
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 53, pp. 522–540, 2020.
Copyright c© 2020, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol53s522

FINITE ELEMENT DISCRETIZATION OF SEMILINEAR ACOUSTIC WAVE
EQUATIONS WITH KINETIC BOUNDARY CONDITIONS∗

MARLIS HOCHBRUCK† AND JAN LEIBOLD†

Abstract. We consider isoparametric finite element discretizations of semilinear acoustic wave equations with
kinetic boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such
problems are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our
approach is to provide a unified error analysis for nonconforming space discretizations for semilinear wave equations.
In particular, we introduce a general, abstract framework for nonconforming space discretizations in which we derive
a-priori error bounds in terms of interpolation, data, and conformity errors. The theory applies to a large class of
problems and discretizations that fit into the abstract framework. The error bound for wave equations with kinetic
boundary conditions is obtained from the general theory by inserting known interpolation and geometric error bounds
into the abstract error result of the unified error analysis.
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1. Introduction. The aim of this paper is to introduce and analyze finite element dis-
cretizations of semilinear acoustic wave equations with kinetic boundary conditions. Kinetic
boundary conditions serve as an effective model for the interaction of waves with obstacles
or boundaries that are covered by materials with distinctive elastic or damping properties,
where the wave length is large compared to the width of the boundary layer; see, e.g., [14,
Section 3.2]. We refer to [16, 17] and references therein for more information and analytical
results about these equations.

Kinetic boundary conditions are a special case of dynamic boundary conditions that con-
tain tangential derivatives and are intrinsically posed on domains with (piecewise) smooth and
therefore possibly curved boundaries. Hence, most methods are applied on an approximated
domain rendering the approximation nonconforming. This makes the error analysis much
more involved. Such problems were addressed in [7, 8], where a unified error analysis (UEA)
was introduced that allows to analyze nonconforming space discretizations of linear wave
equations in a systematic way. The UEA yields an abstract error result that can be used
to prove convergence rates for specific equations and discretizations using geometric and
interpolation error results. Finite element discretizations of linear wave equations with linear
kinetic boundary conditions are only specific examples fitting into the abstract framework.
Several others are discussed in [7, 8].

While working on our main goal, namely to provide a rigorous error analysis for finite
element discretizations of semilinear wave equations with kinetic boundary conditions, it
turned out that major parts of the theoretical investigations hold in a much more general
framework. Hence, we first extend the UEA to a large class of semilinear evolution equations.
The main difficulty in discretizing and analyzing semilinear problems compared to linear
ones is the discretization of the nonlinear term. This has to be done in such a way that
the discretization preserves the Lipschitz continuity of the nonlinearity with a Lipschitz
constant that is independent of the underlying mesh. Additionally, it has to be shown that the
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discretization error has the correct order of convergence. Our abstract error result leads to
convergence rates of order p for order-p finite elements.

The extension of the UEA to semilinear problem allows us not only to treat the specific
application we are interested in, but it also applies to several other applications; cf. [8] for
details. These applications range from conformal discretizations of acoustic wave equations to
heterogeneous multiscale methods applied to Maxwell’s equations; cf. [10]. In fact, with our
new results it is straightforward to treat these applications also in the presence of semilinear
perturbations if the nonlinear part and its spatial discretization satisfy a Lipschitz condition.
We thus do not investigate this further in the current paper.

As in [7, 8], we derive the error bounds in an energy norm. Subsequently, L2-error bounds
for different types of dynamic boundary conditions for linear problems were proven in [9].
The analysis is quite involved and requires different techniques. Therefore, generalizing it to
semilinear problems is beyond the scope of this paper.

To the best of our knowledge this is the first error analysis for semilinear wave equa-
tions with kinetic boundary conditions. In [12] semilinear parabolic problems with dynamic
boundary conditions were analyzed, but the techniques do not apply to the hyperbolic case.

The paper is organized as follows: in Section 2 we introduce semilinear acoustic wave
equations with kinetic boundary conditions and their space discretizations with isoparametric
finite elements. Furthermore, we state the main result of the paper, namely a space discretiza-
tion error bound of order p in the energy norm for order-p isoparametric elements. In Section 3
we present the unified error analysis and prove abstract error bounds for nonconforming
space discretizations of semilinear evolution equations. These bounds are used in Section 4
to provide error estimates for the discretizations of semilinear wave equations with kinetic
boundary conditions. Finally, in Section 5 we conclude with a numerical experiment.

2. Wave equations with kinetic boundary conditions: problem statement. In this
section we introduce wave equations with kinetic boundary conditions. After formulating the
equations in a suitable analytical setting, we present a finite element space discretization and
the main error result that will be proven in Section 4. Wave equations with kinetic boundary
conditions were already studied in [7] in the linear case.

2.1. Formulation of the equations. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with
C2 boundary Γ = ∂Ω. With ∆Γ we denote the Laplace-Beltrami operator on Γ and with n
the outer normal vector. For semilinear wave equations with kinetic boundary conditions, we
seek u : [0, T ]× Ω→ R satisfying

(2.1)


utt + (αΩ + βΩ · ∇)ut −∆u = f̃Ω(t,x, u), in (0, T )× Ω,

utt + ∂nu+ (αΓ + βΓ · ∇Γ)ut −∆Γu = f̃Γ(t,x, u), in (0, T )× ∂Ω,

u(0,x) = u0(x), ut(0,x) = v0(x), in Ω.

We assume T < t∗(u0, v0), where t∗(u0, v0) denotes the maximal existence time of the
(weak) solution of (2.1).

More general problems, for instance, containing additional material parameters, can be
found in [7]. For the sake of presentation, we omit these more general problems here and
focus on the additional difficulties caused by the nonlinearity.

We require the following assumptions throughout the rest of the paper:
ASSUMPTION 2.1.
(a) The nonlinearities satisfy

(i) f̃Ω ∈ C1([0, T ]× Ω× R;R),
(ii) f̃Γ ∈ C1([0, T ]× Γ× R;R),
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and the following growth condition: there exist

(2.2) ζΩ

{
<∞, d = 2,

≤ d
d−2 , d ≥ 3,

and ζΓ

{
<∞, d = 2, 3,

≤ d−1
d−3 , d ≥ 4,

such that for all (t,x, u) ∈ [0, T ]× Ω× R

(2.3)
|f̃Ω(t,x, u)| ≤ C(1 + |u|ζΩ),

|∇f̃Ω(t,x, u)| ≤ C(1 + |u|ζΩ−1
),

and for all (t,x, u) ∈ [0, T ]× Γ× R

|f̃Γ(t,x, u)| ≤ C(1 + |u|ζΓ),

|∇f̃Γ(t,x, u)| ≤ C(1 + |u|ζΓ−1
)

hold true.
(b) The coefficients αΩ ∈ C(Ω), βΩ ∈ C1(Ω)d, αΓ ∈ C(Γ), and βΓ ∈ C1(Γ)d are

non-negative and satisfy

αΩ −
1

2
div βΩ ≥ 0 in Ω, αΓ +

1

2
(βΩ · n− divΓ βΓ) ≥ 0 on Γ.

