑
i=1

F (σi(Tn(f))) =
1

2π

∫ π

−π
F (|f(θ)|)dθ;

if f is real, we also have

(1.2) lim
n→∞

1

n

n∑
i=1

F (λi(Tn(f))) =
1

2π

∫ π

−π
F (f(θ))dθ.

Equations (1.1)–(1.2) are usually referred to as the Szegő formulas for Toeplitz matrices; see
[50, Section 6.5] for their proof.

Now, consider the simple model problem

(1.3)

{
−u′′(x) = g(x), 0 < x < 1,

u(0) = u(1) = 0.

The discretization of this problem through any reasonable finite difference scheme over a
uniform grid of n points leads to the solution of a linear system whose matrix is Toeplitz
or “almost” Toeplitz. For example, in the case of the classical 3-point difference scheme
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(−1, 2,−1), the resulting discretization matrix is

(1.4) Tn(f) =



2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2


, f(θ) = 2− 2 cos θ.

What is relevant to our purpose, however, is that the Toeplitz structure of the resulting matrices
is a direct consequence of the translation invariance of the differential operator in (1.3),
i.e., the second derivative. Note that the translation invariance is clear from the equation
u′′(x+ τ) = (u(x+ τ))′′.

Since differential operators are translation-invariant only when they have constant co-
efficients, it is not reasonable to expect a Toeplitz structure in a matrix which discretizes a
differential operator with nonconstant coefficients. Consider, for instance, the Sturm-Liouville
problem

(1.5)

{
−(a(x)u′(x))′ = g(x), 0 < x < 1,

u(0) = u(1) = 0.

The generalized version of the (−1, 2,−1) scheme leads to the matrix

(1.6) An =



a 1
2

+ a 3
2

−a 3
2

−a 3
2

a 3
2

+ a 5
2

−a 5
2

−a 5
2

. . . . . .

. . . . . . −an− 1
2

−an− 1
2

an− 1
2

+ an+ 1
2


,

where ai = a( i
n+1 ), i = 1

2 ,
3
2 , . . . , n+ 1

2 . Observe that the matrix (1.6) reduces to the Toeplitz
matrix (1.4) if a(x) = 1, that is, when the differential operator has constant coefficients. It
is clear, however, that An is not Toeplitz if a(x) is not constant. Nevertheless, the singular
values and eigenvalues of An are nicely distributed, according to

(1.7) lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

2π

∫ 1

0

∫ π

−π
F (|a(x)f(θ)|)dθdx

and

(1.8) lim
n→∞

1

n

n∑
i=1

F (λi(An)) =
1

2π

∫ 1

0

∫ π

−π
F (a(x)f(θ))dθdx,

where f(θ) = 2− 2 cos θ as in (1.4); for the proof of these formulas, see [50, Section 10.5.1].
Observe that, if a(x) = 1, then the equations (1.7)–(1.8) reduce to the Szegő formulas (1.1)–
(1.2) for Tn(f). In view of this, equations (1.7)–(1.8) can be thought of as weighted Szegő
formulas with a(x) as weight function. If we examine the asymptotic formulas (1.7)–(1.8)
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in more detail, then we see that the distribution of the singular values and eigenvalues is
completely determined by two independent functions, namely a(x) and f(θ). The former
comes from the differential problem (1.5), while the latter depends only on the finite difference
scheme adopted to discretize the problem (in our case, this is the generalized version of the 3-
point scheme (−1, 2,−1)). It is natural to ask what happens if a different scheme (for example,
a 5-point scheme) is used to discretize problem (1.5): are the singular values and eigenvalues
of the resulting matrices still nicely distributed, maybe according to some weighted Szegő
formulas like in equations (1.7)–(1.8)? The answer, quite general, is affirmative (see [50,
Section 10.5.2] for a discussion of this topic). Going back to (1.6), the sequence of matrices
{An}n turns out to be much more structured than it might be expected: it is what we call
a locally Toeplitz sequence (more precisely, it is locally Toeplitz with respect to the weight
function a(x) and the generating function f(θ)). In order to justify our terminology, we can
intuitively argue as follows. A matrix [αi,j ]

n
i,j=1 has Toeplitz structure if αi+1,j+1 = αi,j or,

equivalently, if its entries are constant along the diagonals. Consider one of the above matrices
An, for a large value of n (large, say, with respect to the derivative of a(x)). If, from any
entry of An, we shift downwards by one position along the same diagonal, then the new entry
differs from the old one by a quantity which tends to zero as n tends to infinity (the difference
is O(1/n) if, for example, a(x) is Lipschitz continuous over [0, 1]). Now consider any given
diagonal of An (the main diagonal, for instance). For large n, the first element is close to
2 a(0), while the last one is close to 2 a(1) (and hence An is not Toeplitz if a(0) 6= a(1)).
Nevertheless, the transition from 2 a(0) to 2 a(1) along the diagonal is more and more gradual
as n increases and, in a sense, we can say that the transition is continuous in the limit (just as
the function 2 a(x)). As a consequence, when n is very large with respect to k, any principal
submatrix of An made of k consecutive rows and columns possesses a sort of approximate
Toeplitz structure.

Another distinguished example of a locally Toeplitz sequence (quite similar to the above
but simpler to handle) is given by the sequence of matrices {Bn}n, where

Bn =



2 a(x1) −a(x1)

−a(x2) 2 a(x2) −a(x2)

. . . . . . . . .

−a(xn−1) 2 a(xn−1) −a(xn−1)

−a(xn) 2 a(xn)


= Dn(a)Tn(2− 2 cos θ),

and Dn(a) is the diagonal sampling matrix containing the samples of the function a(x) over
the uniform grid xi = i

n , i = 1, . . . , n,

Dn(a) = diag
i=1,...,n

a(xi) =


a(x1)

a(x2)
. . .

a(xn)

 .
Looking at a relatively small submatrix of Bn (according to a “local” perspective), one easily
recognizes an approximate Toeplitz structure weighted through the function a(x). For instance,
the 2× 2 leading principal submatrix[

2 a(x1) −a(x1)

−a(x2) 2 a(x2)

]
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is approximately equal to

a(x1)

[
2 −1
−1 2

]
= a(x1)T2(2− 2 cos θ)

because the difference between these two matrices goes to 0 in the spectral norm as n→∞.
Similarly, if Cb√nc is a submatrix of size b

√
nc obtained as the intersection of b

√
nc consecu-

tive rows and columns of Bn, then Cb√nc ≈ a(xi)Tb
√
nc(2− 2 cos θ), where a(xi) is any of

the evaluations of a(x) appearing in Cb√nc. More precisely, one can prove that

Cb
√
nc = a(xi)Tb

√
nc(2− 2 cos θ) + Eb

√
nc,

where the error Eb√nc tends to zero in the spectral norm as n → ∞ (the norm ‖Eb√nc‖ is
proportional to the modulus of continuity of a evaluated at b

√
nc/n). The latter assertion

remains true if b
√
nc is replaced by any other integer kn such that kn = o(n). In other words,

if we explore “locally” the matrix Bn using an ideal microscope and considering a large value
of n, then we realize that the “local” structure of Bn is approximately the Toeplitz structure
generated by 2− 2 cos θ and weighted through the function a(x).

So far, we have only discussed classical (i.e., scalar) locally Toeplitz sequences, whose
asymptotic singular value and eigenvalue distributions are naturally characterized in terms of
scalar functions such as a(x)f(θ) in (1.7) and (1.8). The remainder of this section is devoted
to understanding how block locally Toeplitz sequences enter the scene.

As it is known, an s-block Toeplitz matrix (or simply a block Toeplitz matrix if s
is clear from the context) is a matrix whose “entries” are constant along each diagonal
with the only difference with respect to traditional Toeplitz matrices being the fact that
these “entries” are s × s matrices (blocks). Any function f : [−π, π] → Cs×s with entries
fij ∈ L1([−π, π]) generates a sequence of s-block Toeplitz matrices Tn(f) = [fi−j ]

n
i,j=1 via

its Fourier coefficients

fk =
1

2π

∫ π

−π
f(θ)e−ikθdθ, k ∈ Z

(the integrals are computed componentwise). The asymptotic distribution of the singular
values and eigenvalues of Tn(f) has been completely characterized in terms of the generating
function f . More specifically, for all continuous functions F with bounded support, we have

(1.9) lim
n→∞

1

dn

dn∑
i=1

F (σi(Tn(f))) =
1

2π

∫ π

−π

∑s
i=1 F (σi(f(θ)))

s
dθ;

if f(θ) is Hermitian for every θ, we also have

(1.10) lim
n→∞

1

dn

dn∑
i=1

F (λi(Tn(f))) =
1

2π

∫ π

−π

∑s
i=1 F (λi(f(θ)))

s
dθ,

where dn = ns is the size of Tn(f). Equations (1.9)–(1.10) are usually referred to as the
Szegő formulas for block Toeplitz matrices; see [80] for their proof.

Now, consider the classical Lagrangian p-degree finite element discretization of the
translation-invariant problem (1.3) on a uniform mesh in [0, 1] with stepsize 1

n . If p = 1, then
the resulting discretization matrix is again a scalar Toeplitz matrix, namely Tn−1(2− 2 cos θ).
If p ≥ 2, then the situation changes. For instance, for p = 2, the resulting discretization matrix
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is given by2

(1.11)

K [2]
n (1) =


K0 KT

1

K1 K0 KT
1

. . . . . . . . .
K1 K0 KT

1

K1 K0


−

, K0 =
1

3

[
16 −8
−8 14

]
, K1 =

1

3

[
0 −8
0 1

]
.

This is a 2× 2 block Toeplitz matrix deprived of its last row and column. More specifically,

K [2]
n (1) = Tn(f [2])−,

where

f [2](θ) =K0 +K1e
iθ +KT

1 e
−iθ =

1

3

[
16 −8− 8eiθ

−8− 8e−iθ 14 + 2 cos θ

]
.

The eigenvalues and singular values of the sequence {K [2]
n (1)}n are distributed as those of

{Tn(f [2])}n according to equations (1.9)–(1.10) with f = f [2] and s = 2. For p > 2, the
situation is completely analogous: the resulting discretization matrix K [p]

n (1) is a p-block
Toeplitz matrix Tn(f [p]) deprived of its last row and column, and the eigenvalues and singular
values of {K [p]

n (1)}n are distributed as those of {Tn(f [p])}n according to equations (1.9)–
(1.10) with f = f [p] and s = p.

Let us now consider the same Lagrangian p-degree finite element discretization as before
but applied this time to the variable-coefficient problem (1.5). For p = 2, the resulting
discretization matrix is given by

K [2]
n (a) ≈



a( 1
n )K0 a( 1

n )KT
1

a( 2
n )K1 a( 2

n )K0 a( 2
n )KT

1

a( 3
n )K1 a( 3

n )K0 a( 3
n )KT

1

. . . . . . . . .

. . . . . . a(n−1
n )KT

1

a(1)K1 a(1)K0


−

=
(

diag
i=1,...,n

a
( i
n

)
I2

)
−
K [2]
n (1) =

(
Dn(aI2)Tn(f [2])

)
−
,

where I2 is the 2× 2 identity matrix and

Dn(aI2) = diag
i=1,...,n

a
( i
n

)
I2 =


a( 1
n )I2

a( 2
n )I2

. . .
a(1)I2

 .
The sequence of matrices

L[2]
n (a) = Dn(aI2)Tn(f [2])

2In what follows, we use the notation X− to indicate the matrix X deprived of its last row and column.
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is an emblematic example of a block locally Toeplitz sequence. The singular values and
eigenvalues of L[2]

n (a), exactly as those of K [2]
n (a), are nicely distributed according to

lim
n→∞

1

dn

dn∑
i=1

F (σi(Hn)) =
1

2π

∫ 1

0

∫ π

−π

∑s
i=1 F (σi(a(x)f [2](θ)))

s
dθdx

and

lim
n→∞

1

dn

dn∑
i=1

F (λi(Hn)) =
1

2π

∫ 1

0

∫ π

−π

∑s
i=1 F (λi(a(x)f [2](θ)))

s
dθdx,

where Hn is either L[2]
n (a) or K [2]

n (a) and dn is either 2n or 2n − 1 depending on Hn.
Considerations analogous to those reported above concerning the local (block) Toeplitz
structure of L[2]

n (a) apply to this case as well. In particular, if we explore “locally” the matrix
L

[2]
n (a) using an ideal microscope and considering a large value of n, then we realize that the

“local” structure of L[2]
n (a) is approximately the block Toeplitz structure generated by f [2](θ)

and weighted through the function a(x). The case p > 2 is completely analogous to the case
p = 2 discussed here. We will come back to higher-order finite element discretizations of (1.5)
in Section 6.2.

1.4. Contributions and structure of the present work. In the very recent works [55,
56], starting from the original intuition in [76, Section 3.3], the block version of the theory of
GLT sequences—also known as the theory of block GLT sequences—has been developed in
a systematic way as an extension of the theory of (scalar) GLT sequences [50, 51]. Such an
extension is of the utmost importance in practical applications. In particular, it provides the
necessary tools for computing the spectral distribution of block structured matrices arising
from the discretization of systems of DEs [76, Section 3.3] and from the higher-order FE
or discontinuous Galerkin (DG) approximation of scalar/vectorial DEs; see Section 1.3 and
[11, 43, 54, 57]. A few applications of the theory of block GLT sequences developed in
[55, 56] have been presented in [49, 52].

It was soon noticed, however, that the theory of block GLT sequences in [55, 56] is not the
most convenient extension of the theory of GLT sequences in [50, 51]. Indeed, the presentation
in [55, 56] is unnecessarily complicated and, moreover, it is also incomplete because several
results from [50, 51] have been ignored. In addition, many important theoretical advances
obtained in recent works [3, 4, 5, 6, 7, 8] have not been generalized to the block case. The
purpose of the present work is twofold.
• Firstly, we review, refine, and considerably extend the papers [55, 56] by presenting in

a systematic way the most convenient and complete version of the theory of block GLT
sequences, that is, the correct generalization to the block case of the theory of GLT sequences
covered in [50, 51]. We also extend to the block case several important results from
[3, 4, 5, 6, 7, 8], which allow us to both simplify the presentation and make it more elegant
with respect to all previous works [50, 51, 55, 56, 75, 76].
• Secondly, we present several emblematic applications of the theory of block GLT sequences

in the context of DE discretizations, including (but not limited to) those already addressed
in [49, 52].

The present work is structured as a long research article in book form. Chapter 2 collects the
necessary preliminaries. Chapters 3 and 4 cover the theory of block GLT sequences, which is
finally summarized in Chapter 5. Chapter 6 is devoted to applications.
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2. Mathematical background. This chapter collects the necessary preliminaries for
developing the theory of block GLT sequences.

2.1. Notation and terminology.
• Om and Im denote, respectively, the m ×m zero matrix and the m ×m identity matrix.

Sometimes, when the size m can be inferred from the context, O and I are used instead of
Om and Im. The symbol O is also used to indicate rectangular zero matrices whose sizes
are clear from the context.

• For every s ∈ N and every α, β = 1, . . . , s, we denote by E(s)
αβ the s× s matrix having 1 in

position (α, β) and 0 elsewhere.
• For every s, n ∈ N, we denote by Πn,s the permutation matrix given by

Πn,s =


Is ⊗ eT1

Is ⊗ eT2
...

Is ⊗ eTn

 =

n∑
k=1

ek ⊗ Is ⊗ eTk ,

where ⊗ denotes the tensor (Kronecker) product (see Section 2.2.2) and e1, . . . , en are
the vectors of the canonical basis of Cn. For every s, r, n ∈ N, we define the permutation
matrix

(2.1) Πn,s,r = Πn,s ⊗ Ir.

• The eigenvalues and the singular values of a matrix X ∈ Cm×m are denoted by λj(X),
j = 1, . . . ,m, and σj(X), j = 1, . . . ,m, respectively. The maximum and minimum
singular values ofX are also denoted by σmax(X) and σmin(X), respectively. The spectrum
of X is denoted by Λ(X).

• If 1 ≤ p ≤ ∞, the symbol | · |p denotes both the p-norm of vectors and the associated
operator norm for matrices:

|x|p =

{
(
∑m
i=1 |xi|p)

1/p
, if 1 ≤ p <∞,

maxi=1,...,m |xi|, if p =∞,
x ∈ Cm,

|X|p = max
x∈Cm

x6=0

|Xx|p
|x|p

, X ∈ Cm×m.

The 2-norm | · |2 is also known as the spectral (or Euclidean) norm; it will be preferably
denoted by ‖ · ‖.

• Given X ∈ Cm×m and 1 ≤ p ≤ ∞, ‖X‖p denotes the Schatten p-norm of X , which is
defined as the p-norm of the vector (σ1(X), . . . , σm(X)). The Schatten 1-norm is also
called the trace-norm. The Schatten 2-norm ‖X‖2 coincides with the classical Frobenius
norm (

∑m
i,j=1 |xij |2)1/2. The Schatten∞-norm ‖X‖∞ = σmax(X) is the classical 2-norm

‖X‖. For more on Schatten p-norms, see [13].
• <(X) and =(X) are, respectively, the real and imaginary parts of the (square) matrix X ,

i.e., <(X) = X+X∗

2 and =(X) = X−X∗
2i , where X∗ is the conjugate transpose of X and i

is the imaginary unit.
• If X ∈ Cm×m, we denote by X† the Moore-Penrose pseudoinverse of X .
• Cc(C) (resp., Cc(R)) is the space of complex-valued continuous functions defined on C

(resp., R) and with bounded support.
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• If z ∈ C and ε > 0, we denote by D(z, ε) the open disk with center z and radius ε, i.e.,
D(z, ε) = {w ∈ C : |w − z| < ε}. If S ⊆ C and ε > 0, we denote by D(S, ε) the
ε-expansion of S, which is defined as D(S, ε) =

⋃
z∈S D(z, ε).

• χE is the characteristic (indicator) function of the set E.
• A concave bounded continuous function ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0 and
ϕ > 0 on (0,∞) is referred to as a gauge function. It can be shown that any gauge function
ϕ is non-decreasing and subadditive, i.e., ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ [0,∞);
see, e.g., [50, Exercise 2.4].

• If g : D → C is continuous over D, with D ⊆ Ck for some k, we denote by ωg(·) the
modulus of continuity of g,

ωg(δ) = sup
x,y∈D
|x−y|∞≤δ

|g(x)− g(y)|, δ > 0.

• A matrix-valued function a : [0, 1] → Cr×r is said to be Riemann-integrable if its com-
ponents aαβ : [0, 1] → C, α, β = 1, . . . , r, are Riemann-integrable. We remark that a
complex-valued function g is Riemann-integrable when its real and imaginary parts <(g)
and =(g) are Riemann-integrable in the classical sense.
• µk denotes the Lebesgue measure in Rk. Throughout this work, unless stated otherwise, all

the terminology from measure theory (such as “measurable set”, “measurable function”,
“a.e.”, etc.) is always referred to the Lebesgue measure.
• Let D ⊆ Rk, let r ≥ 1, and 1 ≤ p ≤ ∞. A matrix-valued function f : D → Cr×r is said

to be measurable (resp., continuous, a.e. continuous, bounded, in Lp(D), in C∞(D), etc.)
if its components fαβ : D → C, α, β = 1, . . . , r, are measurable (resp., continuous, a.e.
continuous, bounded, in Lp(D), in C∞(D), etc.). The space of functions f : D → Cr×r
belonging to Lp(D) will be denoted by Lp(D, r) in order to emphasize the dependence
on r. For the space of scalar functions Lp(D, 1), we will preferably use the traditional
simpler notation Lp(D).

• Let fm, f : D ⊆ Rk → Cr×r be measurable. We say that fm converges to f in measure
(resp., a.e., in Lp(D), etc.) if (fm)αβ converges to fαβ in measure (resp., a.e., in Lp(D),
etc.) for all α, β = 1, . . . , r.

• If D is any measurable subset of some Rk and r ∈ N, we set

M
(r)
D = {f : D → Cr×r : f is measurable}.

If D = [0, 1]× [−π, π], we preferably use the notation M(r) instead of M(r)
D :

M(r) = {κ : [0, 1]× [−π, π]→ Cr×r : κ is measurable}.

• We use a notation borrowed from probability theory to indicate sets. For example, if
f, g : D ⊆ Rk → Cr×r, then {σmax(f) > 0} = {x ∈ D : σmax(f(x)) > 0},
µk{‖f − g‖ ≥ ε} is the measure of the set {x ∈ D : ‖f(x)− g(x)‖ ≥ ε}, etc.

• A function of the form f(θ) =
∑q
j=−q fj e

ijθ with f−q, . . . , fq ∈ Cr×r is said to be a
(r × r matrix-valued) trigonometric polynomial. If f−q 6= Or or fq 6= Or, then the number
q is referred to as the degree of f .

• A sequence of matrices is a sequence of the form {An}n, where An is a square matrix of
size dn such that dn →∞ as n→∞.

• Given s ∈ N, an s-block matrix-sequence is a special sequence of matrices of the form
{An}n, where An is a square matrix of size dn = sn.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

40 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

2.2. Preliminaries on matrix analysis.

2.2.1. Matrix norms. For the reader’s convenience, we report in this section some
matrix-norm inequalities that we shall use throughout this work. Given a matrix X ∈ Cm×m,
important bounds for the 2-norm ‖X‖ in terms of the components of X are the following [50,
pp. 29–30]:

|xij | ≤ ‖X‖, i, j = 1, . . . ,m, X ∈ Cm×m,(2.2)

‖X‖ ≤
√
|X|1|X|∞ ≤ max(|X|1, |X|∞) ≤

m∑
i,j=1

|xij |, X ∈ Cm×m.(2.3)

Since ‖X‖ = σmax(X) and rank(X) is the number of nonzero singular values of X , we have

‖X‖ ≤ ‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖, X ∈ Cm×m.

Another important trace-norm inequality is the following [50, p. 33]:

‖X‖1 ≤
m∑

i,j=1

|xij |, X ∈ Cm×m.

The last inequality provides a bound for the Frobenius norm in terms of the spectral norm and
the trace-norm:
(2.4)

‖X‖2 =

√√√√ m∑
i=1

σi(X)
2 ≤

√√√√σmax(X)

m∑
i=1

σi(X) =
√
‖X‖‖X‖1, X ∈ Cm×m.

2.2.2. Tensor products and direct sums. If X,Y are matrices of any dimension, say
X ∈ Cm1×m2 and Y ∈ C`1×`2 , then the tensor (Kronecker) product of X and Y is the
m1`1 ×m2`2 matrix defined by

X ⊗ Y =
[
xijY

]
i=1,...,m1
j=1,...,m2

=

 x11Y · · · x1m2
Y

...
...

xm11Y · · · xm1m2
Y

 ,
and the direct sum of X and Y is the (m1 + `1)× (m2 + `2) matrix defined by

X ⊕ Y = diag(X,Y ) =

[
X O
O Y

]
.

Tensor products and direct sums possess a lot of nice algebraic properties.
(i) Associativity: for all matrices X,Y, Z,

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z),

(X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z).

(ii) If X1, X2 can be multiplied and Y1, Y2 can be multiplied, then

(X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2),

(X1 ⊕ Y1)(X2 ⊕ Y2) = (X1X2)⊕ (Y1Y2).
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(iii) For all matrices X,Y ,

(X ⊗ Y )∗ = X∗ ⊗ Y ∗, (X ⊗ Y )T = XT ⊗ Y T

(X ⊕ Y )∗ = X∗ ⊕ Y ∗, (X ⊕ Y )T = XT ⊕ Y T .

(iv) Bilinearity (of tensor products): for each fixed matrix X , the application

Y 7→ X ⊗ Y

is linear on C`1×`2 for all `1, `2 ∈ N; for each fixed matrix Y , the application

X 7→ X ⊗ Y

is linear on Cm1×m2 for all m1,m2 ∈ N.
From (i)–(iv), a lot of other properties follow. For example, if v is a column vector and X,Y
are matrices that can be multiplied, then (v⊗X)Y = (v⊗X)([1]⊗Y ) = v⊗(XY ). IfX,Y
are invertible, then X ⊗ Y is invertible with inverse X−1 ⊗ Y −1. If X,Y are normal (resp.,
Hermitian, symmetric, unitary), then X ⊗ Y is also normal (resp., Hermitian, symmetric,
unitary). If X ∈ Cm×m and Y ∈ C`×`, then the eigenvalues and singular values of X ⊗ Y
are given by

{λi(X)λj(Y ) : i = 1, . . . ,m, j = 1, . . . , `},
{σi(X)σj(Y ) : i = 1, . . . ,m, j = 1, . . . , `},

and the eigenvalues and singular values of X ⊕ Y are given by

{λi(X), λj(Y ) : i = 1, . . . ,m, j = 1, . . . , `},
{σi(X), σj(Y ) : i = 1, . . . ,m, j = 1, . . . , `};

see [50, Exercise 2.5]. In particular, for all X ∈ Cm×m, Y ∈ C`×`, and 1 ≤ p ≤ ∞, we have

‖X ⊗ Y ‖p = ‖X‖p ‖Y ‖p,

‖X ⊕ Y ‖p =
∣∣(‖X‖p, ‖Y ‖p)∣∣p =

{
(‖X‖pp + ‖Y ‖pp)1/p, if 1 ≤ p <∞,
max(‖X‖∞, ‖Y ‖∞), if p =∞.

2.3. Preliminaries on measure and integration theory.

2.3.1. Measurability. The following lemma is derived from the results in [13, Sec-
tion VI.1]. It will be used essentially everywhere in this work, either explicitly or implicitly.

LEMMA 2.1. Let f : D ⊆ Rk → Cr×r be measurable and g : Cr → C be continuous
and symmetric in its r arguments, i.e., g(λ1, . . . , λr) = g(λρ(1), . . . , λρ(r)) for all permu-
tations ρ of {1, . . . , r}. Then, the function x 7→ g(λ1(f(x)), . . . , λr(f(x))) is well-defined
(independently of the ordering of the eigenvalues of f(x)) and measurable. As a consequence:
• the function x 7→ g(σ1(f(x)), . . . , σr(f(x))) is measurable;
• the functions x 7→

∑r
i=1 F (λi(f(x))) and x 7→

∑r
i=1 F (σi(f(x))) are measurable for

all continuous F : C→ C;
• the function x 7→ ‖f(x)‖p is measurable for all p ∈ [1,∞].

REMARK 2.2 (Existence of an ordering for the eigenvalues λi(f(x))). Let the function
f : D ⊆ Rk → Cr×r be measurable. In the case where all the eigenvalues of the matrix
f(x) are real for almost every x ∈ D, one can define the eigenvalue function λi(f(x)) as a
measurable function taking the value of the ith largest eigenvalue of f(x). In general, even if
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f is continuous, we are not able to find r continuous functions acting as eigenvalue functions;
see [13, Example VI.1.3]. Thus, a convenient ordering on the eigenvalues λi(f(x)) cannot
be prescribed beforehand. In such cases, λi(f(x)) has not to be intended as a function in x
but as an element of the spectrum Λ(f(x)) ordered in an arbitrary way. Lemma 2.1 is then
important as it allows us to work with the spectrum as a whole, without having to specify which
ordering we are imposing on the eigenvalues λi(f(x)). In what follows, when we talk about
the ith eigenvalue function λi(f(x)), we are implicitly assuming that this function exists as a
measurable function; more precisely, we are assuming that there exist r measurable functions
λi(f(x)), i = 1, . . . , r, from D to C such that, for each fixed x ∈ D, the eigenvalues of f(x)
are given by λ1(f(x)), . . . , λr(f(x)).

2.3.2. Essential range of matrix-valued functions. If f : D ⊆ Rk → Cr×r is a
measurable matrix-valued function, then the essential range of f is denoted by ER(f) and is
defined as follows:

ER(f) = {z ∈ C : µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} > 0 for all ε > 0}
= {z ∈ C : µk{minj=1,...,r|λj(f)− z| < ε} > 0 for all ε > 0}.

Note that ER(f) is well-defined because the function x 7→ minj=1,...,r |λj(f(x)) − z| is
measurable by Lemma 2.1. In the case where the eigenvalue functions λj(f) : D → C,
j = 1, . . . , r, are measurable, we have

ER(f) =

r⋃
j=1

ER(λj(f)).

LEMMA 2.3. Let f : D ⊆ Rk → Cr×r be measurable. Then ER(f) is closed and
Λ(f) ⊆ ER(f) a.e.

Proof. We show that the complement of ER(f) is open. If z ∈ C\ER(f), then
µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} = 0 for some ε > 0. Each point w ∈ D(z, ε)
has a neighborhood D(w, δ) such that D(w, δ) ⊆ D(z, ε), and consequently it follows that
µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(w, δ)} = 0. We conclude that D(z, ε) ⊆ C\ER(f),
hence C\ER(f) is open.

To prove that Λ(f) ⊆ ER(f) a.e., let

B =

{
D
(
q,

1

m

)
: q = a+ ib, a, b ∈ Q, m ∈ N

}
.

