
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 53, pp. 383–405, 2020.
Copyright © 2020, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol53s383

OPTIMIZED SURFACE PARAMETERIZATIONS WITH APPLICATIONS TO
CHINESE VIRTUAL BROADCASTING∗
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Abstract. Surface parameterizations have been widely applied in computer-aided design for the geometric
processing tasks of surface registration, remeshing, texture mapping, and so on. In this paper, we present an efficient
balanced energy minimization algorithm for the computation of simply connected open surface parameterizations with
balanced angle and area distortions. The existence of a nontrivial accumulation function of the proposed algorithm is
guaranteed under some mild conditions, and the limiting function is shown to be one-to-one. Comparisons of the
proposed algorithm with angle- and area-preserving parameterizations show that the angular distortion is close to
that of an angle-preserving parameterization while the area distortion is significantly improved. An application of
the proposed algorithm involving surface remeshing, registration, and morphing to the Chinese virtual broadcasting
technique is demonstrated.
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1. Introduction. A surface parameterization refers to a homeomorphism between a
surface and a domain in R2 with a canonical shape. The parameterization can be used to
induce a canonical coordinate system on the surface. The problem of surface parameterization
is to develop a feasible algorithm for the computation of an ideal mapping that maps a given
surface bijectively to a domain of a specified shape. This issue has been widely studied
and applied in various tasks of computer vision such as surface registration, remeshing,
morphing, alignment, and texture mapping. More details on the history and recent advances
for surface parameterization algorithms and applications can be found in the survey papers
[10, 22, 25, 29, 32, 49].

A good parameterization usually preserves as much geometric information as possible.
In the past, most of the related works consider either angle-preserving (conformal) or area-
preserving (equiareal) parameterizations. In practice, an ideal global parameterization of a
simply connected open surface usually has a canonical shape, e.g., a disk or a rectangle with
both angle and area distortions being small.

We first briefly discuss related previous work on computational algorithms of surface
parameterizations. An ideal parameterization usually preserves the geometric structure of
the data to the utmost. The major classifications of surface parameterizations are based
on conformal mappings, equiareal mappings, and mappings with balanced angle and area
distortions.

A conformal parameterization targets to minimize the angle distortion. Varieties of feasible
numerical algorithms have been proposed, including the linear Laplace-Beltrami equation [11,
30], the angle-based flattening [47, 48, 60], the discrete conformal parameterization [20],
the least-squares conformal mapping [39], the holomorphic one-form method [27, 28, 36],
the discrete conformal equivalence [50], the nonlinear heat diffusion [26, 33], the spectral
conformal parameterization [34, 43], the discrete Ricci flow [35, 61], the fast landmark
aligned spherical harmonic algorithm [15], the fast disk mapping [16], the orbifold Tutte
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embedding [6, 7, 8], the linear disk mapping [17], the conformal energy minimization [58],
and the discrete Calabi flow [62].

In contrast, an equiareal parameterization targets to minimize the area distortion. Sev-
eral feasible numerical algorithms have been proposed, including the stretch-minimizing
method [45, 55], the Lie advection method [64], the discrete optimal mass transporta-
tion [51, 52, 63], the density-equalizing mapping [18], and the stretch energy minimiza-
tion [57, 59].

Furthermore, a distortion-balancing parameterization aims to reach a trade-off between
minimizing the angle and the area distortions. Some feasible numerical algorithms have been
proposed, including the as-rigid-as-possible surface parameterization [40, 53], the most iso-
metric parametrization [19, 31], the isometric distortion minimization [44], and the boundary
first flattening [46].

Contribution of this paper. In this paper, we focus on developing an efficient balanced
energy minimization (BEM) algorithm for the computation of an optimized surface param-
eterization that maps a simply connected open surface to the unit disk with balanced angle
and area distortions. In the BEM algorithm, we use the golden section search and parabolic
interpolation [13, 23] to find the best balancing coefficient β∗. For a given balancing coeffi-
cient β, in each step we update the balanced Laplacian matrix and compute an approximate
parameterization between the surface and the unit disk until convergence. (See Algorithm 1
for details.) In addition, we prove the existence of a nontrivial accumulation function of the
BEM algorithm under the assumption that the given mesh is a Delaunay triangulation, and we
prove the bijectivity of the limiting function. A comparison of the BEM algorithm with angle-
and area-preserving parameterizations shows that the angle distortion is close to that of the
angle-preserving parameterization while the area distortion is significantly improved. With the
disk-shaped balanced parameterizations, the one-to-one correspondence, i.e., the registration
mapping, between surfaces can be easily computed on the unit disk so that the morphing and
alignment between surfaces can be smoothly handled. We then apply the BEM algorithm
to develop a Chinese virtual broadcasting technique, which consists of surface remeshing,
registration, and morphing skills.

This paper is organized as follows. First, in Section 2 we propose an efficient BEM
algorithm for computing the optimal distortion-balancing surface parameterization. In Sec-
tion 3, we prove the existence of a nontrivial accumulation function of the BEM algorithm and
show that the limiting function is one-to-one. Numerical experiments and comparisons of our
optimal distortion-balancing parameterizations with the conformal and equiareal parameteriza-
tions are presented in Section 4. The application of the distortion-balancing parameterizations
to Chinese virtual broadcasting is demonstrated in Section 5. A concluding remark is given in
Section 6.

2. Balanced Energy Minimization algorithm. The following notation is used in this
paper; other notations will be defined when they appear.

• Bold letters, e.g., u, v, w, denote (complex) vectors.
• Capital letters, e.g., A, B, C, denote matrices.
• Typewriter letters, e.g., I, J, K, denote ordered sets of indices.
• nI denotes the number of elements in the set I.
• vi denotes the ith entry of the vector v.
• vI denotes the subvector of v composed of vi, for i ∈ I.
• |v| denotes the vector with the ith entry being |vi|.
• diag(v) denotes the diagonal matrix with the (i, i)th entry being vi.
• Ai,j denotes the (i, j)th entry of the matrix A.
• AI,J denotes the submatrix of A composed of Ai,j , for i ∈ I and j ∈ J.
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• D := {z ∈ C | |z| ≤ 1} denotes the unit disk in C.
• i denotes the imaginary unit

√
−1.