Because of (2.2) we have by the Sobolev embedding theorem, cf., e.g., [1, Theorem 4.12]

H1(Ω) ↪→ L2ζΩ(Ω) and H1(Γ) ↪→ L2ζΓ(Γ).(2.4)

We continue by presenting the weak formulation of (2.1). For this we define

H := L2(Ω)× L2(Γ) and V := H1(Ω; Γ),

where

Hk(Ω; Γ) := {v ∈ Hk(Ω) | γ(v) ∈ Hk(Γ)}, k ≥ 1,

and γ denotes the trace operator. For more information on surface Sobolev spaces we re-
fer to [6]. Further, we define the bilinear forms m : H ×H → R, b : V ×H → R, and
a : V × V → R via

(2.5)

m
(
v, ϕ

)
=

∫
Ω

vϕdx +

∫
Γ

vϕds,

b
(
v, ϕ

)
=

∫
Ω

(αΩv + βΩ · ∇v)ϕdx +

∫
Γ

(αΓv + βΓ · ∇Γv)ϕds,

a
(
v, ϕ

)
=

∫
Ω

∇v · ∇ϕdx +

∫
Γ

∇Γv · ∇Γϕds,

and the nonlinear function f : [0, T ]× V → H via

(2.6) m
(
f(t, v), ϕ

)
=

∫
Ω

(
f̃Ω(t, ·, v(·))

)
ϕdx +

∫
Γ

(
f̃Γ(t, ·, v(·))

)
ϕds.

We have that H is a Hilbert space with scalar product m, and it can be proven that V
is a Hilbert space with scalar product ã := a + m (cf. [11, Lemma 2.5]), which is densely
embedded in H via

V 3 v 7→ (v, γ(v)) ∈ H1(Ω)×H1(Γ) ⊂ H.
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The weak formulation of (2.1) is a special case of the more general variational problem:
seek u ∈ C2([0, T ];H) ∩ C1([0, T ];V ) such that

(2.7)
m
(
u′′, ϕ

)
+ b
(
u′, ϕ

)
+ a
(
u, ϕ

)
= m

(
f(t, u, u′), ϕ

)
,

u(0) = u0, u′(0) = v0,

for all ϕ ∈ V and t ∈ (0, T ].
Note that for the specific application (2.1), the nonlinearity f defined in (2.6) does not

depend on u′, but the general framework that we consider covers this case. The bilinear forms
and the nonlinearity satisfy the following general assumption.

ASSUMPTION 2.2.
(a) The bilinear form m is a scalar product on H with induced norm ‖·‖m.
(b) a : V × V → R is a symmetric bilinear form and there exists a constant cG ≥ 0 such

that

ã := a+ cGm

is a scalar product on V with induced norm ‖·‖ã.
(c) The bilinear form b : V ×H → R is continuous, and there exists βqm ≥ 0 such that

b
(
v, v
)

+ βqm‖v‖2m ≥ 0 for all v ∈ V.

(d) The nonlinearity f satisfies f ∈ C1([0, T ] × V × H;H) and is locally Lipschitz-
continuous on V × H with Lipschitz-constant LT,M , i.e., for all t ∈ [0, T ] and
x =

[
v, w

]
, y =

[
v̂, ŵ

]
∈ V ×H with ‖x‖V×H , ‖y‖V×H ≤M :

‖f(t, v, w)− f(t, v̂, ŵ)‖X ≤ LT,M‖x− y‖V×H .

In [7] it was shown that for the bilinear forms defined in (2.5) we have cG = 1 and
βqm = 0. The differentiability and Lipschitz-continuity of f was proven in [13, Lemma 4.2];
more general results can be found in [5]. We will see in Section 4 that under Assumption 2.2,
problem (2.7) is (locally) well-posed.

2.2. Space discretization. To discretize (2.1) in space, we use the bulk-surface finite
element method presented in [4]. This discretization was also considered in [7] for linear
problems. The additional difficulty here is the discretization of the nonlinearity.

We start by giving a short summary of the bulk-surface finite element method; cf. [4, 7]
for more details.

Bulk-surface finite element method. Let Th be a consistent quasi-uniform mesh of
isoparametric elements K of degree p with mesh width h. The discretized domain and its
boundary are denoted by

Ωh :=
⋃

K∈Th

K ≈ Ω and Γh := ∂Ωh.

We define the bulk and the surface finite element space of order p ≥ 1 via

V Ω
h,p :=

{
vh ∈ C(Ωh) | vh

∣∣
K

= v̂h ◦ (FK)−1 with v̂h ∈ Pp(K̂) for all K ∈ Th
}
,

V Γ
h,p :=

{
ϑh ∈ C(Γh) | ϑh = vh

∣∣
Γh

with vh ∈ V Ω
h,p

}
.

Here Pp(K̂) denotes the space of polynomial of degree p on a reference triangle K̂, and FK is
a transformation from K̂ to K. Since this discretization is nonconforming due to Ωh 6= Ω, we

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

526 M. HOCHBRUCK AND J. LEIBOLD

need a lift operator to relate the analytical and the numerical solution. In [4] an element-wise
smooth homeomorphism Gh : Ωh → Ω with

Gh
∣∣
K
∈ Cp+1(K), for all p ≤ k and K ∈ Th,

is constructed. This allows us to define lifted versions of vh ∈ V Ω
h,p and ϑh ∈ V Γ

h,p as

(2.8) v`h := vh ◦G−1
h and ϑ`h := ϑh ◦G−1

h .