B is a topological basis of C, i.e., for each open set U ⊆ C and each u ∈ U , there exists
an element of B which contains u and is contained in U . Since C\ER(f) is open and every
z ∈ C\ER(f) has a neighborhood D(z, ε) such that

µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} = 0

(by definition of ER(f)), for each z ∈ C\ER(f) there exists an element of B, say
Dz = D(qz,

1
mz

), such that z ∈ Dz ⊆ C\ER(f) and

µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ Dz} = 0.
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Let C be the subset of B given by C = {Dz : z ∈ C\ER(f)}. Since B is countable, C is
countable as well, say C = {C` : ` = 1, 2, . . .}, and we have

{Λ(f) 6⊆ ER(f)} =
⋃

z∈C\ER(f)

{∃ j ∈ {1, . . . , r} : λj(f) = z}

⊆
⋃

z∈C\ER(f)

{∃ j ∈ {1, . . . , r} : λj(f) ∈ Dz}

=

∞⋃
`=1

{∃ j ∈ {1, . . . , r} : λj(f) ∈ C`},

which completes the proof because the last set is a countable union of sets having zero measure,
and so it has zero measure as well.

2.3.3. Lp-norms of matrix-valued functions. Let D be any measurable subset of some
Rk, let r ≥ 1, and let 1 ≤ p ≤ ∞. For any measurable function f : D → Cr×r we define

‖f‖Lp =

{ (∫
D
‖f(x)‖ppdx

)1/p
, if 1 ≤ p <∞,

ess supx∈D‖f(x)‖, if p =∞.

Note that this definition is well-posed by Lemma 2.1. In the case where r = 1, it reduces to
the classical definition of Lp-norms for scalar functions. As highlighted in [38, p. 164], for
every p ∈ [1,∞], there exist constants Ap, Bp > 0 such that, for all f ∈ Lp(D, r),

Ap‖f‖pLp ≤
r∑

α,β=1

‖fαβ‖pLp ≤ Bp‖f‖pLp , if 1 ≤ p <∞,

A∞‖f‖L∞ ≤ max
α,β=1,...,r

‖fαβ‖L∞ ≤ B∞‖f‖L∞ , if p =∞.

This means that Lp(D, r), which we have defined in Section 2.1 as the set of functions
f : D → Cr×r such that each component fαβ belongs to Lp(D), can also be defined as the
set of measurable functions f : D → Cr×r such that ‖f‖Lp <∞. Moreover, if we identify
two functions f, g ∈ Lp(D, r) whenever f(x) = g(x) for almost every x ∈ D, then the
map f 7→ ‖f‖Lp is a norm on Lp(D, r), which induces on Lp(D, r) the componentwise
Lp convergence, that is, fm → f in Lp(D, r) according to the norm ‖ · ‖Lp if and only if
(fm)αβ → fαβ in Lp(D) for all α, β = 1, . . . , r.

2.3.4. Convergence in measure and the topology τmeasure. The convergence in mea-
sure plays a central role in the theory of block GLT sequences. A basic lemma about this
convergence is reported below [16, Corollary 2.2.6].

LEMMA 2.4. Let fm, gm, f, g : D ⊆ Rk → Cr×r be measurable functions.
• If fm → f in measure and gm → g in measure, then αfm + βgm → αf + βg in measure

for all α, β ∈ C.
• If fm → f in measure, gm → g in measure, and µk(D) < ∞, then fmgm → fg in

measure.
Let ϕ : [0,∞) → [0,∞) be a gauge function, let D ⊂ Rk be a measurable set with

0 < µk(D) <∞, and let

M
(r)
D = {f : D → Cr×r : f is measurable}.
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Suppose first that r = 1. If we define

pϕmeasure(f) =
1

µk(D)

∫
D

ϕ(|f |), f ∈M
(1)
D ,

dϕmeasure(f, g) = pϕmeasure(f − g), f, g ∈M
(1)
D ,

then dϕmeasure is a complete pseudometric on M
(1)
D such that a sequence {fm}m ⊂ M

(1)
D

converges to f ∈M
(1)
D according to dϕmeasure if and only if fm → f in measure. In particular,

dϕmeasure(f, g) = 0 if and only if f → g in measure, that is, if and only if f = g a.e. The
topology induced on M

(1)
D by dϕmeasure is the same for all gauge functions ϕ; it is denoted by

τmeasure and is referred to as the topology of convergence in measure on M
(1)
D .

Suppose now that r ≥ 1. If we define

p̂ϕmeasure(f) = max
α,β=1,...,r

pϕmeasure(fαβ), f ∈M
(r)
D ,

d̂ϕmeasure(f, g) = p̂ϕmeasure(f − g), f, g ∈M
(r)
D ,

then d̂ϕmeasure is a complete pseudometric on M
(r)
D such that a sequence {fm}m ⊂ M

(r)
D

converges to f ∈M
(r)
D according to d̂ϕmeasure if and only if fm → f in measure. In particular,

d̂ϕmeasure(f, g) = 0 if and only if f → g in measure, that is, if and only if f = g a.e. The
topology induced on M

(r)
D by d̂ϕmeasure is the same for all gauge functions ϕ; it is denoted by

τmeasure and is referred to as the topology of convergence in measure on M
(r)
D .

Now, let

pϕmeasure(f) =
1

µk(D)

∫
D

∑r
i=1 ϕ(σi(f))

r
, f ∈M

(r)
D ,

dϕmeasure(f, g) = pϕmeasure(f − g), f, g ∈M
(r)
D .

By using the Rotfel’d theorem [13, Theorem IV.2.14], it is not difficult to see that dϕmeasure is
another pseudometric on M

(r)
D , which is also metrically equivalent to d̂ϕmeasure. Indeed, taking

into account that ‖f‖ = σmax(f), by (2.2), (2.3), the subadditivity and the monotonicity of ϕ,
we have

p̂ϕmeasure(f) = max
α,β=1,...,r

pmeasure(fαβ) = max
α,β=1,...,r

1

µk(D)

∫
D

ϕ(|fαβ |)

≤ 1

µk(D)

∫
D

ϕ(‖f‖) ≤ rpϕmeasure(f),

pϕmeasure(f) =
1

µk(D)

∫
D

∑r
i=1 ϕ(σi(f))

r
≤ 1

µk(D)

∫
D

ϕ(‖f‖)

≤ 1

µk(D)

∫
D

ϕ

( r∑
α,β=1

|fαβ |
)
≤ 1

µk(D)

∫
D

r∑
α,β=1

ϕ(|fαβ |)

≤ r2 max
α,β=1,...,r

pϕmeasure(fαβ) = r2p̂ϕmeasure(f).

In particular, dϕmeasure induces on M
(r)
D the topology τmeasure of convergence in measure and it

is complete on M
(r)
D , just as d̂ϕmeasure. Throughout this work, we will use the notations

pmeasure = pψmeasure, dmeasure = dψmeasure, ψ(x) =
x

1 + x
.
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LEMMA 2.5. Let gm, g : D ⊂ Rk → Cr×r be measurable functions defined on a set D
with 0 < µk(D) <∞. If

(2.5) lim
m→∞

1

µk(D)

∫
D

∑r
j=1 F (σj(gm − g))

r
= F (0), ∀F ∈ Cc(R),

then gm → g in measure.
Proof. Suppose by contradiction that gm 6→ g in measure. Then, there exist ε, δ > 0 and

a subsequence {gmi
}i such that, for all i,

µk{‖gmi − g‖ ≥ ε} ≥ δ.

Take a real function F ∈ Cc(R) such that F (0) = 1 = maxy∈R F (y) and F (y) =
0 over {y ∈ R : |y| ≥ ε}. By the previous inequality and taking into account that
‖gmi − g‖ = σmax(gmi − g), for all i, we have

1

µk(D)

∫
D

∑r
j=1 F (σj(gmi − g))

r

=
1

rµk(D)

∫
{‖gmi

−g‖<ε}

r∑
j=1

F (σj(gmi
− g)) +

∫
{‖gmi

−g‖≥ε}

r∑
j=1

F (σj(gmi
− g))


≤ 1

rµk(D)

[∫
{‖gmi

−g‖<ε}
r +

∫
{‖gmi

−g‖≥ε}
(r − 1)

]

≤ rµk{‖gmi − g‖ < ε}+ (r − 1)µk{‖gmi − g‖ ≥ ε}
rµk(D)

= 1− µk{‖gmi
− g‖ ≥ ε}

rµk(D)
≤ F (0)− δ

rµk(D)
,

which is a contradiction to (2.5).
REMARK 2.6. Let f : D → Cr×r be a measurable function defined on a set D ⊂ Rk

with 0 < µk(D) <∞, and assume that

1

µk(D)

∫
D

∑r
j=1 F (σj(f))

r
= F (0), ∀F ∈ Cc(R).

Then f = Or a.e. Indeed, by Lemma 2.5, the previous equation implies that f → Or in
measure, i.e., f = Or a.e.

2.3.5. Riemann-integrable functions. A function a : [0, 1]→ C is said to be Riemann-
integrable if its real and imaginary parts <(a),=(a) : [0, 1]→ R are Riemann-integrable in
the classical sense. Recall that any Riemann-integrable function is bounded by definition. A
matrix-valued function a : [0, 1]→ Cr×r is said to be Riemann-integrable if its components
aαβ : [0, 1] → C, α, β = 1, . . . , r, are Riemann-integrable. We report below a list of
properties possessed by Riemann-integrable functions that will be used in this work, either
explicitly or implicitly.
• If α, β ∈ C and a, b : [0, 1] → C are Riemann-integrable, then αa + βb is Riemann-

integrable.
• If a, b : [0, 1]→ C are Riemann-integrable, then ab is Riemann-integrable.
• If a : [0, 1]→ C is Riemann-integrable and F : C→ C is continuous, then F (a) : [0, 1]→ C

is Riemann-integrable.
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• If a : [0, 1]→ C is Riemann-integrable, then a belongs to L∞([0, 1]) and its Lebesgue and
Riemann integrals over [0, 1] coincide.
• If a : [0, 1]→ C is bounded, then a is Riemann-integrable if and only if a is continuous a.e.
Note that the last two properties imply the first three. The proof of the second-to-last property
can be found in [69, pp. 73–74] or [16, Theorem 2.10.1]. The last property is Lebesgue’s
characterization theorem of Riemann-integrable functions [69, p. 104]. A further property of
Riemann-integrable functions that will be used in this work is reported in the next lemma [50,
Lemma 2.9].

LEMMA 2.7. Let a : [0, 1]→ R be Riemann-integrable. For each n ∈ N, consider the
partition of (0, 1] given by the intervals

Ii,n =

(
i− 1

n
,
i

n

]
, i = 1, . . . , n,

and let

ai,n ∈
[

inf
x∈Ii,n

a(x), sup
x∈Ii,n

a(x)

]
, i = 1, . . . , n.

Then
n∑
i=1

ai,nχIi,n → a a.e. in [0, 1], lim
n→∞

1

n

n∑
i=1

ai,n =

∫ 1

0

a(x)dx.

2.4. Singular value and eigenvalue distribution of a sequence of matrices.

2.4.1. The notion of singular value and eigenvalue distribution. We here introduce
the fundamental definitions of singular value and eigenvalue (or spectral) distribution for a
given sequence of matrices.

DEFINITION 2.8 (Singular value and eigenvalue distribution of a sequence of matrices).
Let {An}n be a sequence of matrices with An of size dn, and let f : D ⊂ Rk → Cr×r be a
measurable matrix-valued function defined on a set D with 0 < µk(D) <∞.
• We say that {An}n has a (asymptotic) singular value distribution described by f , and we

write {An}n ∼σ f , if

(2.6) lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx, ∀F ∈ Cc(R).

In this case, the function f is referred to as the singular value symbol of {An}n.
• We say that {An}n has an (asymptotic) eigenvalue (or spectral) distribution described by f ,

and we write {An}n ∼λ f , if

(2.7) lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

In this case, the function f is referred to as the eigenvalue (or spectral) symbol of {An}n.
Note that Definition 2.8 is well-posed by Lemma 2.1, which ensures that the functions

x 7→
∑r
i=1 F (σi(f(x))) and x 7→

∑r
i=1 F (λi(f(x))) are measurable. In this work, when-

ever we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood that f is as in
Definition 2.8, that is, f is a measurable function taking values in Cr×r for some r ≥ 1 and
defined on a subset D of some Rk with 0 < µk(D) <∞.

REMARK 2.9 (Informal meaning of the singular value and eigenvalue distribution). The
informal meaning behind the spectral distribution (2.7) is the following: assuming that f
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possesses r a.e. continuous eigenvalue functions λi(f(x)), i = 1, . . . , r, then the eigenvalues
of An, except possibly for o(dn) outliers, can be subdivided into r different subsets of
approximately the same cardinality, and, for n large enough, the eigenvalues belonging to
the ith subset are approximately equal to the samples of the ith eigenvalue function λi(f(x))
over a uniform grid in the domain D. For instance, if k = 1, dn = nr, and D = [a, b], then,
assuming we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a+ j

b− a
n

))
, j = 1, . . . , n, i = 1, . . . , r,

for n large enough. Similarly, if k = 2, dn = n2r, and D = [a1, b1]× [a2, b2], then, assuming
we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a1 + j1

b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , r,

for n large enough; and so on for k ≥ 3. A completely analogous meaning can also be given
for the singular value distribution (2.6).

REMARK 2.10 (Rearrangement). Let D = [a1, b1] × · · · × [ak, bk] ⊂ Rk, and let
f : D → Cr×r be a measurable function possessing r real-valued a.e. continuous eigenvalue
functions λi(f(x)), i = 1, . . . , r. Compute for each ρ ∈ N the uniform samples

λi

(
f
(
a1 + j1

b1 − a1

ρ
, . . . , ak + jk

bk − ak
ρ

))
, j1, . . . , jk = 1, . . . , ρ, i = 1, . . . , r,

sort them in non-decreasing order, and put them into a vector (ς1, ς2, . . . , ςrρk). Let
φρ : [0, 1]→ R be the piecewise linear non-decreasing function that interpolates the samples
(ς0 = ς1, ς1, ς2, . . . , ςrρk) over the nodes (0, 1

rρk
, 2
rρk

, . . . , 1), i.e.,
φρ

( i

rρk

)
= ςi, i = 0, . . . , rρk,

φρ linear on
[
i

rρk
,
i+ 1

rρk

]
, i = 0, . . . , rρk − 1.

When ρ → ∞, the function φρ converges a.e. to a function φ, which is non-decreasing on
(0, 1) and satisfies

(2.8)
∫ 1

0

F (φ(t))dt =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

The proof of this result is omitted because it is rather technical; it involves arguments from
[50, solution of Exercise 3.1] and [6]. The function φ is referred to as the canonical rearranged
version of f . What is interesting about φ is that, by (2.8), if {An}n ∼λ f , then {An}n ∼λ φ,
i.e., if f is a spectral symbol of {An}n, then the same is true for φ. Moreover, φ is a univariate
non-decreasing scalar function, and hence it is much easier to handle than f . According to
Remark 2.9, if we have {An}n ∼λ f (and hence also {An}n ∼λ φ), then, for n large enough,
the eigenvalues of An, with the possible exception of o(dn) outliers, are approximately equal
to the samples of φ over a uniform grid in [0, 1]. Precise error estimates as well as an analysis
under suitable assumptions may be produced by following [19] and the references therein,
possibly also considering the numerics in [44].

REMARK 2.11 (Canonical rearranged version and quantile function). The canonical
rearranged version φ, under the different name of quantile function, was carefully consid-
ered in [17, 18]. In a less systematic way, the same notion was introduced in [33], when
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dealing with the spectral analysis of preconditioning strategies for large Toeplitz linear sys-
tems. According to the generalization presented in [18], consider the probability space
(Ω,F ,P), where Ω = D × {1, 2, . . . , r} and P is the uniform probability over Ω defined as
the product of the normalized Lebesgue measure onD and the normalized counting measure on
{1, 2, . . . , r}. If we define theF -measurable function (random variable)X : Ω→ R by setting
X(x, i) = λi(f(x)), then φ coincides a.e. with the quantile function associated with X , i.e.,
QX(p) = inf{v ∈ R : P(X < v) ≥ p}.

2.4.2. Clustering and attraction. In what follows, if S ⊆ C and ε > 0, we denote by
D(S, ε) the ε-expansion of S, which is defined as D(S, ε) =

⋃
z∈S D(z, ε).

DEFINITION 2.12 (Clustering of a sequence of matrices). Let {An}n be a sequence of
matrices with An of size dn, and let S ⊆ C be a nonempty subset of C.
• We say that {An}n is strongly clustered at S (in the sense of the eigenvalues), or equivalently,

that the eigenvalues of {An}n are strongly clustered at S, if, for every ε > 0, the number
of eigenvalues of An lying outside D(S, ε) is bounded by a constant Cε independent of n;
that is, for every ε > 0,

(2.9) #{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = O(1).

• We say that {An}n is weakly clustered at S (in the sense of the eigenvalues), or equivalently,
that the eigenvalues of {An}n are weakly clustered at S, if, for every ε > 0,

(2.10) #{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = o(dn).

By replacing “eigenvalues” with “singular values” and λj(An) with σj(An) in (2.9)–(2.10),
we obtain the definitions of a sequence of matrices strongly or weakly clustered at a nonempty
subset of C in the sense of the singular values.

Throughout this work, when we speak of strong/weak cluster, a sequence of matrices
strongly/weakly clustered, etc., without further specifications, it is understood “in the sense of
the eigenvalues”. When the clustering is intended in the sense of the singular values, this is
specified every time.

DEFINITION 2.13 (Spectral attraction). Let {An}n be a sequence of matrices with An of
size dn, and let z ∈ C. We say that z strongly attracts the spectrum Λ(An) with infinite order
if, once we have ordered the eigenvalues of An according to their distance from z,

|λ1(An)− z| ≤ |λ2(An)− z| ≤ . . . ≤ |λdn(An)− z|,

the following limit relation holds for each fixed j ≥ 1 :

lim
n→∞

|λj(An)− z| = 0.

THEOREM 2.14. If {An}n ∼λ f , then {An}n is weakly clustered at the essential range
ER(f) and every point of ER(f) strongly attracts the spectrum Λ(An) with infinite order.

Proof. Denote by D ⊂ Rk and Cr×r the domain and codomain of f , respectively, and let
dn be the size of An. Set S = ER(f) and fix ε > 0. For any δ > 0, let Fε,δ be a function in
Cc(C) such that 

0 ≤ Fε,δ ≤ 1 over C,
Fε,δ = 1 over S ∩D(0, 1/δ),

Fε,δ = 0 outside D(S, ε).
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Note that such a function exists by Urysohn’s lemma [71, Lemma 2.12] because S∩D(0, 1/δ)
is a compact set contained in the open set D(S, ε) (recall that S is closed by Lemma 2.3).
Clearly, we have Fε,δ ≤ χD(S,ε), hence

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)}
dn

= 1− #{j ∈ {1, . . . , dn} : λj(An) ∈ D(S, ε)}
dn

= 1− 1

dn

dn∑
j=1

χD(S,ε)(λj(An)) ≤ 1− 1

dn

dn∑
j=1

Fε,δ(λj(An)).

Passing to the limit as n→∞ and using the assumption {An}n ∼λ f , we obtain

lim sup
n→∞

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)}
dn

≤ 1− 1

µk(D)

∫
D

∑r
j=1 Fε,δ(λj(f(x)))

r
dx,

for every δ > 0. To complete the proof that {An}n is weakly clustered at S, we show that

(2.11) lim
δ→0

∫
D

∑r
j=1 Fε,δ(λj(f(x)))

r
dx = µk(D).

Since Fε,δ → 1 pointwise over S as δ → 0 and Λ(f) ⊆ S a.e. by Lemma 2.3,∑r
j=1 Fε,δ(λj(f(x)))

r
→ 1 a.e. in D.

Hence, (2.11) follows immediately from the dominated convergence theorem.
To show that each point of S strongly attracts Λ(An) with infinite order, fix a point s ∈ S.

For any ε > 0, take Fε ∈ Cc(C) such that 0 ≤ Fε ≤ 1 over C, Fε = 1 over D(s, ε) and
Fε = 0 outside D(s, 2ε). Since χD(s,ε) ≤ Fε ≤ χD(s,2ε) and {An}n ∼λ f , we have

#{j ∈ {1, . . . , dn} : λj(An) ∈ D(s, 2ε)}
dn

≥ 1

dn

dn∑
j=1

Fε(λj(An))

n→∞−→ 1

µk(D)

∫
D

∑r
j=1 Fε(λj(f(x)))

r
dx ≥ µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(s, ε)}

rµk(D)
.

Passing to the limit as n→∞, we obtain

lim inf
n→∞

#{j ∈ {1, . . . , dn} : λj(An) ∈ D(s, 2ε)}
dn

≥ µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(s, ε)}
rµk(D)

.

(2.12)

By definition of the essential range, the right-hand side of (2.12) is positive for every ε > 0.
This implies that s strongly attracts Λ(An) with infinite order.

COROLLARY 2.15. If {An}n ∼λ f and Λ(An) is contained in S ⊆ C for all n, then
ER(f) is contained in the closure S.

Proof. By Theorem 2.14, each point of ER(f) strongly attracts Λ(An) with infinite order.
If z /∈ S, there exists a disk D(z, ε) which does not intersect S. Since Λ(An) ⊆ S for all n, it
is clear that z cannot attract Λ(An) with infinite order, hence z /∈ ER(f). We conclude that
ER(f) ⊆ S.
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2.4.3. Zero-distributed sequences. A sequence of matrices {Zn}n with Zn of size dn
is said to be zero-distributed if {Zn}n ∼σ 0, i.e.,

lim
n→∞

1

dn

dn∑
j=1

F (σj(Zn)) = F (0), ∀F ∈ Cc(R).

It is clear that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or. Theorem 2.16
provides a characterization of zero-distributed sequences together with a sufficient condition
for detecting such sequences. For the related proof, see [50, Theorems 3.2 and 3.3].

THEOREM 2.16. Let {Zn}n be a sequence of matrices with Zn of size dn.
1. {Zn}n ∼σ 0 if and only if Zn = Rn +Nn with lim

n→∞
(rank(Rn)/dn) = lim

n→∞
‖Nn‖ = 0.

2. {Zn}n ∼σ 0 if there exists p ∈ [1,∞) such that lim
n→∞

(‖Zn‖pp/dn) = 0.

2.4.4. Sparsely unbounded and sparsely vanishing sequences of matrices. The no-
tions of sparsely unbounded and sparsely vanishing sequences of matrices play an important
role within the framework of the theory of block GLT sequences.

DEFINITION 2.17 (Sparsely unbounded sequence of matrices). A sequence of matrices
{An}n with An of size dn is said to be sparsely unbounded (s.u.) if for every M > 0 there
exists nM such that, for n ≥ nM ,

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

≤ r(M),

where lim
M→∞

r(M) = 0.

For the proofs of the next three propositions, we refer the reader to Proposition 5.3 of
[50] and Propositions 2.2 and 2.3 of [55]. Note that the proof in [50] is made for dn = n and
the proofs in [55] are made for dn = sn for a fixed s ∈ N, but the extension to the case of a
general dn tending to infinity is straightforward.

PROPOSITION 2.18. Let {An}n be a sequence of matrices with An of size dn. The
following are equivalent.
1. {An}n is s.u.

2. lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

= 0.

3. For every M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)dn, ‖Ãn,M‖ ≤M,

where lim
M→∞

r(M) = 0.

PROPOSITION 2.19. If {An}n, {A′n}n are s.u., then {AnA′n}n is s.u.

PROPOSITION 2.20. If {An}n ∼σ f , then {An}n is s.u.

REMARK 2.21. Let {An}n be an s.u. sequence of Hermitian matrices with An of size dn.
Then, the following stronger version of condition 3 in Proposition 2.18 is satisfied: for every
M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)dn, ‖Ãn,M‖ ≤M,

where limM→∞ r(M) = 0, the matrices Ân,M and Ãn,M are Hermitian, and for all functions
g : R→ R satisfying g(0) = 0 we have

g(Ân,M + Ãn,M ) = g(Ân,M ) + g(Ãn,M ).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: UNIDIMENSIONAL CASE 51

This stronger version of condition 3 has been proved in [50, p. 157 (lines 21–34) and p. 158
(lines 1–8)] for the case “dn = n”, but the extension to the general case “dn →∞ as n→∞”
is immediate.3

Strictly related to the notion of sparsely unbounded sequences of matrices is the notion of
sparsely vanishing sequences of matrices.

DEFINITION 2.22 (Sparsely vanishing sequence of matrices). A sequence of matrices
{An}n with An of size dn is said to be sparsely vanishing (s.v.) if for every M > 0 there
exists nM such that, for n ≥ nM ,

#{i ∈ {1, . . . , dn} : σi(An) < 1/M}
dn

≤ r(M),

where lim
M→∞

r(M) = 0.

REMARK 2.23. If {An}n is s.v., then the sequence of Moore-Penrose pseudoinverses
{A†n}n is s.u. This follows immediately from the fact that the singular values of A† are given
by 1/σ1(A), . . . , 1/σr(A), 0, . . . , 0, where σ1(A), . . . , σr(A) are the nonzero singular values
of A (r = rank(A)).

REMARK 2.24. A sequence of matrices {An}n with An of size dn is s.v. if and only if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) < 1/M}
dn

= 0;

see [50, Remark 8.6].
Proposition 2.25 is the analog to Proposition 2.20 for s.v. sequences of matrices [56,

Proposition 2.3].
PROPOSITION 2.25. If {An}n ∼σ f , then {An}n is s.v. if and only if f is invertible a.e.

2.4.5. Spectral distribution of sequences of perturbed/compressed/expanded Her-
mitian matrices. Theorem 2.26 reports from [8] a recent important result about the spectral
distribution of sequences of perturbed Hermitian matrices. It nicely extends previous results
obtained in [53, 58].

THEOREM 2.26. Let {Xn}n, {Yn}n be sequences of matrices with Xn, Yn of size dn,
and set An = Xn + Yn. Assume that the following conditions are met.
1. Every Xn is Hermitian and {Xn}n ∼λ f .
2. ‖Yn‖2 = o(

√
dn).

Then {An}n ∼λ f .
REMARK 2.27. If ‖Yn‖ ≤ C for some constant C independent of n and ‖Yn‖1 = o(dn),

then Yn satisfies the second assumption in Theorem 2.26 by (2.4).
Theorem 2.28 concerns the singular value and spectral distribution of sequences of

matrices obtained as a compression (or expansion) of another sequence of matrices. For the
proof, we refer the reader to [62, Theorem 4.3 and Corollary 4.4].

THEOREM 2.28. Let {Xn}n be a sequence of matrices withXn of size dn, and let {Pn}n
be a sequence such that Pn ∈ Cdn×δn , P ∗nPn = Iδn , δn ≤ dn, and δn/dn → 1 as n→∞.
1. We have {Xn}n ∼σ f if and only if {P ∗nXnPn}n ∼σ f .
2. In the case where the matrices Xn are Hermitian, we have {Xn}n ∼λ f if and only if
{P ∗nXnPn}n ∼λ f .

3Note that the condition g(0) = 0 is missing in [50], but it is actually necessary. Luckily, the absence of
this condition does not affect the validity of [50, proof of Theorem 8.9] because, by replacing therein pm,M with
pm,M + f(0) − pm,M (0) if necessary, it may be assumed without loss of generality that pm,M (0) = f(0), so
that the function g = f − pm,M satisfies g(0) = 0.
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2.5. Approximating classes of sequences.

2.5.1. Definition of a.c.s. and the a.c.s. topology τa.c.s.. The formal definition of a.c.s.
is given below.

DEFINITION 2.29 (Approximating class of sequences). Let {An}n be a sequence of
matrices withAn of size dn, and let {{Bn,m}n}m be a sequence of sequences of matrices with
Bn,m of size dn. We say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for
{An}n if the following condition is met: for every m there exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large m, the
sequence {Bn,m}n approximates (asymptotically) the sequence {An}n in the sense that An
is eventually equal to Bn,m plus a small-rank matrix (with respect to the matrix size dn) plus
a small-norm matrix.

It turns out that, for each fixed sequence of positive integers dn such that dn → ∞,
the notion of a.c.s. is a notion of convergence in the space of all sequences of matrices
corresponding to {dn}n, i.e.,

(2.13) E =
{
{An}n : An ∈ Cdn×dn for every n

}
.

To be precise, for every ϕ : [0,∞)→ [0,∞) and every square matrix A ∈ C`×`, let

pϕ(A) =
1

`

∑̀
i=1

ϕ(σi(A))

and define

pϕa.c.s.({An}n) = lim sup
n→∞

pϕ(An), {An}n ∈ E ,

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n), {An}n, {Bn}n ∈ E .(2.14)

THEOREM 2.30. Let ϕ : [0,∞)→ [0,∞) be a gauge function. Fix a sequence of positive
integers dn such that dn →∞, and let E be the space (2.13). The following properties hold.
1. dϕa.c.s. in (2.14) is a complete pseudometric on E such that dϕa.c.s.({An}n, {Bn}n) = 0 if

and only if {An −Bn}n is zero-distributed.
2. Suppose {An}n ∈ E and {{Bn,m}n}m ⊂ E . Then, {{Bn,m}n}m is an a.c.s. for {An}n

if and only if dϕa.c.s.({An}n, {Bn,m}n)→ 0 as m→∞.
Theorem 2.30 was proved in [7]. It justifies the convergence notation {Bn,m}n

a.c.s.−→
{An}n, which will be used to indicate that {{Bn,m}n}m is an a.c.s. for {An}n. The topology
induced on E by the pseudometric dϕa.c.s. is the same for all gauge functions ϕ; it is denoted
by τa.c.s., and it is referred to as the a.c.s. topology. Throughout this work, we will use the
notations

pa.c.s. = pψa.c.s., da.c.s. = dψa.c.s., ψ(x) =
x

1 + x
.

