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KRYLOV TYPE METHODS FOR LINEAR SYSTEMS EXPLOITING
PROPERTIES OF THE QUADRATIC NUMERICAL RANGE∗

ANDREAS FROMMER†, BIRGIT JACOB†, KARSTEN KAHL†, CHRISTIAN WYSS†, AND IAN ZWAAN†

Abstract. The quadratic numerical rangeW 2(A) is a subset of the standard numerical range of a linear operator,
which still contains its spectrum. It arises naturally in operators that have a 2× 2 block structure, and it consists of at
most two connected components, none of which necessarily convex. The quadratic numerical range can thus reveal
spectral gaps, and it can in particular indicate that the spectrum of an operator is bounded away from 0.

We exploit this property in the finite-dimensional setting to derive Krylov subspace-type methods to solve the sys-
temAx = b, in which the iterates arise as solutions of low-dimensional models of the operator whose quadratic numeri-
cal range is contained inW 2(A). This implies that the iterates are always well-defined and that, as opposed to standard
FOM, large variations in the approximation quality of consecutive iterates are avoided, although 0 lies within the con-
vex hull of the spectrum. We also consider GMRES variants that are obtained in a similar spirit. We derive theoretical
results on basic properties of these methods, review methods on how to compute the required bases in a stable manner,
and present results of several numerical experiments illustrating improvements over standard FOM and GMRES.

Key words. quadratic numerical range, full orthogonalization method (FOM), generalized minimal residual
method (GMRES), linear systems, projection methods, two-level orthogonal Arnoldi method
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1. Introduction. It is well known that Krylov subspace methods for a linear system
Ax = b with a nonsingular matrix A ∈ Cn×n might converge slowly, or even diverge, or
fail in situations where 0 lies in the “interior” of the spectrum spec(A) of A. Specifically,
if 0 is contained in the numerical range (or field of values) of A—a convex set containing
spec(A)—we know that methods based on a Galerkin variational characterization, like the
full orthogonalization method FOM, can fail due to the non-existence of certain iterates. This
manifests itself numerically by huge variations in magnitude and associated stability problems.
In methods that are based on residual minimization, like the generalized minimal residual
method GMRES, stagnation can occur in such cases. Such stagnation might occur during a
large number of iterations, which is highly undesirable, but it can also be more benign. For
example, the MINRES method, which is mathematically equivalent to GMRES for Hermitian
matrices A, typically achieves good progress in every other iteration when A is indefinite
and not too ill-conditioned. Related to this, classical convergence theory for Krylov subspace
methods, in particular for the non-Hermitian case, typically assumes that 0 is not contained
in the numerical range and then gets quantitative results on convergence speed in which the
distance of the numerical range to 0 enters as a parameter; see, e.g., [3, 20, 21] and the
discussion and references in the books [12, 19].

In this paper we study modifications of the FOM method, and also of GMRES, which
converge stably and smoothly when the quadratic numerical range, a subset of the standard
numerical range, splits into two parts that do not contain 0. The quadratic numerical range
arises naturally for matrices that have a canonical 2 × 2 block structure. Analogously to
standard Krylov subspace methods, these modifications are also based on projections. By
projecting onto a larger space than the Krylov subspace, we manage to preserve the gap in the
quadratic numerical range and thus shield the projected matrices away from singularity. At
the same time, we do not require more matrix-vector multiplications than in standard Krylov
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subspace methods, namely just one per iteration. While the projection technique underlying
our approach has already been applied in other contexts, like, for example, in symplectic
model order reduction techniques (see, e.g., [17]), we note that its use for iterative linear
solvers appears to be new as is the study of its connection to the quadratic numerical range.

This paper is organized as follows: Section 2 reviews those properties of the numerical
range and the FOM and GMRES method that are important for this paper. Section 3 first
introduces the quadratic numerical range and then develops the new modified projection
methods termed quadratic FOM and quadratic GMRES. This section also contains first
elements of an analysis. In Section 4 we then discuss how the new methods can be realized as
efficient algorithms before we give some numerical examples in Section 5.

2. Numerical range and FOM. Regardless of the dimension n, we will always denote
by 〈·, ·〉 the standard sesquilinear inner product on Cn and by ‖ · ‖ the associated norm. For a
linear operator A ∈ Cn×n the numerical range (or field of values) W (A) is the set of all its
Rayleigh quotients

W (A) =

{
〈Ax, x〉
〈x, x〉

: x ∈ Cn, x 6= 0

}
= {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} .