The mapping Gh is constructed in such a way that Gh(ai) = ai, i = 1, . . . , N = dimVh,
where a1, . . . , aN ∈ Ωh are the nodes corresponding to the finite element discretization. This
implies v`h(ai) = vh(ai) for i = 1, . . . , N and for all vh ∈ V Ω

h,p. Furthermore, it was shown
in [4] that there exist constants cΩ,Ωh , cΓ,Γh , CΩ,Ωh , CΓ,Γh > 0 independent of h such that for
all vh ∈ V Ω

h,p, ϑh ∈ V Γ
h,p the following norm equivalences

(2.9)

cΩ,Ωh‖vh‖L2(Ωh) ≤ ‖v
`
h‖L2(Ω) ≤ CΩ,Ωh‖vh‖L2(Ωh),

cΩ,Ωh‖∇vh‖L2(Ωh) ≤ ‖∇v
`
h‖L2(Ω) ≤ CΩ,Ωh‖∇vh‖L2(Ωh),

cΓ,Γh‖ϑh‖L2(Γh) ≤ ‖ϑ
`
h‖L2(Γ) ≤ CΓ,Γh‖ϑh‖L2(Γh),

cΓ,Γh‖∇Γϑh‖L2(Γh) ≤ ‖∇Γϑ
`
h‖L2(Γ) ≤ CΓ,Γh‖∇Γϑh‖L2(Γh)

holds true.
With Ih,Ω : C(Ω)→ V Ω

h,p and Ih,Γ : C(Γ)→ V Γ
h,p we denote the order p nodal interpola-

tion operator in Ω and on Γ, respectively. The interpolation operators satisfy

(2.10)
‖v − (Ih,Ωv)`‖L2(Ω) + h‖v − (Ih,Ωv)`‖H1(Ω) ≤ Ch

r+1‖v‖Hr+1(Ω),

‖ϑ− (Ih,Γϑ)`‖L2(Γ) + h‖ϑ− (Ih,Γϑ)`‖H1(Γ) ≤ Ch
r+1‖ϑ‖Hr+1(Γ),

for all v ∈ Hr+1(Ω) and ϑ ∈ Hr+1(Γ) with 1 ≤ r ≤ p; cf. [4, Prop. 5.4]. By construction,
the nodes on the surface coincide with the bulk nodes, and therefore we have

γ(Ih,Ωv) = Ih,Γγ(v) for all v ∈ C(Ω).

The semidiscretized equation. As finite element space we choose Vh = V Ω
h,p. The

discretizations mh, bh, ah : Vh × Vh → R of m, b, and a are defined via

mh

(
vh, ϕh

)
:=

∫
Ωh

vhϕh dx +

∫
Γh

vhϕh ds,

bh
(
vh, ϕh

)
:=

∫
Ωh

((Ih,ΩαΩ)vh + (Ih,ΩβΩ) · ∇vh)ϕh dx

+

∫
Γh

((Ih,ΓαΓ)vh + (Ih,ΓβΓ) · ∇Γvh)ϕh ds,

ah
(
vh, ϕh

)
:=

∫
Ωh

∇vh · ∇ϕh dx +

∫
Γh

∇Γhuh · ∇Γhϕh ds,

and we discretize the nonlinearity fh : [0, T ]× Vh → Hh via

(2.11)
mh

(
fh(t, vh), ϕh

)
:=

∫
Ωh

Ih,Ωf̃Ω

(
t, ·, v`h(·)

)
(x)ϕh(x) dx

+

∫
Γh

Ih,Γf̃Γ

(
t, ·, v`h(·)

)
(x)ϕh(x) ds

for all ϕh ∈ Vh.
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REMARK 2.3. The nodal interpolation only requires function evaluations in the nodes
a1, . . . , aN . Since these are invariant under the lift operator, the computation of v`h is not
necessary. The lift is only needed for the definition of fh since the interpolation operator acts
on functions on Ω.

The discretized version of (2.7) is then given as a special case of

(2.12)
mh

(
u′′h, ϕh

)
+ bh

(
u′h, ϕh

)
+ ah

(
uh, ϕh

)
= mh

(
fh(t, uh, u

′
h), ϕh

)
,

uh(0) = u0
h, u′h(0) = v0

h.

The discrete quantities then satisfy similar assumptions as their continuous counterparts:
ASSUMPTION 2.4.
(a) The bilinear form ah : Vh×Vh → R is symmetric and there exists a constant ĉG ≥ 0

such that

ãh := ah + ĉGmh

is a scalar product on Vh with induced norm ‖·‖ãh .
(b) The bilinear form mh is also a scalar product on Vh. We denote Vh equipped with

this scalar product mh by Hh and the induced norm by ‖·‖mh .
(c) The bilinear form bh : Vh ×Hh → R is bounded independent of h and there exists

β̂qm ≥ 0 such that

bh
(
vh, vh

)
+ β̂qm‖vh‖2mh ≥ 0 for all vh ∈ Vh.

(d) The nonlinearity fh : [0, T ] × Vh × Hh → Hh is locally Lipschitz-continuous on
Vh ×Hh with constant L̂T,M .

(e) There exists a constant ĈH,V > 0 such that ‖vh‖mh ≤ ĈH,V ‖vh‖ãh for all vh ∈ Vh.
All constants in this assumption should be independent of h.

REMARK 2.5. In a finite-dimensional space, all norms are equivalent. The crucial point
in the last assumption is that the constants are independent of h, which corresponds to the
continuous embedding V ↪→ H .

In our specific example we have ĉG = 1, β̂qm = 0, ĈH,V = 1; cf. [7]. The Lipschitz-
continuity of fh is proven in the following lemma.

LEMMA 2.6. The discretized nonlinearity fh : [0, T ] × Vh → Hh defined in (2.11) is
locally Lipschitz-continuous on Vh with Lipschitz constant

L̂T,M = C

(
σ(Ω)

ζΩ−1

2ζΩ + σ(Γ)
ζΓ−1

2ζΓ + 2MζΩ−1 + 2MζΓ−1

)
,

i.e., for all uh, vh ∈ Vh with ‖uh‖ãh , ‖vh‖ãh ≤M and for all t ∈ [0, T ],

‖fh(t, uh)− fh(t, vh)‖mh ≤ L̂T,M‖uh − vh‖ãh .

The constantC is independent of h, σ(Ω) and σ(Γ) denote the measure of Ω and Γ, respectively,
and ζΩ and ζΓ are defined in (2.2).

Proof. Let M > 0, t < T , and uh, vh ∈ Vh such that ‖uh‖ãh , ‖vh‖ãh < M . With the
definition of fh in (2.11) and the Cauchy–Schwarz inequality, we obtain

‖fh(t, uh)− fh(t, vh)‖mh = sup
‖ϕh‖mh=1

mh

(
fh(t, uh)− fh(t, vh), ϕh

)
≤ ‖Ih,Ωf̃Ω(t, ·, u`h(·))− Ih,Ωf̃Ω(t, ·, v`h(·))‖L2(Ωh)

+ ‖Ih,Γf̃Γ(t, ·, u`h(·))− Ih,Γf̃Γ(t, ·, v`h(·))‖L2(Γh).
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In the following we derive a bound for the first term at the right-hand side; the second one can
be bounded analogously.

This proof is more involved than the one for the continuous nonlinearity since the appear-
ing interpolation operator is not continuous with respect to L2. To work around this problem,
we use discrete Lq-norms defined via

|||vh|||q := h
d
q

(
N∑
i=1

|vh(ai)|q
) 1
q

.