2.5.2. τa.c.s. and τmeasure. Theorem 2.32 highlights important connections between τa.c.s.
and τmeasure or, to be more precise, between the pseudometrics dϕa.c.s. and dϕmeasure inducing these
two topologies. Actually, the connections between τa.c.s. and τmeasure are so deep that they may
lead to a “bridge”, in the precise mathematical sense established in [27], between measure
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theory and the asymptotic linear algebra theory underlying the notion of a.c.s.; a bridge that
could be exploited to obtain matrix theory results from measure theory results and vice versa.
For deeper insights on this topic, we suggest reading [7, Section 1].

LEMMA 2.31. Let {An}n be a sequence of matrices with An of size dn, and let
f : D ⊂ Rk → Cr×r be a measurable matrix-valued function defined on a set D with
0 < µk(D) <∞. If {An}n ∼σ f , then

(2.15) lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx

for all bounded continuous functions F : R→ C.
Proof. The lemma simply says that if {An}n ∼σ f , then the limit relation (2.15) holds

not only for F ∈ Cc(R), as per Definition 2.8, but also for any continuous bounded function
F : R→ C. To prove it, fix a continuous bounded function F : R→ C, and let Fm ∈ Cc(R)
such that Fm → F pointwise over R, Fm = F on [0,m], and ‖Fm‖∞ ≤ ‖F‖∞. Then, for
every n,m we have∣∣∣∣∣∣ 1

dn

dn∑
j=1

F (σj(An))− 1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx

∣∣∣∣∣∣(2.16)

≤

∣∣∣∣∣∣ 1

dn

dn∑
j=1

F (σj(An))− 1

dn

dn∑
j=1

Fm(σj(An))

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

dn

dn∑
j=1

Fm(σj(An))− 1

µk(D)

∫
D

∑r
i=1 Fm(σi(f(x)))

r
dx

∣∣∣∣∣∣
+

∣∣∣∣ 1

µk(D)

∫
D

∑r
i=1 Fm(σi(f(x)))

r
dx− 1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx

∣∣∣∣ .
The second term on the right-hand side tends to 0 as n → ∞ because {An}n ∼σ f and
Fm ∈ Cc(R). The third term on the right-hand side tends to 0 as m → ∞ by the domi-
nated convergence theorem since Fm → F pointwise and the convergence is dominated by
‖Fm − F‖∞ ≤ 2‖F‖∞. Finally, considering that Fm = F on [0,m], the first term on the
right-hand side satisfies∣∣∣∣∣∣ 1

dn

dn∑
j=1

F (σj(An))− 1

dn

dn∑
j=1

Fm(σj(An))

∣∣∣∣∣∣
≤ 2‖F‖∞

#{j ∈ {1, . . . , dn} : σj(An) > m}
dn

.

Since {An}n is s.u. by Proposition 2.20, we have

lim
m→∞

lim sup
n→∞

#{j ∈ {1, . . . , dn} : σj(An) > m}
dn

= 0

by Proposition 2.18. Hence, passing first to the lim supn→∞ and then to the limm→∞ in
(2.16), we obtain

lim
n→∞

∣∣∣∣∣∣ 1

dn

dn∑
j=1

F (σj(An))− 1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx

∣∣∣∣∣∣ = 0,
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as desired.
As a consequence of Lemma 2.31 and the definitions of pϕa.c.s. and pϕmeasure, we immediately

obtain the following theorem.
THEOREM 2.32. If {An}n ∼σ f , then pϕa.c.s.({An}n) = pϕmeasure(f) for every bounded

continuous function ϕ : [0,∞)→ [0,∞).

2.5.3. The a.c.s. tools for computing singular value and eigenvalue distributions.
The importance of the a.c.s. notion resides in Theorems 2.33 and 2.34, for which we refer the
reader to [55, Theorems 3.1 and 3.2].

THEOREM 2.33. Let {An}n, {Bn,m}n be sequences of matrices and f, fm :D→Cr×r
be measurable functions defined on a set D ⊂ Rk with 0 < µk(D) <∞. Assume that:
1. {Bn,m}n ∼σ fm for every m;
2. {Bn,m}n

a.c.s.−→ {An}n;
3. fm → f in measure.
Then {An}n ∼σ f .

THEOREM 2.34. Let {An}n, {Bn,m}n be sequences of Hermitian matrices, and let
f, fm : D → Cr×r be measurable functions defined on a set D ⊂ Rk with 0 < µk(D) <∞.
Assume that:
1. {Bn,m}n ∼λ fm for every m;
2. {Bn,m}n

a.c.s.−→ {An}n;
3. fm → f in measure.
Then {An}n ∼λ f .

REMARK 2.35. Let {An}n and {Bn}n be sequences of matrices with An and Bn of size
dn, and suppose that da.c.s.({An}n, {Bn}n) = 0 (which is equivalent to {An − Bn}n ∼σ 0
by Theorem 2.30). By Theorems 2.33 and 2.34,
• {An}n ∼σ f ⇐⇒ {Bn}n ∼σ f ;
• if the matrices An and Bn are Hermitian, then {An}n ∼λ f ⇐⇒ {Bn}n ∼λ f .

2.5.4. The a.c.s. algebra. Theorem 2.36 collects important algebraic properties pos-
sessed by the a.c.s. For the proof, we refer the reader to [55, Theorem 2.3].

THEOREM 2.36. Let {An}n, {A′n}n, {Bn,m}n, {B′n,m}n be sequences of matrices such
that {Bn,m}n

a.c.s.−→ {An}n and {B′n,m}n
a.c.s.−→ {A′n}n. Then, the following properties hold.

1. {B∗n,m}n
a.c.s.−→ {A∗n}n.

2. {αBn,m + βB′n,m}n
a.c.s.−→ {αAn + βA′n}n for all α, β ∈ C.

3. If {An}n, {A′n}n are s.u., then {Bn,mB′n,m}n
a.c.s.−→ {AnA′n}n.

4. If {Cn}n is s.u., then {Bn,mCn}n
a.c.s.−→ {AnCn}n.

Another important algebraic property of a.c.s. is stated in the next theorem [49, Lemma 1].
THEOREM 2.37. Let s ∈ N, let {An = [An,ij ]

s
i,j=1}n and {B(m)

n = [B
(m)
n,ij ]

s
i,j=1}n be

sequences of block matrices, and suppose that

{B(m)
n,ij}n

a.c.s.−→ {An,ij}n, i, j = 1, . . . , s.

Then {B(m)
n }n

a.c.s.−→ {An}n.

2.5.5. A criterion to identify a.c.s. In practical applications, it often happens that a
sequence of sequences of matrices {{Bn,m}n}m is given together with another sequence of
matrices {An}n, and one would like to show that {Bn,m}n

a.c.s.−→ {An}n without resorting
to Definition 2.29. A way for solving this problem consists in choosing a suitable gauge
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function ϕ and proving that dϕa.c.s.({Bn,m}n, {An}n) → 0 as m → ∞. Another criterion is
provided in the next theorem [50, Corollary 5.3].

THEOREM 2.38. Let {An}n, {Bn,m}n be sequences of matrices with An, Bn,m of size
dn, and let 1 ≤ p <∞. Suppose that for every m there exists nm such that, for n ≥ nm,

‖An −Bn,m‖pp ≤ ε(m,n)dn,

where lim
m→∞

lim sup
n→∞

ε(m,n) = 0. Then {Bn,m}n
a.c.s.−→ {An}n.

2.6. Block Toeplitz matrices. A matrix of the form

[Ai−j ]
n
i,j=1 =



A0 A−1 · · · · · · A−(n−1)

A1
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . A−1

An−1 · · · · · · A1 A0


∈ Csn×sn,

with blocks Ak ∈ Cs×s, for k = −(n− 1), . . . , n− 1, is called an s-block Toeplitz matrix. If
s = 1, it is simply referred to as a Toeplitz matrix. Given a function f ∈ L1([−π, π], s), its
Fourier coefficients are denoted by

fk =
1

2π

∫ π

−π
f(θ)e−ikθdθ ∈ Cs×s, k ∈ Z,

where the integrals are computed componentwise. The nth (s-block) Toeplitz matrix associated
with f is defined as

Tn(f) = [fi−j ]
n
i,j=1 ∈ Csn×sn.

We call {Tn(f)}n the (s-block) Toeplitz sequence associated with f , which in turn is called
the generating function of {Tn(f)}n.

For each fixed s, n ∈ N, the map Tn(·) : L1([−π, π], s)→ Csn×sn is linear, i.e.,

(2.17) Tn(αf + βg) = αTn(f) + βTn(g), α, β ∈ C, f, g ∈ L1([−π, π], s).

Moreover, it is clear from the definition that Tn(Is) = Isn. If f ∈ L1([−π, π], s), let f∗ be
its conjugate transpose. It is not difficult to show that

(2.18) Tn(f)∗ = Tn(f∗), f ∈ L1([−π, π], s), s, n ∈ N.

In particular, if f is Hermitian a.e., then the matrices Tn(f) are Hermitian.
Theorem 2.39 is a fundamental result about block Toeplitz matrices. It provides the

singular value distribution of block Toeplitz sequences generated by a matrix-valued function
f ∈ L1([−π, π], s) and the spectral distribution of block Toeplitz sequences generated by a
Hermitian matrix-valued function f ∈ L1([−π, π], s). For the eigenvalues it goes back to
Szegő [59], and for the singular values it was established by Avram [2] and Parter [64]. They as-
sumed that f ∈ L∞([−π, π], s) and s = 1; see [23, Section 5] and [24, Section 10.14] for more
on the subject in the case of L∞ generating functions. The extension to f ∈ L1([−π, π], s)
with s = 1 was performed by Tyrtyshnikov and Zamarashkin [82, 83, 84], and the final
generalization to f ∈ L1([−π, π], s) with s ≥ 1 is due to Tilli [80]. We also refer the reader
to [50, Section 6.5] for a proof of Theorem 2.39 based on the notion of approximating classes
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of sequences; the proof in [50, Section 6.5] is made only for s = 1, but the argument is general
and can be extended to matrix-valued generating functions.

THEOREM 2.39. If f ∈ L1([−π, π], s), then {Tn(f)}n ∼σ f . If moreover f is Hermitian
a.e., then {Tn(f)}n ∼λ f .

Important inequalities involving Toeplitz matrices and Schatten p-norms originally ap-
peared in [77, Corollary 4.2]. They have been generalized to block Toeplitz matrices in [74,
Corollary 3.5]. We report them in the next theorem for future use.

THEOREM 2.40. Let f ∈ Lp([−π, π], s) and n ∈ N. Then, using the natural convention
1/∞ = 0, the inequality ‖Tn(f)‖p ≤ (n/2π)

1/p‖f‖Lp holds for all p ∈ [1,∞].
The next theorem shows that the product of block Toeplitz matrices generated by L∞

functions is “close” to the block Toeplitz matrix generated by the product of the generating
functions. For the corresponding proof, see [55, Theorem 2.5].

THEOREM 2.41. Let fi ∈ L∞([−π, π], s), for i = 1, . . . , q. Then,

lim
n→∞

∥∥∏q
i=1 Tn(fi)− Tn

(∏q
i=1 fi

)∥∥
1

n
= 0.

We end this section with a result highlighting the connection between block Toeplitz
matrices and block matrices with block Toeplitz blocks. It generalizes [49, Lemma 3]. Recall
that Πn,s,r denotes the special permutation matrix (2.1).

THEOREM 2.42. Let n ∈ N, let fij : [−π, π] → Cr×r be in L1([−π, π], r), for
i, j = 1, . . . , s, and set f = [fij ]

s
i,j=1. The block matrix Tn = [Tn(fij)]

s
i,j=1 is similar via

the permutation (2.1) to the block Toeplitz matrix Tn(f), that is, Πn,s,rTnΠT
n,s,r = Tn(f).

Proof. Since Tn =
∑s
i,j=1E

(s)
ij ⊗ Tn(fij) and Tn(f) =

∑s
i,j=1 Tn(E

(s)
ij ⊗ fij) by the

linearity of the map Tn(·), it is enough to show that

Πn,s,r(E ⊗ Tn(g))ΠT
n,s,r = Tn(E ⊗ g), ∀ g ∈ L1([−π, π], r), ∀E ∈ Cs×s.

By the properties of tensor products (see Section 2.2.2),

Πn,s,r(E ⊗ Tn(g))ΠT
n,s,r

=

[
n∑
k=1

ek ⊗ Is ⊗ eTk ⊗ Ir

]
(E ⊗ Tn(g))

[
n∑
`=1

eT` ⊗ Is ⊗ e` ⊗ Ir

]

=

n∑
k,`=1

(ek ⊗ Is ⊗ eTk ⊗ Ir)(E ⊗ Tn(g))(eT` ⊗ Is ⊗ e` ⊗ Ir)

=

n∑
k,`=1

eke
T
` ⊗ E ⊗ (eTk ⊗ Ir)Tn(g)(e` ⊗ Ir)

=

n∑
k,`=1

eke
T
` ⊗ E ⊗ gk−` =

n∑
k,`=1

eke
T
` ⊗ (E ⊗ g)k−` = Tn(E ⊗ g),

as required.

2.7. Block diagonal sampling matrices. If n ∈ N and a : [0, 1] → Cs×s, then we
define the s-block diagonal sampling matrix Dn(a) as the following block diagonal matrix of
size sn× sn:

Dn(a) = diag
i=1,...,n

a
( i
n

)
=

n⊕
i=1

a
( i
n

)
.
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If (Cs×s)[0,1] denotes the space of all functions a : [0, 1] → Cs×s, then the map
Dn(·) : (Cs×s)[0,1] → Csn×sn is linear, i.e.,

Dn(αa+ βb) = αDn(a) + βDn(b), α, β ∈ C, a, b ∈ (Cs×s)[0,1].

Moreover, it is clear from the definition that Dn(E) = Tn(E) for all constant matrices
E ∈ Cs×s and Dn(a)∗ = Dn(a∗) for all a ∈ (Cs×s)[0,1]. The next result, which is the
version of Theorem 2.42 for block diagonal sampling matrices, highlights the connection
between block diagonal sampling matrices and block matrices with block diagonal sampling
blocks. It is a generalization of [49, Lemma 4].

THEOREM 2.43. Let n ∈ N, let aij : [0, 1] → Cr×r, for i, j = 1, . . . , s, and set
a = [aij ]

s
i,j=1. The block matrix Dn = [Dn(aij)]

s
i,j=1 is similar via the permutation (2.1) to

the block diagonal sampling matrix Dn(a), that is, Πn,s,rDnΠT
n,s,r = Dn(a).

Proof. With obvious adaptations, it is the same as the proof of Theorem 2.42.
Throughout this work, if n, s ∈ N and a : [0, 1]→ C, we denote by Dn,s(a) the s-block

diagonal sampling matrix given by

Dn,s(a) = Dn(aIs).

Note that Dn,1(a) = Dn(a) for every a : [0, 1]→ C.

3. Block locally Toeplitz sequences. The theory of (scalar) LT sequences dates back
to Tilli’s pioneering paper [79]. It was then carried forward in [75, 76], and it was finally
developed in a systematic way in [50, Chapter 7] and [51, Chapter 4]. The theory of block
LT sequences was originally suggested in [76, Section 3.3] and has been recently addressed
in [55] in a systematic way. It should be said, however, that the approach followed in [55],
besides being unnecessarily complicated, is not the “right” generalization to the block case
of the theory of LT sequences presented in [50, 51]. In particular, block LT sequences have
been defined in [55] in terms of Hadamard products, which have now been discovered to be
pointless. In this chapter, we develop the theory of block LT sequences by following the “right”
approach, which allows us to considerably simplify the presentation with respect to [55] and
to extend to the block case several results from [50, 51] that have been ignored in [55]. The
topic is presented here on an abstract level, whereas for motivations and insights we refer the
reader to Chapter 1; see also the introduction of Tilli’s paper [79] and [50, Section 7.1].

3.1. The block LT operator. Similarly to the case of (scalar) LT sequences, the theory
of block LT sequences begins with the definition of block LT operators. The definition given
here is formulated only for scalar functions a : [0, 1] → C. It is formally the same as the
definition of (scalar) LT operator given in [50, Chapter 7], and it is much simpler than the one
given in [55]; in particular, it does not involve any Hadamard product.

DEFINITION 3.1 (Block locally Toeplitz operator). Let m,n, s ∈ N, let a : [0, 1]→ C,
and let f ∈ L1([−π, π], s). The block locally Toeplitz (LT) operator is defined as the following
sn× sn matrix:

LTmn (a, f) = Dm(a)⊗ Tbn/mc(f) ⊕ Os(nmodm)

= diag
i=1,...,m

[
a
( i
m

)
Tbn/mc(f)

]
⊕ Os(nmodm)

=

m⊕
i=1

a
( i
m

)
Tbn/mc(f) ⊕ Os(nmodm).

It is understood that LTmn (a, f) = Osn when n < m and that the term Os(nmodm) is not
present when n is a multiple of m. Moreover, here and in what follows, the tensor product

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

58 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

operation ⊗ is always applied before the direct sum ⊕, exactly as in the case of numbers,
where multiplication is always applied before addition.

In this section we investigate the properties of the block LT operator. We first note that
Definition 3.1 reduces to the definition of (scalar) LT operator [50, Definition 7.1] if s = 1.
Moreover, for every m,n, s ∈ N, every a, b : [0, 1] → C, every f, g ∈ L1([−π, π], s), and
every α, β ∈ C, we have

LTmn (a, f)∗ = LTmn (a, f∗),(3.1)

LTmn (αa+ βb, f) = αLTmn (a, f) + βLTmn (b, f),(3.2)

LTmn (a, αf + βg) = αLTmn (a, f) + βLTmn (a, g),(3.3)

‖LTmn (a, f)‖1 = ‖Dm(a)‖1 ‖Tbn/mc(f)‖1 ≤
1

2π

m∑
i=1

∣∣∣a( i
m

)∣∣∣ ‖f‖L1 bn/mc,(3.4)

where in the last inequality we invoked Theorem 2.40.
REMARK 3.2. Let a : [0, 1] → C be a bounded function, and take any sequence

{fk}k ⊂ L1([−π, π], s) such that fk → f in L1([−π, π], s). By (3.3) and (3.4), for every
k, n,m, we have

‖LTmn (a, f)− LTmn (a, fk)‖1 = ‖LTmn (a, f − fk)‖1 ≤ n‖a‖∞‖f − fk‖L1 .

By Theorem 2.38, this implies that {LTmn (a, fk)}n
a.c.s.−→ {LTmn (a, f)}n as k →∞ for every

m ∈ N.
PROPOSITION 3.3. Let ai : [0, 1] → C be bounded, and let fi ∈ L∞([−π, π], s) for

i = 1, . . . , q. Then, for every n,m ∈ N,∥∥∥∥ q∏
i=1

LTmn (ai, fi)− LTmn
( q∏
i=1

ai,

q∏
i=1

fi

)∥∥∥∥
1

≤ ε(bn/mc)n,(3.5)

where

ε(k) =

∥∥∥∥ q∏
i=1

ai

∥∥∥∥
∞

∥∥∏q
i=1 Tk(fi)− Tk

(∏q
i=1 fi

)∥∥
1

k

and lim
k→∞

ε(k) = 0 by Theorem 2.41. In particular, for every m ∈ N,

da.c.s.

({ q∏
i=1

LTmn (ai, fi)

}
n

,

{
LTmn

( q∏
i=1

ai,

q∏
i=1

fi

)}
n

)
= 0.(3.6)

Proof. By the properties of tensor products and direct sums, we have∥∥∥∥ q∏
i=1

LTmn (ai, fi)− LTmn
( q∏
i=1

ai,

q∏
i=1

fi

)∥∥∥∥
1

=

∥∥∥∥Dm

( q∏
i=1

ai

)
⊗
( q∏
i=1

Tbn/mc(fi)− Tbn/mc
( q∏
i=1

fi

))
⊕ Os(nmodm)

∥∥∥∥
1

=

∥∥∥∥Dm

( q∏
i=1

ai

)∥∥∥∥
1

∥∥∥∥ q∏
i=1

Tbn/mc(fi)− Tbn/mc
( q∏
i=1

fi

)∥∥∥∥
1

≤ n
∥∥∥∥ q∏
i=1

ai

∥∥∥∥
∞

∥∥∏q
i=1 Tbn/mc(fi)− Tbn/mc

(∏q
i=1 fi

)∥∥
1

bn/mc
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: UNIDIMENSIONAL CASE 59

This proves (3.5). Since ε(k) → 0 as k → ∞ by Theorem 2.41, equation (3.6) follows
immediately from (3.5) and Theorems 2.16 and 2.30.

THEOREM 3.4. Suppose that a(i,j) : [0, 1] → C is Riemann-integrable and that
f (i,j) ∈ L∞([−π, π], s), for i = 1, . . . , p and j = 1, . . . , qi. Then, for every m ∈ N,{ p∑

i=1

qi∏
j=1

LTmn (a(i,j), f (i,j))

}
n

∼σ
p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ),

where

a(i,j)
m (x) =

m∑
k=1

a(i,j)
( k
m

)
χ[ k−1

m , k
m )(x).(3.7)

Proof. By Proposition 3.3 and Remark 2.35, it is enough to show that{ p∑
i=1

LTmn

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

)}
n

∼σ
p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ).

Note that
p∑
i=1

LTmn

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

)

=

( p∑
i=1

Dm

( qi∏
j=1

a(i,j)

)
⊗ Tbn/mc

( qi∏
j=1

f (i,j)

))
⊕ Os(nmodm).(3.8)

Recalling (2.17), for every k = 1, . . . ,m, the kth diagonal block of size sbn/mc of the
matrix (3.8) is given by

p∑
i=1

( qi∏
j=1

a(i,j)
( k
m

))
Tbn/mc

( qi∏
j=1

f (i,j)

)
= Tbn/mc

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

)
.

It follows that the singular values of the matrix (3.8) are

σ`

(
Tbn/mc

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

))
, ` = 1, . . . , s

⌊ n
m

⌋
, k = 1, . . . ,m,

plus further s(nmodm) = o(n) singular values which are equal to 0. Therefore, by The-
orem 2.39, since

∑p
i=1

∏qi
j=1 a

(i,j)( km )f (i,j) ∈ L∞([−π, π], s), for any F ∈ Cc(R), we
have

lim
n→∞

1

sn

sn∑
r=1

F

(
σr

( p∑
i=1

LTmn

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

)))(3.9)

= lim
n→∞

msbn/mc
sn

1

m

m∑
k=1

1

sbn/mc

sbn/mc∑
`=1

F

(
σ`

(
Tbn/mc

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

)))

=
1

m

m∑
k=1

1

2π

∫ π

−π

1

s

s∑
`=1

F

(
σ`

( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)(θ)

))
dθ
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=
1

2π

∫ 1

0

∫ π

−π

1

s

s∑
`=1

F

(
σ`

( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

))
dθdx.

This concludes the proof.
THEOREM 3.5. Suppose that a(i,j) : [0, 1] → C is Riemann-integrable and that

f (i,j) ∈ L∞([−π, π], s), for i = 1, . . . , p and j = 1, . . . , qi. Then, for every m ∈ N,{
<
( p∑
i=1

qi∏
j=1

LTmn (a(i,j), f (i,j))

)}
n

∼λ <
( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

)
,

where a(i,j)
m is defined in (3.7).

Proof. The proof follows the same pattern as the proof of Theorem 3.4. By Proposition 3.3
and Remark 2.35, it is enough to show that{

<
( p∑
i=1

LTmn

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

))}
n

∼λ <
( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

)
.

Note that

<
( p∑
i=1

LTmn

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

))

= <
( p∑
i=1

Dm

( qi∏
j=1

a(i,j)

)
⊗ Tbn/mc

( qi∏
j=1

f (i,j)

))
⊕ Os(nmodm).(3.10)

Recalling (2.17) and (2.18), for every k = 1, . . . ,m, the kth diagonal block of size sbn/mc
of the matrix (3.10) is given by

<
( p∑
i=1

( qi∏
j=1

a(i,j)
( k
m

))
Tbn/mc

( qi∏
j=1

f (i,j)

))
=Tbn/mc

(
<
( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

))
.

It follows that the eigenvalues of the matrix (3.10) are

λ`

(
Tbn/mc

(
<
( p∑
i=1

qi∏
j=1

a(i,j)
( k
m

)
f (i,j)

)))
, ` = 1, . . . , s

⌊ n
m

⌋
, k = 1, . . . ,m,

plus further s(nmodm) = o(n) eigenvalues which are equal to 0. Therefore, by Theorem 2.39,
since <(

∑p
i=1

∏qi
j=1 a

(i,j)( km )f (i,j)) ∈ L∞([−π, π], s), following the same derivation as
in (3.9), we obtain, for any F ∈ Cc(C),

lim
n→∞

1

sn

sn∑
r=1

F

(
λr

(
<
( p∑
i=1

LTmn

( qi∏
j=1

a(i,j),

qi∏
j=1

f (i,j)

))))

=
1

2π

∫ 1

0

∫ π

−π

1

s

s∑
`=1

F

(
λ`

(
<
( p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ)

)))
dθdx.

This concludes the proof.
PROPOSITION 3.6. Let a : [0, 1] → C be a Riemann-integrable function, and let

f ∈ L1([−π, π], s). Then, for every m ∈ N,

{LTmn (a, f)}n ∼σ am(x)f(θ),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: UNIDIMENSIONAL CASE 61

where

am(x) =

m∑
k=1

a
( k
m

)
χ[ k−1

m , k
m )(x).

Proof. Fix m ∈ N, and take any sequence {fk}k ⊂ L∞([−π, π], s) such that fk → f a.e.
and in L1([−π, π], s). We have:
• {LTmn (a, fk)}n

a.c.s.−→ {LTmn (a, f)}n by Remark 3.2;
• {LTmn (a, fk)}n ∼σ am(x)fk(θ) by Theorem 3.4;
• am(x)fk(θ)→ am(x)f(θ) a.e. (and hence also in measure).
We conclude that {LTmn (a, f)}n ∼σ am(x)f(θ) by Theorem 2.33.

3.2. Definition of block LT sequences. The notion of block LT sequences is formalized
in the next definition.

DEFINITION 3.7 (Block locally Toeplitz sequence). Let {An}n be an s-block matrix-
sequence, let a : [0, 1] → C be Riemann-integrable, and f ∈ L1([−π, π], s). We say that
{An}n is an (s-block) locally Toeplitz (LT) sequence with symbol a(x)f(θ), and we write
{An}n ∼LT a(x)f(θ), if {LTmn (a, f)}n

a.c.s.−→ {An}n.
In what follows, unless specified otherwise, whenever we write a relation such as

{An}n ∼LT a(x)f(θ), it is understood that {An}n is an s-block matrix-sequence, that
a : [0, 1]→ C is Riemann-integrable, and that f ∈ L1([−π, π], s), as in Definition 3.7. Note
that Definition 3.7 reduces to the definition of (scalar) LT sequences [50, Definition 7.2] if
s = 1. LT sequences are then special cases of block LT sequences.

3.3. Fundamental examples of block LT sequences. In this section we provide three
fundamental examples of block LT sequences: zero-distributed sequences, sequences of block
diagonal sampling matrices, and block Toeplitz sequences. These may be regarded as the
“building blocks” of the theory of block GLT sequences because from them we can construct
through algebraic operations a lot of other matrix-sequences which will turn out to be block
GLT sequences.

3.3.1. Zero-distributed sequences. We show that any zero-distributed sequence is a
block LT sequence with symbol given by the zero matrix.

THEOREM 3.8. Let {Zn}n be an s-block matrix-sequence. The following are equivalent.
1. {Zn}n ∼σ 0.
2. {Osn}n

a.c.s.−→ {Zn}n.
3. {Zn}n ∼LT Os.

Proof. (1 ⇐⇒ 2) By Theorem 2.30, we have {Osn}n
a.c.s.−→ {Zn}n if and only if

da.c.s.({Osn}n, {Zn}n) = 0 if and only if {Zn}n ∼σ 0.
(2 ⇐⇒ 3) This equivalence follows from Definition 3.7 and the observation that

LTmn (0, Os) = Osn and 0Os = Os.

3.3.2. Sequences of block diagonal sampling matrices. We are going to see in Theo-
rem 3.11 that {Dn,s(a)}n = {Dn(aIs)}n ∼LT a(x)Is whenever a : [0, 1]→ C is Riemann-
integrable. To prove Theorem 3.11 we shall need the following lemmas; cf. [50, Lemmas 5.6
and 7.1].

LEMMA 3.9. Let C be an `× ` matrix and suppose that

‖C‖pp ≤ ε`′,

where p ∈ [1,∞), ε ≥ 0, and `′ ≤ `. Then we can write C in the form

C = R+N, rank(R) ≤ ε
1

p+1 `′, ‖N‖ ≤ ε
1

p+1 .
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LEMMA 3.10. For every m ∈ N, let {x(m, k)}k be a sequence of numbers such that
x(m, k) → x(m) as k → ∞ and x(m) → 0 as m → ∞. Then, there exists a sequence
{m(k)}k ⊆ N such that m(k)→∞ and x(m(k), k)→ 0.