W (A) is a compact convex set (see, e.g., [8]), which contains the spectrum spec(A). If
A is normal, that is if A∗A = AA∗, then W (A) is actually the convex hull of spec(A). For
non-normal A, the numerical range W (A) can be much larger than the convex hull of the
spectrum. If for some m ≤ n the matrix V = [v1 | · · · | vm] ∈ Cn×m is an orthonormal
matrix, i.e., V ∗V = Im, the identity on Cm, then the numerical range of the “projected”
matrix V ∗AV ∈ Cm×m is contained in that of A, since for all y ∈ Cm, y 6= 0 we have
〈y, y〉 = 〈V y, V y〉 and thus

〈V ∗AV y, y〉
〈y, y〉

=
〈AV y, V y〉
〈y, y〉

=
〈AV y, V y〉
〈V y, V y〉

∈W (A).

For future use we state this observation as a lemma.
LEMMA 2.1. Let A ∈ Cn×n be arbitrary and let V ∈ Cn×m be orthonormal. Then

W (V ∗AV ) ⊆W (A).

We continue by summarizing the basic properties of two Krylov subspace methods,
namely FOM [18] and GMRES [20], that are relevant for this work. We refer to the textbooks
[2, 5, 12, 19, 22] for a summary of the plethora of further properties of these two methods and
of Krylov subspace methods in general.

A Krylov subspace method for solving the linear system

Ax = b, A ∈ Cn×n, b ∈ Cn,

takes its k-th iterate from the affine subspace x(0) +K(k)(A, r(0)), where r(0) = b− Ax(0)
and

K(k)(A, r(0)) = span{r(0), Ar(0), . . . , Ak−1r(0)}.

Krylov subspaces are nested and the Arnoldi process (see, e.g., [19]) iteratively computes an
orthonormal basis v(1), v(2), . . . for these subspaces. Collecting the vectors into an orthonor-
mal matrix V (k) = [v(1) | · · · | v(k)], the Arnoldi process can be summarized by the Arnoldi
relation

(2.1) AV (k) = V (k+1)H(k), k = 1, 2, . . . ,
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whereH(k) ∈ C(k+1)×k collects the coefficients resulting from the orthonormalization process.
It has upper Hessenberg structure. Denoting by H(k) the k × k matrix obtained from H(k) by
removing the last row, we see that

H(k) = (V (k))∗AV (k).

The full orthogonalization method (FOM) is the Krylov subspace method with iterate x(k)fom

characterized variationally via

x
(k)
fom ∈ x(0) +K(k)(A, r(0)), r

(k)
fom = b−Ax(k)fom ⊥ K(k)(A, r(0)),

which gives

x
(k)
fom = x(0) + V (k)(H(k))−1(V (k))∗r(0),

provided H(k) is nonsingular. Note that since v1 is a multiple of r(0) we have

(2.2) (V (k))∗r(0) = ‖r(0)‖ek1 ,

where ek1 denotes the first canonical unit vector in Ck.
For an arbitrary (nonsingular) matrix A, the matrix H(k) can become singular in which

case the k-th FOM iterate does not exist. An important consequence of Lemma 2.1 is, therefore,
that such a breakdown of FOM cannot occur if 0 6∈ W (A). Moreover, H(k) will have no
eigenvalues with modulus smaller than the distance of W (A) to 0. On the other hand, if
0 ∈W (A), even when H(k) is nonsingular, it can become arbitrarily ill-conditioned, which
then typically yields large residuals for the corresponding iterates and which is observed in
practice as irregular convergence behavior.

We can interpret FOM as the method which for each k builds a reduced model H(k) of
dimension k of the original matrix and then obtains its iterate x(k)fom by lifting the solution of the
corresponding reduced system H(k)ξk = (V (k))∗r(0) back to the full space as a correction to
the initial guess x(0), x(k)fom = x(0)+V (k)ξk. This interpretation will serve as a guideline for our
development of the “quadratic” FOM method in Section 3.

The generalized minimal residual method (GMRES) is the Krylov subspace method
with iterate x(k)gmres characterized variationally by

x(k)gmres ∈ x(0) +K(k)(A, r(0)), r(k)gmres = b−Ax(k)gmres ⊥ A · K(k)(A, r(0)).