Because of the scaling with h
d
q and the mesh regularity, we have that the norm |||·|||q is

equivalent to ‖·‖Lq(Ωh) on V Ω
h,p for all q ∈ [2,∞) with equivalence constants independent

of h. This is well known for q = 2. The generalization to q 6= 2 is straightforward; cf. [13,
Lemma 5.2]. Combining this with the Sobolev embedding theorem (2.4) (with Ωh instead of
Ω), we have

|||vh|||2ζΩ . C‖vh‖L2ζΩ (Ωh) . C‖vh‖H1(Ωh) for all vh ∈ Vh,(2.13)

with constants C independent of h.
The definition of the discrete norms, the growth conditions (2.3), and (2.13) yield

‖Ih,Ωf̃Ω(t, ·, u`h(·))− Ih,Ωf̃Ω(t, ·, v`h(·))‖2L2(Ωh)

≤ C|||Ih,Ωf̃Ω(t, ·, uh(·))− Ih,Ωf̃Ω(t, ·, vh(·))|||22

= Chd

(
N∑
i=1

∣∣f̃Ω(t, ai, uh(ai))− f̃Ω(t, ai, vh(ai))
∣∣2)

= Chd

(
N∑
i=1

∣∣∣∣(uh(ai)− vh(ai)
) ∫ 1

0

∂3f̃Ω

(
t, ai, vh(ai) + θ(uh(ai)− vh(ai))

)
dθ

∣∣∣∣2
)

≤ Ch
d(ζΩ−1)

ζΩ

(
N∑
i=1

(
1 + (|uh(ai)|+ |vh(ai)|)ζΩ−1

) 2ζΩ
ζΩ−1

) ζΩ−1

ζΩ

|||uh − vh|||22ζΩ

≤ C
(
|||1||| 2ζΩ

ζΩ−1

+ |||uh|||ζΩ−1
2ζΩ

+ |||vh|||ζΩ−1
2ζΩ

)2

|||uh − vh|||22ζΩ

≤ C
(
‖1‖

L
2ζΩ
ζΩ−1 (Ωh)

+ ‖uh‖ζΩ−1

L2ζΩ (Ωh)
+ ‖vh‖ζΩ−1

L2ζΩ (Ωh)

)
‖uh − vh‖2H1(Ωh)

≤ C
(
σ(Ω)

ζΩ−1

2ζΩ + 2MζΩ−1

)
‖uh − vh‖2H1(Ωh),

where we additionally used the bound

σ(Ωh) ≤ Cσ(Ω)

which is satisfied independently of h.

2.3. Main result. We can now state the main result of the paper, namely the error bound
for the bulk-surface discretization of wave equations with kinetic boundary conditions. The
proof will be conducted in Section 4.

THEOREM 2.7. Let Γ ∈ Cp+1, αΩ ∈ Hp(Ω), βΩ ∈ Hp(Ω)d, αΓ ∈ Hp(Γ), and βΓ ∈
Hp(Γ)d. Furthermore, let u be a solution of (2.1) on [0, T ] with
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(a) u ∈ C2
(
[0, T ];H2(Ω; Γ)

)
∩ L∞

(
[0, T ];Hmax{4,p+2}(Ω; Γ)

)
,

(b) u′ ∈ L∞
(
[0, T ];Hp+1(Ω; Γ)

)
, and

(c) u′′ ∈ L∞
(
[0, T ];Hp(Ω; Γ)

)
.

Then there exist h∗,M > 0 such that for all h < h∗, the solution uh of (2.12) exists on [0, T ]
and satisfies the error bound

‖u`h(t)− u(t)‖H1(Ω;Γ) + ‖(u′h)`(t)− u′(t)‖L2(Ω)×L2(Γ) ≤ Ce(L̂T,M+ 1
2 )t(1 + t)hp

with L̂T,M from Lemma 2.6 and a constant C independent of h and t.

3. Unified error analysis (UEA) for nonconforming discretizations. In this section
we present the UEA for a general class of nonconforming space discretizations of semilinear
wave equations. The UEA is a tool that provides a priori error bounds in terms of interpolation,
data, and conformity errors of the method. These bounds can be used to derive convergence
rates for a large class of problems in a simple, systematic, and modular way. The idea is
to treat wave equations abstractly as evolution equations in Hilbert spaces and their space
discretizations as differential equations in finite-dimensional Hilbert spaces and to perform the
error analysis in this abstract setting.

Here we briefly recall the setting used in [7, 8] and extend it to the semilinear case. As in
[8], we start by proving an error bound for discretizations of first-order evolution equations
in Section 3.1 and then use this result to prove error bounds for second-order equations in
Section 3.2. This result will then be used in the next section to prove Theorem 2.7. More
applications of the unified error analysis can be found in [8].

3.1. Semilinear evolution equations with monotone operators. We start by stating an
abstract evolution equation and introduce a general space discretization afterwards.

The continuous problem. Let X be a Hilbert space with scalar product p. We consider
the evolution equation

(3.1)
x′(t) + Sx(t) = g(t, x(t)), t ∈ (0, T ],

x(0) = x0.

ASSUMPTION 3.1.
(a) The linear operator S : D(S)→ X is the generator of a C0-semigroup with

(3.2)
∥∥∥e−tS

∥∥∥
X←X

≤ ecqmt.

(b) The nonlinearity g ∈ C1([0, T ]×X;X) is locally Lipschitz continuous with respect
to the second component with constant LT,M .

The following classical well-posedness result can be found in [15] for example.
LEMMA 3.2. If Assumption 3.1 holds true, then (3.1) is locally well-posed, i.e., for every

x0 ∈ X there exists t∗
(
x0
)
> 0 such that for all T < t∗

(
x0
)
, (3.1) has a unique solution

x ∈ C1
(
[0, T ];X

)
∩ C

(
[0, T ];D(S)

)
.

Abstract space discretization. We consider a general space discretization of (3.1) and
provide an abstract error result for a large class of equations and discretizations.

Let Xh be a finite-dimensional Hilbert space with scalar product ph. In this space we seek
the numerical approximation xh. Moreover, let Sh ∈ L(Xh, Xh) and gh : [0, T ]×Xh → Xh

be discretizations of S and g, respectively. Similar to their continuous counterparts, we
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Z X

Xh

Lh(Xh)⊃

L∗h
Jh Lh

FIG. 3.1. Overview of spaces and operators; cf. [8].

require that Sh and gh satisfy Assumption 3.1 with Xh instead of X and constants ĉqm, L̂T,M
independent of h.

Then the discretized version of the evolution equation (3.1) is given by

(3.3)
x′h(t) + Shxh(t) = gh(t, xh(t)), t ∈ (0, T ],

xh(0) = x0
h.