THEOREM 3.11. If a : [0, 1]→ C is Riemann-integrable, then {Dn,s(a)}n ∼LT a(x)Is.
Proof. The proof consists of two steps. We first show that the thesis holds if a is

continuous. Then, by using an approximation argument, we show that it holds even in the case
where a is only supposed to be Riemann-integrable.
Step 1. We prove that if a ∈ C([0, 1]) and ωa(·) is the modulus of continuity of a, then

Dn,s(a) = LTmn (a, Is) +Rn,m +Nn,m,

rank(Rn,m) ≤ sm, ‖Nn,m‖ ≤ ωa
( 1

m
+
m

n

)
.

(3.11)

Since ωa(δ)→ 0 as δ → 0, the convergence {LTmn (a, Is)}n
a.c.s.−→ {Dn,s(a)}n (and hence the

relation {Dn,s(a)}n ∼LT a(x)Is) follows immediately from Definition 2.29 (take nm = m2,
c(m) = 1/m, ω(m) = ωa(2/m)).

The matrix LTmn (a, Is) is the sn× sn block diagonal matrix given by

LTmn (a, Is) = Dm(a)⊗ Isbn/mc ⊕ Os(nmodm).

For i = 1, . . . ,mbn/mc, let k = k(i) be the index in {1, . . . ,m} such that

(k − 1)bn/mc+ 1 ≤ i ≤ kbn/mc.

In other words, k is the index such that the ith s× s diagonal block of LTmn (a, Is) is given by
(LTmn (a, Is))ii = a(k/m)Is. Taking into account that the ith s× s diagonal block of Dn,s(a)
is given by (Dn,s(a))ii = a(i/n)Is, for every i = 1, . . . ,mbn/mc, we obtain

‖(LTmn (a, Is))ii − (Dn,s(a))ii‖ =

∥∥∥∥a( km)Is − a( in)Is
∥∥∥∥

=

∣∣∣∣a( km)− a( in)
∣∣∣∣ ≤ ωa( 1

m
+
m

n

)
,

where the last inequality follows from the fact that∣∣∣∣ km − i

n

∣∣∣∣ ≤ k

m
− (k − 1)bn/mc

n
≤ k

m
− (k − 1)(n/m− 1)

n
=

1

m
+
k − 1

n
≤ 1

m
+
m

n
.

Therefore, if D̃n,s,m(a) and D̂n,s,m(a) are the sn × sn block diagonal matrices whose ith
s× s diagonal blocks (D̃n,s,m(a))ii and (D̂n,s,m(a))ii are defined by

(D̃n,s,m(a))ii =

{
a(i/n)Is, if i ≤ mbn/mc,
Os, otherwise,

(D̂n,s,m(a))ii =

{
a(i/n)Is, if i > mbn/mc,
Os, otherwise,

then Dn,s(a) = D̃n,s,m(a) + D̂n,s,m(a) and

Dn,s(a)− LTmn (a, Is) = D̂n,s,m(a) + D̃n,s,m(a)− LTmn (a, Is) = Rn,m +Nn,m,
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where Rn,m = D̂n,s,m(a) and Nn,m = D̃n,s,m(a)− LTmn (a, Is) satisfy

rank(Rn,m) ≤ s(nmodm) < sm,

‖Nn,m‖ = max
i=1,...,mbn/mc

‖(LTmn (a, Is))ii − (Dn,s(a))ii‖ ≤ ωa
( 1

m
+
m

n

)
.

This completes the proof of (3.11).
Step 2. Let a : [0, 1] → C be any Riemann-integrable function. Take any sequence
of continuous functions am : [0, 1] → C such that am → a in L1([0, 1]). By Step 1,
{Dn,s(am)}n ∼LT am(x)Is. Hence, {LT kn (am, Is)}n

a.c.s.−→ {Dn,s(am)}n as k → ∞, i.e.,
for every m, k there is nm,k such that, for n ≥ nm,k,

Dn,s(am) = LT kn (am, Is) +Rn,m,k +Nn,m,k,

rank(Rn,m,k) ≤ c(m, k)n, ‖Nn,m,k‖ ≤ ω(m, k),

where limk→∞ c(m, k) = limk→∞ ω(m, k) = 0. Moreover, we have the convergence
{Dn,s(am)}n

a.c.s.−→ {Dn,s(a)}n. Indeed,

‖Dn,s(a)−Dn,s(am)‖1 = s

n∑
j=1

∣∣∣∣a( jn)− am( jn)
∣∣∣∣ = ε(m,n)n,

where

(3.12) ε(m,n) =
s

n

n∑
j=1

∣∣∣∣a( jn)− am( jn)
∣∣∣∣ .

By the Riemann-integrability of |a− am| and the fact that am → a in L1([0, 1]), the quantity
ε(m,n) satisfies

lim
m→∞

lim
n→∞

ε(m,n) = s lim
m→∞

∫ 1

0

|a(x)− am(x)|dx = s lim
m→∞

‖a− am‖L1 = 0.

By Theorem 2.38, this implies that {Dn,s(am)}n
a.c.s.−→ {Dn,s(a)}n. Thus, for every m there

exists nm such that, for n ≥ nm,

Dn,s(a) = Dn,s(am) +Rn,m +Nn,m,

rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. It follows that, for every m, k and every
n ≥ max(nm, nm,k),

Dn,s(a) = LT kn (a, Is) +
[
LT kn (am, Is)− LT kn (a, Is)

]
+ (Rn,m +Rn,m,k) + (Nn,m +Nn,m,k),

rank(Rn,m +Rn,m,k) ≤ (c(m) + c(m, k))n,

‖Nn,m +Nn,m,k‖ ≤ ω(m) + ω(m, k),

‖LT kn (am, Is)− LT kn (a, Is)‖1 ≤
sn

k

k∑
j=1

∣∣∣∣a( jk)− am( jk)
∣∣∣∣ = ε(m, k)n,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

64 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

where the last inequality follows from (3.2)–(3.4) and ε(m, k) is defined as in (3.12) with “n”
replaced by “k”. Let {m(k)}k be a sequence such that m(k)→∞ and

lim
k→∞

ε(m(k), k) = lim
k→∞

c(m(k), k) = lim
k→∞

ω(m(k), k) = 0.

Note that such a sequence exists by Lemma 3.10 (apply the lemma with x(m, k) = ε(m, k) +
c(m, k) + ω(m, k)). Then, for every k and every n ≥ max(nm(k), nm(k),k),

Dn,s(a) = LT kn (a, Is) +
[
LT kn (am(k), Is)− LT kn (a, Is)

]
+ (Rn,m(k) +Rn,m(k),k) + (Nn,m(k) +Nn,m(k),k),

rank(Rn,m(k) +Rn,m(k),k) ≤ (c(m(k)) + c(m(k), k))n,

‖Nn,m(k) +Nn,m(k),k‖ ≤ ω(m(k)) + ω(m(k), k),

‖LT kn (am(k), Is)− LT kn (a, Is)‖1 ≤ ε(m(k), k)n.

The application of Lemma 3.9 allows one to decompose LT kn (am(k), Is) − LT kn (a, Is) as
the sum of a small-rank term R̂n,k, with the rank bounded by

√
ε(m(k), k)n, plus a small-

norm term N̂n,k with norm bounded by
√
ε(m(k), k). This shows that {LT kn (a, Is)}n

a.c.s.−→
{Dn,s(a)}n, hence {Dn,s(a)}n ∼LT a(x)Is.

3.3.3. Block Toeplitz sequences.
THEOREM 3.12. If f ∈ L1([−π, π], s), then {Tn(f)}n ∼LT f(θ).
Proof. The proof consists of two steps. We first show that the thesis holds if f is a

matrix-valued trigonometric polynomial. Then, by using an approximation argument, we
prove the theorem under the sole assumption that f ∈ L1([−π, π], s).
Step 1. We show that if f is a matrix-valued trigonometric polynomial of degree q, then

(3.13) Tn(f) = LTmn (1, f) +Rn,m, rank(Rn,m) ≤ s(2q + 1)m.

Once this is done, the convergence {LTmn (1, f)}n
a.c.s.−→ {Tn(f)}n (and hence the rela-

tion {Tn(f)}n ∼LT f(θ)) follows immediately from Definition 2.29 (take nm = m2,
c(m) = (2q + 1)/m, ω(m) = 0).

Since f has degree q, we can write f(θ) =
∑q
j=−q fj e

ijθ. Moreover, the matrix
LTmn (1, f) is given by

LTmn (1, f) = Im ⊗ Tbn/mc(f) ⊕ Os(nmodm).

A direct comparison between the matrix Tn(f) and the matrix LTmn (1, f) shows that if
n/m ≥ 2q + 1, then the number of nonzero rows of the difference Tn(f)− LTmn (1, f) is at
most s(2qm− q + (nmodm)). Hence, if n/m ≥ 2q + 1,

Tn(f) = LTmn (1, f) +Rn,m, rank(Rn,m) ≤ s(2qm− q + (nmodm)) ≤ s(2q + 1)m.

This completes the proof of (3.13) for n/m ≥ 2q + 1, but it is clear that (3.13) holds even if
n/m < 2q + 1 because in this case s(2q + 1)m is greater than the matrix size sn.
Step 2. Let f ∈ L1([−π, π], s). Since the set of trigonometric polynomials is dense in
L1([−π, π]) (see, e.g., [50, Lemma 2.2]), there is a sequence of matrix-valued trigonomet-
ric polynomials fm : [−π, π] → Cs×s such that fm → f in L1([−π, π], s). By Step 1,
{Tn(fm)}n ∼LT fm(θ). Hence, {LT kn (1, fm)}n

a.c.s.−→ {Tn(fm)}n as k → ∞, i.e., for every
m, k there is nm,k such that, for n ≥ nm,k,

Tn(fm) = LT kn (1, fm) +Rn,m,k +Nn,m,k,

rank(Rn,m,k) ≤ c(m, k)n, ‖Nn,m,k‖ ≤ ω(m, k),
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where limk→∞ c(m, k) = limk→∞ ω(m, k) = 0. Moreover, by Theorem 2.40,

‖Tn(f)− Tn(fm)‖1 = ‖Tn(f − fm)‖1 ≤ n‖f − fm‖L1 ,

and so {Tn(fm)}n
a.c.s.−→ {Tn(f)}n by Theorem 2.38. Thus, for every m there exists nm such

that, for n ≥ nm,

Tn(f) = Tn(fm) +Rn,m +Nn,m,

rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. It follows that, for every m, k and every
n ≥ max(nm, nm,k),

Tn(f) = LT kn (1, f) +
[
LT kn (1, fm)− LT kn (1, f)

]
+ (Rn,m +Rn,m,k) + (Nn,m +Nn,m,k),

rank(Rn,m +Rn,m,k) ≤ (c(m) + c(m, k))n,

‖Nn,m +Nn,m,k‖ ≤ ω(m) + ω(m, k),

‖LT kn (1, fm)− LT kn (1, f)‖1 = ‖LT kn (1, fm − f)‖1 ≤ n‖fm − f‖L1 ,

where the last inequality follows from (3.4). Let {m(k)}k be a sequence such thatm(k)→∞
and

lim
k→∞

c(m(k), k) = lim
k→∞

ω(m(k), k) = 0.

Note that such a sequence exists by Lemma 3.10 (apply the lemma with x(m, k) = c(m, k) +
ω(m, k)). Then, for every k and every n ≥ max(nm(k), nm(k),k),

Tn(f) = LT kn (1, f) +
[
LT kn (1, fm(k))− LT kn (1, f)

]
+ (Rn,m(k) +Rn,m(k),k) + (Nn,m(k) +Nn,m(k),k),

rank(Rn,m(k) +Rn,m(k),k) ≤ (c(m(k)) + c(m(k), k))n,

‖Nn,m(k) +Nn,m(k),k‖ ≤ ω(m(k)) + ω(m(k), k),

‖LT kn (1, fm(k))− LT kn (1, f)‖1 ≤ n‖fm(k) − f‖L1 .

The application of Lemma 3.9 allows one to decompose LT kn (1, fm(k))− LT kn (1, f) as the
sum of a small-rank term R̂n,k, with the rank bounded by

√
‖fm(k) − f‖L1 n, plus a

small-norm term N̂n,k with norm bounded by
√
‖fm(k) − f‖L1 . This shows that

{LT kn (1, f)}n
a.c.s.−→ {Tn(f)}n, hence {Tn(f)}n ∼LT f(θ).

3.4. Singular value and spectral distribution of sums of products of block LT se-
quences. The main results of this section are Theorems 3.14 and 3.15. In order to prove them,
we shall need the following lemma.

LEMMA 3.13. If {An}n ∼LT a(x)f(θ), then {An}n ∼σ a(x)f(θ) and {An}n is s.u.
Proof. We have:

• {LTmn (a, f)}n
a.c.s.−→ {An}n by definition of block LT sequences;

• {LTmn (a, f)}n ∼σ am(x)f(θ) with am(x) =
∑m
k=1 a( km )χ[ k−1

m , k
m )(x) by Proposition 3.6;

• am(x)f(θ) → a(x)f(θ) a.e. (and hence also in measure) by Lemma 2.7 because a(x) is
Riemann-integrable.
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We conclude that {An}n ∼σ a(x)f(θ) by Theorem 2.33, and so {An}n is s.u. by Proposi-
tion 2.20.

THEOREM 3.14. If {A(i,j)
n }n ∼LT a

(i,j)(x)f (i,j)(θ), for i = 1, . . . , p and j = 1, . . . , qi,
then { p∑

i=1

qi∏
j=1

A(i,j)
n

}
n

∼σ
p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ).

Proof. Let

An =

p∑
i=1

qi∏
j=1

A(i,j)
n , An,m =

p∑
i=1

qi∏
j=1

LTmn (a(i,j), f (i,j)),

κ(x, θ) =

p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ), κm(x, θ) =

p∑
i=1

qi∏
j=1

a(i,j)
m (x)f (i,j)(θ),

where

a(i,j)
m (x) =

m∑
k=1

a(i,j)
( k
m

)
χ[ k−1

m , k
m )(x).

Since {LTmn (a(i,j), f (i,j))}n
a.c.s.−→ {A(i,j)

n }n by definition of block LT sequences, we have:
• {An,m}n

a.c.s.−→ {An}n by Lemma 3.13, Proposition 2.19, and Theorem 2.36;
• {An,m}n ∼σ κm(x, θ) by Theorem 3.4;
• κm(x, θ)→ κ(x, θ) a.e. (and hence also in measure) by Lemma 2.7 because each a(i,j)(x)

is Riemann-integrable.
We conclude that {An}n ∼σ κ(x, θ) by Theorem 2.33.

THEOREM 3.15. If {A(i,j)
n }n ∼LT a

(i,j)(x)f (i,j)(θ), for i = 1, . . . , p and j = 1, . . . , qi,
then {

<
( p∑
i=1

qi∏
j=1

A(i,j)
n

)}
n

∼λ <
( p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ)

)
.

Proof. The proof is essentially the same as the proof of Theorem 3.14. Define the
matrices An, An,m and the functions κ(x, θ), κm(x, θ) as in the proof of Theorem 3.14. Since
{LTmn (a(i,j), f (i,j))}n

a.c.s.−→ {A(i,j)
n }n by definition of block LT sequences, we have:

• {<(An,m)}n
a.c.s.−→ {<(An)}n by Lemma 3.13, Proposition 2.19, and Theorem 2.36;

• {<(An,m)}n ∼λ <(κm(x, θ)) by Theorem 3.5;
• <(κm(x, θ))→ <(κ(x, θ)) a.e. (and hence also in measure) by Lemma 2.7 because each
a(i,j)(x) is Riemann-integrable.

We conclude that {<(An)}n ∼λ <(κ(x, θ)) by Theorem 2.34.

3.5. Algebraic properties of block LT sequences. Proposition 3.16 collects the most
elementary algebraic properties of block LT sequences, which follow from Definition 3.7, the
properties of the block LT operator (see (3.1)–(3.3)), and Theorem 2.36.

PROPOSITION 3.16. The following properties hold.
• If {An}n ∼LT a(x)f(θ), then {A∗n}n ∼LT a(x) f(θ)∗ = (a(x)f(θ))∗.
• If {An}n ∼LT a(x)f(θ), then {αAn}n ∼LT αa(x)f(θ) for all α ∈ C.
• If {A(i)

n }n ∼LT a(x)fi(θ), i = 1, . . . , r, then {
∑r
i=1A

(i)
n }n ∼LT a(x)

∑r
i=1 fi(θ).
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• If {A(i)
n }n ∼LT ai(x)f(θ), i = 1, . . . , r, then {

∑r
i=1A

(i)
n }n ∼LT

∑r
i=1 ai(x)f(θ).

In Theorem 3.17, we show, under mild assumptions, that the product of block LT se-
quences is again a block LT sequence with symbol given by the product of the symbols.

THEOREM 3.17. Suppose that {An}n ∼LT a(x)f(θ) and {Ãn}n ∼LT ã(x)f̃(θ), where
f ∈ Lp([−π, π], s), f̃ ∈ Lq([−π, π], s), and 1 ≤ p, q ≤ ∞ are conjugate exponents. Then

{AnÃn}n ∼LT a(x)ã(x)f(θ)f̃(θ).

Proof. By Lemma 3.13, every block LT sequence is s.u., so in particular {An}n and
{Ãn}n are s.u. Since, by definition of block LT sequences,

{LTmn (a, f)}n
a.c.s.−→ {An}n, {LTmn (ã, f̃)}n

a.c.s.−→ {Ãn}n,

Theorem 2.36 yields

{LTmn (a, f)LTmn (ã, f̃)}n
a.c.s.−→ {AnÃn}n.

Using Proposition 3.3, especially (3.6), we obtain

{LTmn (aã, f f̃)}n
a.c.s.−→ {AnÃn}n,

hence {AnÃn}n ∼LT a(x)ã(x)f(θ)f̃(θ).
As a consequence of Theorems 3.11, 3.12, and 3.17, we immediately obtain the following

result.
THEOREM 3.18. If a : [0, 1]→ C is Riemann-integrable and f ∈ L1([−π, π], s), then

{Dn,s(a)Tn(f)}n ∼LT a(x)f(θ).

3.6. Characterizations of block LT sequences. Theorem 3.18 shows that, for any
a, f as in Definition 3.7, there always exists an s-block matrix-sequence {An}n such that
{An}n ∼LT a(x)f(θ). Indeed, it suffices to take An = Dn,s(a)Tn(f). Theorem 3.19 shows
that the sequences of the form {Dn,s(a)Tn(f)}n play a central role in the world of block LT
sequences. Indeed,

{An}n ∼LT a(x)f(θ) ⇐⇒ da.c.s.({An}n, {Dn,s(a)Tn(f)}n) = 0.

THEOREM 3.19. Let {An}n be an s-block matrix-sequence, let a : [0, 1] → C be
a Riemann-integrable function, and let f ∈ L1([−π, π], s). The following conditions are
equivalent.
1. {An}n ∼LT a(x)f(θ).
2. For all sequences {am}m, {fm}m, {{A(m)

n }n}m such that
• am : [0, 1]→ C is Riemann-integrable and fm ∈ L1([−π, π], s),
• am(x)fm(θ)→ a(x)f(θ) in measure,
• {A(m)

n }n ∼LT am(x)fm(θ),
we have {A(m)

n }n
a.c.s.−→ {An}n.

3. There exist sequences {am}m, {fm}m such that
• am : [0, 1]→ C is continuous, ‖am‖∞ ≤ ‖a‖L∞ for all m, and am → a a.e.,
• fm : [−π, π] → Cs×s is a matrix-valued trigonometric polynomial, ‖(fm)αβ‖∞ ≤

ess sup[−π,π]|fαβ | for all m and all α, β = 1, . . . , s, and fm → f a.e. and in
L1([−π, π], s),
• {Dn,s(am)Tn(fm)}n

a.c.s.−→ {An}n.
4. There exist sequences {am}m, {fm}m, {{A(m)

n }n}m such that
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• am : [0, 1]→ C is Riemann-integrable and fm ∈ L1([−π, π], s),
• am(x)fm(θ)→ a(x)f(θ) in measure,
• {A(m)

n }n ∼LT am(x)fm(θ) and {A(m)
n }n

a.c.s.−→ {An}n.
5. {Dn,s(a)Tn(f)}n

a.c.s.−→ {An}n.
6. An = Dn,s(a)Tn(f) + Zn, for every n, where {Zn}n is zero-distributed.

Proof. (1 =⇒ 2) Suppose that {An}n ∼LT a(x)f(θ), and let {am}m, {fm}m,
{{A(m)

n }n}m be sequences with the properties specified in item 2. By Theorems 2.32 and 3.14,
we have

da.c.s.({A(m)
n }n, {An}n) = pa.c.s.({A(m)

n −An}n)

= pmeasure(am(x)fm(θ)− a(x)f(θ))

= dmeasure(am(x)fm(θ), a(x)f(θ)),

which tends to 0 as m→∞ because am(x)fm(θ)→ a(x)f(θ) in measure.
(2 =⇒ 3) Since any Riemann-integrable function is bounded by definition, we have

a ∈ L∞([0, 1]). Hence, by [50, Theorem 2.2], there exists a sequence of continuous functions
am : [0, 1]→ C such that ‖am‖∞ ≤ ‖a‖L∞ for allm and am → a a.e. The sequence {am}m
satisfies the properties in item 3. Note also that am → a in L1([0, 1]) by the dominated
convergence theorem.

Since f ∈ L1([−π, π], s), by [50, Lemma 2.7], there exists a sequence of matrix-valued
trigonometric polynomials fm : [−π, π]→ Cs×s such that ‖(fm)αβ‖∞ ≤ ess sup[−π,π]|fαβ |
for all m and all α, β = 1, . . . , s, and fm → f a.e. and in L1([−π, π], s). The sequence
{fm}m satisfies the properties in item 3.

Since am(x)fm(θ)→ a(x)f(θ) in L1([0, 1]× [−π, π], s) (and hence also in measure),
item 2 and Theorem 3.18 imply that {Dn,s(am)Tn(fm)}n

a.c.s.−→ {An}n, and the proof is
complete.

(3 =⇒ 4) Simply note that, under the assumptions in item 3, am(x)fm(θ)→ a(x)f(θ)
in measure, and {Dn,s(am)Tn(fm)}n ∼LT am(x)fm(θ) by Theorem 3.18.

(4 =⇒ 1) Let {Bn}n ∼LT a(x)f(θ); we can take, e.g., Bn = Dn,s(a)Tn(f) thanks to
Theorem 3.18. By Theorems 2.32 and 3.14,

da.c.s.({A(m)
n }n, {Bn}n) = pa.c.s.({A(m)

n −Bn}n)

= pmeasure(am(x)fm(θ)− a(x)f(θ))

= dmeasure(am(x)fm(θ), a(x)f(θ)),

which tends to 0 asm→∞ because am(x)fm(θ)→ a(x)f(θ) in measure. As a consequence,
{A(m)

n }n
a.c.s.−→ {Bn}n, and since {A(m)

n }n
a.c.s.−→ {An}n by assumption, we conclude that

da.c.s.({An}n, {Bn}n) = 0. Considering that {LTmn (a, f)}n
a.c.s.−→ {Bn}n, we infer that

{LTmn (a, f)}n
a.c.s.−→ {An}n, i.e., {An}n ∼LT a(x)f(θ).

(5 ⇐⇒ 6) Item 5 is equivalent to da.c.s.({An}n, {Dn,s(a)Tn(f)}n) = 0, which, by
Theorem 2.30, is equivalent to {An −Dn,s(a)Tn(f)}n ∼σ 0.

(2 =⇒ 5) Obvious (take am = a, fm = f and A(m)
n = Dn,s(a)Tn(f)).

(5 =⇒ 4) Obvious (take am = a, fm = f and A(m)
n = Dn,s(a)Tn(f)).

4. Block generalized locally Toeplitz sequences. In this chapter we develop the theory
of block GLT sequences by correcting and extending the results in [76, Section 3.3] and [56].
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4.1. Equivalent definitions of block GLT sequences. Block GLT sequences can be
defined in several different ways. We begin with what we may call the “classical definition”.

DEFINITION 4.1 (Block generalized locally Toeplitz sequences). Let {An}n be an s-
block matrix-sequence, and let κ : [0, 1] × [−π, π] → Cs×s be measurable. We say that
{An}n is an (s-block) generalized locally Toeplitz (GLT) sequence with symbol κ, and we
write {An}n ∼GLT κ, if the following condition is met.

For every m ∈ N there exists a finite number of s-block LT sequences
{A(i,j)

n,m}n ∼LT a
(i,j)
m (x)f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i, such

that:
•
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)→ κ(x, θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.

In what follows, unless specified otherwise, whenever we write a relation such as
{An}n ∼GLT κ, it is understood that {An}n is an s-block matrix-sequence and κ : [0, 1] ×
[−π, π]→ Cs×s is measurable, as in Definition 4.1. In the case s = 1, it can be shown that
Definition 4.1 is equivalent to the definition of (scalar) GLT sequences given in [50, Chapter 8],
that is, the set of GLT sequences defined here for s = 1 is the same as the set of GLT sequences
defined in [50, Chapter 8].

REMARK 4.2. It is clear that any sum of products of s-block LT sequences is an s-block
GLT sequence. More precisely, if {A(i,j)

n }n ∼LT a(i,j)(x)f (i,j)(θ), for i = 1, . . . , p and
j = 1, . . . , qi, then { p∑

i=1

qi∏
j=1

A(i,j)
n

}
n

∼GLT

p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ).

REMARK 4.3. If a : [0, 1]→ Cs×s, then

Dn(a) =

s∑
i,j=1

Dn(aijE
(s)
ij ) =

s∑
i,j=1

Dn(aijIs)Dn(E
(s)
ij ) =

s∑
i,j=1

Dn,s(aij)Tn(E
(s)
ij ).

Hence, by Remark 4.2 and Theorem 3.18, if a is Riemann-integrable, then

{Dn(a)}n ∼GLT

s∑
i,j=1

aij(x)E
(s)
ij = a(x).

REMARK 4.4. Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ. Then, {A∗n}n ∼GLT κ∗ and
{αAn+βBn}n ∼GLT ακ+βξ for all α, β ∈ C. This follows immediately from Definition 4.1,
Proposition 3.16, and Theorem 2.36.

In the remainder of this section, we present another equivalent definition of block GLT
sequences, which is illuminating for many purposes. Let

E (s) = {{An}n : {An}n is an s-block matrix-sequence},
M(s) = {κ : [0, 1]× [−π, π]→ Cs×s : κ is measurable},

E (s) ×M(s) = {({An}n, κ) : {An}n ∈ E (s), κ ∈M(s)}.

We make the following observations.
• E (s) is a *-algebra with respect to the natural pointwise operations (namely,
{An}∗n = {A∗n}n, α{An}n + β{Bn}n = {αAn + βBn}n, {An}n{Bn}n = {AnBn}n),
and it is also a pseudometric space with respect to the pseudometric da.c.s. inducing the a.c.s.
topology τa.c.s..

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

70 G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO

• M(s) is a *-algebra with respect to the natural pointwise operations, and it is also a pseu-
dometric space with respect to the pseudometric dmeasure inducing the topology τmeasure of
convergence in measure.

• E (s) × M(s) is a *-algebra with respect to the natural pointwise operations (namely,
({An}n, κ)∗ = ({A∗n}n, κ∗), α({An}n, κ) +β({Bn}n, ξ) = ({αAn +βBn}n, ακ+βξ),
({An}n, κ)({Bn}n, ξ) = ({AnBn}n, κξ)), and it is also a pseudometric space with respect
to the product pseudometric

(da.c.s. × dmeasure)(({An}n, κ), ({Bn}n, ξ)) = da.c.s.({An}n, {Bn}n) + dmeasure(κ, ξ)

inducing the product topology τa.c.s. × τmeasure.
Let A(s) be the *-subalgebra of E (s) ×M(s) generated by the set of “s-block LT pairs”

L(s) = {({An}n, a(x)f(θ)) ∈ E (s) ×M(s) : {An}n ∼LT a(x)f(θ)}.

Using Proposition 3.16, it is not difficult to see that

A(s) =

{( p∑
i=1

qi∏
j=1

A(i,j)
n ,

p∑
i=1

qi∏
j=1

a(i,j)(x)f (i,j)(θ)

)
:

p, q1, . . . , qp ∈ N, {A(i,j)
n }n ∼LT a

(i,j)(x)f (i,j)(θ) for all i, j
}
.

We can now reformulate Definition 4.1 as follows.
DEFINITION 4.5 (Block generalized locally Toeplitz sequence). Let {An}n be an

s-block matrix-sequence, and let κ : [0, 1] × [−π, π] → Cs×s be measurable. We say
that {An}n is an (s-block) generalized locally Toeplitz (GLT) sequence with symbol κ,
and we write {An}n ∼GLT κ, if the pair ({An}n, κ) belongs to the closure of A(s) in
(E (s) ×M(s), da.c.s. × dmeasure). In other words, the set of “s-block GLT pairs”

(4.1) G(s) = {({An}n, κ) ∈ E (s) ×M(s) : {An}n ∼GLT κ}.

is defined as the closure of A(s) in (E (s) ×M(s), da.c.s. × dmeasure).
In the light of this algebraic-topological definition of block GLT sequences, the following

theorem is obvious.
THEOREM 4.6. Let {An}n be an s-block matrix-sequence, and let the function

κ : [0, 1]× [−π, π]→ Cs×s be measurable. Suppose that:
1. {Bn,m}n ∼GLT κm for every m;
2. {Bn,m}n

a.c.s.−→ {An}n;
3. κm → κ in measure.
Then {An}n ∼GLT κ.