This implies that the residual b − Ax(k)gmres is smallest in norm among all possible residuals
b−Ax with x ∈ x(0) +K(k)(A, r(0)), i.e., x(k)gmres solves the least squares problem

x(k)gmres = argmin
x∈x(0)+K(k)(A,r(0))

‖b−Ax‖ = x(0) + argmin
y∈K(k)(A,r(0))

‖r(0) −Ay‖.

To obtain an efficient algorithm it is important to see that this n × k least squares problem
can be reduced to a (k + 1) × k system due to the Arnoldi relation (2.1): we have that
x
(k)
gmres = x(0) + V (k)ξ(k) where ξ(k) solves

(2.3) ξ(k) = argmin
ξ∈Ck

‖(V (k+1))∗r(0) −H(k)ξ‖,

where (V (k+1))∗r(0) = ‖r(0)‖ek+1
1 .

In case that H(k) is nonsingular, one can use the normal equation for (2.3) to characterize
ξk = (Ĥ(k))−1ek1 , where

Ĥ(k) = H(k) + |hk+1,k|2((H(k))−∗ek)e∗k, where hk+1,k is the (k + 1, k) entry of H(k).
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This means that the GMRES approach constructs a reduced model Ĥ(k) that differs from the
FOM model by a matrix of rank 1. The eigenvalues of Ĥ(k) are called the harmonic Ritz
values of A w.r.t. K(k)(A, r(0)), i.e., the values µ for which

A−1x− 1
µx ⊥ AK

(k)(A, r(0)) for some x ∈ AK(k)(A, r(0)), x 6= 0.

They are the inverses of the Ritz values of A−1 w.r.t. the subspace AK(A, r(0)), which implies

µ−1 ∈W (A−1).

With ρ := max{|ω| : ω ∈ W (A−1)} denoting the numerical radius of A−1 we see that
|µ| ≥ ρ−1. In this sense, as opposed to FOM, the GMRES approach shields the eigenvalues
of the reduced model Ĥ(k) away from 0. Note that if H(k) is singular, GMRES stagnates, i.e.,
x
(k)
gmres = x

(k−1)
gmres .

3. Quadratic numerical range, QFOM, and QGMRES. We now assume that the
matrix A ∈ Cn×n has a “natural” block decomposition of the form

(3.1) A =

[
A11 A12

A21 A22

]
with Aij ∈ Cni×nj , i, j = 1, 2, n1 + n2 = n, n1, n2 ≥ 1.

All vectors x from Cn are endowed with the same block structure

x =

[
x1
x2

]
, xi ∈ Cni , i = 1, 2.

The definition of the quadratic numerical range goes back to [11], where it was introduced as
a tool to localize spectra of block operators in Hilbert spaces; see also [10].

DEFINITION 3.1. The quadratic numerical range W 2 of A is given as

W 2(A) =
⋃

‖x1‖=‖x2‖=1

spec

([
x∗1A11x1 x∗1A12x2
x∗2A21x1 x∗2A22x2

])
.

The following basic properties are, for instance, proved in [23].
LEMMA 3.2. We have
(i) W 2(A) is compact,

(ii) W 2(A) has at most two connected components,
(iii) spec(A) ⊆W 2(A) ⊆W (A),
(iv) If n1, n2 ≥ 2, then W (A11),W (A22) ⊆W 2(A).
The quadratic numerical range is an established tool in operator theory where typically

infinite-dimensional operators are considered. If W 2(A) has two components, then all λ ∈ C
that do not belong to any of the two components but to W (A) cannot be eigenvalues, thus
establishing the existence of spectral gaps. Such gaps are important in many applications, like
for example for the electrical or optical conductivity in materials. Usually, the separation of
two components of W 2(A) is shown using analytical approaches. Despite some efforts for
special finite-dimensional operators in [15, 16], efficient numerical approaches to accurately
approximate W 2(A) are still missing. The illustrations in the book [23], for example, use
stochastic sampling, which works only for very small dimensions.