• In denotes the identity matrix of size n× n.
• 1n denotes the vector of length n with all the entries being 1.
• 0 denotes the zero vectors and matrices of appropriate sizes.

In this paper, we consider simply connected open discrete surfaces embedded in R3. A
discrete surfaceM refers to a triangular mesh (homogeneous simplicial 2-complex) composed
of n vertices with coordinates in R3

V(M) =
{
vs ≡

(
v1s , v

2
s , v

3
s

)> ∈ R3
}n
s=1

,

triangular faces

F(M) =
{
[vi, vj , vk] ⊂ R3 for some vertices {vi, vj , vk} ⊂ V(M)

}
,

and edges

E(M) = {[vi, vj ] | [vi, vj , vk] ∈ F(M) for some vk ∈ V(M)} .

The bracket [vi, vj , vk] denotes the convex hull of the affinely independent vertices {vi, vj , vk}.
On the other hand, a discrete mapping f :M→ C is a piecewise affine mapping, i.e., for

each triangular face τ ∈ F(M), the restriction mapping f |τ : τ → C is an affine mapping
which can be represented as a complex-valued vector

f = (f(v1), · · · , f(vn))> ∈ Cn.

For a point v ∈ [vi, vj , vk] ∈ F(M), the value f(v) is defined as

f(v) = f |[vi,vj ,vk](v) = λi(v) fi + λj(v) fj + λk(v) fk,

where the coefficients λi(v) =
|[v,vj ,vk]|
|[vi,vj ,vk]| , λj(v) =

|[vi,v,vk]|
|[vi,vj ,vk]| , and λk(v) =

|[vi,vj ,v]|
|[vi,vj ,vk]| are

known as the barycentric coordinates of v on [vi, vj , vk]. Here the absolute value |[vi, vj , vk]|
denotes the area of the triangular face [vi, vj , vk].

We now develop the BEM algorithm for the computation of disk-shaped surface param-
eterizations with balanced angle and area distortions. The strategy is to minimize a linear
combination of the conformal energy [58] and the stretch energy [59]. First, we briefly re-
view the conformal and stretch energy functionals in Section 2.1. Then, we introduce the
distortion-balancing parameterization algorithm in Section 2.2.

2.1. Conformal and stretch energy functionals [58, 59]. The discrete conformal en-
ergy of a discrete mapping f :M→ C is defined as

EC (f) = ED (f)−A (f) ,

where ED is the discrete Dirichlet energy given by

ED (f) =
1

2
f∗LDf ,

and LD is the Laplacian matrix with

(2.1) [LD]i,j =


− 1

2 (cot θi,j + cot θj,i) if [vi, vj ] ∈ E(M),
−
∑
k 6=i[LD]i,k if j = i,

0 otherwise.
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Here θi,j and θj,i are the angles opposite to the edge [vi, vj ] connecting the vertices vi and vj
on the meshM, and A (f) denotes the image area given by

A (f) =
1

2

∑
[vi,vj ]∈∂M

(Re fi Im fj − Re fj Im fi) .

It is worth noting that when the shape of the image is given, e.g., a unit disk D, then the image
area A (f) would be constant so that minimizing EC is equivalent to minimizing ED.

On the other hand, the stretch energy of the discrete mapping f :M→ C is defined as

ES(f) =
1

2
f∗LS(f)f ,

where LS(f) is the stretch Laplacian matrix with

(2.2) [LS(f)]i,j =


− 1

2

(
cot(θi,j(f))

σf−1 ([vi,vj ,vk])
+

cot(θj,i(f))
σf−1 ([vj ,vi,v`])

)
if [vi, vj ] ∈ E(M),∑

k 6=i−[LS(f)]i,k if j = i,
0 otherwise,

and θi,j(f) and θj,i(f) are the angles opposite to the edge f([vi, vj ]) connecting the points
f(vi) and f(vj) on the image f(M) and

σf−1([vi, vj , vk]) =
|[vi, vj , vk]|
|f([vi, vj , vk])|

is the stretch factor of f on the triangular face [vi, vj , vk].

2.2. Balanced Energy Minimization (BEM) algorithm. The distortion-balancing pa-
rameterization algorithm aims to find a mapping f : M → D that minimize the balanced
energy functional

Eβ(f) =
1

2
f∗Lβ(f)f ,

where Lβ(f) is the balanced Laplacian matrix given by

(2.3) Lβ(f) = (1− β) LD
‖LD‖F

+ β
LS(f)

‖LS(f)‖F
,

‖ · ‖F denotes the Frobenius norm, β is the balancing coefficient in [0, 1], and LD and LS are
the Laplacian matrices defined in (2.1) and (2.2), respectively. The balanced Laplacian matrix
in (2.3) is a convex combination of the normalized Laplacian matrices LD

‖LD‖F and LS(f)
‖LS(f)‖F .

In particular, when β = 0, the functional is equivalent to the Dirichlet energy ED. Similarly,
when β = 1, the functional is equivalent to the stretch energy ES . In the following, for a given
coefficient β ∈ [0, 1], we introduce a numerical method for computing a mapping f :M→ D
that minimizes the balanced energy Eβ .

The initial boundary mapping f (0)|∂M : ∂M→ ∂D is computed by solving the discrete
Laplace-Beltrami equation

(2.4) LDf
(0) = b,
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where the vector b = (b1, . . . ,bn)
> is given by

(2.5) bk :=


−1

‖vb−va‖2 + i 1−α
‖vc−(va+α(vb−va))‖2 if k = a,

1
‖vb−va‖ + i α

‖vc−(va+α(vb−va))‖2 if k = b,

i −1
‖pc−(va+α(vb−va))‖2 if k = c,

0 if k /∈ {a, b, c},

with α = 〈vc−va,vb−va〉
‖vb−va‖22

and where the triangular face [va, vb, vc] is the one closest to the mass
center ofM. Equation (2.4) was first proposed by Angenent et al. [11, 30] for the computation
of spherical harmonic mappings of genus-zero closed surfaces. It was modified by Yueh et
al. [58] for the computation of disk-shaped harmonic mappings of simply connected open
surfaces.