4.2. Singular value and spectral distribution of block GLT sequences. In this section
we prove the main singular value and eigenvalue distribution results for block GLT sequences.

THEOREM 4.7. If {An}n ∼GLT κ, then {An}n ∼σ κ.
Proof. By definition, for every m ∈ N, there exist block LT sequences {A(i,j)

n,m}n ∼LT

a
(i,j)
m (x)f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i, such that:

•
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)→ κ(x, θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.
Moreover, by Theorem 3.14,
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•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n
∼σ

∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ).

We conclude that {An}n ∼σ κ by Theorem 2.33.
REMARK 4.8. Any block GLT sequence {An}n is s.u. This follows from Theorem 4.7

and Proposition 2.20.
Using Theorem 4.7 we now show that the symbol of a block GLT sequence is essentially

unique and that the symbol of a block GLT sequence formed by Hermitian matrices is
Hermitian a.e.

PROPOSITION 4.9. If {An}n ∼GLT κ and {An}n ∼GLT ξ, then κ = ξ a.e.
Proof. By Remark 4.4 we have {Osn}n = {An − An}n ∼GLT κ − ξ. Hence, by

Theorem 4.7, we also have {Osn}n ∼σ κ− ξ, i.e.,

F (0) =
1

2π

∫ 1

0

∫ π

−π

∑s
j=1 F (σj(κ(x, θ)− ξ(x, θ)))

s
dθdx, ∀F ∈ Cc(R).

We conclude that κ− ξ = Os a.e. by Remark 2.6.
PROPOSITION 4.10. If {An}n ∼GLT κ and the An are Hermitian, then κ is Hermitian

a.e.
Proof. Since the An are Hermitian, by Remark 4.4, we have {An}n ∼GLT κ and

{An}n ∼GLT κ
∗. Thus, by Proposition 4.9, κ = κ∗ a.e.

THEOREM 4.11. If {An}n ∼GLT κ and the An are Hermitian, then {An}n ∼λ κ.
Proof. By definition, for every m ∈ N there exist block LT sequences {A(i,j)

n,m}n ∼LT

a
(i,j)
m (x)f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i, such that:

•
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)→ κ(x, θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.
Thus:
•
{
<(
∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m )

}
n

a.c.s.−→ {<(An)}n by Theorem 2.36;

•
{
<(
∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m )

}
n
∼λ <(

∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ)) by Theorem 3.15;

• <(
∑Nm

i=1

∏Mm,i

j=1 a
(i,j)
m (x)f

(i,j)
m (θ))→ <(κ(x, θ)) in measure.

We conclude that {<(An)}n ∼λ <(κ) by Theorem 2.34. Since the matricesAn are Hermitian,
we have <(An) = An and <(κ) = κ a.e. by Proposition 4.10. Hence, the spectral distribution
{<(An)}n ∼λ <(κ) yields {An}n ∼λ κ.

We end this section with a spectral distribution result for (compressions of) block GLT
sequences formed by perturbed Hermitian matrices.

THEOREM 4.12. Let {An}n ∼GLT κ and An = Xn + Yn. Assume that
1. every Xn is Hermitian,
2. ‖Yn‖2 = o(

√
n).

Then {P ∗nAnPn}n ∼σ,λ κ for every sequence {Pn}n such that Pn ∈ Csn×δn , P ∗nPn = Iδn ,
δn ≤ sn, and δn/sn→ 1. In particular, {An}n ∼σ,λ κ (take Pn = Isn).

Proof. {Yn}n is zero-distributed by Theorem 2.16, so {Yn}n ∼GLT Os by Theorem 3.8.
Since Xn = An − Yn and the matrices Xn are Hermitian, we have {Xn}n ∼GLT κ by
Remark 4.4 and {Xn}n ∼σ,λ κ by Theorems 4.7 and 4.11. Consider the decomposition

P ∗nAnPn = P ∗nXnPn + P ∗nYnPn.

Let P̂n =
[
Pn |O

]
be the sn× sn matrix obtained from Pn by adding zeros, and observe that

P̂ ∗nBP̂n = P ∗nBPn ⊕Osn−δn for all B ∈ Csn×sn. We have:
• {P ∗nXnPn}n ∼σ,λ κ by Theorem 2.28;
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• ‖P ∗nYnPn‖2 = ‖P̂ ∗nYnP̂n‖2 ≤ ‖P̂ ∗n‖ ‖Yn‖2 ‖P̂n‖ = ‖Yn‖2 = o(
√
n) = o(

√
δn), where

the inequality follows from [13, Proposition IV.2.4] and the unitary invariance of ‖ · ‖2,
while the second equality follows from the fact that the nonzero singular values of P̂n and
P̂ ∗n are all equal to 1 due to the relation P̂ ∗n P̂n = P ∗nPn ⊕ Osn−δn = Iδn ⊕ Osn−δn ; in
particular, {P ∗nYnPn}n is zero-distributed by Theorem 2.16.

We conclude that da.c.s.({P ∗nXnPn}n, {P ∗nAnPn}n) = 0. The singular value distribution
{P ∗nAnPn}n∼σ κ follows from Remark 2.35, and the spectral distribution {P ∗nAnPn}n∼λκ
follows from Theorem 2.26.

REMARK 4.13 (Extensions of the spectral distribution results to the non-Hermitian case).
As shown in this section, the theory of block GLT sequences allows one to compute the spectral
distribution of a given block GLT sequence {An}n in the case where An is either a Hermitian
matrix or a (small) perturbation of a Hermitian matrix. Similar (but less powerful) results can
be formulated in the case where An is either a normal matrix or a (small) perturbation of a
normal matrix. The real challenge consists in obtaining spectral distribution results in the
case where An is a purely non-normal matrix. In this direction, the most promising tools can
be found in [22, 81]. In [38, 39, 41], the tools from [81] have been refined and successfully
employed in the case where An belongs to the algebra generated by block Toeplitz matrices
and their inverses. The main results obtained so far are [39, Theorems 9 and 10]; extending
them further is certainly an interesting topic for future research.

4.3. Block GLT sequences and matrix-valued measurable functions. We prove in
this section that every s× s matrix-valued measurable function κ : [0, 1]× [−π, π]→ Cs×s
is the symbol of a suitable s-block GLT sequence {An}n. In combination with the results
already proved before, this will allow us to show that the map associating with each s-block
GLT sequence {An}n its symbol κ is an isometry with respect to da.c.s. on the space G (s) of
s-block GLT sequences and dmeasure on the space M(s) of s × s matrix-valued measurable
functions defined on [0, 1]× [−π, π].

LEMMA 4.14. Let κ : [0, 1]× [−π, π]→ Cs×s be any measurable function. Then, there
exists a sequence of s-block GLT pairs ({An,m}n, κm) such that κm → κ in measure.

Proof. By [50, Lemma 2.8], for every α, β = 1, . . . , s, there exists a sequence of
measurable functions κm,αβ : [0, 1]× [−π, π]→ C such that κm,αβ is of the form

κm,αβ(x, θ) =

Nm∑
j=−Nm

aj,m,αβ(x)eijθ,

with Nm ∈ N and aj,m,αβ : [0, 1]→ C belonging to C∞([0, 1]), and κm,αβ → καβ a.e. Take

κm(x, θ) = [κm,αβ(x, θ)]sα,β=1

=

s∑
α,β=1

κm,αβ(x, θ)E
(s)
αβ =

s∑
α,β=1

Nm∑
j=−Nm

aj,m,αβ(x)eijθE
(s)
αβ ,

An,m =

s∑
α,β=1

Nm∑
j=−Nm

Dn,s(aj,m,αβ)Tn(eijθE
(s)
αβ ).

Clearly, κm → κ a.e. and hence also in measure. Moreover, {An,m}n ∼GLT κm by Theo-
rem 3.18 and Remark 4.4.

THEOREM 4.15. Let κ : [0, 1] × [−π, π] → Cs×s be any measurable function. Then
there exists an s-block matrix-sequence {An}n such that {An}n ∼GLT κ.

Proof. By Lemma 4.14, there exist s-block GLT sequences {An,m}n ∼GLT κm such that
κm → κ in measure. Since {κm}m converges in measure, it is a Cauchy sequence with respect
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to the pseudometric dmeasure inducing the convergence in measure. It follows that {{An,m}n}m
is a Cauchy sequence with respect to the pseudometric da.c.s. inducing the a.c.s. convergence
because, for each pair of indices m,m′, we have {An,m − An,m′}n ∼GLT κm − κm′ by
Remark 4.4, {An,m −An,m′}n ∼σ κm − κm′ by Theorem 4.7, and

da.c.s.({An,m}n, {An,m′}n) = pa.c.s.({An,m −An,m′}n)

= pmeasure(κm − κm′)
= dmeasure(κm, κm′)

by Theorem 2.32. Since da.c.s. is complete on the space E (s) of s-block matrix-sequences (by
Theorem 2.30), we infer that {An,m}n

a.c.s.−→ {An}n for some s-block matrix-sequence {An}n.
We conclude that {An}n ∼GLT κ by Theorem 4.6.

REMARK 4.16 (Isometry between s-block GLT sequences and s × s matrix-valued
measurable functions). With the notation used in Definition 4.5, suppose we identify two
s-block matrix-sequences {An}n, {Bn}n ∈ E (s) whenever their difference {An −Bn}n is
zero-distributed and two measurable functions κ, ξ ∈M(s) whenever their difference κ− ξ
equals Os a.e. Let G (s) ⊂ E (s) be the subspace of E (s) consisting of s-block GLT sequences
and consider the application J from G (s) to M(s) that associates with each {An}n ∈ G (s)

its symbol κ ∈ M(s). This application is well-defined by Proposition 4.9. Moreover, if
{An}n ∼GLT κ, then {Bn}n ∼GLT κ is equivalent to {An − Bn}n ∼σ 0 by Remark 4.4
and Theorems 3.8 and 4.7. This means that, after identifying two s-block matrix-sequences
{An}n, {Bn}n whenever {An − Bn}n ∼σ 0, the application J is still well-defined and,
moreover, it is injective. By Theorem 4.15, J is also surjective. Finally, by Theorems 2.32
and 4.7, given any gauge function ϕ, if {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n) = pϕmeasure(κ− ξ) = dϕmeasure(κ, ξ),

which means that J is an isometry with respect to dϕa.c.s. on G (s) and dϕmeasure on M(s).

4.4. The block GLT algebra. The next theorems are of fundamental importance. In
particular, the first one shows that the set of s-block GLT pairs G(s) defined in (4.1) is a
*-subalgebra of E (s) ×M(s).

THEOREM 4.17. Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ. Then:
1. {A∗n}n ∼GLT κ

∗;
2. {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C;
3. {AnBn}n ∼GLT κξ.

Proof. The first two statements have already been settled before (see Remark 4.4). We
prove the third one. By Definition 4.5, there exist ({An,m}n, κm), ({Bn,m}n, ξm) ∈ A(s)

such that ({An,m}n, κm) → ({An}n, κ) and ({Bn,m}n, ξm) → ({Bn}n, ξ) in the space
(E (s) ×M(s), τa.c.s. × τmeasure), i.e.:
• {An,m}n

a.c.s.−→ {An}n and {Bn,m}n
a.c.s.−→ {Bn}n;

• κm → κ in measure and ξm → ξ in measure.
Considering that every block GLT sequence is s.u. (see Remark 4.8), from Theorem 2.36 and
Lemma 2.4, we obtain:
• {An,mBn,m}n

a.c.s.−→ {AnBn}n;
• κmξm → κξ in measure.
Since ({An,mBn,m}n, κmξm) ∈ A(s), by definition we have {AnBn}n ∼GLT κξ.

THEOREM 4.18. If {An}n ∼GLT κ and κ is invertible a.e., then {A†n}n ∼GLT κ
−1.

Proof. Since κ is measurable and invertible a.e., its inverse κ−1 is a well-defined mea-
surable function. Thus, by Theorem 4.15, there exists an s-block GLT sequence {Bn}n
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such that {Bn}n ∼GLT κ
−1. By Theorem 4.17 we have {BnAn − Isn}n ∼GLT κ

−1κ − Is,
which implies {BnAn − Isn}n ∼σ 0 by Theorem 4.7, since κ−1κ − Is = Os a.e. Hence,
{BnAn}n

a.c.s.−→ {Isn}n. Since κ is invertible a.e., {An}n is s.v. by Theorem 4.7 and
Proposition 2.25. It follows that A†n is s.u. (see Remark 2.23), and so, by Theorem 2.36,
{BnAnA†n}n

a.c.s.−→ {A†n}n, i.e.,

(4.2) {BnAnA†n −A†n}n ∼σ 0.

Now we observe that, by definition of A†n,

AnA
†
n = Isn + Sn, rank(Sn) = #{i ∈ {1, . . . , sn} : σi(An) = 0}.

Considering that {An}n is s.v., we have

lim
n→∞

rank(Sn)

n
= 0.

Hence, from (4.2) we obtain

{Bn + Zn −A†n}n ∼σ 0,

where Zn = BnSn is zero-distributed by Theorem 2.16. Thus, A†n = Bn +Zn, and it follows
from Theorems 3.8 and 4.17 that {A†n}n ∼GLT κ

−1.
THEOREM 4.19. If {An}n ∼GLT κ and eachAn is Hermitian, then {f(An)}n ∼GLT f(κ)

for any continuous function f : C→ C.
Proof. Since every An is Hermitian by assumption and κ is Hermitian a.e. by Proposi-

tion 4.10, it suffices to prove the theorem for real continuous functions f : R→ R. Indeed,
suppose we have proved the theorem for this kind of functions, and let f : C → C be any
continuous complex function. Denote by α, β : R → R the real and imaginary parts of the
restriction of f to R. Then, α, β are continuous functions such that f(x) = α(x) + iβ(x) for
all x ∈ R, and since the eigenvalues of An are real, we have f(An) = α(An) + iβ(An). In
view of the relations {α(An)}n ∼GLT α(κ) and {β(An)}n ∼GLT β(κ), Theorem 4.17 yields
{f(An)}n ∼GLT α(κ) + iβ(κ), and so {An}n ∼GLT f(κ) because α(κ) + iβ(κ) = f(κ) a.e.
as κ is Hermitian a.e.

Let f : R → R be a real continuous function. For each M > 0, let {pm,M}m be a
sequence of polynomials that converges uniformly to f over [−M,M ]:

lim
m→∞

‖f − pm,M‖∞,[−M,M ] = 0.

Note that such a sequence exists by the Weierstrass theorem; see, e.g., [70, Theorem 7.26]. By
replacing pm,M with pm,M + f(0)− pm,M (0) if necessary, we may assume, without loss of
generality, that pm,M (0) = f(0). Since any block GLT sequence is s.u. (by Remark 4.8), the
sequence {An}n is s.u. Hence, by Remark 2.21, for all M > 0 there exists nM such that, for
n ≥ nM ,

(4.3) An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)n, ‖Ãn,M‖ ≤M,

where r(M) → 0 as M → ∞, the matrices Ân,M and Ãn,M are Hermitian, and for all
functions g : R→ R satisfying g(0) = 0, we have

g(Ân,M + Ãn,M ) = g(Ân,M ) + g(Ãn,M ).
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Taking into account that (f − pm,M )(0) = 0, for every M > 0, every m and every n ≥ nM ,
we can write

f(An) = pm,M (An) + f(An)− pm,M (An)

= pm,M (An) + (f − pm,M )(Ân,M ) + (f − pm,M )(Ãn,M )

= pm,M (An) +Rn,m,M +Nn,m,M ,

where, in view of (4.3), the matrices

Rn,m,M = (f − pm,M )(Ân,M ), Nn,m,M = (f − pm,M )(Ãn,M )

satisfy

rank(Rn,m,M ) ≤ rank(Ân,M ) ≤ r(M)n,

‖Nn,m,M‖ ≤ ‖f − pm,M‖∞,[−M,M ].

Choose a sequence {Mm}m such that

(4.4) Mm →∞, ‖f − pm,Mm
‖∞,[−Mm,Mm] → 0.

f(An) = pm,Mm(An) +Rn,m,Mm +Nn,m,Mm ,

rank(Rn,m,Mm) ≤ r(Mm)n,

‖Nn,m,Mm‖ ≤ ‖f − pm,Mm‖∞,[−Mm,Mm],

which implies that

{pm,Mm
(An)}n

a.c.s.−→ {f(An)}n.

Moreover, by Theorem 4.17,

{pm,Mm
(An)}n ∼GLT pm,Mm

(κ).

Finally, by (4.4),

‖f(κ)− pm,Mm
(κ)‖ = max

i=1,...,s
|(f − pm,Mm

)(λi(κ))|

≤ ‖f − pm,Mm
‖∞,[−‖κ‖,‖κ‖] → 0 a.e.,

which implies that

pm,Mm
(κ)→ f(κ) a.e.

All the hypotheses of Theorem 4.6 are then satisfied and {f(An)}n ∼GLT f(κ).

4.5. Topological density results for block GLT sequences. Theorem 4.6 admits the
following simple but important converse, which will allow us to prove the main result of this
section (Theorem 4.21).

THEOREM 4.20. Let {An}n ∼GLT κ and {Bn,m}n ∼GLT κm for every m. Then

{Bn,m}n
a.c.s.−→ {An}n ⇐⇒ κm → κ in measure.

Proof. By Remark 4.16,

da.c.s.({An}n, {Bn,m}n) = dmeasure(κ, κm),

and the proof is complete.
THEOREM 4.21. Let {An}n ∼GLT κ. Then, for all functions ai,m, fi,m, i = 1, . . . , Nm,

such that
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1. ai,m : [0, 1]→ Cs×s is Riemann-integrable and fi,m ∈ L1([−π, π], s),

2.
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x, θ) in measure,
we have

{∑Nm

i=1Dn(ai,m)Tn(fi,m)
}
n

a.c.s.−→ {An}n. In particular, {An}n admits an a.c.s. of
the form

(4.5)

{{ s∑
α,β=1

Nm∑
j=−Nm

Dn,s(a
(m)
αβ,j)Tn(eijθE

(s)
αβ )

}
n

}
m

=

{{ Nm∑
j=−Nm

Dn(a
(m)
j )Tn(eijθIs)

}
n

}
m

,

where Nm ∈ N, a(m)
αβ,j : [0, 1]→ C belongs to C∞([0, 1]),

a
(m)
j =

s∑
α,β=1

a
(m)
αβ,jE

(s)
αβ = [a

(m)
αβ,j ]

s
α,β=1,

and
s∑

α,β=1

Nm∑
j=−Nm

a
(m)
αβ,j(x) eijθE

(s)
αβ =

Nm∑
j=−Nm

a
(m)
j (x) eijθ → κ(x, θ) a.e.

Proof. Let ai,m, fi,m, i = 1, . . . , Nm, be functions with the properties specified in the
statement of the theorem. Then{ Nm∑

i=1

Dn(ai,m)Tn(fi,m)

}
n

∼GLT

Nm∑
i=1

ai,m(x)fi,m(θ)

by Remark 4.3 and Theorems 3.12 and 4.17. Therefore, the convergence{Nm∑
i=1

Dn(ai,m)Tn(fi,m)

}
n

a.c.s.−→ {An}n

follows from Theorem 4.20 applied with

Bn,m =

Nm∑
i=1

Dn(ai,m)Tn(fi,m), κm(x, θ) =

Nm∑
i=1

ai,m(x)fi,m(θ).

To obtain for {An}n an a.c.s. of the form (4.5), we use the result of this theorem in com-
bination with [50, Lemma 2.8]. The details are as follows. By [50, Lemma 2.8], for every
α, β = 1, . . . , s, there exists a sequence of measurable functions κm,αβ : [0, 1]× [−π, π]→ C
such that κm,αβ is of the form

κm,αβ(x, θ) =

Nm∑
j=−Nm

a
(m)
αβ,j(x)eijθ,

with Nm ∈ N and a(m)
αβ,j : [0, 1]→ C belonging to C∞([0, 1]) and κm,αβ → καβ a.e. Then,∑s

α,β=1 κm,αβE
(s)
αβ →

∑s
α,β=1 καβE

(s)
αβ = κ a.e., and so, by the result of this theorem,{ s∑

α,β=1

Nm∑
j=−Nm

Dn(a
(m)
αβ,jIs)Tn(eijθE

(s)
αβ )

}
n

a.c.s.−→ {An}n.
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REMARK 4.22 (Topological density in the space of block GLT sequences). With the
notation introduced in Section 4.1, we recall that the set of s-block GLT pairs

G(s) =
{

({An}n, κ) ∈ E (s) ×M(s) : {An}n ∼GLT κ
}

is closed in (E (s) ×M(s), τa.c.s. × τmeasure) by Definition 4.5. Consider the subset of G(s)

consisting of the s-block GLT pairs of the form( N∑
i=1

Dn,s(ai)Tn(fi),

N∑
i=1

ai(x)fi(θ)

)
,

where ai : [0, 1] → C belongs to C∞([0, 1]), fi is a trigonometric monomial in {eijθE
(s)
αβ :

j ∈ Z, 1 ≤ α, β ≤ s} for all i = 1, . . . , N , and N ∈ N. Then, according to Theorem 4.21,
this subset is dense in G(s), i.e., its closure in (E (s)×M(s), τa.c.s.×τmeasure) coincides precisely
with G(s).

4.6. Characterizations of block GLT sequences. The next result is a characterization
theorem for block GLT sequences. All the provided characterizations have already been proved
before, but it is anyway useful to collect them in a single statement.

THEOREM 4.23. Let {An}n be an s-block matrix-sequence, and let κ : [0, 1]×[−π, π]→
Cs×s be a measurable function. The following conditions are equivalent.
1. {An}n ∼GLT κ.
2. For all sequences {κm}m, {{Bn,m}n}m such that
• {Bn,m}n ∼GLT κm for every m,
• κm → κ in measure,
we have {Bn,m}n

a.c.s.−→ {An}n.
3. There exist functions ai,m, fi,m, i = 1, . . . , Nm, such that
• ai,m : [0, 1]→ C belongs toC∞([0, 1]) and fi,m is a trigonometric monomial belonging

to {eijθE
(s)
αβ : j ∈ Z, 1 ≤ α, β ≤ s},

•
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x, θ) a.e.,
•
{∑Nm

i=1Dn,s(ai,m)Tn(fi,m)
}
n

a.c.s.−→ {An}n.
4. There exist sequences {κm}m, {{Bn,m}n}m such that
• {Bn,m}n ∼GLT κm for every m,
• κm → κ in measure,
• {Bn,m}n

a.c.s.−→ {An}n.

Proof. The implication 1 =⇒ 2 follows from Theorem 4.20. The implication 2 =⇒ 3 fol-
lows from the observation that we can find functions ai,m, fi,m, i = 1, . . . , Nm, with the first
two properties specified in item 3 (by [50, Lemma 2.8], as we have already seen in the proof of
Theorem 4.21) and, moreover, {

∑Nm

i=1Dn,s(ai,m)Tn(fi,m)}n ∼GLT
∑Nm

i=1 ai,m(x)fi,m(θ)
(by Theorems 3.18 and 4.17). The implication 3 =⇒ 4 is obvious (it suffices to take
Bn,m =

∑Nm

i=1Dn,s(ai,m)Tn(fi,m) and κm(x, θ) =
∑Nm

i=1 ai,m(x)fi,m(θ)). Finally, the
implication 4 =⇒ 1 is Theorem 4.6.

4.7. Sequences of block diagonal sampling matrices. We have encountered in Sec-
tion 3.3 and Remark 4.3 the three most important examples of block GLT sequences, i.e., zero-
distributed sequences, block Toeplitz sequences, and sequences of block diagonal sampling
matrices. Concerning the latter kind of sequences, we have proved that {Dn(a)}n ∼GLT a(x)
whenever a : [0, 1] → Cs×s is Riemann-integrable. From a mathematical point of view,
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however, the GLT relation {Dn(a)}n ∼GLT a(x) makes sense for all measurable functions
a : [0, 1] → Cs×s, and it is therefore natural to ask whether we can drop the Riemann-
integrability assumption. In Theorem 4.24 we show that the relation {Dn(a)}n ∼GLT a(x)
holds for all functions a : [0, 1] → Cs×s that are continuous a.e. in [0, 1]. Since a function
a : [0, 1]→ Cs×s is Riemann-integrable if and only if a is bounded and continuous a.e. (see
Section 2.3.5), Theorem 4.24 is an extension of both Theorem 3.11 and Remark 4.3. More
precisely, in Theorem 4.24 we are dropping the boundedness assumption.

THEOREM 4.24. If a : [0, 1]→ Cs×s is continuous a.e., then {Dn(a)}n ∼GLT a(x).
Proof. By looking at the decomposition of Dn(a) considered in Remark 4.3, it is immedi-

ately clear that, in order to prove the theorem, it is enough to show that

(4.6) {Dn,s(a)}n ∼GLT a(x)Is

whenever a : [0, 1] → C is a scalar a.e. continuous function. Moreover, for an arbitrary
a.e. continuous function a : [0, 1] → C, we can write a = α+ − α− + iβ+ − iβ−, where
α±, β± : [0, 1]→ R are nonnegative a.e. continuous functions; simply take

α+ = max(<(a), 0), α− = −min(<(a), 0),

β+ = max(=(a), 0), β− = −min(=(a), 0).

Hence, by Theorem 4.17 and the linearity of Dn,s(a) with respect to its argument a, it suffices
to prove the relation {Dn,s(a)}n ∼GLT a(x) in the case where a : [0, 1]→ R is a nonnegative
a.e. continuous function.

Let a : [0, 1] → [0,∞) be a nonnegative a.e. continuous function. Denote by am the
truncation of a at level m, i.e.,

am(x) =

{
a(x), if a(x) ≤ m,
m, if a(x) > m.

Since am is bounded and continuous a.e., am is Riemann-integrable, hence

{Dn,s(am)}n ∼GLT am(x)Is

by Theorem 3.11. Moreover, it is clear that am → a pointwise, so

am → a in measure.

We show that

{Dn,s(am)}n
a.c.s.−→ {Dn,s(a)}n,

after which the application of Theorem 4.6 concludes the proof. In order to show that
{Dn,s(am)}n

a.c.s.−→ {Dn,s(a)}n, we observe that Dn,s(am) = Dn(am) ⊗ Is and
Dn,s(a) = Dn(a) ⊗ Is. Therefore, since it was proved in [50, pp. 153–154] that
{Dn(am)}n

a.c.s.−→ {Dn(a)}n, it is immediately clear from the definition of a.c.s. and the
properties of tensor products that {Dn,s(am)}n

a.c.s.−→ {Dn,s(a)}n.

4.8. Sequences of block matrices with block GLT blocks. This section is devoted to
proving the following theorem, which says that, up to a suitable permutation transformation, a
sequence of block matrices with block GLT blocks is a block GLT sequence whose symbol
is obtained by “putting together” the symbols of each block GLT block. Recall that Πn,s,r

denotes the special permutation matrix (2.1).
THEOREM 4.25. For i, j = 1, . . . , s, let {An,ij}n be an r-block GLT sequence with

symbol κij : [0, 1] × [−π, π] → Cr×r. Set An = [An,ij ]
s
i,j=1 and κ = [κij ]

s
i,j=1. Then,

{Πn,s,rAnΠT
n,s,r}n is an rs-block GLT sequence with symbol κ.
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Proof. The proof consists of the following two steps.
Step 1. We first prove the theorem under the additional assumption that An,ij is of the form

(4.7) An,ij =

Lij∑
`=1

Dn(a`,ij)Tn(f`,ij),

where Lij ∈ N, a`,ij : [0, 1]→ Cr×r is continuous a.e., and f`,ij : [−π, π]→ Cr×r belongs
to L1([−π, π], r). Note that the symbol of {An,ij}n is

κij(x, θ) =

Lij∑
`=1

a`,ij(x)f`,ij(θ).

By setting L = maxi,j=1,...,s Lij and adding zero matrices of the form Dn(Or)Tn(Or) in the
summation (4.7) whenever Lij < L, we can assume, without loss of generality, that

An,ij =

L∑
`=1

Dn(a`,ij)Tn(f`,ij), κij(x, θ) =
L∑
`=1

a`,ij(x)f`,ij(θ),

with L independent of i, j. Then,

Πn,s,rAnΠT
n,s,r =

L∑
`=1

Πn,s,r [Dn(a`,ij)Tn(f`,ij)]
s
i,j=1 ΠT

n,s,r

=

L∑
`=1

Πn,s,r

 s∑
i,j=1

E
(s)
ij ⊗Dn(a`,ij)Tn(f`,ij)

ΠT
n,s,r

=

L∑
`=1

Πn,s,r

 s∑
i,j=1

(E
(s)
ij ⊗Dn(a`,ij))(Is ⊗ Tn(f`,ij))

ΠT
n,s,r

=

L∑
`=1

s∑
i,j=1

Πn,s,r(E
(s)
ij ⊗Dn(a`,ij))Π

T
n,s,rΠn,s,r(Is ⊗ Tn(f`,ij))Π

T
n,s,r.