The following counterpart of Lemma 2.1 holds.
LEMMA 3.3. Let A ∈ Cn×n have block structure (3.1) and assume that V1 ∈ Cn1×m1 ,

V2 ∈ Cn2×m2 with mi ≤ ni, i = 1, 2 have orthonormal columns. Put V = [ V1 0
0 V2

] ∈ Cn×m
with m = m1 +m2. Then

W 2(V ∗AV ) ⊆W 2(A), where V ∗AV =

[
V ∗1 A11V1 V ∗1 A12V2
V ∗2 A21V1 V ∗2 A22V2

]
∈ Cm×m.
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Proof. Let yi ∈ Cmi for i = 1, 2 with ‖yi‖ = 1. Then xi := Viyi satisfies ‖xi‖ = 1,
i = 1, 2, and since[

(y1)∗V ∗1 A11V1y1 (y1)∗V ∗1 A12V2y2
(y2)∗V ∗2 A21V1y1 (y2)∗V ∗2 A22V2y2

]
=

[
x∗1A11x1 x∗1A12x2
x∗2A21x1 x∗2A22x2

]
we obtain W 2(V ∗AV ) ⊆W 2(A).

Our approach is now to build a Krylov subspace type method where, as opposed to FOM,
the iterates are obtained by inverting a reduced model of A whose quadratic numerical range
is contained in that of A. In this manner, if 0 6∈ W 2(A) with δ = min{|µ| : µ ∈ W 2(A)}
denoting the distance of 0 to W 2(A), no eigenvalue of the reduced model will have modulus
smaller than δ. In cases where 0 ∈W (A) and 0 6∈W 2(A) this bears the potential of obtaining
smoother and faster convergence than with FOM and, as it will turn out experimentally, also
faster than with GMRES.

We project the Krylov subspace K(k)(A, r(0)) onto its first n1 and last n2 components,
respectively, denoted K(k)

1 (A, r(0)) ⊆ Cn1 and K(k)
2 (A, r(0)) ⊆ Cn2 . Clearly,

K(k)(A, r(0)) ⊆ K(k)
1 (A, r(0))×K(k)

2 (A, r(0)) =: K(k)
× (A, r(0)),

where×denotes the Cartesian product, and dimK(k)(A, r(0))≤dimK(k)
× (A, r(0))=:d

(k)
× ≤2k.

Note that the dimension d(k)i of eitherK(k)
i (A, r(0)) may be less than k and d(k)× = d

(k)
1 +d

(k)
2 .

We can obtain an orthonormal basis for each of the K(k)
i (A, r(0)) as the columns of the

matrix V (k)
i that arises from the QR-decomposition of the respective block of the matrix V (k)

from the Arnoldi process, i.e.,

V (k) =

[
V

(k)
1 R

(k)
1

V
(k)
2 R

(k)
2

]
, V

(k)
i ∈ Cni×d(k)

i orthonorm., R(k)
i ∈ Cd

(k)
i ×k upper triang.(3.2)

Note that with this definition of V (k)
i we have the useful property that V (k+1)

i arises from
V

(k)
i by the addition of a new last column, just in the way V (k+1) arises from V (k), with the

exception that the new last column could be empty, i.e., there is no new last column, when the
last column of the i-th block in V (k) is linearly dependent of the other columns. Similarly,
R

(k+1)
i arises from R

(k)
i by adding a new last column and a new last row (if it is not empty).

We now introduce variational characterizations based on the space K(k)
× (A, r(0)).

3.1. QFOM. Quadratic FOM imposes a Galerkin condition using K(k)
× (A, r(0)).

DEFINITION 3.4. The k-th quadratic FOM (“QFOM”) iterate x(k)qfom is defined variation-
ally through

(3.3) x
(k)
qfom ∈ x(0) +K(k)

× (A, r(0)), b−Ax(k)qfom ⊥ K
(k)
(×)(A, r

(0)).

The columns of the matrix

V
(k)
× =

[
V

(k)
1 0

0 V
(k)
2

]

form an orthonormal basis of K(k)
× (A, r(0)). Defining the reduced model H(k)

× of A as

(3.4) H
(k)
× = (V

(k)
× )∗AV

(k)
× =

[
(V

(k)
1 )∗A11V

(k)
1 (V

(k)
1 )∗A12V

(k)
2

(V
(k)
2 )∗A21V

(k)
1 (V

(k)
2 )∗A22V

(k)
2

]
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we see that if H(k)
× is nonsingular, the QFOM iterate x(k)qfom according to Definition 3.4 exists

and can be represented as

x
(k)
qfom = x(0) + V

(k)
× (H

(k)
× )−1(V

(k)
× )∗r(0).

Instead of (2.2) we now have

(3.5) (V
(k)
× )∗r(0) =

[
‖r(0)1 ‖e

d
(k)
1

1

‖r(0)2 ‖e
d
(k)
2

1

]
, where r(0) =

[
r
(0)
1

r
(0)
2

]
.