Due to the Picard–Lindelöf theorem, (3.3) is locally well-posed, and we denote the maximal
existence time of the solution by t∗h(x0

h).

Error analysis. Our framework allows us to treat nonconforming space discretizations,
where Xh * X . To relate the continuous and discrete quantities, we therefore assume that
there exists a lift operator Lh : Xh → X that satisfies

(3.4) ‖Lhyh‖X ≤ CX‖yh‖Xh for all yh ∈ Xh

with CX independent of h. We then define the lifted discrete space

X`
h := Lh(Xh) ⊂ X.

Let L∗h : X → Xh be the adjoint of the lift operator, i.e.,

ph
(
L∗hy, yh

)
= p
(
y,Lhyh

)
for all y ∈ X, yh ∈ Xh.

Furthermore, for a Hilbert space Z, which is densely and continuously embedded in X , we
make use of a reference operator Jh ∈ L(Z,Xh) satisfying

(3.5) ‖Jh‖Xh←Z ≤ CJ

with a constant CJ independent of h. The reference operator should satisfy LhJhz ≈ z for all
z ∈ Z and could, e.g., be an interpolation or a projection operator. Figure 3.1 illustrates the
operators between the spaces.

Finally, we define the linear remainder operator

Rh := L∗hS − ShJh : D(S) ∩ Z → Xh

and the nonlinear remainder operator rh : [0, T ]× Z → Xh via

rh(t, z) := L∗hg(t, z)− gh(t, Jhz).(3.6)

If the solution of the discretized equation (3.3) is bounded, then we can state an error
bound in terms of the approximation errors of x0, x and x′, and of the remainder operators
Rh, rh. We make the following regularity assumption on the continuous solution:
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ASSUMPTION 3.3. The solution x of (3.1) satisfies x ∈ C1
(
[0, t∗(x0));Z

)
.

THEOREM 3.4. Let Assumption 3.3 be satisfied, T < min
{
t∗
(
x0
)
, t∗h
(
x0
h

)}
, and

Mh = max
{
CJ‖x‖L∞([0,T ];Z), ‖xh‖L∞([0,T ];Xh)

}
.

Then, for all t ∈ [0, T ], the lifted discrete solution of (3.3) satisfies the error bound

‖Lhxh(t)− x(t)‖X ≤ Ce(L̂T,Mh+ĉqm)tEh(t) + ‖(I−LhJh)x(t)‖X(3.7)

with

Eh(t) =
∥∥∥x0

h − Jhx0
∥∥∥
Xh

+ t
∥∥(L∗h − Jh)x′

∥∥
L∞([0,T ];Xh)

+ t‖Rhx‖L∞([0,T ];Xh) + t‖rh(·, x(·))‖L∞([0,T ];Xh).

Proof. The proof consists of four steps.
(I) Splitting of the error: We split the error into

Lhxh − x = Lheh + eJh

with the discrete error

eh = xh − Jhx ∈ Xh

and the reference error

eJh = (LhJh − I)x.

This splitting yields

(3.8) ‖Lhxh − x‖X ≤ CX‖eh‖Xh + ‖(LhJh − I)x‖X ,

where the last summand only depends on the choice of the reference and the lift operator.
(II) Derivation of an evolution equation for the error eh: Since x ∈ C1([0, T ], Z) and

Jh ∈ L(Z,Xh), we have eh ∈ C1([0, T ];Xh) and

e′h = x′h − Jhx′ = (x′h − L∗hx′) + (L∗h − Jh)x′.

Using the continuous and the discrete equations (3.1) and (3.3), we can rewrite the first term
on the right-hand side as

x′h − L∗hx′ = −Shxh + gh(·, xh)− L∗h(−Sx+ g(·, x))

= −Sheh + gh(·, xh)− L∗hg(·, x) + (L∗hS − ShJh)x.

So, we end up with the following equation for the discrete error:

e′h + Sheh = (L∗h − Jh)x′ +Rhx+ gh(·, xh)− L∗hg(·, x)

= (L∗h − Jh)x′ +Rhx− rh(·, x) + gh(·, xh)− gh(·, Jhx)

=: dh.

Hence, eh satisfies a linear evolution equation in Xh.
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(III) Stability: By the variation-of-constants formula, we have

(3.9)
‖eh(t)‖Xh ≤ ‖e

−tSheh(0)‖Xh +

∫ t

0

‖e−(t−s)Shdh(s)‖Xh ds

≤ eĉqmt‖eh(0)‖Xh + eĉqmt

∫ t

0

e−ĉqms‖dh(s)‖Xh ds.

Using the Lipschitz-continuity of gh and the definition of the nonlinear remainder (3.6),
we are able to bound the defect dh by

(3.10)
‖dh(s)‖Xh ≤ ‖(L

∗
h − Jh)x′(s)‖Xh + ‖Rhx(s)‖Xh

+ ‖rh(s, x(s))‖Xh + L̂T,Mh
‖eh(s)‖Xh .

(IV) Abstract error estimate: Inserting (3.10) into (3.9) yields

e−ĉqmt‖eh(t)‖Xh ≤‖eh(0)‖Xh + t‖(L∗h − Jh)x′‖L∞([0,T ];Xh) + t‖Rhx‖L∞([0,T ];Xh)

+ t‖rh(·, x(·))‖L∞([0,T ];Xh) + L̂T,Mh

∫ t

0

e−ĉqms‖eh(s)‖Xh ds

=Eh(t) + L̂T,Mh

∫ t

0

e−ĉqms‖eh(s)‖Xh ds.

With the Grönwall lemma we finally obtain

‖eh(t)‖Xh ≤ e(L̂T,Mh+ĉqm)tEh(t).

Together with (3.8) this proves the error bound (3.7).
The following corollary shows, under additional consistency assumptions, that the dis-

cretized equation remains bounded for sufficiently small h and that the discrete solution
converges to the continuous one.

COROLLARY 3.5. Let Assumption 3.3 be satisfied and T < t∗
(
x0
)
. Moreover, assume

that

lim
h→0

Eh(t)→ 0 for all t ∈ [0, T ].

Then there exists h∗ > 0, such that xh exists for all h < h∗ on [0, T ] with

‖xh‖L∞([0,T ];Xh) ≤M := 2CJ‖x‖L∞([0,T ];Z).

Furthermore, the error bound (3.7) holds true with Mh = M .
If additionally

lim
h→0
‖(I−LhJh)x(t)‖X → 0 for all t ∈ [0, T ]

holds true, then the lifted numerical solution converges, i.e.,

‖Lhxh(t)− x(t)‖X
h→0−→ 0, t ∈ [0, T ].