By Theorems 2.42 and 2.43,

Πn,s,r(E
(s)
ij ⊗Dn(a`,ij))Π

T
n,s,r = Dn(E

(s)
ij ⊗ a`,ij),

Πn,s,r(Is ⊗ Tn(f`,ij))Π
T
n,s,r = Tn(Is ⊗ f`,ij).

It follows that

Πn,s,rAnΠT
n,s,r =

L∑
`=1

s∑
i,j=1

Dn(E
(s)
ij ⊗ a`,ij)Tn(Is ⊗ f`,ij).

Thus, by Theorems 3.12, 4.17, and 4.24, {Πn,s,rAnΠT
n,s,r}n is an rs-block GLT sequence

with symbol

κ(x, θ) =

L∑
`=1

s∑
i,j=1

E
(s)
ij ⊗ a`,ij(x)f`,ij(θ) = [κij(x, θ)]

s
i,j=1.

Step 2. We now prove the theorem in its full generality. Since {An,ij}n is an r-block GLT
sequence with symbol κij , by Theorem 4.21 (applied with s = r), there exist functions a(m)

`,ij ,

f
(m)
`,ij , ` = 1, . . . , L

(m)
ij , such that
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• a(m)
`,ij : [0, 1]→ Cr×r belongs to C∞([0, 1]) and f (m)

`,ij : [−π, π]→ Cr×r is a trigonometric
polynomial,

• κ(m)
ij (x, θ) =

∑L
(m)
ij

`=1 a
(m)
`,ij (x)f

(m)
`,ij (θ)→ κij(x, θ) a.e.,

•
{
A

(m)
n,ij =

∑L
(m)
ij

`=1 Dn(a
(m)
`,ij )Tn(f

(m)
`,ij )

}
n

a.c.s.−→ {An,ij}n.

Set A(m)
n = [A

(m)
n,ij ]

s
i,j=1 and κ(m) = [κ

(m)
ij ]si,j=1. We have:

• {Πn,s,rA
(m)
n ΠT

n,s,r}n ∼GLT κ
(m) by Step 1;

• κ(m) → κ a.e. (and hence also in measure);
• {Πn,s,rA

(m)
n ΠT

n,s,r}n
a.c.s.−→ {Πn,s,rAnΠT

n,s,r}n because {A(m)
n }n

a.c.s.−→ {An}n by Theo-
rem 2.37.

We conclude that {Πn,s,rAnΠT
n,s,r}n ∼GLT κ by Theorem 4.6.

4.9. Further possible definitions of block GLT sequences. In this section, we discuss
a couple of possible alternative definitions of block GLT sequences. We will use the same
notation as in Definition 4.5.

By Definition 4.5 and Theorem 4.17, the set of s-block GLT pairs

G(s) =
{

({An}n, κ) : {An}n ∼GLT κ
}
⊆ E (s) ×M(s)

is a closed *-subalgebra of E (s) ×M(s). By Theorems 3.8, 3.12, and 4.24, G(s) contains the
set

B(s) =
{

({Tn(f)}n, κ(x, θ) = f(θ)) : f ∈ L1([−π, π], s)
}

∪
{

({Dn(a)}n, κ(x, θ) = a(x)) : a : [0, 1]→ Cs×s is continuous a.e.
}

∪
{

({Zn}n, κ(x, θ) = Os) : {Zn}n ∼σ 0
}
.

By the results in Section 4.5, the algebra generated by B(s) is dense in G(s). In conclusion,

the set of s-block GLT pairs G(s) is the closed *-subalgebra of E (s) ×M(s) generated by
B(s), i.e., the smallest closed *-subalgebra of E (s) ×M(s) containing B(s).

Looking more carefully at the results in Section 4.5, we also note that, if we let

C(s) =
{

({Dn,s(a)}n, κ(x, θ) = a(x)Is) : a : [0, 1]→ C belongs to C∞([0, 1])
}

∪
{

({Tn(eijθE
(s)
αβ )}n, κ(x, θ) = eijθE

(s)
αβ ) : j ∈ Z, 1 ≤ α, β ≤ s

}
,

then

the set of s-block GLT pairs G(s) is the closure of the subalgebra of E (s)×M(s) generated
by C(s).

5. Summary of the theory. We conclude the theory of block GLT sequences by pro-
viding a self-contained summary, which contains everything one needs to know in order to
understand the applications presented in the next chapter. It is assumed that anyone who reads
this summary is aware of the notation and terminology used throughout this work, which will
be only partially repeated here for the sake of brevity. The reader can find most of the notation
and terminology in Section 2.1.

Matrix norms. Here is a list of important inequalities involving p-norms and Schatten
p-norms of matrices.
N 1. ‖X‖ ≤

√
|X|1|X|∞ ≤ max(|X|1, |X|∞) for all X ∈ Cm×m.

N 2. ‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖ for all X ∈ Cm×m.
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N 3. ‖X‖1 ≤
∑m
i,j=1 |xij | for all X ∈ Cm×m.

N 4. ‖X‖2 ≤
√
‖X‖ ‖X‖1 for all X ∈ Cm×m.

Sequences of matrices and block matrix-sequences. A sequence of matrices is a sequence
of the form {An}n, where An is a square matrix of size dn such that dn → ∞ as n → ∞.
If {An}n is a sequence of matrices with An of size dn, then we say that {An}n is sparsely
unbounded (s.u.) if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

= 0,

and we say that {An}n is sparsely vanishing (s.v.) if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) < 1/M}
dn

= 0.

An s-block matrix-sequence is a sequence of matrices {An}n such that the size of the nth
matrix is dn = sn.

Singular value and eigenvalue distribution of a sequence of matrices. Let {An}n be a
sequence of matrices with An of size dn, and let f : D ⊂ Rk → Cr×r be a measurable
function defined on a set D with 0 < µk(D) <∞.
• We say that {An}n has a singular value distribution described by f , and we write
{An}n ∼σ f , if

lim
n→∞

1

dn

dn∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx, ∀F ∈ Cc(R).

In this case, f is called the singular value symbol of {An}n.
• We say that {An}n has a spectral (or eigenvalue) distribution described by f , and we write
{An}n ∼λ f , if

lim
n→∞

1

dn

dn∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

In this case, f is called the spectral (or eigenvalue) symbol of {An}n.
When we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood that {An}n
is a sequence of matrices and f is a measurable function defined on a subset D of some Rk
with 0 < µk(D) <∞ and taking values in Cr×r for some r ≥ 1. In what follows, “iff” is an
abbreviation of “if and only if”.
S 1. If {An}n ∼σ f , then {An}n is s.u.
S 2. If {An}n ∼σ f , then {An}n is s.v. iff f is invertible a.e.
S 3. If {An}n ∼λ f and Λ(An) ⊆ S for all n, then Λ(f) ⊆ S a.e.
S 4. If An = Xn + Yn ∈ Cdn×dn and
• each Xn is Hermitian and {Xn}n ∼λ f ,
• lim
n→∞

(dn)−1/2‖Yn‖2 = 0,

then {An}n ∼λ f .
S 5. Let Xn ∈ Cdn×dn and Pn ∈ Cdn×δn , where P ∗nPn = Iδn , δn ≤ dn, δn/dn → 1.
• {Xn}n ∼σ f iff {P ∗nXnPn}n ∼σ f .
• If the matrices Xn are Hermitian, then {Xn}n ∼λ f iff {P ∗nXnPn}n ∼λ f .
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Informal meaning. Assuming that f : D ⊂ Rk → Cr×r possesses r a.e. continuous
eigenvalue functions λi(f(x)), i = 1, . . . , r, then the spectral distribution {An}n ∼λ f has
the following informal meaning: all the eigenvalues of An, except possibly for o(dn) outliers
(with dn being the size of An), can be subdivided into r different subsets of approximately the
same cardinality and the eigenvalues belonging to the ith subset are approximately equal to
the samples of the ith eigenvalue function λi(f(x)) over a uniform grid in the domain D (for
n large enough). For instance, if k = 1, dn = nr, and D = [a, b], then, assuming we have no
outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a+ j

b− a
n

))
, j = 1, . . . , n, i = 1, . . . , r,

for n large enough. Similarly, if k = 2, dn = n2r, and D = [a1, b1]× [a2, b2], then, assuming
we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(
a1 + j1

b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , r,

for n large enough. A completely analogous meaning can also be given for the singular value
distribution {An}n ∼σ f .

Rearrangement. Assuming that D = [a1, b1]× · · · × [ak, bk] is an hyperrectangle in Rk and
f : D → Cr×r is a measurable function possessing r real-valued a.e. continuous eigenvalue
functions λi(f(x)), i = 1, . . . , r, compute, for each ρ ∈ N, the uniform samples

λi

(
f
(
a1 + j1

b1 − a1

ρ
, . . . , ak + jk

bk − ak
ρ

))
, j1, . . . , jk = 1, . . . , ρ, i = 1, . . . , r,

sort them in non-decreasing order, and put them into a vector (ς1, ς2, . . . , ςrρk). Let
φρ : [0, 1]→ R be the piecewise linear non-decreasing function that interpolates the samples
(ς0 = ς1, ς1, ς2, . . . , ςrρk) over the nodes (0, 1

rρk
, 2
rρk

, . . . , 1), i.e.,
φρ

( i

rρk

)
= ςi, i = 0, . . . , rρk,

φρ linear on
[
i

rρk
,
i+ 1

rρk

]
, i = 0, . . . , rρk − 1.

When ρ → ∞, the function φρ converges a.e. to a function φ, which is non-decreasing on
(0, 1) and satisfies∫ 1

0

F (φ(t))dt =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

The function φ is referred to as the canonical rearranged version of f . What is interesting
about φ is that if {An}n ∼λ f , then {An}n ∼λ φ. In particular, if we have {An}n ∼λ f (and
hence also {An}n ∼λ φ), then, for n large enough, the eigenvalues of An, with the possible
exception of o(dn) outliers (dn = size(An)), are approximately equal to the samples of φ
over a uniform grid in [0, 1].

Clustering and attraction. In what follows, if f : D ⊆ Rk → Cr×r is a measurable
matrix-valued function, its essential range is denoted by ER(f) and is defined as

ER(f) = {z ∈ C : µk{∃ j ∈ {1, . . . , r} : λj(f) ∈ D(z, ε)} > 0 for all ε > 0} .
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• Let {An}n be a sequence of matrices with An of size dn, and let S be a nonempty subset
of C. We say that {An}n is weakly clustered at S if

lim
n→∞

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)}
dn

= 0, ∀ ε > 0.

• Let {An}n be a sequence of matrices with An of size dn, and let z ∈ C. We say that
z strongly attracts the spectrum Λ(An) with infinite order if, once we have ordered the
eigenvalues of An according to their distance from z,

|λ1(An)− z| ≤ |λ2(An)− z| ≤ . . . ≤ |λdn(An)− z|,

the following limit relation holds for each fixed j ≥ 1:

lim
n→∞

|λj(An)− z| = 0.

CA 1. If {An}n ∼λ f , then {An}n is weakly clustered at ER(f) and each z ∈ ER(f)
strongly attracts Λ(An) with infinite order.

Zero-distributed sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is
referred to as a zero-distributed sequence. In other words, {Zn}n is zero-distributed iff

lim
n→∞

1

dn

dn∑
i=1

F (σi(Zn)) = F (0), ∀F ∈ Cc(R),

where dn is the size of Zn. Given a sequence of matrices {Zn}n with Zn of size dn, the
following properties hold. In what follows, we use the natural convention C/∞ = 0 for all
numbers C.
Z 1. {Zn}n ∼σ 0 iff Zn = Rn +Nn with lim

n→∞
(dn)−1rank(Rn) = lim

n→∞
‖Nn‖ = 0.

Z 2. {Zn}n ∼σ 0 if there exists a p ∈ [1,∞] such that lim
n→∞

(dn)−1/p‖Zn‖p = 0.

Sequences of block diagonal sampling matrices. If n ∈ N and a : [0, 1]→ Cs×s, then the
nth block (or s-block) diagonal sampling matrix generated by a is the sn× sn block diagonal
matrix given by

Dn(a) = diag
i=1,...,n

a
( i
n

)
.

{Dn(a)}n is the sequence of block (or s-block) diagonal sampling matrices generated by a.
In what follows, we denote by E[0,1] the space of all functions from [0, 1] to the set E.
D 1. For every n ∈ N the map Dn(·) : (Cs×s)[0,1] → Csn×sn

• is linear: Dn(αa+ βb) = αDn(a) + βDn(b);
• satisfies Dn(a)∗ = Dn(a∗).

D 2. If aij : [0, 1] → Cr×r, for i, j = 1, . . . , s, and we define a = [aij ]
s
i,j=1 and

Dn = [Dn(aij)]
s
i,j=1, then Πn,s,rDnΠT

n,s,r = Dn(a).

Block Toeplitz sequences. If n ∈ N and f : [−π, π]→ Cs×s is a function in L1([−π, π], s),
then the nth (s-block) Toeplitz matrix generated by f is the sn× sn matrix given by

Tn(f) = [fi−j ]
n
i,j=1,

where the s× s blocks fk are the Fourier coefficients of f ,

fk =
1

2π

∫ π

−π
f(θ) e−ikθdθ ∈ Cs×s, k ∈ Z,
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and the integrals in the previous formula are computed componentwise. {Tn(f)}n is the (s-
block) Toeplitz sequence generated by f . In what follows, for any function f in Lp([−π, π], s),
we define

‖f‖Lp =

{ (∫
D
‖f(x)‖ppdx

)1/p
, if 1 ≤ p <∞,

ess supx∈D‖f(x)‖, if p =∞.

T 1. For every n ∈ N the map Tn(·) : L1([−π, π], s)→ Csn×sn
• is linear: Tn(αf + βg) = αTn(f) + βTn(g);
• satisfies Tn(f)∗ = Tn(f∗).

T 2. If f is Hermitian a.e., then Tn(f) is Hermitian for all n ∈ N.
T 3. If 1 ≤ p ≤ ∞ and f ∈ Lp([−π, π], s), then ‖Tn(f)‖p ≤ (n/2π)1/p‖f‖Lp .
T 4. If f ∈ L1([−π, π], s), then {Tn(f)}n ∼σ f . If in addition f is Hermitian a.e., then

{Tn(f)}n ∼λ f .
T 5. If f1, . . . , fq ∈ L∞([−π, π], s), then n−1‖

∏q
i=1 Tn(fi)− Tn(

∏q
i=1 fi)‖1 → 0.

T 6. If fij ∈ L1([−π, π], r), for i, j = 1, . . . , s, and we set f = [fij ]
s
i,j=1 and

Tn = [Tn(fij)]
s
i,j=1, then Πn,s,rTnΠT

n,s,r = Tn(f).

Approximating classes of sequences. Let {An}n be a sequence of matrices and {{Bn,m}n}m
be a sequence of sequences of matrices withAn andBn,m of size dn. We say that {{Bn,m}n}m
is an approximating class of sequences (a.c.s.) for {An}n if the following condition is met:
for every m there exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

We use the abbreviation “a.c.s.” for both the singular “approximating class of sequences” and
the plural “approximating classes of sequences”. It turns out that, for each fixed sequence of
positive integers dn such that dn →∞, the notion of a.c.s. is a notion of convergence in the
space E = {{An}n : An ∈ Cdn×dn for every n}. More precisely, for every gauge function
ϕ and every A ∈ C`×`, let

pϕ(A) =
1

`

∑̀
i=1

ϕ(σi(A))

and define

pϕa.c.s.({An}n) = lim sup
n→∞

p(An), {An}n ∈ E ,

dϕa.c.s.({An}n, {Bn}n) = pϕa.c.s.({An −Bn}n), {An}n, {Bn}n ∈ E .

Then, dϕa.c.s. is a distance on E such that dϕa.c.s.({An}n, {Bn}n) = 0 iff {An −Bn}n is zero-
distributed. Moreover, dϕa.c.s. turns E into a complete pseudometric space (E , dϕa.c.s.), where
the statement “{{Bn,m}n}m converges to {An}n” is equivalent to “{{Bn,m}n}m is an a.c.s.
for {An}n”. In particular, we can reformulate the definition of a.c.s. in the following way: a
sequence of sequences of matrices {{Bn,m}n}m is said to be an a.c.s. for {An}n if {Bn,m}n
converges to {An}n in (E , dϕa.c.s.) as m → ∞, i.e., if dϕa.c.s.({Bn,m}n, {An}n) → 0 as
m→∞. The theory of a.c.s. may then be interpreted as an approximation theory for sequences
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of matrices, and for this reason we will use the convergence notation {Bn,m}n
a.c.s.−→ {An}n to

indicate that {{Bn,m}n}m is an a.c.s. for {An}n. In view of what follows, let D ⊂ Rk be a
measurable set such that 0 < µk(D) <∞ and, for every gauge function ϕ, define

pϕmeasure(f) =
1

µk(D)

∫
D

∑r
i=1 ϕ(σi(f(x)))

r
dx, f ∈M

(r)
D ,

dϕmeasure(f, g) = pϕmeasure(f − g), f, g ∈M
(r)
D .

Then, dϕmeasure is a distance on M
(r)
D such that dϕmeasure(f, g) = 0 iff f = g a.e. Moreover,

dϕmeasure turns M(r)
D into a complete pseudometric space (M

(r)
D , dϕmeasure), where the statement

“fm converges to f” is equivalent to “fm converges to f in measure”.
ACS 1. If {An}n ∼σ f , then pϕa.c.s.({An}n) = pϕmeasure(f) for all gauge functions ϕ.
ACS 2. {An}n ∼σ f iff there exist sequences of matrices {Bn,m}n ∼σ fm such that

{Bn,m}n
a.c.s.−→ {An}n and fm → f in measure.

ACS 3. Suppose each An is Hermitian. Then, {An}n ∼λ f iff there exist sequences of
Hermitian matrices {Bn,m}n ∼λ fm such that {Bn,m}n

a.c.s.−→ {An}n and fm → f
in measure.

ACS 4. If {Bn,m}n
a.c.s.−→ {An}n and {B′n,m}n

a.c.s.−→ {A′n}n with An and A′n of the same size
dn, then
• {B∗n,m}n

a.c.s.−→ {A∗n}n,
• {αBn,m + βB′n,m}n

a.c.s.−→ {αAn + βA′n}n for all α, β ∈ C,
• {Bn,mB′n,m}n

a.c.s.−→ {AnA′n}n whenever {An}n, {A′n}n are s.u.,
• {Bn,mCn}n

a.c.s.−→ {AnCn}n whenever {Cn}n is s.u.
ACS 5. If An = [An,ij ]

s
i,j=1, B(m)

n = [B
(m)
n,ij ]

s
i,j=1 and {B(m)

n,ij}n
a.c.s.−→ {A(m)

n,ij}n, for i, j =

1, . . . , s, then {B(m)
n }n

a.c.s.−→ {An}n.
ACS 6. Let p ∈ [1,∞] and assume for each m there is nm such that, for n ≥ nm,

‖An − Bn,m‖p ≤ ε(m,n)(dn)1/p, where limm→∞ lim supn→∞ ε(m,n) = 0 and
dn is the size of both An and Bn,m. Then {Bn,m}n

a.c.s.−→ {An}n.

Block generalized locally Toeplitz sequences. An s-block generalized locally Toeplitz
(GLT) sequence {An}n is a special s-block matrix-sequence equipped with a measurable
function κ : [0, 1] × [−π, π] → Cs×s, the so-called symbol (or kernel). Unless specified
otherwise, the notation {An}n ∼GLT κ means that {An}n is an s-block GLT sequence with
symbol κ ∈ M(s). The symbol of an s-block GLT sequence is unique in the sense that
if {An}n ∼GLT κ and {An}n ∼GLT ξ, then κ = ξ a.e. in [0, 1] × [−π, π]. Conversely,
if {An}n ∼GLT κ and κ = ξ a.e. in [0, 1] × [−π, π], then {An}n ∼GLT ξ. In addition, any
measurable function κ : [0, 1]× [−π, π]→ Cs×s is the symbol of some s-block GLT sequence
{An}n.
GLT 1. If {An}n ∼GLT κ, then {An}n ∼σ κ. If {An}n ∼GLT κ and the matrices An are

Hermitian, then κ is Hermitian a.e. and {An}n ∼λ κ.
GLT 2. If {An}n ∼GLT κ with An = Xn + Yn, and

• every Xn is Hermitian,
• n−1/2‖Yn‖2 → 0,
then {P ∗nAnPn}n ∼σ,λ κ for every sequence {Pn}n such that Pn ∈ Csn×δn ,
P ∗nPn = Iδn , δn ≤ sn, and δn/sn→ 1.

GLT 3. We have
• {Tn(f)}n ∼GLT κ(x, θ) = f(θ) if f ∈ L1([−π, π], s),
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]→ Cs×s is continuous a.e.,
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• {Zn}n ∼GLT κ(x, θ) = Os iff {Zn}n ∼σ 0.
GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then

• {A∗n}n ∼GLT κ
∗,

• {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ,
• {A†n}n ∼GLT κ

−1 if κ is invertible a.e.
GLT 5. If {An}n ∼GLT κ and each An is Hermitian, then {f(An)}n ∼GLT f(κ) for every

continuous function f : C→ C.
GLT 6. If {An,ij}n ∼GLT κij ∈ M(r), for i, j = 1, . . . , s, and we set κ = [κij ]

s
i,j=1 and

An = [An,ij ]
s
i,j=1, then {Πn,s,rAnΠT

n,s,r}n ∼GLT κ ∈M(rs).
GLT 7. {An}n ∼GLT κ iff there exist s-block GLT sequences {Bn,m}n ∼GLT κm such that

{Bn,m}n
a.c.s.−→ {An}n and κm → κ in measure.

GLT 8. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then, for every gauge function ϕ, we have
dϕa.c.s.({An}n, {Bn}n) = dϕmeasure(κ, ξ).

GLT 9. If {An}n ∼GLT κ, then there exist functions ai,m, fi,m, i = 1, . . . , Nm, such that
• ai,m : [0, 1]→ C belongs to C∞([0, 1]) and fi,m is a trigonometric monomial in
{eijθE

(s)
αβ : j ∈ Z, 1 ≤ α, β ≤ s},

•
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x, θ) a.e.,
•
{∑Nm

i=1Dn(ai,mIs)Tn(fi,m)
}
n

a.c.s.−→ {An}n.

6. Applications. In this chapter we present several emblematic applications of the theory
of block GLT sequences to the computation of the singular value and eigenvalue distribution of
sequences of matrices arising from the numerical discretization of DEs. In order to understand
the content of this chapter, it is enough that the reader knows the summary of Chapter 5 and
possesses the necessary prerequisites, most of which have been addressed in Chapter 2. Indeed,
our derivations here will never refer to Chapters 1–4, i.e., they will only rely on the summary
of Chapter 5.

6.1. FD discretization of systems of DEs. Consider the following system of DEs:

(6.1)



−a11(x)u′′1(x) + a12(x)u′2(x) = f1(x), x ∈ (0, 1),

a21(x)u′1(x) + a22(x)u2(x) = f2(x), x ∈ (0, 1),

u1(0) = 0, u1(1) = 0,

u2(0) = 0, u2(1) = 0.

In this section we consider the classical central FD discretization of (6.1). Through the theory
of block GLT sequences we show that, under suitable assumptions on the DE coefficients
a11, a12, a21, a22, the corresponding sequence of (normalized) FD discretization matrices
enjoys a spectral distribution described by a 2 × 2 matrix-valued function. We remark that
the number 2, which identifies the matrix space C2×2 where the spectral symbol takes values,
coincides with the number of equations that compose the system (6.1). In what follows, we
use the notation

tridiag
j=1,...,n

[
βj αj γj

]
=


α1 γ1

β2 α2 γ2

. . . . . . . . .
βn−1 αn−1 γn−1

βn αn

 .
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FD discretization. Let n ≥ 1, set h = 1
n+1 and xj = jh, for j = 0, . . . , n + 1. Using the

classical central FD schemes (−1, 2,−1) and 1
2 (−1, 0, 1) for the discretization of, respectively,

the (negative) second derivative and the first derivative, for each j = 1, . . . , n, we obtain the
following approximations:

[−a11(x)u′′1(x) + a12(x)u′2(x)]|x=xj
≈ a11(xj)

−u1(xj+1) + 2u1(xj)− u1(xj−1)

h2

+ a12(xj)
u2(xj+1)− u2(xj−1)

2h
,

[a21(x)u′1(x) + a22(x)u2(x)]|x=xj
≈ a21(xj)

u1(xj+1)− u1(xj−1)

2h
+ a22(xj)u2(xj).

This means that the nodal values of the solutions u1, u2 of (6.1) satisfy approximately the
equations

a11(xj) [−u1(xj+1) + 2u1(xj)− u1(xj−1)] +
h

2
a12(xj) [u2(xj+1)− u2(xj−1)]

= h2f1(xj),

1

2
a21(xj) [u1(xj+1)− u1(xj−1)] + ha22(xj)u2(xj)

= hf2(xj),

for j = 1, . . . , n. We then approximate the solution u1 (respectively, u2) by the piecewise
linear function that takes the value u1,j (respectively, u2,j) at xj for all j = 0, . . . , n + 1,
where u1,0 = u1,n+1 = u2,0 = u2,n+1 = 0 and the vectors u1 = (u1,1, . . . , u1,n)T and
u2 = (u2,1, . . . , u2,n)T solve the linear system

a11(xj) [−u1,j+1 + 2u1,j − u1,j−1] +
h

2
a12(xj) [u2,j+1 − u2,j−1] = h2f1(xj),

1

2
a21(xj) [u1,j+1 − u1,j−1] + ha22(xj)u2,j = hf2(xj),

for j = 1, . . . , n. This linear system can be rewritten in matrix form as follows:

(6.2) An

[
u1

u2

]
=

[
h2f1
hf2

]
,

where f1 = [f1(xj)]
n
j=1, f2 = [f2(xj)]

n
j=1,

An =

[
Kn(a11) hHn(a12)
Hn(a21) hMn(a22)

]
=

[
Kn(a11) Hn(a12)
Hn(a21) Mn(a22)

] [
In On
On hIn

]
,(6.3)

and

Kn(a11) = tridiag
j=1,...,n

[
−a11(xj) 2a11(xj) −a11(xj)

]
=

(
diag

j=1,...,n
a11(xj)

)
Tn(2− 2 cos θ),

Hn(a12) = tridiag
j=1,...,n

[
− 1

2 a12(xj) 0 1
2 a12(xj)

]
=

(
diag

j=1,...,n
a12(xj)

)
Tn(−i sin θ),
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Hn(a21) = tridiag
j=1,...,n

[
− 1

2 a21(xj) 0 1
2 a21(xj)

]
=

(
diag

j=1,...,n
a21(xj)

)
Tn(−i sin θ),

Mn(a22) = diag
j=1,...,n

a22(xj).

In view of (6.3), the linear system (6.2) is equivalent to

Bn

[
v1

v2

]
=

[
h2f1
hf2

]
,

where v1 = u1, v2 = hu2, and

(6.4) Bn =

[
Kn(a11) Hn(a12)
Hn(a21) Mn(a22)

]
.

GLT analysis of the FD discretization matrices. In the main result of this section (Theo-
rem 6.1), we show that {Πn,2BnΠT

n,2}n is a 2-block GLT sequence whose symbol κ(x, θ)
is a 2 × 2 matrix-valued function obtained by replacing the GLT sequences {Kn(a11)}n,
{Hn(a12)}n, {Hn(a21)}n, {Mn(a22)}n appearing in (6.4) with the corresponding symbols
a11(x)(2−2 cos θ),−ia12(x) sin θ,−ia21(x) sin θ, a22(x). In this regard, note that, assuming
for instance that a11, a12, a21, a22 ∈ C([0, 1]), we have

{Kn(a11)}n ∼GLT a11(x)(2− 2 cos θ),(6.5)
{Hn(a12)}n ∼GLT −ia12(x) sin θ,(6.6)
{Hn(a21)}n ∼GLT −ia21(x) sin θ,(6.7)
{Mn(a22)}n ∼GLT a22(x).(6.8)

To prove (6.5), it suffices to observe that

‖Kn(a11)−Dn(a11)Tn(2− 2 cos θ)‖

≤
∥∥∥∥ diag
j=1,...,n

a11(xj)−Dn(a11)

∥∥∥∥ ‖Tn(2− 2 cos θ)‖

= max
j=1,...,n

∣∣∣a11(xj)− a11

( j
n

)∣∣∣ ‖Tn(2− 2 cos θ)‖ ≤ 4ωa11(h),

where ωa11(·) is the modulus of continuity of a11. Since ωa11(h) → 0 as n → ∞, we have
{Kn(a11)−Dn(a11)Tn(2− 2 cos θ)}n ∼σ 0 by Z 1, and so GLT 3 and GLT 4 immediately
yield (6.5). The relations (6.6)–(6.8) are proved in the same way.

THEOREM 6.1. Suppose that a11, a12, a21, a22 ∈ C([0, 1]), and set Cn = Πn,2BnΠT
n,2.

Then

{Cn}n ∼GLT κ(x, θ) =

[
a11(x)(2− 2 cos θ) −ia12(x) sin θ
−ia21(x) sin θ a22(x)

]
,(6.9)

and we have

(6.10) {Cn}n ∼σ κ(x, θ).