Let I and B be the ordered index sets of the interior and boundary vertices, respectively.
The subvector f

(0)
B in (2.4) defines a boundary mapping. To constrain the image of the

boundary f
(0)
B to be a unit circle, we perform the centralization

f
(0)
B ←

(
InB
−

1nB
1>nB

nB

)
f
(0)
B

and the normalization

f
(0)
B ← (diag (|fB|))−1 f (0)B .

Then the interior of the initial mapping is obtained by solving the linear system

(2.6) [LD]I,If
(0)
I = −[LD]I,Bf (0)B .

Next, suppose that a mapping f (k) at the kth step has been obtained. In order to decrease
the balanced energy Eβ , we first compute the boundary of f (k+1) by solving the linear system

(2.7)
[
Lβ(f

(k))
]
B,B

f
(k+1)
B = −

[
Lβ(f

(k))
]
B,I

diag
(
f
(k)
I

)−2
f
(k)
I .

Again, the circular boundary constraint is achieved by performing the centralization

(2.8) f
(k+1)
B ←

(
InB
−

1nB
1>nB

nB

)
f
(k+1)
B

and the normalization

(2.9) f
(k+1)
B ← diag (|fB|)−1 f (k+1)

B .

Finally, the interior mapping is obtained by solving the linear system

(2.10)
[
Lβ(f

(k))
]
I,I

f
(k+1)
I = −

[
Lβ(f

(k))
]
I,B

f
(k+1)
B .

The iteration is terminated when a certain maximum number of iterations is reached or the
energy cannot be decreased further.

Note that the Laplacian matrices LD, LS(f), and Lβ(f) in (2.1), (2.2), and (2.3), respec-
tively, are sparse symmetric positive semidefinite irreducible M -matrices. Consequently, their
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Algorithm 1 Balanced Energy Minimization (BEM).
Input: A simply connected open meshM.
Output: A distortion-balancing parameterization fβ∗ :M→ D with the optimal value β∗.

1: global variables
2: M: the input simply connected open mesh;
3: f : the parameterization;
4: I: the ordered index set of the interior vertices;
5: B: the ordered index set of the boundary vertices;
6: LD: the Laplacian matrix as defined in (2.1);
7: LS(f): the Laplacian matrix as defined in (2.2).
8: end global variables
9: procedure MAIN

10: f = INITIALMAPPING.
11: β∗ = fminbnd(−g(β)). . fminbnd is a built-in function in MATLAB.
12: return f . . The global variable f is updated in line 10.
13: end procedure
14: procedure INITIALMAPPING
15: Solve LDf = b, where b is as defined in (2.5).
16: fB ← (InB

− 1
nB
1nB

1>nB
)fB. . Centralize the boundary mapping fB.

17: fB ← diag(|fB|)−1fB. . Normalize the boundary mapping fB.
18: Solve [LD]I,IfI = −[LD]I,BfB. . Update the interior mapping fI.
19: return f . . f is the initial mapping.
20: end procedure
21: procedure g(β)
22: while not convergent do
23: L← (1− β) LD

‖LD‖F + β LS(f)
‖LS(f)‖F . . Update the balanced Laplacian matrix.

24: h← f . . Store the current mapping.
25: Solve LB,BfB = −LB,I diag(|fI|)−2fI. . Update the boundary mapping fB.
26: fB ← (InB

− 1
nB
1nB

1>nB
)fB. . Centralize the boundary mapping fB.

27: fB ← diag(|fB|)−1fB. . Normalize the boundary mapping fB.
28: Solve LI,IfI = −LI,BfB. . Update the interior mapping fI.
29: if Eβ(f) > Eβ(h) then
30: f ← h. . Adopt the previous mapping.
31: break
32: end if
33: end while
34: return Eβ(f).
35: end procedure

principal submatrices are symmetric positive definite M -matrices; see below for a definition.
Then the linear systems (2.6), (2.7), and (2.10) can be solved by a Cholesky solver.

For a given β ∈ [0, 1], the iterations in (2.7)–(2.10) are suitable for computing a function
fβ :M→ D that minimizes the balanced energy Eβ(f), i.e., fβ := argminf :M→DEβ(f).
Here, the choice of the balancing value is crucial for applications. An optimal value of β can
be determined by

(2.11) β = argmax
β∈[0,1]

g(β),
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where g(β) = minf :M→DEβ(f) is a single-variable bounded function of β. The maximizer
of (2.11) can be obtained by the built-in function fminbnd [13, 23] in MATLAB. The BEM
algorithm for distortion-balancing parameterizations with the optimal value β∗ is summarized
in Algorithm 1.

2.3. The complexity of BEM. Define

sβ : the number of iterations for the computation of β∗ in step 11 of the BEM algorithm,
sg : the number of iterations for the while-loop in step 21–35 of the BEM algorithm.

The dominant steps in the BEM algorithm is solving the linear systems of size nI and nB
by a Cholesky solver in step 28 and 25, respectively. In practice, nI is larger than nB. The
complexity of BEM algorithm can then be estimated by

(2.12) Complexity(BEM) = sβsg

(
1

6
n3I +O(n2I) +

1

6
n3B +O(n2B)

)
.

3. The existence of nontrivial accumulation points for BEM. In this section we prove
the existence of a nontrivial (nonconstant) accumulation function of the iterations (2.7)–(2.10)
of the BEM algorithm. Then we show that the limiting piecewise affine function is a one-to-one
map.