Proof. We only have to show that xh exists for all h < h∗ on [0, T ] with

‖xh‖L∞([0,T ];Xh) ≤M.
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The other assertions then follow immediately from Theorem 3.4.
We define

Th := sup
{
t ∈
(
0, t∗h

(
x0
h

))
| ‖xh‖L∞([0,t];Xh) ≤M

}
as the maximal time for which the discrete solution stays bounded by M . Clearly, we have
Th < t∗h(x0

h) and further, by Theorem 3.4, for all t ≤ min{T, Th}, we have

‖xh(t)‖Xh ≤ ‖xh(t)− Jhx(t)‖Xh + ‖Jhx(t)‖Xh

≤ ‖eh(t)‖Xh +
M

2

≤ Ce(L̂T,M+ĉqm)tEh(t) +
M

2

h→0−→ M

2
.

Hence, there exists an h∗ > 0 such that ‖xh(t)‖Xh ≤
3
4M for all h < h∗ and t ≤ min{T, Th}.

Since xh is continuous and by the definition of Th, we thus get

t∗h(x0
h) > Th > T and ‖xh‖L∞([0,T ];Xh) < M

for all h < h∗.

3.2. Second-order semilinear wave-type equations. Next, we apply the results of Sec-
tion 3.1 to general second-order wave equations. Again, we start by stating the framework.

The continuous problem. Let V,H be Hilbert spaces and let V be densely embedded
in H . We consider the variational differential equation (2.7) as a prototype for weak formu-
lations of second-order wave equations and assume that Assumption 2.2 holds true. By the
dense embedding of the Hilbert spaces, there exists a constant CH,V > 0 such that

‖v‖m ≤ CH,V ‖v‖ã for all v ∈ V.

In order to reformulate the problem as an evolution equation onH , we define the operators
A : D(A)→ H and B : V → H corresponding to a and b via

m
(
Av,w

)
= a

(
v, w

)
, for all v ∈ D(A), w ∈ V,

m
(
Bv,w

)
= b
(
v, w

)
, for all v ∈ V,w ∈ H,

with

D(A) =
{
v ∈ V | ∃C = C(v) > 0 such that ∀w ∈ V : |a

(
v, w

)
| ≤ C‖w‖m

}
.

Equation (2.7) then reads: Find u ∈ C2
(
[0, T ];H

)
∩ C1

(
[0, T ];V

)
∩ C

(
[0, T ];D

(
A)
)

such
that

(3.11) u′′(t) +Bu′(t) +Au(t) = f(t, u(t), u′(t)), u(0) = u0, u′(0) = v0.

By construction, a solution of (3.11) is also a solution of (2.7).

First-order formulation. To analyze the well-posedness and the space discretizations
of (3.11), we want to apply the theory of Section 3.1 and therefore rewrite (3.11) as a first-order
equation. Let u′ = v and define

x =

[
u
v

]
, S =

[
0 − I
A B

]
, g (t, x) =

[
0

f(t, u, v)

]
, x0 =

[
u0

v0

]
.
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The linear operator S is defined on its domain D(S) = D(A)× V . With X = V ×H , (3.11)
is equivalent to (3.1).

LEMMA 3.6. The operator−S is the generator of a C0-semigroup on X = V ×H which
satisfies (3.2) with constant cqm = 1

2cGCH,V + βqm.
Proof. This follows from a combination of Lemma 4.2 (with α = 1), Lemma 2.3, and

Theorem 2.4 in [8].
Since f ∈ C1([0, T ]× V ×H;H) implies g ∈ C1([0, T ]×X;X), the problem (3.11)

is locally well-posed by Lemma 3.2. We denote the maximal existence time by t∗(u0, v0).

Space discretization. Let Vh be a finite-dimensional vector space. We consider (2.12)
as a space discretization of (2.7) and assume that Assumption 2.4 is satisfied.

To reformulate (2.12) as an evolution equation we define Ah, Bh ∈ L(Vh;Vh) via

mh

(
Ahvh, ϕh

)
= ah

(
vh, ϕh

)
, mh

(
Bhvh, ϕh

)
= bh

(
vh, ϕh

)
for all vh, ϕh ∈ Vh.

Then, (2.12) is equivalent to

(3.12)
u′′h(t) +Bhu

′
h(t) +Ahuh(t) = fh(t, uh(t), u′h(t)),

uh(0) = u0
h, u′h(0) = v0

h.

Analogously to the continuous case, we can rewrite this as a first-order equation. With the
Hilbert space Xh = Vh ×Hh and

xh(t) =

[
uh(t)
vh(t)

]
, Sh =

[
0 − I
Ah Bh

]
, gh (t, xh(t)) =

[
0

fh(t, uh(t), vh(t))

]
,

(3.12) has the form (3.3). Similarly to Lemma 3.6, we obtain that −Sh is the generator of a
C0-semigroup on Xh which satisfies (3.2) with constant ĉqm = 1

2 ĉGĈH,V + β̂qm independent
of h.

Due to the Picard–Lindelöf theorem, (3.12) is locally well-posed, and we denote the
maximal existence time of the solution by t∗h(u0

h, v
0
h).

Error analysis. To apply the error result from Section 3.1 we have to specify the opera-
tors occurring there.

We assume that there exists a lift operator LVh ∈ L(Vh;V ) satisfying

(3.13) ‖LVh vh‖m ≤ CH‖vh‖mh , ‖LVh vh‖ã ≤ CV ‖vh‖ãh
for all vh ∈ Vh with constants CH , CV > 0 independent of h. Using this, we define the lift
operator Lh : Xh → X by

Lh
[
vh
wh

]
:=

[
LVh vh
LVh wh

]
.

Note that one lift operator LVh is sufficient since V ↪→ H , but we have to distinguish the
adjoints LV ∗h : V → Vh and LH∗h : H → Hh with respect to the scalar products in V and H .
They are defined via

mh

(
LH∗h v, wh

)
= m

(
v,LVh wh

)
for all v ∈ H,wh ∈ Hh,

ãh
(
LV ∗h v, wh

)
= ã

(
v,LVh wh

)
for all v ∈ V,wh ∈ Vh.

Let ZV
d
↪→ V be a subspace of V and Ih ∈ L(ZV ;Vh) be an interpolation operator

satisfying

(3.14) ‖Ih‖Hh←ZV ≤ CI

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ERROR ANALYSIS FOR DISCRETIZATIONS OF SEMILINEAR WAVE EQUATIONS 535

with CI > 0 independent of h. We define the first-order reference operator Jh : Z → Xh by

Jh

[
v
w

]
:=

[
LV ∗h v
Ihw

]
,

on Z = V × ZV d
↪→ X .

REMARK 3.7. We used Ih instead of LH∗h in the second component of the reference
operator because the adjoint lift operator only leads to suboptimal error bounds.