If moreover a21 = −a12, then we also have

(6.11) {Cn}n ∼λ κ(x, θ).
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FIG. 6.1. Comparison between the spectrum of Cn and the rearranged version φ of the symbol κ(x, θ) for
a11(x) = 2 + cos(πx), a12(x) = −a21(x) = e−x sin(πx), a22(x) = 2x+ sin(πx), and n = 40.

Proof. The GLT relation (6.9) follows immediately from (6.4)–(6.8) and GLT 6. The
singular value distribution (6.10) follows from (6.9) and GLT 1. It only remains to prove
(6.11) in the case where a21 = −a12. In this case, we have

Bn =

[
Kn(a11) Hn(a12)
−Hn(a12) Mn(a22)

]
.

Consider the symmetric approximation of Bn given by

B̃n =

[
K̃n(a11) H̃n(a12)

−H̃n(a12) Mn(a22)

]
,

where

K̃n(a11) = tridiag
j=1,...,n

[
−a11(xj−1) 2a11(xj) −a11(xj)

]
,

H̃n(a12) = tridiag
j=1,...,n

[
− 1

2 a12(xj−1) 0 1
2 a12(xj)

]
.

It is not difficult to see that ‖Bn − B̃n‖ → 0 as n→∞ by invoking the inequality N 1. Thus,
setting C̃n = Πn,2B̃nΠT

n,2, we have ‖Cn − C̃n‖ = ‖Bn − B̃n‖ → 0 as n→∞. Therefore:
• in view of the decomposition C̃n = Cn + (C̃n − Cn), we have {C̃n}n ∼GLT κ(x, θ) by

(6.9), Z 1, GLT 3, and GLT 4, so in particular, {C̃n}n ∼λ κ(x, θ) by GLT 1 because C̃n is
symmetric;

• ‖Cn − C̃n‖2 ≤
√

2n‖Cn − C̃n‖ = o(
√
n) as n→∞.

Thus, (6.11) follows from GLT 2.
EXAMPLE 6.2. Suppose that a11, a12, a21, a22 ∈ C([0, 1]) and a21 = −a12, so that

{Cn}n ∼λ κ(x, θ) by Theorem 6.1. The eigenvalue functions of κ(x, θ) are given by

λ1,2(κ(x, θ)) =
a11(x)(2− 2 cos θ) + a22(x)

2

±
√

(a11(x)(2− 2 cos θ)− a22(x))2 + 4(a12(x) sin θ)2

2

and are continuous on [0, 1]× [−π, π]. Let φ be the canonical rearranged version of κ(x, θ)
obtained as the limit of the piecewise linear functions φρ according to the construction in
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Chapter 5 (fifth paragraph). Figure 6.1 displays the graph of φ and the eigenvalues λ1, . . . , λ2n

of Cn for a11(x) = 2+cos(πx), a12(x) = −a21(x) = e−x sin(πx), a22(x) = 2x+sin(πx),
and n = 40. The graph of φ has been obtained by plotting the graph of φρ corresponding
to a large value of ρ. The eigenvalues of Cn, which turn out to be real although Cn is not
symmetric, have been sorted in non-decreasing order and placed at the points (tq, λq) with
tq = q

2n , q = 1, . . . , 2n. We clearly see from the figure an excellent agreement between φ and
the eigenvalues of Cn, as predicted in Chapter 5 (fifth paragraph). In particular, we observe no
outliers in this case.

6.2. Higher-order FE discretization of diffusion equations. Consider the diffusion
problem

(6.12)

{
−(a(x)u′(x))′ = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.

In this section we consider the higher-order FE discretization of (6.12). Through the theory of
block GLT sequences we show that the corresponding sequence of (normalized) FE discretiza-
tion matrices enjoys a spectral distribution described by a (p− k)× (p− k) matrix-valued
function, where p and k represent, respectively, the degree and the smoothness of the piecewise
polynomial functions involved in the FE approximation. Note that this result represents a
remarkable argument in support of [54, Conjecture 2].

FE discretization. The weak form of (6.12) reads as follows [25, Chapter 8]: find
u ∈ H1

0 ([0, 1]) such that∫ 1

0

a(x)u′(x)w′(x)dx =

∫ 1

0

f(x)w(x)dx, ∀w ∈ H1
0 ([0, 1]).

In the FE method [66, Chapter 4], we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 ([0, 1]),

and we look for an approximation of the exact solution in the spaceW = span(ϕ1, . . . , ϕN )
by solving the following discrete problem: find uW ∈ W such that∫ 1

0

a(x)u′W(x)w′(x)dx =

∫ 1

0

f(x)w(x)dx, ∀w ∈ W.

Since {ϕ1, . . . , ϕN} is a basis of W , we can write uW =
∑N
j=1 ujϕj for a unique vector

u = (u1, . . . , uN )T . By linearity, the computation of uW (i.e., of u) reduces to solving the
linear system

Au = f ,

where f =
(∫ 1

0
f(x)ϕ1(x)dx, . . . ,

∫ 1

0
f(x)ϕN (x)dx

)T
and A is the stiffness matrix,

A =

[∫ 1

0

a(x)ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

.(6.13)

p-degree Ck B-spline basis functions. Following the higher-order FE approach, the basis
functions ϕ1, . . . , ϕN will be chosen as piecewise polynomials of degree p ≥ 1. More
precisely, for p, n ≥ 1 and 0 ≤ k ≤ p − 1, let B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] : R → R be
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the B-splines of degree p and smoothness Ck defined on the knot sequence

{τ1, . . . , τn(p−k)+p+k+2}

=

{
0, . . . , 0︸ ︷︷ ︸
p+1

,
1

n
, . . . ,

1

n︸ ︷︷ ︸
p−k

,
2

n
, . . . ,

2

n︸ ︷︷ ︸
p−k

, . . . ,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p+1

}
.(6.14)

We collect here a few properties of B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] that we shall need later on.
For the formal definition of B-splines as well as for the proof of the properties listed below,
see [31, 73].
• The support of the ith B-spline is given by

(6.15) supp(Bi,[p,k]) = [τi, τi+p+1], i = 1, . . . , n(p− k) + k + 1.

• Except for the first and the last one, all the other B-splines vanish on the boundary of [0, 1],
i.e.,

Bi,[p,k](0) = Bi,[p,k](1) = 0, i = 2, . . . , n(p− k) + k.

• {B1,[p,k], . . . , Bn(p−k)+k+1,[p,k]} is a basis for the space of piecewise polynomial functions
of degree p and smoothness Ck, that is,

Vn,[p,k] =
{
v ∈ Ck([0, 1]) : v|[ i

n ,
i+1
n ] ∈ Pp for i = 0, . . . , n− 1

}
,

where Pp is the space of polynomials of degree less than or equal to p. Moreover,
{B2,[p,k], . . . , Bn(p−k)+k,[p,k]} is a basis for the space

Wn,[p,k] = {w ∈ Vn,[p,k] : w(0) = w(1) = 0}.

• The B-splines form a non-negative partition of unity over [0, 1]:

Bi,[p,k] ≥ 0 over R, i = 1, . . . , n(p− k) + k + 1,(6.16)
n(p−k)+k+1∑

i=1

Bi,[p,k] = 1 over [0, 1].(6.17)

• The derivatives of the B-splines satisfy

(6.18)
n(p−k)+k+1∑

i=1

|B′i,[p,k]| ≤ Cpn over R,

where Cp is a constant depending only on p. Note that the derivatives B′i,[p,k] may not be
defined at some of the grid points 0, 1

n ,
2
n , . . . ,

n−1
n , 1 in the case of C0 smoothness (k = 0).

In (6.18) it is assumed that the undefined values are excluded from the summation.
• For every y = (y1, . . . , yn(p−k)+k+1) ∈ Rn(p−k)+k+1, we have

(6.19)

∥∥∥∥∥∥
n(p−k)+k+1∑

i=1

yiBi,[p,k]

∥∥∥∥∥∥
2

L2([0,1])

=

∫ 1

0

( n(p−k)+k+1∑
i=1

yiBi,[p,k]

)2

≥ cp
n
‖y‖2,

where cp is a constant depending only on p.
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• All the B-splines, except for the first k + 1 and the last k + 1, are uniformly shifted-scaled
versions of p− k fixed reference functions β1,[p,k], . . . , βp−k,[p,k], namely the first p− k
B-splines defined on the reference knot sequence

0, . . . , 0︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p−k

, . . . , η, . . . , η︸ ︷︷ ︸
p−k

, η =

⌈
p+ 1

p− k

⌉
.

The precise formula we shall need later on is the following: setting

(6.20) ν =

⌈
k + 1

p− k

⌉
,

for the B-splines Bk+2,[p,k], . . . , Bk+1+(n−ν)(p−k),[p,k] we have

(6.21)
Bk+1+(p−k)(r−1)+q,[p,k](x) = βq,[p,k](nx− r + 1),

r = 1, . . . , n− ν, q = 1, . . . , p− k.

We point out that the supports of the reference B-splines βq,[p,k] satisfy

(6.22) supp(β1,[p,k]) ⊆ supp(β2,[p,k]) ⊆ . . . ⊆ supp(βp−k,[p,k]) = [0, η].

Figures 6.2 and 6.3 display the graphs of the B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for
the degree p = 3 and the smoothness k = 1, and the graphs of the associated reference
B-splines β1,[p,k], β2,[p,k].

The basis functions ϕ1, . . . , ϕN are defined as follows:

ϕi = Bi+1,[p,k], i = 1, . . . , n(p− k) + k − 1.(6.23)

In particular, we have N = n(p− k) + k − 1 andW = span(ϕ1, . . . , ϕN ) =Wn,[p,k].

GLT analysis of the higher-order FE discretization matrices. The stiffness matrix (6.13)
resulting from the choice of the basis functions as in (6.23) will be denoted by An,[p,k](a),

(6.24) An,[p,k](a) =

[∫ 1

0

a(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

.

The main result of this section is Theorem 6.5, which gives the spectral distribution of the
normalized sequence {n−1An,[p,k](a)}n. The proof of Theorem 6.5 requires Lemma 6.4,
which provides an approximate construction of the matrix An,[p,k](1) corresponding to the
constant-coefficient case where a(x) = 1 identically. In view of what follows, define the
(p− k)× (p− k) blocks

K
[`]
[p,k] =

[∫
R
β′j,[p,k](t)β

′
i,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

and the (p− k)× (p− k) matrix-valued function κ[p,k] : [−π, π]→ C(p−k)×(p−k),

(6.25) κ[p,k](θ) =
∑
`∈Z

K
[`]
[p,k]e

i`θ = K
[0]
[p,k] +

∑
`>0

(
K

[`]
[p,k]e

i`θ + (K
[`]
[p,k])

T e−i`θ
)
.

Due to the compact support of the reference B-splines β1,[p,k], . . . , βp−k,[p,k] (see (6.22)),
there is only a finite number of nonzero blocks K [`]

[p,k] and, consequently, the series in (6.25) is
actually a finite sum.

NOTATION 6.3. From now on, we will use the following notation.
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FIG. 6.2. B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for p = 3 and k = 1, with n = 10.
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FIG. 6.3. Reference B-splines β1,[p,k], β2,[p,k] for p = 3 and k = 1.

• If p, n ≥ 1, 0 ≤ k ≤ p − 1, and X is a matrix of size n(p − k) + k − 1, we de-
note by X̃ the principal submatrix of X corresponding to the row and column indices
i, j = k + 1, . . . , k + (n− ν)(p− k), where ν = d(k + 1)/(p− k)e as in (6.20).
• If p, n ≥ 1, 0 ≤ k ≤ p− 1, and X is a matrix of size n(p− k) + k − 1, we denote by X̂

the block diagonal matrix

X̂ =

Ik(p−k)−k
X

1

 = Ik(p−k)−k ⊕X ⊕ [1],

where it is understood that the block Ik(p−k)−k is not present if k(p− k)− k = 0, i.e., if
k = 0 or k = p− 1. Note that X̂ has the following key properties:
– its size (n + k)(p − k) is a multiple of p − k, and it is such that the difference

(n+ k)(p− k)−(n(p− k)+k−1)=k(p− k)−k + 1 > 0 is independent of n;
– it contains X as a principal submatrix in such a way that X̃ is the principal subma-

trix of X̂ corresponding to the row and column indices i, j = k(p − k) + 1, . . . ,
k(p− k) + (n− ν)(p− k);

– it satisfies the matrix identity X = P ∗n,[p,k]X̂Pn,[p,k], where Pn,[p,k] is the
(n+ k)(p− k)× (n(p− k) + k − 1) matrix given by

Pn,[p,k] =

 O

In(p−k)+k−1

0T

 ;

– its eigenvalues (respectively, singular values) are given by the eigenvalues (respectively,
singular values) of X plus further k(p− k)− k + 1 eigenvalues (respectively, singular
values) that are equal to 1.
LEMMA 6.4. Let p, n ≥ 1 and 0 ≤ k ≤ p− 1. Then

Ãn,[p,k](1) = nTn−ν(κ[p,k]).
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Proof. By (6.15) and (6.21), for all r,R = 1, . . . , n − ν, and q,Q = 1, . . . , p − k, we
have

(Ãn,[p,k](1))(p−k)(r−1)+q,(p−k)(R−1)+Q

=

∫ 1

0

B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

=

∫
R
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

= n2

∫
R
β′Q,[p,k](nx−R+ 1)β′q,[p,k](nx− r + 1)dx

= n

∫
R
β′Q,[p,k](y)β′q,[p,k](y − r +R)dy

and

(Tn−ν(κ[p,k]))(p−k)(r−1)+q,(p−k)(R−1)+Q = (K
[r−R]
[p,k] )q,Q

=

∫
R
β′Q,[p,k](y)β′q,[p,k](y − r +R)dy,

which completes the proof.
THEOREM 6.5. Let a ∈ L1([0, 1]), p ≥ 1, and 0 ≤ k ≤ p− 1. Then

(6.26) {n−1An,[p,k](a)}n ∼σ,λ a(x)κ[p,k](θ).

Proof. We first note that it is enough to prove (6.26) with An,[p,k](a) replaced by
Ân,[p,k](a) because we have observed in Notation 6.3 that, except for k(p − k) − k + 1
additional singular values (respectively, eigenvalues) that are equal to 1, the singular values
(respectively, eigenvalues) of Ân,[p,k](a) are the same as the singular values (respectively,
eigenvalues) of An,[p,k](a). In view of GLT 1 and the symmetry of Ân,[p,k](a), in order to
prove (6.26) with An,[p,k](a) replaced by Ân,[p,k](a), it is enough to show that

(6.27) {n−1Ân,[p,k](a)}n ∼GLT a(x)κ[p,k](θ).

The proof of (6.27) consists of the following three steps.
Step 1. We first prove (6.27) in the constant-coefficient case where a(x) = 1 identically. In
this case, by Lemma 6.4, n−1Ãn,[p,k](1) = Tn−ν(κ[p,k]). Considering that n−1Ãn,[p,k](1)

is the principal submatrix of n−1Ân,[p,k](1) corresponding to the row and column indices
i, j = k(p− k) + 1, . . . , k(p− k) + (n− ν)(p− k), we infer that

n−1Ân,[p,k](1) = Tn+k(κ[p,k]) +Rn,[p,k], rank(Rn,[p,k]) ≤ 2(p− k)(k + ν).

Hence, the desired relation {n−1Ân,[p,k](1)}n ∼GLT κ[p,k](θ) follows from Z 1, GLT 3, and
GLT 4.
Step 2. Now we prove (6.27) in the case where a ∈ C([0, 1]). Let

Zn,[p,k](a) = n−1Ân,[p,k](a)− n−1Dn+k(aIp−k)Ân,[p,k](1).

By (6.14), (6.15), and (6.18), for all r,R = 1, . . . , n− ν, and q,Q = 1, . . . , p− k, we have

|(nZ̃n,[p,k](a))(p−k)(r−1)+q,(p−k)(R−1)+Q|
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=

∣∣∣∣∣(Ãn,[p,k](a))(p−k)(r−1)+q,(p−k)(R−1)+Q

−
((

diag
i=k+1,...,k+n−ν

a
( i

n+ k

)
Ip−k

)
Ãn,[p,k](1)

)
(p−k)(r−1)+q,(p−k)(R−1)+Q

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

[
a(x)− a

( k + r

n+ k

)]
· B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ τk+1+(p−k)(r−1)+q+p+1

τk+1+(p−k)(r−1)+q

[
a(x)− a

( k + r

n+ k

)]

· B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

∣∣∣∣∣
≤ C2

pn
2

∫ (r+p)/n

(r−1)/n

∣∣∣∣a(x)− a
( k + r

n+ k

)∣∣∣∣dx ≤ C2
p(p+ 1)nωa

(2p

n

)
,

where ωa(·) is the modulus of continuity of a and the last inequality is justified by the fact
that the maximum distance of a point x in the interval [(r − 1)/n, (r + p)/n] from the point
(k + r)/(n+ k) is not larger than 2p/n. It follows that each entry of Z̃n,[p,k](a) is bounded
in modulus by Dpωa(1/n), where Dp is a constant depending only on p. Moreover, by (6.15),
the matrix Z̃n,[p,k](a) is banded with bandwidth bounded by a constant wp depending only
on p. Thus, by N 1, ‖Z̃n,[p,k](a)‖ ≤ wpDpωa(1/n) → 0 as n → ∞. Considering that
Z̃n,[p,k](a) is the principal submatrix of Zn,[p,k](a) corresponding to the row and column
indices i, j = k(p− k) + 1, . . . , k(p− k) + (n− ν)(p− k), we arrive at

Zn,[p,k](a) = Nn,[p,k] +Rn,[p,k],

where ‖Nn,[p,k]‖ = ‖Z̃n,[p,k](a)‖ → 0 as n→∞ and rank(Rn,[p,k]) ≤ 2(p− k)(k + ν). It
follows from Z 1 that {Zn,[p,k](a)}n is zero-distributed. Since

n−1Ân,[p,k](a) = n−1Dn+k(aIp−k)Ân,[p,k](1) + Zn,[p,k](a),

we conclude that {n−1Ân,[p,k](a)}n ∼GLT a(x)κ[p,k](θ) by Step 1, GLT 3, and GLT 4.
Step 3. Finally, we prove (6.27) in the general case where a ∈ L1([0, 1]). By the density of
C([0, 1]) in L1([0, 1]), there exist functions am ∈ C([0, 1]) such that am → a in L1([0, 1]).
By Step 2,

{n−1Ân,[p,k](am)}n ∼GLT am(x)κ[p,k](θ).

Moreover,

am(x)κ[p,k](θ)→ a(x)κ[p,k](θ) in measure.

We show that

(6.28) {n−1Ân,[p,k](am)}n
a.c.s.−→ {n−1Ân,[p,k](a)}n.
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Once this is done, the thesis (6.27) follows immediately from GLT 7. To prove (6.28), we
note that, by N 3 and (6.18),

‖Ân,[p,k](a)− Ân,[p,k](am)‖1 = ‖An,[p,k](a)−An,[p,k](am)‖1

≤
n(p−k)+k−1∑

i,j=1

∣∣∣∣∫ 1

0

[
a(x)− am(x)

]
B′j+1,[p,k](x)B′i+1,[p,k](x)dx

∣∣∣∣
≤
∫ 1

0

∣∣a(x)− am(x)
∣∣ n(p−k)+k−1∑

i,j=1

|B′j+1,[p,k](x)| |B′i+1,[p,k](x)|dx

≤ C2
pn

2‖a− am‖L1 .

Thus, the a.c.s. convergence (6.28) follows from ACS 6.
REMARK 6.6 (Space-time higher-order FE-DG discretization of time-dependent diffusion

equations). Consider the time-dependent diffusion equation

(6.29)


∂tu(t, x)− ∂x(a(x)∂xu(t, x)) = f(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),

u(0, x) = 0, x ∈ (0, 1).

If we discretize (6.29) by the space-time higher-order FE-DG approximation technique consid-
ered in [11], then the resulting (normalized) FE-DG discretization matrices enjoy an asymptotic
spectral distribution described by a (q+1)(p−k)×(q+1)(p−k) matrix-valued function. This
result was proved in [11, Theorem A.6] by a direct (complicated and cumbersome) approach.
By following step by step the proof of Theorem 6.5, we can give an alternative (much more
lucid and simpler) proof of [11, Theorem A.6] based on the theory of block GLT sequences.

REMARK 6.7 (Formal structure of the symbol). From a formal point of view (i.e.,
disregarding the regularity of a(x) and u(x)), problem (6.12) can be rewritten in the form{

−a(x)u′′(x)− a′(x)u′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.

From this reformulation, it appears more clearly that the (singular value and spectral) symbol
a(x)κ[p,k](θ) consists of the following two “ingredients”.
• The coefficient of the higher-order differential operator, namely a(x), in the physical

variable x. To make a parallelism with Hörmander’s theory [60], the higher-order differential
operator −a(x)u′′(x) is the so-called principal symbol of the complete differential operator
−a(x)u′′(x)− a′(x)u′(x) and a(x) is then the coefficient of the principal symbol.

• The trigonometric polynomial associated with the FE discretization of the higher-order
derivative −u′′(x), namely κ[p,k](θ), in the Fourier variable θ. To see that κ[p,k](θ) is really
the trigonometric polynomial associated with the FE discretization of −u′′(x), simply note
that κ[p,k](θ) is the (singular value and spectral) symbol of the sequence of FE matrices
{n−1An,[p,k](1)}n, which arises from the FE discretization of the Poisson problem{

−u′′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.

We observe that the term−a′(x)u′(x), which only depends on lower-order derivatives of u(x),
does not enter the expression of the symbol.

EXAMPLE 6.8. Let λ1,2(x, θ) be the two eigenvalue functions of a(x)κ[p,k](θ). Figure 6.4
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FIG. 6.4. Comparison between the spectrum of n−1An,[p,k](a) and the two eigenvalue functions of the symbol
a(x)κ[p,k](θ) for a(x) = 2 + sin(πx) and p = 2, k = 0, n = 40.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2 graph of φ
eigenvalues of n−1An,[p,k](a)

FIG. 6.5. Comparison between the spectrum of n−1An,[p,k](a) and the rearranged version φ of the symbol
a(x)κ[p,k](θ) for a(x) = e−x(1− 2x− sin(7x)) and p = 3, k = 1, n = 40.

displays the graphs of λ1,2(x, θ) and the eigenvalues λ1, . . . , λn(p−k)+k−1 of n−1An,[p,k](a)
for a(x) = 2 + sin(πx) and p = 2, k = 0, n = 40. The eigenvalues of n−1An,[p,k](a) have
been plotted over a uniform grid on the domain [0, 1] × [−π, π]. We clearly see from the
figure an excellent agreement between λ1,2(x, θ) and the eigenvalues of n−1An,[p,k](a), as
predicted in Chapter 5 (fourth paragraph).

EXAMPLE 6.9. Let φ be the canonical rearranged version of a(x)κ[p,k](θ) obtained as
the limit of the piecewise linear functions φρ, according to the construction in Chapter 5 (fifth
paragraph). Figure 6.5 displays the graph of φ and the eigenvalues λ1, . . . , λn(p−k)+k−1 of
n−1An,[p,k](a) for a(x) = e−x(1 − 2x − sin(7x)) and p = 3, k = 1, n = 40. The graph
of φ has been obtained by plotting the graph of φρ corresponding to a large value of ρ. The
eigenvalues of n−1An,[p,k](a) have been sorted in non-decreasing order and placed at the
points (tq, λq) with tq = q

n(p−k)+k−1 , q = 1, . . . , n(p− k) + k − 1. We clearly see from the
figure an excellent agreement between φ and the eigenvalues of n−1An,[p,k](a).
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6.3. Higher-order FE discretization of convection-diffusion-reaction equations. Sup-
pose we add to the diffusion equation (6.12) a convection and a reaction term. In this way, we
obtain the following convection-diffusion-reaction problem:

(6.30)

{
−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.

Based on Remark 6.7, we expect that the term b(x)u′(x) + c(x)u(x), which only involves
lower-order derivatives of u(x), does not enter the expression of the symbol. In other words,
if we consider for problem (6.30) the same higher-order FE discretization as in Section 6.2,
then the symbol of the resulting sequence of (normalized) FE discretization matrices should
be again a(x)κ[p,k](θ) as per Theorem 6.5. We are going to show that this is in fact the case.

FE discretization. The weak form of (6.30) reads as follows [25, Chapter 8]: find
u ∈ H1

0 ([0, 1]) such that

a(u,w) = f(w), ∀w ∈ H1
0 ([0, 1]),

where

a(u,w) =

∫ 1

0

a(x)u′(x)w′(x)dx+

∫ 1

0

b(x)u′(x)w(x)dx+

∫ 1

0

c(x)u(x)w(x)dx,

f(w) =

∫ 1

0

f(x)w(x)dx.

In the FE method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 ([0, 1]), and we look for

an approximation of the exact solution in the spaceW = span(ϕ1, . . . , ϕN ) by solving the
following discrete problem: find uW ∈ W such that

a(uW , w) = f(w), ∀w ∈ W.

Since {ϕ1, . . . , ϕN} is a basis forW , we can write uW =
∑N
j=1 ujϕj for a unique vector

u = (u1, . . . , uN )T . By linearity, the computation of uW (i.e., of u) reduces to solving the
linear system

Su = f ,

where f = (f(ϕ1), . . . , f(ϕN ))T and S is the stiffness matrix,

S = [a(ϕj , ϕi)]
N
i,j=1.

Note that S admits the following decomposition:

(6.31) S = A+ Z,

where

A =

[∫ 1

0

a(x)ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

is the (symmetric) diffusion matrix and

Z =

[∫ 1

0

b(x)ϕ′j(x)ϕi(x)dx

]N
i,j=1

+

[∫ 1

0

c(x)ϕj(x)ϕi(x)dx

]N
i,j=1
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is the sum of the convection and reaction matrices.

GLT analysis of the higher-order FE discretization matrices. Following the higher-order
FE approach as in Section 6.2, the basis functions ϕ1, . . . , ϕN are chosen as in (6.23). The
stiffness matrix resulting from this choice will be denoted by Sn,[p,k](a, b, c). According
to (6.31), it can be decomposed as follows:

(6.32) Sn,[p,k](a, b, c) = An,[p,k](a) + Zn,[p,k](b, c),

where

An,[p,k](a) =

[∫ 1

0

a(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

,

Zn,[p,k](b, c) =

[∫ 1

0

b(x)B′j+1,[p,k](x)Bi+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

+

[∫ 1

0

c(x)Bj+1,[p,k](x)Bi+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

.

Note thatAn,[p,k](a) is the same as in (6.24) and Theorem 6.5. The main result of this section is
Theorem 6.10, which shows that Theorem 6.5 holds unchanged with Sn,[p,k](a, b, c) in place of
An,[p,k](a). This highlights a general aspect: lower-order terms such as b(x)u′(x) + c(x)u(x)
do not enter the expression of the symbol and do not affect in any way the asymptotic singular
value and eigenvalue distribution of DE discretization matrices.

THEOREM 6.10. Let a, b, c ∈ L1([0, 1]), p ≥ 1, and 0 ≤ k ≤ p− 1. Then

{n−1Sn,[p,k](a, b, c)}n ∼σ,λ a(x)κ[p,k](θ),

where κ[p,k](θ) is defined in (6.25).
Proof. Throughout this proof, we make use of Notation 6.3, and we use the letter C to

denote a generic constant independent of n. We are going to show that

(6.33) ‖Zn,[p,k](b, c)‖2 ≤ Cn.

Once this is done, the thesis is proved. Indeed, by (6.33) and the definition of Ẑn,[p,k](b, c)
(see Notation 6.3), we immediately obtain

‖Ẑn,[p,k](b, c)‖2 ≤ Cn,

which in turn implies that {n−1Ẑn,[p,k](b, c)}n is zero-distributed by Z 2. In view of the
decomposition

n−1Ŝn,[p,k](a, b, c) = n−1Ân,[p,k](a) + n−1Ẑn,[p,k](b, c)

(see (6.32)), by (6.27), GLT 3, and GLT 4, we get {n−1Ŝn,[p,k](a, b, c)}n ∼GLT a(x)κ[p,k](θ).
Thus, {n−1Ŝn,[p,k](a, b, c)}n ∼σ,λ a(x)κ[p,k](θ) by GLT 1 and GLT 2, which immediately
implies that {n−1Sn,[p,k](a, b, c)}n ∼σ,λ a(x)κ[p,k](θ).

It only remains to prove (6.33). Using N 3 and (6.16)–(6.18), we obtain

‖Zn,[p,k](b, c)‖2 ≤ ‖Zn,[p,k](b, c)‖1 ≤
n(p−k)+k−1∑

i,j=1

|(Zn,[p,k](b, c))ij |
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=

n(p−k)+k−1∑
i,j=1

∣∣∣∣∫ 1

0

b(x)B′j+1,[p,k](x)Bi+1,[p,k](x)dx

+

∫ 1

0

c(x)Bj+1,[p,k](x)Bi+1,[p,k](x)dx

∣∣∣∣
≤
∫ 1

0

|b(x)|
n(p−k)+k−1∑

j=1

|B′j+1,[p,k](x)|
n(p−k)+k−1∑

i=1

|Bi+1,[p,k](x)|dx

+

∫ 1

0

|c(x)|
n(p−k)+k−1∑

j=1

|Bj+1,[p,k](x)|
n(p−k)+k−1∑

i=1

|Bi+1,[p,k](x)|dx

≤ Cpn‖b‖L1 + ‖c‖L1 ≤ Cn,

and (6.33) is proved.