The iterations form a sequence {f (k)B }k∈N given by
(3.1)

f
(k+1)
B = D

(k)
N C

[
Lβ(f

(k))
]−1
B,B

[
Lβ(f

(k))
]
B,I
D

(k)
V

[
Lβ(f

(k))
]−1
I,I

[
Lβ(f

(k))
]
I,B

f
(k)
B ,

where D(k)
V is the inversion matrix given by

D
(k)
V = diag

(∣∣∣∣[Lβ(f (k))]−1
I,I

[
Lβ(f

(k))
]
I,B

f
(k)
B

∣∣∣∣)−2 ,
C is the centralization matrix given by C = InB

− 1
nB
1nB

1>nB
, and D(k)

N is the normalization
matrix given by

D
(k)
N = diag

(∣∣∣∣C [Lβ(f (k))]−1
B,B

[
Lβ(f

(k))
]
B,I
D

(k)
V

[
Lβ(f

(k))
]−1
I,I

[
Lβ(f

(k))
]
I,B

f
(k)
B

∣∣∣∣)−1 .
In order to prove the bijectivity of the parameterization, we state the well-condition assumption
for the triangular mesh as follows:

DEFINITION 3.1 (Well-conditioned mesh). A simply connected open meshM is said to
be well-conditioned if it satisfies the following conditions:

(i) The subgraph of all the interior vertices is connected.
(ii) Every boundary vertex is connected to at least one interior vertex.

(iii) Both the numbers of interior and boundary vertices are larger or equal to 3.
Condition (i) is necessary for the irreducibility of submatrices that appear in Lemma 3.6.

Condition (ii) is equivalent to the mesh containing no leaf faces, i.e., a face that is connected
with only one other face. Condition (iii) is needed to prevent the mapping from degeneration,
i.e., that the image of the mapping is an interval or a point.

Furthermore, we give the definition of an M-matrix [12] and some related lemmas.
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DEFINITION 3.2.
(i) A matrix A ∈ Rm×n is said to be nonnegative (positive) if all the entries of A are

nonnegative (positive).
(ii) A square matrix A ∈ Rn×n is irreducible if the corresponding graph G(A) of A is

connected.
DEFINITION 3.3. A matrix A ∈ Rn×n is said to be an M-matrix if A = sI −B, where

B is nonnegative and s ≥ ρ(B) with ρ(B) being the spectral radius of B.
LEMMA 3.4 ([42, Theorem 1.4.10]). Suppose that A ∈ Rn×n is a singular, irreducible

M-matrix. Then each principal submatrix of A other than A itself is a nonsingular M-matrix.
LEMMA 3.5 ([42, Theorem 1.4.7]). If A ∈ Rn×n is a nonsingular M-matrix, then A−1

is a nonnegative matrix. Moreover, if A is irreducible, then A−1 is a positive matrix.
The following lemma plays an important role in the geometric point of view of the matrix

products in (3.1).
LEMMA 3.6. Given a well-conditioned simply connected open mesh M of n ver-

tices. Let L be a Laplacian matrix ofM, defined similar as in (2.3), with positive weights
{wi,j | [vi, vj ] ∈ E(M)}. Let I and B be index sets of interior vertices and boundary vertices
ofM, respectively. Then each entry of the vectors −L−1I,ILI,BfB and −L−1B,BLB,IfI is a convex
combination of the entries of fB and fI, respectively.

Proof. From the definition of the Laplacian matrix (2.3), it is clear that L1n = 0, i.e.,

(3.2)

{
LI,I1nI

+ LI,B1nB
= 0,

L>I,B1nI
+ LB,B1nB

= 0.

Note that L is a singular irreducible M-matrix. By Lemma 3.4, the matrices LI,I and LB,B are
invertible. Then (3.2) implies that

(3.3)

{
−L−1I,ILI,B1nB

= 1nI
,

−L−1B,BL
>
I,B1nI

= 1nB
.

In addition, from the definition of the Laplacian matrix and the assumption of positive
weights, the entries of −LI,B are non-negative. Furthermore, the irreducibility of LI,I and
LB,B are, respectively, guaranteed by Definition 3.1 (i) and the assumption ofM being simply
connected. By Lemma 3.5, L−1I,I and L−1B,B are positive so that the entries of the matrices
−L−1I,ILI,B and −L−1B,BLB,I are non-negative. Therefore, (3.3) implies that each entry of the
vectors −L−1I,ILI,BfB and −L−1B,BLB,IfI is a convex combination of the entries of fB and fI,
respectively.

Now we prove the existence of nontrivial accumulation vectors of the iterations (3.1) in
the following theorem:

THEOREM 3.7. Suppose that the sequence {f (k)B }k∈N defined in (3.1) with Lβ(f (k))
satisfying the assumptions of Lemma 3.6. Then it has a nontrivial accumulation vector f (∗)B .

Proof. Since every entry of f (k)B is on the unit circle, by the Bolzano-Weierstrass theorem
there exists a vector f (∗)B and a convergent subsequence {f (kj)B }j∈N such that

lim
j→∞

f
(kj)
B = f

(∗)
B .

From Lemma 3.6, for ` = 1, . . . , nI,

(f
(k)
I )` = −

([
Lβ(f

(k))
]−1
I,I

[
Lβ(f

(k))
]
I,B

f
(k)
B

)
`
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is a convex combination of the points {(f (k)B )`}nB

`=1⊂∂D, so that (f (k)I )` ∈ D, for ` = 1, . . . , nI.

It follows that the inverted points f̃I
(k)

= (D
(k)
I f

(k)
I )` are located in C\D, for ` = 1, . . . , nI.

Again, from Lemma 3.6, for ` = 1, . . . , nB,

(f̃B
(k)

)` = −
([
Lβ(f

(k))
]−1
B,B

[
Lβ(f

(k))
]
B,I

f̃I
(k)
)
`

is a convex combination of the points {(f̃I
(k)

)`}nI

`=1 ⊂ C\D. As a result, the centralization
in the iteration (3.1) guarantees that, after a rotation, by setting (f

(k)
B )1 = 1, for each k ∈ N,

the maximal argument over all Arg(C f̃B
(k)

)`, for ` = 1, . . . , nB, should be greater than π.