By (3.13) and (3.14), conditions (3.4) and (3.5) are satisfied with CX = max{CV , CH}
and CJ = max{CV , CI}.

For vh, wh ∈ Vh, the errors in the scalar products are defined via

∆m
(
vh, wh

)
:= m

(
LVh vh,LVh wh

)
−mh

(
vh, wh

)
,

∆ã
(
vh, wh

)
:= ã

(
LVh vh,LVh wh

)
− ãh

(
vh, wh

)
,

and, for z = (u, v) ∈ Z, the linear and nonlinear remainder terms are given by

Rhz = (L∗hS − ShJh) z =

[
−(LV ∗h − Ih)v

LH∗h (Au+Bv)− (AhLV ∗h u+BhIhv)

]
,

rh(t, z) = L∗hg(t, z)− gh(t, Jhz) =

[
0

LH∗h f(t, u, v)− fh(t,LV ∗h u, Ihv)

]
,

respectively.
To obtain an error bound for the semi discretization from Theorem 3.4 we have to bound

the remainder terms. The nonlinear one is obviously bounded by

(3.15) ‖rh(t, z)‖Xh = ‖LH∗h f(t, u, v)− fh(t,LV ∗h u, Ihv)‖mh , z = (u, v) ∈ Z.

For the linear one we get∥∥∥∥∥Rh
[
u
v

]∥∥∥∥∥
Xh

≤ C
(

max
‖ϕh‖ãh=1

∣∣∆ã(Ihv, ϕh)∣∣+ max
‖ϕh‖ãh=1

∣∣∆ã(Ihu, ϕh)∣∣
+ max
‖ψh‖mh=1

∣∣∆m(Ihu, ψh)∣∣+ ‖(I−LVh Ih)u‖ã(3.16)

+ ‖
(
I−LVh Ih

)
v‖ã + max

‖ψh‖mh=1

∣∣b(v,LVh ψh)− bh(Ihv, ψh)∣∣),
i.e., it can be bounded by errors in the bilinear forms and interpolation errors. The bound (3.16)
is proven in Lemma 4.7 in [8] (with our choice of the reference operator Jh). Proving the final
error bound requires a sufficiently regular solution.

ASSUMPTION 3.8. The solution u of (3.11) satisfies u ∈ C2
([

0, t∗(u0, v0)
)
;ZV

)
.

The following two results are direct consequences of Theorem 3.4 and Corollary 3.5.
THEOREM 3.9. Let Assumption 3.8 be satisfied and T < min

{
t∗
(
u0, v0

)
, t∗h
(
u0
h, v

0
h

)}
.

Then, for all t ∈ [0, T ], the lifted semidiscrete solution LVh uh of (3.12) satisfies the error
bound

(3.17) ‖LVh uh(t)− u(t)‖ã + ‖LVh u′h(t)− u′(t)‖m ≤ Ce(L̂T,Mh+ĉqm)t(1 + t)

5∑
i=1

Ei
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with a constant C that is independent of h and t. The other constants are given by
ĉqm = 1

2 ĉGĈH,V + β̂qm ,

Mh = max

max
{
CV , CI

}∥∥∥∥∥
[
u
u′

]∥∥∥∥∥
L∞([0,T ];V×ZV )

,

∥∥∥∥∥
[
uh
u′h

]∥∥∥∥∥
L∞([0,T ];Vh×Hh)

 ,

and

E1 :=‖u0
h − LV ∗h u0‖ãh + ‖v0

h − Ihv0‖mh ,
E2 :=‖LH∗h f(·, u(·), u′(·))− fh(·,LV ∗h u(·), Ihu′(·))‖L∞([0,T ];Hh),

E3 :=‖(I−LVh Ih)u‖L∞([0,T ];V ) + ‖(I−LVh Ih)u′‖L∞([0,T ];V )

+ ‖(I−LVh Ih)u′′‖L∞([0,T ];H),

E4 :=
∥∥∥ max
‖ϕh‖ãh=1

∆ã
(
Ihu, ϕh

)∥∥∥
L∞(0,t)

+
∥∥∥ max
‖ψh‖mh=1

∆m
(
Ihu, ψh

)∥∥∥
L∞(0,t)

+
∥∥∥ max
‖ϕh‖ãh=1

∆ã
(
Ihu
′, ϕh

)∥∥∥
L∞(0,t)

+
∥∥∥ max
‖ψh‖mh=1

∆m
(
Ihu
′′, ψh

)∥∥∥
L∞(0,t)

,

E5 :=
∥∥∥ max
‖ψh‖mh=1

|b
(
u′,LVh ψh

)
− bh

(
Ihu
′, ψh

)
|
∥∥∥
L∞(0,t)

.

If Ei → 0, i = 1, . . . , 5, then we can conclude convergence.
COROLLARY 3.10. Let Assumption 3.8 be satisfied, T < t∗

(
u0, v0

)
, and

M := 2 max
{
CV , CI

}∥∥∥∥∥
[
u
u′

]∥∥∥∥∥
L∞([0,T ];V×ZV )

.

Further, let Ei
h→0−→ 0 for i = 1, . . . , 5. Then there exists h∗ > 0, such that uh exists in [0, T ]

for all h < h∗ with ∥∥∥∥∥
[
uh
u′h

]∥∥∥∥∥
L∞([0,T ];Vh×Hh)

≤M.

Additionally, the error bound (3.17) holds true with Mh = M , and the lifted semidiscrete
solution converges, i.e.,

lim
h→0
‖LVh uh(t)− u(t)‖ã + ‖LVh u′h(t)− u′(t)‖m = 0, t ∈ [0, T ].

Proof of Theorem 3.9. We apply Theorem 3.4. Recall that we have

CX = max{CV , CH}, CJ = max{CV , CI}, ĉqm =
1

2
ĉGĈH,V + β̂qm.

As in the proof of Theorem 4.8 in [8], we obtain (3.17) by applying the error estimate (3.7)
and using (3.15) and (3.16).

Corollary 3.10 follows directly from Corollary 3.5.
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4. Proof of Theorem 2.7. For the proof we use the results of Section 3.2.
Proof of Theorem 2.7. We already showed in Section 2 that the weak formulation of the

wave equations with kinetic boundary conditions (2.7) as well as their discretizations with the
bulk-surface FEM fit into the general setting presented in Section 3.2.

We define the space

ZV := H2(Ω; Γ)
d
↪→ V = H1(Ω; Γ),

the interpolation operator Ih := Ih,Ω, and the lift operator via

LVh v := v`

with v` given in (2.8). By (2.9) we have Lh ∈ L(Vh;V ). Moreover, (3.13) is satisfied and Ih
satisfies (3.14) by (2.10).