6.4. Higher-order FE discretization of systems of DEs. Consider again the same sys-
tem of DEs as in Section 6.1, i.e.,

(6.34)



−a11(x)u′′1(x) + a12(x)u′2(x) = f1(x), x ∈ (0, 1),

a21(x)u′1(x) + a22(x)u2(x) = f2(x), x ∈ (0, 1),

u1(0) = 0, u1(1) = 0,

u2(0) = 0, u2(1) = 0.

In this section we consider the higher-order FE discretization of (6.34). Through the theory
of block GLT sequences we show that, under suitable assumptions on the DE coefficients
a11, a12, a21, a22, the corresponding sequence of (normalized) FE discretization matrices
enjoys a spectral distribution described by a 2(p − k) × 2(p − k) matrix-valued function,
where p and k are, respectively, the degree and the smoothness of the piecewise polynomial
functions involved in the FE approximation, while the number 2 in front of (p− k) coincides
with the number of equations that compose the system (6.34).

FE discretization. The weak form of (6.34) reads as follows: find u1, u2 ∈ H1
0 ([0, 1]) such

that, for all w ∈ H1
0 ([0, 1]),

∫ 1

0
a11(x)u′1(x)w′(x)dx+

∫ 1

0
a12(x)u′2(x)w(x)dx =

∫ 1

0
f1(x)w(x)dx,∫ 1

0
a21(x)u′1(x)w(x)dx+

∫ 1

0
a22(x)u2(x)w(x)dx =

∫ 1

0
f2(x)w(x)dx.

In the FE method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 ([0, 1]), and we look for

approximations u1,W , u2,W of the exact solutions u1, u2 in the spaceW = span(ϕ1, . . . , ϕN )
by solving the following discrete problem: find u1,W , u2,W ∈ W such that, for all w ∈ W ,

∫ 1

0
a11(x)u′1,W(x)w′(x)dx+

∫ 1

0
a12(x)u′2,W(x)w(x)dx =

∫ 1

0
f1(x)w(x)dx,∫ 1

0
a21(x)u′1,W(x)w(x)dx+

∫ 1

0
a22(x)u2,W(x)w(x)dx =

∫ 1

0
f2(x)w(x)dx.

Since {ϕ1, . . . , ϕN} is a basis of W , we can write u1,W =
∑N
j=1 u1,jϕj and

u2,W =
∑N
j=1 u2,jϕj for unique vectors u1 = (u1,1, . . . , u1,N )T and u2 = (u2,1, . . . , u2,N )T.

By linearity, the computation of u1,W , u2,W (i.e., of u1,u2) reduces to solving the linear
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system

(6.35) S

[
u1

u2

]
=

[
f1
f2

]
,

where f1 =
[∫ 1

0
f1(x)ϕi(x)dx

]N
i=1

, f2 =
[∫ 1

0
f2(x)ϕi(x)dx

]N
i=1

, and S is the stiffness matrix,
which has the following block structure:

(6.36) S =

[
A(a11) H(a12)
H(a21) M(a22)

]
,

where, for any g ∈ L1([0, 1]),

A(g) =

[∫ 1

0

g(x)ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

,(6.37)

H(g) =

[∫ 1

0

g(x)ϕ′j(x)ϕi(x)dx

]N
i,j=1

,(6.38)

M(g) =

[∫ 1

0

g(x)ϕj(x)ϕi(x)dx

]N
i,j=1

.(6.39)

Note that, for any ρ 6= 0, the system (6.35) is equivalent to

B(ρ)

[
v1

v2

]
=

[
ρ−1f1
f2

]
,

where v1 = u1, v2 = ρ−1u2 and

B(ρ) = (ρ−1IN ⊕ IN )S (IN ⊕ ρIN )

=

[
ρ−1IN ON
ON IN

] [
A(a11) H(a12)
H(a21) M(a22)

] [
IN ON
ON ρIN

]
=

[
ρ−1A(a11) H(a12)
H(a21) ρM(a22)

]
.(6.40)

GLT analysis of the higher-order FE discretization matrices. Following the higher-order
FE approach as in Sections 6.2 and 6.3, the basis functions ϕ1, . . . , ϕN are chosen as in (6.23).
The stiffness matrix S resulting from this choice and its normalized versionB(ρ) corresponding
to ρ = n will be denoted by Sn,[p,k](A) and Bn,[p,k](A), respectively, where

A =

[
a11 a12

a21 a22

]
.

According to (6.36)–(6.39) and (6.40), we have

Sn,[p,k](A) =

[
An,[p,k](a11) Hn,[p,k](a12)
Hn,[p,k](a21) Mn,[p,k](a22)

]
,

Bn,[p,k](A) =

[
n−1An,[p,k](a11) Hn,[p,k](a12)
Hn,[p,k](a21) nMn,[p,k](a22)

]
,(6.41)
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where, for any g ∈ L1([0, 1]),

An,[p,k](g) =

[∫ 1

0

g(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

,

Hn,[p,k](g) =

[∫ 1

0

g(x)B′j+1,[p,k](x)Bi+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

,(6.42)

Mn,[p,k](g) =

[∫ 1

0

g(x)Bj+1,[p,k](x)Bi+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1

.

Note that An,[p,k](g) is the same as in (6.24) and Theorem 6.5 with the only difference
that a is replaced by g. The main result of this section is Theorem 6.14, which gives the
spectral distribution of the sequence {Bn,[p,k](A)}n. In view of what follows, define the
(p− k)× (p− k) blocks

K
[`]
[p,k] =

[∫
R
β′j,[p,k](t)β

′
i,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

H
[`]
[p,k] =

[∫
R
β′j,[p,k](t)βi,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

M
[`]
[p,k] =

[∫
R
βj,[p,k](t)βi,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,

and the matrix-valued functions κ[p,k], ξ[p,k], µ[p,k] : [−π, π]→ C(p−k)×(p−k),

κ[p,k](θ) =
∑
`∈Z

K
[`]
[p,k]e

i`θ = K
[0]
[p,k] +

∑
`>0

(
K

[`]
[p,k]e

i`θ + (K
[`]
[p,k])

T e−i`θ
)
,(6.43)

ξ[p,k](θ) =
∑
`∈Z

H
[`]
[p,k]e

i`θ = H
[0]
[p,k] +

∑
`>0

(
H

[`]
[p,k]e

i`θ − (H
[`]
[p,k])

T e−i`θ
)
,(6.44)

µ[p,k](θ) =
∑
`∈Z

M
[`]
[p,k]e

i`θ = M
[0]
[p,k] +

∑
`>0

(
M

[`]
[p,k]e

i`θ + (M
[`]
[p,k])

T e−i`θ
)
.(6.45)

Due to the compact support of the reference B-splines β1,[p,k], . . . , βp−k,[p,k] (see (6.22)),
there are only a finite number of nonzero blocks K [`]

[p,k], H
[`]
[p,k], M

[`]
[p,k]. Consequently, the

series in (6.43)–(6.45) are actually finite sums. We are now ready to state and prove a few
lemmas that we shall use in the proof of Theorem 6.14. In what follows, we use the same
notation as in Section 6.2 (see Notation 6.3).

LEMMA 6.11. Let p, n ≥ 1 and 0 ≤ k ≤ p− 1. Then,

Ãn,[p,k](1) = nTn−ν(κ[p,k]),(6.46)

H̃n,[p,k](1) = Tn−ν(ξ[p,k]),(6.47)

M̃n,[p,k](1) = n−1Tn−ν(µ[p,k]).(6.48)
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Proof. The proof of (6.46) is given in Lemma 6.4. The proofs of (6.47) and (6.48) are
essentially the same as the proof of (6.46).

LEMMA 6.12. Let p ≥ 1 and 0 ≤ k ≤ p− 1. Then, for all functions g ∈ L1([0, 1]),

{n−1Ân,[p,k](g)}n ∼GLT g(x)κ[p,k](θ),(6.49)

{Ĥn,[p,k](g)}n ∼GLT g(x)ξ[p,k](θ),(6.50)

{nM̂n,[p,k](g)}n ∼GLT g(x)µ[p,k](θ).(6.51)

Proof. Except for the fact that g is replaced by a, relation (6.49) is nothing else but (6.27),
which has been proved on the basis of (6.46) in Steps 1–3 of the proof of Theorem 6.5. The
proofs of (6.50) and (6.51) are completely analogous to the proof of (6.49); they are based
on (6.47) and (6.48) instead of (6.46).

The last lemma shows that Hn,[p,k](g) is “almost” skew-symmetric whenever g is con-
tinuous. In this regard, we note that Hn,[p,k](1) is skew-symmetric, as it is clear from
equation (6.42) with g = 1 and the fact that, for every i, j = 1, . . . , n(p− k) + k − 1,∫ 1

0

B′j+1,[p,k](x)Bi+1,[p,k](x)dx = −
∫ 1

0

Bj+1,[p,k](x)B′i+1,[p,k](x)dx.

LEMMA 6.13. Let p, n ≥ 1 and 0 ≤ k ≤ p− 1. For i = 1, . . . , n(p− k) + k − 1, let xi
be any point in the support of the B-spline Bi+1,[p,k]. Then, for all functions g ∈ C([0, 1]),

‖Hn,[p,k](g)−∆n,[p,k](g)Hn,[p,k](1)‖ ≤ Cωg(n−1),(6.52)

‖Hn,[p,k](g)−Hn,[p,k](1)∆n,[p,k](g)‖ ≤ Cωg(n−1),(6.53)

where C is a constant independent of n and ∆n,[p,k](g) = diagi=1,...,n(p−k)+k−1 g(xi).
Proof. Throughout this proof, the letter C denotes a generic constant independent of n.

For i, j = 1, . . . , n(p− k) + k − 1, we have

(Hn,[p,k](g))ij =

∫ 1

0

g(x)B′j+1,[p,k](x)Bi+1,[p,k](x)dx

=

∫
supp(Bi+1,[p,k])

g(x)B′j+1,[p,k](x)Bi+1,[p,k](x)dx

= g(xi)

∫
supp(Bi+1,[p,k])

B′j+1,[p,k](x)Bi+1,[p,k](x)dx

+

∫
supp(Bi+1,[p,k])

(g(x)− g(xi))B
′
j+1,[p,k](x)Bi+1,[p,k](x)dx

= (∆n,[p,k](g))ii(Hn,[p,k](1))ij + Zij .

By (6.15) and (6.16)–(6.18),

|Zij | =

∣∣∣∣∣
∫

supp(Bi+1,[p,k])

(g(x)− g(xi))B
′
j+1,[p,k](x)Bi+1,[p,k](x)dx

∣∣∣∣∣
=

∫
supp(Bi+1,[p,k])

|g(x)− g(xi)| |B′j+1,[p,k](x)| |Bi+1,[p,k](x)|dx

≤ max
x∈supp(Bi+1,[p,k])

|g(x)− g(xi)|Cpn
∫

supp(Bi+1,[p,k])

dx

≤ Cωg(n−1).(6.54)
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In view of (6.15), the matrix Z = Hn,[p,k](g) −∆n,[p,k](g)Hn,[p,k](1), just as the matrices
Hn,[p,k](g) and Hn,[p,k](1), is banded with bandwidth bounded by a constant C independent
of n. Thus, (6.54) and N 1 imply that ‖Z‖ ≤ Cωg(n−1), which proves (6.52). The proof of
(6.53) is completely analogous (simply repeat the above steps using g(xj) in place of g(xi)
and supp(Bj+1,[p,k]) in place of supp(Bi+1,[p,k])).

THEOREM 6.14. Let a11, a12, a21, a22 ∈ L1([0, 1]), p ≥ 1, and 0 ≤ k ≤ p− 1. Then,

{Bn,[p,k](A)}n ∼σ η[p,k](x, θ) =

[
a11(x)κ[p,k](θ) a12(x)ξ[p,k](θ)
a21(x)ξ[p,k](θ) a22(x)µ[p,k](θ)

]
.

If moreover a21 = −a12 ∈ C([0, 1]), then we also have

(6.55) {Bn,[p,k](A)}n ∼λ η[p,k](x, θ).

Proof. Keeping in mind Notation 6.3, define

B̂n,[p,k](A) =

[
n−1Ân,[p,k](a11) Ĥn,[p,k](a12)

Ĥn,[p,k](a21) nM̂n,[p,k](a22)

]
.

Since

An,[p,k](a11) = P ∗n,[p,k]Ân,[p,k](a11)Pn,[p,k],

Hn,[p,k](a12) = P ∗n,[p,k]Ĥn,[p,k](a12)Pn,[p,k],

Hn,[p,k](a21) = P ∗n,[p,k]Ĥn,[p,k](a21)Pn,[p,k],

Mn,[p,k](a22) = P ∗n,[p,k]M̂n,[p,k](a22)Pn,[p,k],

from (6.41) we obtain

(6.56) Bn,[p,k](A) =

[
P ∗n,[p,k] O

O P ∗n,[p,k]

]
B̂n,[p,k](A)

[
Pn,[p,k] O
O Pn,[p,k]

]
.

By Lemma 6.12 and GLT 6 we have {B̂n,[p,k](A)}n ∼GLT η[p,k](x, θ). It follows that
{B̂n,[p,k](A)}n ∼σ η[p,k](x, θ) by GLT 1 and {Bn,[p,k](A)}n ∼σ η[p,k](x, θ) by S 5.

It only remains to prove that {Bn,[p,k](A)}n ∼λ η[p,k](x, θ) under the assumption that
a21 = −a12 ∈ C([0, 1]). This assumption ensures that B̂n,[p,k](A) is “almost” Hermitian.
More precisely, if xi is any point in the support of the B-spline Bi+1,[p,k], by Lemma 6.13, we
have

(6.57) B̂n,[p,k](A) = Cn + Zn,

where

Cn =

[
n−1Ân,[p,k](a11) ∆̂n,[p,k](a12)Ĥn,[p,k](1)

Ĥn,[p,k](1)∆̂n,[p,k](a21) nM̂n,[p,k](a22)

]

is symmetric by the skew-symmetry of Hn,[p,k](1) and the hypothesis a21 = −a12, and Zn is
defined by

Zn =

[
O Yn
Wn O

]
,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: UNIDIMENSIONAL CASE 105

with

Yn = Ĥn,[p,k](a12)− ∆̂n,[p,k](a12)Ĥn,[p,k](1),

Wn = Ĥn,[p,k](a21)− Ĥn,[p,k](1)∆̂n,[p,k](a21).

By Lemma 6.13 and the continuity of a21 = −a12,

‖Zn‖ = max(‖Yn‖, ‖Wn‖) ≤ Cωa12(n−1)→ 0.

The thesis (6.55) now follows from GLT 2, taking into account the decomposition (6.57) and
equation (6.56).

6.5. Higher-order isogeometric Galerkin discretization of eigenvalue problems. Let
R+ be the set of positive real numbers. Consider the following eigenvalue problem: find
eigenvalues λj ∈ R+ and eigenfunctions uj , for j = 1, 2, . . . ,∞, such that

(6.58)

{
−(a(x)u′j(x))′ = λjb(x)uj(x), x ∈ Ω,

uj(x) = 0, x ∈ ∂Ω,

where Ω is a bounded open interval in R and we assume that a, b ∈ L1(Ω) and a, b > 0 a.e.
in Ω. It can be shown that the eigenvalues λj must necessarily be real and positive. This can
be formally seen by multiplying (6.58) by uj(x) and integrating over Ω:

λj =
−
∫

Ω
(a(x)u′j(x))′uj(x)dx∫
Ω
b(x)(uj(x))2dx

=

∫
Ω
a(x)(u′j(x))2dx∫

Ω
b(x)(uj(x))2dx

> 0.

Isogeometric Galerkin discretization. The weak form of (6.58) reads as follows: find
eigenvalues λj ∈ R+ and eigenfunctions uj ∈ H1

0 (Ω), for j = 1, 2, . . . ,∞, such that

a(uj , w) = λj(b uj , w), ∀w ∈ H1
0 (Ω),

where

a(uj , w) =

∫
Ω

a(x)u′j(x)w′(x)dx, (b uj , w) =

∫
Ω

b(x)uj(x)w(x)dx.

In the standard Galerkin method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0 (Ω), we

define the so-called approximation spaceW = span(ϕ1, . . . , ϕN ), and we find approximations
of the exact eigenpairs (λj , uj), j = 1, 2, . . . ,∞, by solving the following (Galerkin) problem:
find λj,W ∈ R+ and uj,W ∈ W , for j = 1, . . . , N , such that

(6.59) a(uj,W , w) = λj,W(b uj,W , w), ∀w ∈ W.

Assuming that the exact and numerical eigenvalues are arranged in non-decreasing order, then
the pair (λj,W , uj,W) is taken as an approximation of the pair (λj , uj), for all j = 1, . . . , N ,
as prescribed in [78, Chapter 6], where one can find an error analysis for such a choice. The
numbers λj,W/λj − 1, j = 1, . . . , N , are referred to as the (relative) eigenvalue errors. In
view of the canonical identification of each function w ∈ W with its coefficient vector with
respect to the basis {ϕ1, . . . , ϕN}, solving the Galerkin problem (6.59) is equivalent to solving
the generalized eigenvalue problem

(6.60) Auj,W = λj,WMuj,W ,
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where uj,W is the coefficient vector of uj,W with respect to {ϕ1, . . . , ϕN} and

A = [a(ϕj , ϕi)]
N
i,j=1 =

[∫
Ω

a(x)ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

,(6.61)

M = [(b ϕj , ϕi)]
N
i,j=1 =

[∫
Ω

b(x)ϕj(x)ϕi(x)dx

]N
i,j=1

.(6.62)

The matrices A and M are referred to as the stiffness and mass matrices, respectively. Due
to our assumption that a, b > 0 a.e. on Ω, both A and M are symmetric positive definite
regardless of the chosen basis functions ϕ1, . . . , ϕN . Moreover, it is clear from (6.60) that the
numerical eigenvalues λj,W , j = 1, . . . , N , are just the eigenvalues of the matrix

L = M−1A.

In the isogeometric Galerkin method [30, 61], we assume that the physical domain Ω is
described by a global geometry function G : [0, 1] → Ω, which is invertible and satisfies
G(∂([0, 1])) = ∂Ω. We fix a set of basis functions {ϕ̂1, . . . , ϕ̂N} defined on the reference
(parametric) domain [0, 1] and vanishing on the boundary ∂([0, 1]), and we find approximations
to the exact eigenpairs (λj , uj), j = 1, 2, . . . ,∞, by using the standard Galerkin method
described above, in which the basis functions ϕ1, . . . , ϕN are chosen as

(6.63) ϕi(x) = ϕ̂i(G
−1(x)) = ϕ̂i(x̂), x = G(x̂), i = 1, . . . , N.

The resulting stiffness and mass matrices A and M are given by (6.61) and (6.62), with
the basis functions ϕi defined as in (6.63). If we assume that G and ϕ̂i, i = 1, . . . , N , are
sufficiently regular, then we can apply standard differential calculus to obtain for A and M the
following expressions:

A =

[∫ 1

0

a(G(x̂))

|G′(x̂)|
ϕ̂′j(x̂)ϕ̂′i(x̂)dx̂

]N
i,j=1

,(6.64)

M =

[∫ 1

0

b(G(x̂))|G′(x̂)|ϕ̂j(x̂)ϕ̂i(x̂)dx̂

]N
i,j=1

.(6.65)

GLT analysis of the higher-order isogeometric Galerkin matrices. In the higher-order
isogeometric Galerkin approach, a suitable choice of basis functions ϕ̂1, . . . , ϕ̂N is as follows:

ϕ̂i = Bi+1,[p,k], i = 1, . . . , n(p− k) + k − 1,(6.66)

whereB1,[p,k], . . . , Bn(p−k)+k+1,[p,k] are the p-degree Ck B-splines introduced in Section 6.2.
If, for any functions α, β ∈ L1([0, 1]), we define

An,[p,k](α) =

[∫ 1

0

α(x̂)B′j+1,[p,k](x̂)B′i+1,[p,k](x̂)dx̂

]n(p−k)+k−1

i,j=1

,

Mn,[p,k](β) =

[∫ 1

0

β(x̂)Bj+1,[p,k](x̂)Bi+1,[p,k](x̂)dx̂

]n(p−k)+k−1

i,j=1

,

then the stiffness and mass matrices (6.64) and (6.65) resulting from the choice of the basis
functions as in (6.66) are nothing else but An,[p,k](aG) and Mn,[p,k](bG), where

aG(x̂) =
a(G(x̂))

|G′(x̂)|
, bG(x̂) = b(G(x̂))|G′(x̂)|.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

BLOCK GLT SEQUENCES: UNIDIMENSIONAL CASE 107

The main result of this section is Theorem 6.17. It provides formal mathematical proofs
to the main results that are discussed in the engineering review [57] by giving the spectral
distribution of the normalized sequences

{n−1An,[p,k](aG)}n, {nMn,[p,k](bG)}n, {n−2Ln,[p,k](aG, bG)}n,

where

Ln,[p,k](aG, bG) = (Mn,[p,k](bG))−1An,[p,k](aG)

is the matrix whose eigenvalues are just the numerical eigenvalues produced by the considered
higher-order isogeometric Galerkin method. To prove Theorem 6.17, some preliminary work
is necessary. In what follows, we use the same notation as in Section 6.2 (see Notation 6.3).

LEMMA 6.15. Let p ≥ 1 and 0 ≤ k ≤ p− 1. Then, for all functions g ∈ L1([0, 1]),

{n−1Ân,[p,k](g)}n ∼GLT g(x̂)κ[p,k](θ),

{nM̂n,[p,k](g)}n ∼GLT g(x̂)µ[p,k](θ).

Proof. See Lemma 6.12.
LEMMA 6.16. Let p ≥ 1 and 0 ≤ k ≤ p−1. Then µ[p,k](θ) is Hermitian positive definite

for all θ ∈ [−π, π].
Proof. By Lemma 6.15,

{nM̂n,[p,k](1)}n ∼GLT µ[p,k](θ),

and since nM̂n,[p,k](1) is symmetric, we infer from GLT 1 that

(6.67) {nM̂n,[p,k](1)}n ∼λ µ[p,k](θ).

By (6.19), for every y ∈ Rn(p−k)+k−1, we have

yT (nMn,[p,k](1))y = n

∫ 1

0

( n(p−k)+k−1∑
i=1

yiBi+1,[p,k](x̂)

)2

dx̂

= n

∥∥∥∥∥∥
n(p−k)+k−1∑

i=1

yiBi+1,[p,k]

∥∥∥∥∥∥
2

L2([0,1])

≥ cp‖y‖2.

Hence, by the minimax principle for eigenvalues [13, Corollary III.1.2],

λmin(nMn,[p,k](1)) = min
y 6=0

yT (nMn,[p,k](1))y

‖y‖2
≥ cp

for all n, which implies that

(6.68) λmin(nM̂n,[p,k](1)) ≥ min(cp, 1)

for all n. Taking into account that λmin(µ[p,k](θ)) is a continuous function of θ just as µ[p,k](θ),
by (6.67), (6.68), and S 3 we have

λmin(µ[p,k](θ)) ≥ min(cp, 1)
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for almost every θ ∈ [−π, π], that is, for all θ ∈ [−π, π], thanks to the continuity of
λmin(µ[p,k](θ)). We then conclude that µ[p,k](θ) is Hermitian positive definite for all
θ ∈ [−π, π].

THEOREM 6.17. Let Ω be a bounded open interval in R, and let a, b ∈ L1(Ω) with
a, b > 0 a.e. Let p ≥ 1 and 0 ≤ k ≤ p − 1. Let G : [0, 1] → Ω be such that G′ 6= 0 a.e. in
[0, 1] and

aG(x̂) =
a(G(x̂))

|G′(x̂)|
∈ L1([0, 1]).

Then,

{n−1An,[p,k](aG)}n ∼σ,λ aG(x̂)κ[p,k](θ) =
a(G(x̂))

|G′(x̂)|
κ[p,k](θ),(6.69)

{nMn,[p,k](bG)}n ∼σ,λ bG(x̂)µ[p,k](θ) = b(G(x̂))|G′(x̂)|µ[p,k](θ),(6.70)

{n−2Ln,[p,k](aG, bG)}n ∼σ,λ (bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ))

=
a(G(x̂))

b(G(x̂))(G′(x̂))2
(µ[p,k](θ))

−1κ[p,k](θ).(6.71)

Proof. We first note that it is enough to prove (6.69)–(6.71) with An,[p,k], Mn,[p,k],
Ln,[p,k] replaced by, respectively, Ân,[p,k], M̂n,[p,k], L̂n,[p,k], that is,

{n−1Ân,[p,k](aG)}n ∼σ,λ aG(x̂)κ[p,k](θ) =
a(G(x̂))

|G′(x̂)|
κ[p,k](θ),(6.72)

{nM̂n,[p,k](bG)}n ∼σ,λ bG(x̂)µ[p,k](θ) = b(G(x̂))|G′(x̂)|µ[p,k](θ),(6.73)

{n−2L̂n,[p,k](aG, bG)}n ∼σ,λ (bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ))

=
a(G(x̂))

b(G(x̂))(G′(x̂))2
(µ[p,k](θ))

−1κ[p,k](θ).(6.74)

Moreover, (6.72) and (6.73) follow immediately from Lemma 6.15 and the symmetry of
Ân,[p,k](aG) and M̂n,[p,k](bG). It only remains to prove (6.74). The first observation is that

n−2L̂n,[p,k](aG, bG) = (nM̂n,[p,k](bG))−1(n−1Ân,[p,k](aG))

∼ (nM̂n,[p,k](bG))−1/2(n−1Ân,[p,k](aG))(nM̂n,[p,k](bG))−1/2,(6.75)

where X ∼ Y means that the matrix X is similar to Y ; note that M̂n,[p,k](bG) is positive
definite because bG > 0 a.e. in [0, 1] by the assumptions on b andG, hence (M̂n,[p,k](bG))−1/2

is well-defined. By combining the equality in (6.75) with Lemmas 6.15, 6.16, and GLT 4, we
immediately obtain

(6.76) {n−2L̂n,[p,k](aG, bG)}n ∼GLT (bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ)).

The singular value distribution in (6.74) follows from (6.76) and GLT 1. Moreover, by
Lemmas 6.15, 6.16, GLT 4, and GLT 5 (applied with f(z) = |z|1/2), we have

{(nM̂n,[p,k](bG))−1/2(n−1Ân,[p,k](aG))(nM̂n,[p,k](bG))−1/2}n
∼GLT (bG(x̂)µ[p,k](θ))

−1/2(aG(x̂)κ[p,k](θ))(bG(x̂)µ[p,k](θ))
−1/2.
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FIG. 6.6. Comparison between the spectrum of the matrix n−2Ln,[p,k](aG, bG) and the rearranged version
φ of the symbol (bG(x̂)µ[p,k](θ))

−1(aG(x̂)κ[p,k](θ)) for a(x) = 1 + x, b(x) = 2 − sin(3x), G(x̂) = x̂, and
p = 5, k = 3, n = 40.

Considering that (nM̂n,[p,k](bG))−1/2(n−1Ân,[p,k](aG))(nM̂n,[p,k](bG))−1/2 is symmetric,
from GLT 1 we get

{(nM̂n,[p,k](bG))−1/2(n−1Ân,[p,k](aG))(nM̂n,[p,k](bG))−1/2}n
∼λ (bG(x̂)µ[p,k](θ))

−1/2(aG(x̂)κ[p,k](θ))(bG(x̂)µ[p,k](θ))
−1/2,

which is equivalent to

{(nM̂n,[p,k](bG))−1/2(n−1Ân,[p,k](aG))(nM̂n,[p,k](bG))−1/2}n
∼λ (bG(x̂)µ[p,k](θ))

−1(aG(x̂)κ[p,k](θ))

by Definition 2.8, since

(bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ))

∼ (bG(x̂)µ[p,k](θ))
−1/2(aG(x̂)κ[p,k](θ))(bG(x̂)µ[p,k](θ))

−1/2

for all (x̂, θ) ∈ [0, 1] × [−π, π]. In view of the similarity in (6.75), we conclude that the
eigenvalue distribution in (6.74) is satisfied.

EXAMPLE 6.18. Let us denote by φ the canonical rearranged version of the symbol
(bG(x̂)µ[p,k](θ))

−1(aG(x̂)κ[p,k](θ)) obtained as the limit of the piecewise linear functions φρ,
according to the construction in Chapter 5 (fifth paragraph). Figure 6.6 displays the graph
of φ and the eigenvalues λ1, . . . , λn(p−k)+k−1 of n−2Ln,[p,k](aG, bG) for a(x) = 1 + x,
b(x) = 2 − sin(3x), G(x̂) = x̂, and p = 5, k = 3, n = 40. The graph of φ has been
obtained by plotting the graph of φρ corresponding to a large value of ρ. The eigenvalues
of n−2Ln,[p,k](aG, bG) have been sorted in non-decreasing order and placed at the points
(tq, λq) with tq = q

n(p−k)+k−1 , q = 1, . . . , n(p− k) + k − 1. We clearly see from the figure
an excellent agreement between φ and the eigenvalues of n−2Ln,[p,k](aG, bG). However, we
also note the presence of an outlier at the right end of the spectrum.

The reader who is interested in the engineering implications of Theorem 6.17 is referred
to the recent review [57].
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