Otherwise, each entry of the vector C f̃B
(k)

is located on the upper half-plane of C. Then the
center satisfies

1

nB

nB∑
`=1

(C f̃B
(k)

)` 6= 0,

which contradicts the fact that the center should be zero. In particular, it holds for the
subsequence {kj}j∈N. Hence, the maximal argument over all components of the accumulation
point f (∗)B should be greater than or equal to π. Therefore, f (∗)B is nontrivial.

THEOREM 3.8. The mapping f (∗) :=

[
f
(∗)
I

f
(∗)
B

]
:M→ D constructed in Theorem 3.7 is

one-to-one.
Proof. For convenience, we set LI,I := [Lβ(f

(∗))]I,I, LI,B = L>B,I := [Lβ(f
(∗))]I,B,

LB,B := [Lβ(f
(∗))]B,B, and DI := diag(LI,I), DB := diag(LB,B). From (2.10), (2.7), and

Lemma 3.6, it follows that {
D−1I (LI,If

(∗)
I + LI,Bf

(∗)
B ) = 0,

D−1B (LB,If
(∗)
I + LB,Bf

(∗)
B ) = 0.

From (3.2), we have that{
1−

∑
j∈N(v`)

λ`,j ≡ e>` (D
−1
I LI,I1nI

+D−1I LI,B1nB
) = 0, ` ∈ I,

1−
∑
j∈N(v`)

λ`,j ≡ e>` (D
−1
B LB,I1nI

+D−1B LB,B1nB
) = 0, ` ∈ B,

where N(v`) denotes the 1-ring vertex neighbor of the vertex v`. This implies that f (∗) is a
convex combination map fromM to D which maps ∂M homeomorphically into the boundary
of the convex hull of {f (∗)` }`∈B. From [21, Theorem 6.7] it follows that f (∗) is one-to-one.

4. Numerical experiments. In this section, we demonstrate by numerical experiments
the performance of the BEM algorithm for balanced parameterizations of simply connected
open surfaces. Some of the surface mesh models are obtained from TurboSquid [5], the
AIM@SHAPE shape repository [3], the Stanford 3D scanning repository [4], a project page of
ALICE [1], and Gu’s website [2]. All computations in this paper are performed in MATLAB.

To quantify the distortions of the parameterizations computed by the BEM algorithm,
we introduce some measures as follows: The angle distortion is measured by the mean and
standard deviation (SD) of the angle difference in degree

(4.1) Dangle(v, [u, v, w]) = |∠(u, v, w)− ∠(f(u), f(v), f(w))| (degree),
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FIG. 4.1. The relationship between the number of iterations and the balanced energy of the parameterization
computed by the BEM algorithm.

where v ∈ V(M) and [u, v, w] ∈ F(M). The area distortion is measured by the mean and
the standard deviation of the area ratio

(4.2) Rarea(v) =

∑
τ∈N(v) |f(τ)|/|f(M)|∑

τ∈N(v) |τ |/|M|
,

where v ∈ V(M), N(v) = {τ ∈ F(M) | v ⊂ τ} is the set of neighboring triangular faces of
the vertex v and |M| and |f(M)| denote the areas ofM and its image f(M), respectively.

In Table 4.1, the optimal balancing coefficient β∗ determined by (2.11) and the balanced
energy Eβ∗ is shown as well as the mean and standard deviation of the angle difference Dangle

in (4.1) and the area ratioRarea in (4.2) of the parameterizations, respectively, together with
the computational cost of the BEM algorithm. From Table 4.1, we observe that both the mean
and the standard deviation of the angle distortions are roughly 4 to 6 degrees, which is fairly
acceptable. In addition, the mean of the area ratios is roughly 1 with the standard deviation
being 0.7 to 2.3, which is also relatively acceptable.

Furthermore, Figure 4.1 displays the relationship between the number of iterations and
the balanced energy of the parameterization computed by the BEM algorithm. We can observe
that the balanced energy is significantly decreasing in the first 3 iteration steps and then slowly
convergent, which indicates that the BEM algorithm performs effectively in decreasing the
balanced energy. According to the convergence behavior of the benchmark mesh models in
Figure 4.1, it is sufficient to set the maximal number of iterations sg in (2.12) to be 10. In
addition, the number sβ in (2.12) is between 7–9.

Comparisons of the optimal distortion-balancing parameterizations of the benchmark
mesh models [1, 2, 3, 4, 5] computed by the BEM algorithm with the conformal (β = 0)
and equiareal (β = 1) parameterizations are illustrated in Figure 4.2, in which the lighting
on the images is based on the normal vectors of the mesh models. We see that the balanced
parameterizations (β = β∗) is closer to the conformal parameterization (β = 0). Furthermore,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

OPTIMIZED SURFACE PARAMETERIZATIONS WITH APPLICATIONS 393

TABLE 4.1
The mean and standard deviation (SD) of the angle difference Dangle in (4.1) and the area ratioRarea in (4.2)

of the parameterizations, respectively, as well as the computational cost of the BEM algorithm with the balancing
coefficients β∗.

Model Name # Faces β∗ Eβ∗
Dangle (Degree) Rarea Time
Mean SD Mean SD (Sec.)