Hence, all assumptions of Corollary 3.10 are satisfied. It remains to bound the error terms
by O(hp) to obtain the desired error bound. In [7, Theorem 7.4] it was shown that

E1, E3, E4, E5 ≤ Chp,

so that we only have to study the nonlinear error term. By Lemma 2.6 we have

E2 = ‖LH∗h f(·, u)− fh(·,LV ∗h u)‖L∞([0,T ];Hh)

≤ ‖LH∗h f(·, u)− fh(·, Ihu)‖L∞([0,T ];Hh) + ‖fh(·, Ihu)− fh(·,LV ∗h u)‖L∞([0,T ];Hh)

≤ ‖LH∗h f(·, u)− fh(·, Ihu)‖L∞([0,T ];Hh) + L̂T,M‖(Ih − LV ∗h )u‖L∞([0,T ];Hh).

The second summand is of order hp+1, and for the first one, by definition of f and fh, we
obtain

‖LH∗h f(t, u)− fh(t, Ihu)‖mh
= sup
‖ϕh‖mh=1

mh

(
LH∗h f(t, u)− fh(t, Ihu), ϕh

)
= sup
‖ϕh‖mh=1

(
m
(
f(t, u),LVh ϕh

)
−mh

(
fh(t, Ihu), ϕh

))
= sup
‖ϕh‖mh=1

(∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ωh

Ih,Ωf̃Ω(t, ·, (Ih,Ωu)
`
(·))(x)ϕh(x) dx

+

∫
Γ

f̃Γ(t,x, γ(u)(x))ϕ`h(x) ds−
∫

Γh

Ih,Γf̃Γ(t, ·, (Ih,Γγ(u))
`
(·))(x)ϕh(x) ds

)
.

Let ϕh ∈ Vh with ‖ϕh‖mh = 1. For the error in Ω we obtain∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ωh

Ih,Ωf̃Ω(t, ·, (Ih,Ωu)
`
(·))(x)ϕh(x) dx

=

∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ωh

Ih,Ωf̃Ω(t, ·, u(·))(x)ϕh(x) dx

=

∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx

+

∫
Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx−

∫
Ωh

Ih,Ωf̃Ω(t, ·, u(·))(x)ϕh(x) dx,
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where we used the definition of the nodal interpolation in the first step, which tells us that the
inner interpolation can be omitted since the outer interpolation only depends on the function
values at the nodes ai which are invariant under the inner interpolation.

For the first term, with (2.9), (2.10), and ‖ϕh‖L2(Ω) ≤ ‖ϕh‖mh = 1, we obtain∫
Ω

f̃Ω(t,x, u(x))ϕ`h(x) dx−
∫

Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx

≤
∥∥∥f̃Ω(t, ·, u(·))−

(
Ih,Ωf̃Ω(t, ·, u(·))

)`∥∥∥
L2(Ω)

‖ϕ`h‖L2(Ω)

≤CΩ,ΩhCh
p
∥∥f̃Ω(t, ·, u(·))

∥∥
Hp(Ω)

≤Chp
(∥∥utt∥∥Hp(Ω)

+
∥∥∇ut∥∥Hp(Ω)

+
∥∥∆u

∥∥
Hp(Ω)

)
.

In the last step we used the differential equation (2.1).
Since Ih,Ωf̃Ω

(
t, ·, u(·)

)
∈ V Ω

h,p, we can bound the second term with the estimate (5.10)
from [8] by∫

Ω

(
Ih,Ωf̃Ω(t, ·, u(·))

)`
(x)ϕ`h(x) dx−

∫
Ωh

Ih,Ωf̃Ω(t, ·, u(·))(x)ϕh(x) dx

≤Chp
∥∥Ih,Ωf̃Ω(t, ·, u(·))

∥∥
L2(Ωh)

‖ϕh‖L2(Ωh)

≤Chp
∥∥f̃Ω(t, ·, u(·))

∥∥
H2(Ω)

≤Chp
(∥∥utt∥∥H2(Ω)

+
∥∥∇ut∥∥H2(Ω)

+
∥∥∆u

∥∥
H2(Ω)

)
.

Here we also used Ih,Ω ∈ L(H2(Ω);L2(Ωh)) and the differential equation (2.1).
The error term on Γ can be bounded analogously, and we obtain

E2 ≤ Chp
(
‖u′′(t)‖Hp(Ω;Γ) + ‖u(t)‖Hmax{4,p+2}(Ω;Γ)

)
.

The only additional term that has to be bounded in this case is ‖∂nu‖Hp(Ω), for which we get

‖∂nu‖Hp(Ω) ≤ ‖u‖Hp+2(Ω).

This completes the proof.

5. Numerical examples. In this section we illustrate Theorem 2.7 numerically.
We choose Ω = B(0, 1) ⊂ R2 as the two-dimensional unit sphere and

u(t,x) = e−tx2
1x

2
2.

Furthermore, we set

ηΩ(t,x) = −
(
4 + e−tx2

1x
2
2

)
e−tx2

1x
2
2 − 2e−t

(
x2

1 + x2
2

)
,

ηΓ(t,x) =
(
21− e−2tx4

1x
4
2

)
e−tx2

1x
2
2 − 2e−t.

Then, u solves the semilinear wave equation with kinetic boundary conditions

utt + (1 + x · ∇)ut −∆u = |u|u+ ηΩ(t,x), (0, T )× Ω,

utt + ∂nu−∆Γu = |u|2u+ ηΓ(t,x), (0, T )× ∂Ω,

u(0,x) = 0, ut(0,x) = 2πx1x2, in Ω.
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We implemented the bulk-surface FEM by using the C++ finite element-library deal.II
[2, 3] with discrete initial values u0

h = Ih,Ωu
0 and v0

h = Ih,Ωv
0. For time integration,

we applied the Crank–Nicolson scheme with sufficiently small step size such that the time
integration error is negligible. The codes are available from the authors on request.

In Figure 5.1 the error

(5.1) ‖uh(t)− u(t)
∣∣
Ωh
‖H1(Ωh;Γh) + ‖u′h(t)− u′(t)

∣∣
Ωh
‖L2(Ωh)×L2(Γh)

is plotted against the mesh width h for the discretization of the test example with isoparametric
elements of order p = 1 and p = 2 at t = 0.8. We evaluated the integrals with a quadrature
rule of degree 2p, so that the quadrature error is negligible. The restriction of u to Ωh is
possible since Ωh ⊂ Ω, for convex domains.

The error behaves as predicted by Theorem 2.7.

10−2 10−1

10−4

10−2

100

h

er
ro

r

p = 1

p = 2

order 1

order 2

FIG. 5.1. Error (5.1) at t = 0.8 for the test example.
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