Chinese Lion 34,421 0.2649 0.0057 4.5252 4.3976 1.0029 0.7534 3.17
Stanford Bunny 65,221 0.3336 0.0044 5.4930 6.2576 0.9772 1.0856 9.37
Human Brain 96,811 0.2127 0.0039 4.3981 4.8866 1.0314 2.3442 19.77
Left Hand 105,860 0.3315 0.0045 4.9991 6.5568 1.0258 1.5960 20.30
Human Head 266,776 0.2570 0.0014 4.6021 4.7208 1.1138 0.8464 24.44
Bimba Statue 836,734 0.4899 0.0012 6.0047 5.9775 0.9486 1.0924 195.14

Figures 4.3 and 4.4 show the angle distortions as well as the absolute value of the logarithm of
the area ratios of the parameterizations. From the color bars in Figure 4.3, we see that the angle
distortion of the balanced parameterization is close to the angle-preserving parameterization,
but the area-preserving is far from the angle preservation. On the other hand, from Figure 4.4,
we observe that the region of the yellow color of the balanced parameterization for each mesh
model is considerably reduced compared to the angle-preserving parameterization, which
means that the area distortion of the balanced parameterization is significantly improved. In
summary, the BEM algorithm takes into account both the advantages of the conformal (β = 0)
and the equiareal (β = 1) parameterizations.

It is worth noting that among the demonstrated benchmark mesh models, all the balanced
parameterization computed by the BEM algorithm are numerically bijective, while some of
the conformal and equiareal parameterizations are not. Specifically, the conformal parameteri-
zations of “Human Head” and “Bimba Statue” contain 1 and 3 folding faces, respectively, and
the equiareal parameterization of “Stanford Bunny” contains 6 folding faces.

5. Applications to the 3D Chinese virtual broadcasting system. Virtual broadcasting
refers to the process of automatically generating a broadcasting video of a given article. With
the virtual broadcasting system, the user can easily make a broadcasting video by inputting a
few sentences or a paragraph. Due to the fact that the Chinese syllables are composed of 1 to 3
Mandarin phonetic symbols, a Chinese virtual broadcasting system can be realized by recording
videos of the pronounciation of all the 37 phonetic symbols and constructing an in-between
smooth homotopy of surfaces. With the aid of the distortion-balancing parameterizations of
surfaces obtained by the BEM algorithm, the correspondence between each pair of surfaces
can be computed efficiently in the unit disk. Then the in-between motion of each pair of
surfaces can be constructed by a linear homotopy. The in-between smooth motion of a surface
sequence can be built up by a cubic spline homotopy.

The broadcasting system requires the following key steps. First, in Section 5.1, a remesh-
ing process is introduced to improve the mesh quality of the captured raw surface mesh data.
Then a registration process is introduced in Section 5.2 to find a one-to-one correspondence
between each pair of surfaces. In Section 5.3, a morphing process is introduced to construct a
smooth 3D video sequence for the inputted sequence of surfaces. Furthermore, to obtain a
better visual effect, we demonstrate a technique of alignment and fusion in Section 5.4 so that
each face is aligned and fused with a half-length portrait.

The importance of the BEM algorithm in solving real applications is summarized as
follows.

• The BEM algorithm can numerically produce a bijective parameterization while
the conformal (β = 0) and the equiareal (β = 1) algorithms can not guarantee the
bijectivity. See the last paragraph of Section 4.
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(a) Chinese Lion conformal (β = 0) balanced (β = 0.2649) equiareal (β = 1)

(b) Stanford Bunny conformal (β = 0) balanced (β = 0.3336) equiareal (β = 1)

(c) Human Brain conformal (β = 0) balanced (β = 0.2127) equiareal (β = 1)

(d) Left Hand conformal (β = 0) balanced (β = 0.3315) equiareal (β = 1)

(e) Human Head conformal (β = 0) balanced (β = 0.2570) equiareal (β = 1)

(f) Bimba Statue conformal (β = 0) balanced (β = 0.4899) equiareal (β = 1)

FIG. 4.2. The benchmark mesh models and their conformal, balanced, and equiareal parameterizations.
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(a) Chinese Lion conformal (β = 0) balanced (β = 0.2649) equiareal (β = 1)

(b) Stanford Bunny conformal (β = 0) balanced (β = 0.3336) equiareal (β = 1)

(c) Human Brain conformal (β = 0) balanced (β = 0.2127) equiareal (β = 1)

(d) Left Hand conformal (β = 0) balanced (β = 0.3315) equiareal (β = 1)

(e) Human Head conformal (β = 0) balanced (β = 0.2570) equiareal (β = 1)

(f) Bimba Statue conformal (β = 0) balanced (β = 0.4899) equiareal (β = 1)

FIG. 4.3. The benchmark mesh models and the angle distortions of their conformal, balanced, and equiareal
parameterizations.
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(a) Chinese Lion conformal (β = 0) balanced (β = 0.2649) equiareal (β = 1)

(b) Stanford Bunny conformal (β = 0) balanced (β = 0.3336) equiareal (β = 1)

(c) Human Brain conformal (β = 0) balanced (β = 0.2127) equiareal (β = 1)

(d) Left Hand conformal (β = 0) balanced (β = 0.3315) equiareal (β = 1)

(e) Human Head conformal (β = 0) balanced (β = 0.2570) equiareal (β = 1)

(f) Bimba Statue conformal (β = 0) balanced (β = 0.4899) equiareal (β = 1)

FIG. 4.4. The benchmark mesh models and the absolute value of the logarithm of the area ratios of their
conformal, balanced, and equiareal parameterizations.
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• The remeshing procedure by applying the BEM algorithm can improve the uniformity
of the vertex sampling and the quality of the triangles. See Section 5.1.

• The virtual broadcasting system is based on the exactness of the registration map, i.e.,
the one-to-one correspondence between surfaces in which the mesh quality and the
bijectivity of the parameterizations are crucial. See Section 5.2.

5.1. Surface remeshing for a structured light-based 3D scanner. Surface remeshing
refers to the process of improving the mesh quality, including the uniformity of the vertex
sampling, the regularity of the mesh connectivity, and the quality of the triangles [10, 14]. In
particular, the quality of a triangle [u, v, w] can be measured by the quantity

(5.1) Q([u, v, w]) =

∥∥∥∥∥∥
 |[u, v]||[v, w]|
|[w, u]|

− 1

3
(|[u, v]|+ |[v, w]|+ |[w, u]|)13

∥∥∥∥∥∥
2

.

The smaller the value Q(τ), the better the quality of the triangle τ . Note that an equilateral
triangle τ has value Q(τ) = 0.

By applying the BEM algorithm, the remeshing procedure can be smoothly carried out
as follows: First, a distortion-balancing parameterization f : M → D ⊂ C is computed
by the BEM algorithm. Then the image f(M) is covered by a regular mesh U of the unit
disk with uniform sampling. Finally, the remeshed surface f−1(U) is obtained by the one-to-
one correspondences between the barycentric coordinates of each triangular face onM and
on f(M).

In our numerical experiments, the raw mesh data of human faces are captured by the
structured light-based 3D scanner GeoVideo, manufactured by the Geometric Informatics
company, in the ST Yau Center at the National Chiao Tung University in Taiwan. Figure 5.1
displays the histograms of the angles and areas, respectively, as well as the quality of the
triangles for (a) the raw mesh data and (b)–(d) the remeshed data by the BEM algorithm
with β = β∗, 0, and 1, respectively, of a human face. It indicates that the mesh quality in
terms of regularity of the triangles and the uniformity of the triangle areas in (b) is the best
compared with (a), (c), and (d). Furthermore, we see that the qualityQ in (5.1) of the triangles
in Figure 5.1 (b) and (c) is much better than that in (a) and (d).

On the other hand, Figure 5.2 displays zoom-in images of the nose part of (a) the raw
mesh data and (b) the remeshed data from the BEM algorithm (β = β∗) of the human face.
We see that there are lots of obtuse-angled triangles at the nose part of (a), while most of the
triangles in (b) are close to equilateral triangles.

5.2. Surface registration. The registration between a pair of surfacesM and N refers
to developing a feasible algorithm for the computation of a homeomorphism f :M→ N
that mapsM to N bijectively such that the characteristics of the surfaces are matched. It
is a fundamental issue that has been widely applied to computer graphics and geometry
processing [37, 41, 54, 59]. The characteristics of surfaces are often represented as sets of
landmarks (feature points). We denote V(M) = {v1, v2, . . . , vm}, and let I and B be the
index sets of interior and boundary vertices ofM, respectively. Without loss of generality,
suppose that the index sets of the landmarks on the interior and boundary ofM are given by

P = {P(1), P(2), . . . , P(nP)} and R = {R(1), R(2), . . . , R(nR)},

respectively, and the coordinates of the landmarks on the interior and boundary ofN are given
by

Q = {q1, q2, . . . , qnP
} and S = {s1, s2, . . . , snR

},
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Angle Area Triangle Quality
(a) The raw mesh data

Angle Area Triangle Quality
(b) The remeshed data by BEM (β = β∗)

Angle Area Triangle Quality
(c) The remeshed data by conformal parameterization (β = 0)

Angle Area Triangle Quality
(d) The remeshed data by equiareal parameterization (β = 1)

FIG. 5.1. The histograms of the angles and areas, respectively, as well as the quality of triangles for (a) the raw
mesh data and (b)–(d) the remeshed data by the BEM algorithm with β = β∗, 0, and 1, respectively, of a human face.
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(a) The raw mesh data

(b) The remeshed data by BEM (β = β∗)

FIG. 5.2. Zoom-in images of the nose part of (a) the raw mesh data and (b) the remeshed data by BEM (β = β∗)
of a human face.

respectively. The goal of the surface registration is to construct a low-distorted bijective
mapping ϕ :M→ N that satisfies ϕ(vP(`)) = q`, for ` = 1, 2, . . . , nP, and ϕ(vR(`)) = s`,
for ` = 1, 2, . . . , nR. By applying the distortion-balancing parameterizations

f :M→ D and g : N → D,

the surface registration in R3 is reduced to a planar registration on D. The reduced issue is to
find a low-distorted bijective mapping h : D→ D that satisfies

h ◦ f(vP(`)) = g(q`), for ` = 1, . . . , nP,

and

h ◦ f(vR(`)) = g(s`), for ` = 1, . . . , nR.

Once we have such a mapping h, the mapping ϕ :M→N can be obtained by the composition
mapping ϕ = g−1 ◦ h ◦ f .

Let the vector h = (h(v1), . . . , h(vm))
> ∈ Cm represent the piecewise affine map h.

Then, the low-distorted registration mapping h : D→ D can be obtained by minimizing the
penalized biharmonic energy defined as

(5.2) EP (h) = ‖LH(h)h‖22 + λ2
nP∑
`=1

|hP(`) − g(q`)|2,
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in which λ2 ∈ (0,∞) is the weight for the penalty, LH(h) is the Laplacian matrix defined by

[LH(h)]i,j =


− 1

2 (cot (θi,j(h)) + cot (θj,i(h))) if [vi, vj ] ∈ E(M),∑
` 6=i−[LH(h)i,`] if j = i,

0 otherwise,

with θi,j(h) and θj,i(h) being two angles opposite to the edge h ([vi, vj ]) connecting the points
h(vi) and h(vj) on C.

The surface registration process is performed as follows: First, the boundary mapping hB

is chosen to be the unique piecewise affine mapping that satisfies h ◦ f(vR(`)) = g(s`), for
` = 1, . . . , nR. Then an initial interior mapping h

(0)
I is computed by a harmonic mapping

[LH(f)]I,Ih
(0)
I = −[LH(f)]I,BhB,

where f is the distortion-balancing parameterization computed by the BEM algorithm. Next,
the penalized biharmonic energy (5.2) is minimized by the iterative procedure

(5.3) h(k+1) = argmin
given hB

(∥∥∥LH(h(k))h
∥∥∥2
2
+ λ2k

nP∑
`=1

|hP(`) − g(q`)|2
)
,

which is a standard least-squares problem that can be easily solved by the built-in backslash
operator (\) in MATLAB. The value of λ2k can be chosen to be sufficiently small so that the
resulting mapping is bijective. In practice, the coefficients λ2k in (5.2) are taken as a sequence
in (0, 1], e.g., λk = 0.2, for k = 1, . . . , 10, and λk = 0.4, for k = 11, . . . , 20, etc.

Figures 5.3 (a)–(d) display the human faces of 4 different mouth shapes, (e)–(h) display im-
ages of their distortion-balancing parameterizations computed by the BEM algorithm, and (i)–
(k) display images of their registration mappings. In particular, we choose the face N , shown
in Figure 5.3 (a), as the standard face. The balanced parameterization of N is denoted by g.
The green circles on the disks g(N ), f1(M1), f2(M2), f3(M3) in Figures 5.3 (e)–(h) are the
landmarks of the standard face N while the red dots on the disks f1(M1), f2(M2), f3(M3)
in Figures 5.3 (f)–(h) are the landmarks of the facesM1,M2,M3, respectively. From the reg-
istration mappings in Figures 5.3 (i)–(k), we observe that the images of the disks h` ◦ f`(M`)
look similar to the images f`(M`), for ` = 1, 2, 3, but each red dot is mapped into the cor-
responding green circle, respectively. Here, the maps {h`}3`=1 are computed by the iterative
procedure (5.3). This indicates that the introduced disk registration performs accurately for
mapping the landmarks to the targets while retaining the distortion small.

5.3. Surface morphing and virtual broadcasting. A morphing between two surfaces
refers to the process of continuously deforming one surface into another [38, 56]. The
correspondence between surfaces plays a crucial role. For example, suppose that two surfaces
M0 andM1 together with a registration mapping ϕ1 :M0 →M1 are given. The in-between
surfaces H : [0, 1] ×M0 → R3 that satisfies H(0,M0) =M0 and H(1,M0) =M1 can
be obtained by the linear homotopy

H(t, v) = (1− t)v + t ϕ1(v).

In general, suppose that T+1 surfacesM0, . . . ,MT and corresponding registration mappings
ϕt :M0 →Mt, t = 1, . . . , T , are given. Note that the remeshing procedure guarantees that
the triangulation of the surfacesM0, . . . ,MT are identical. A smooth morphing sequence
between these surfaces can be obtained by a suitable homotopy H : [0, T ] ×M0 → R3

satisfying

H(0, v) = v and H(t, v) = ϕt(v), for t = 1, . . . , T ,
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(a)N (e) g(N )

(b)M1 (f) f1(M1) (i) h1 ◦ f1(M1)

(c)M2 (g) f2(M2) (j) h2 ◦ f2(M2)

(d)M3 (h) f3(M3) (k) h3 ◦ f3(M3)

FIG. 5.3. The registration mappings between human faces of 4 different mouth shapes (a)–(d) via the distortion-
balancing parameterizations.
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(a) Head Model (b) Face Surface (c) Fused Model

FIG. 5.4. (a) The head model obtained from Sketchfab; (b) The face surface captured by the 3D scanner
GeoVIdeo; (c) The fused model.

which can be carried out by a smooth interpolation between the data points

{(0, v) , (1, ϕ1(v)) , . . . , (T, ϕT (v)) | v ∈M0 }.

Here we adopt the piecewise cubic Hermite interpolating polynomial [24] to obtain the
homotopy path, which can be easily done by the built-in function pchip in MATLAB. A
demo video of the Chinese virtual broadcasting of the poem "Yu Mei Ren" can be found at
https://mhyueh.github.io/projects/Diskmap_BEM.html.

REMARK 5.1. We apologize for those readers who do not speak Chinese. However,
readers can see the changes of the mouth-shapes in the video for simulating the pronunciation
of the Chinese poem.

5.4. Head-face alignment and fusion. The alignment and fusion refer to aligning two
or more surface patches into correct positions and fusing them together into one surface. In
particular, we focus on the alignment and fusion of the human head and face, e.g., given a
head modelM and a human face surface N as shown in Figures 5.4 (a) and (b), respectively.
The goal is to smoothly align and fuse the head and face together so that the face part of the
head model is replaced by the human face surface, as shown in Figure 5.4 (c).

Let V (0)
M =

[
v1 v2 · · · vn

]> ∈ Rn×3 be the vertex matrix ofM with the `th row
being v>` , for ` = 1, . . . , n. Let the index set of landmarks onM be P and the coordinates
of landmarks on N be q1, q2, . . . , qnP

∈ R3. The alignment of M with N can be carried
out by the following procedures: First, the head model M is appropriately deformed in
order to fit with the scanned human face N . The deformed shape of the head model can be
computed iteratively by minimizing the change of the mean curvature vectors ofM with a
landmark-based penalty [9]

(5.4) V
(k+1)
M = argmin

V ∈Rn×3

(
‖LD(V − V (k)

M )‖22 + λ2
nP∑
`=1

‖vP(`) − q`‖2
)
,

where, in practice, the coefficient λ2 is chosen to be 0.03. The problem (5.4) can be easily
solved by using the least-squares method. Next, we let S ⊂ M be the face part of the
head modelM. Note that both S and N are simply connected open triangular meshes. The
registration mapping f : S → N can be computed similar as in Section 5.2. Finally, each
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vertex v` on S is replaced by

v` ← w`v` + (1− w`)f(v`),

where w` = 1−
(

d(v`,∂S)
max` d(v`,∂S)

)2
is the weight of a quadratically decaying function with d

being the distance function.
A demo video of the head-face alignment and fusion can be found at https://mhyueh.

github.io/projects/Diskmap_BEM.html.

6. Concluding remarks. In this paper, we propose an efficient BEM algorithm for
the computation of optimal distortion-balancing disk-shaped parameterizations of simply
connected open surfaces. In addition, we prove the existence of a nontrivial accumulation
function of our BEM algorithm under some mild conditions on the triangular mesh and
show that the limiting function is a bijective map. Applications to the 3D Chinese virtual
broadcasting system as well as the head-face alignment and fusion are demonstrated to show
the usefulness of the BEM algorithm.
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