If H(k)
× is singular, the k-th QFOM iterate does not exist. We will show in Section 4 that

computing x
(k)
qfom costs k matrix-vector multiplications with A plus additional arithmetic

operations of order O(k3). The cost is therefore the same as for standard FOM in terms of
matrix-vector multiplications, and the additional cost is also of the same order (though with a
larger constant).

3.2. Properties of QFOM. The following theorem summarizes some basic properties
of QFOM. Recall that the grade of a vector v with respect to a square matrix A is the first
index g(v) for which K(g(v))(A, v) = K(g(v)+1)(A, v). We know (see, e.g, [19]) that then
K(g(v))(A, v) = K(g(v)+i)(A, v) for all i ≥ 0 and that A−1v ∈ K(g(v))(A, v), provided A is
nonsingular.

THEOREM 3.5. Let A be nonsingular. Then,
(i) [Finite termination] there exists an index kmax ≤ g(r(0)) such that

A−1r(0) ∈ K(kmax)
× (A, r(0)), and if H(kmax)

× is nonsingular, x(kmax)
qfom exists and

x
(kmax)
qfom = A−1b;

(ii) [Quadratic numerical range property] the inclusion W 2(H
(k)
× ) ⊆W 2(A) holds for

k = 1, . . . , kmax, where the 2× 2 block structure of H(k)
× is given in (3.4);

(iii) [Existence] if 0 6∈ W 2(A), then x
(k)
qfom exists for k = 1, . . . , kmax, i.e., H×k is

nonsingular for all k = 1, . . . , kmax.
Proof. To show (i), let g be the grade of r(0) w.r.t. A and let kmax ≤ g be the

smallest index k for which K(g)(A, r(0)) ⊆ K(k)
× (A, r(0)). Since A is nonsingular, there

exists y∗ ∈ K(kmax)
× (A, r(0)) with Ay∗ = r(0), i.e., y∗ = A−1r(0). As a consequence,

x∗ = A−1b = x(0) + y∗ ∈ x(0) + K(kmax)
× (A, r(0)) satisfies the variational characteriza-

tion (3.3) from Definition 3.4 just as x(kmax)
qfom does. If H(kmax)

× is nonsingular there is exactly
one vector from x(0) +K(kmax)

× (A, r(0)) which satisfies (3.3) which gives x(kmax)
qfom = x∗.

Part (ii) follows directly from Lemma 3.3. Finally, part (iii) is an immediate consequence
of part (ii) and the spectral enclosure property stated as Lemma 3.2 (iii).

More far-reaching results seem to be difficult to obtain. In particular, the absence of a
polynomial interpolation property—which we discuss in the sequel—makes it impossible to
follow established concepts from standard Krylov subspace theory.

The FOM iterates satisfy a polynomial interpolation property: We know that
(H(k))−1 = q(H(k)), where q is the polynomial of degree at most k − 1 that interpolates the
function z → z−1 on the eigenvalues in the Hermite sense, i.e., up to the j − 1st derivative if
the multiplicity of the eigenvalue in the minimal polynomial is j; see [7]. We have that

V (k)(H(k))−1(V (k))∗r(0) = V (k)q(H(k))(V (k))∗r(0) = q(A)r(0),

where the last, important equality holds because V (k)(V (k))∗ represents the orthogonal
projector on Kk(A, r(0)), thus implying that for all powers j = 0, . . . , k − 1, we have
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V (k)(H(k))j(V (k))∗r(0) = V (k)((V (k))∗AV (k))j(V (k))∗r(0) = Ajr(0); see also the mo-
ment matching property of FOM as treated in, e.g., [12]. As a consequence,

(3.6) x
(k)
fom = x(0) + q(A)r(0).

Since Ĥ(k) differs from H(k) only in its last column, the same argument as above shows
that an analogue of (3.6) holds for the GMRES iterates, where now q interpolates on the
spectrum of Ĥ(k). This interpolation property is very helpful in the analysis of the FOM
and GMRES method, but there is no analogue for QFOM. Indeed, while we can express
(H

(k)
× )−1 as a polynomial q of degree at most d(k)1 + d

(k)
2 − 1 ≤ 2k − 1 in H(k)

× , the matrix
V

(k)
× (V

(k)
× )∗ is an orthogonal projector on K(k)

× (A, r(0)), which contains K(k)(A, r(0)), but
not necessarily the higher powers Air(0) for i ≥ k. Therefore, we cannot conclude that
(V

(k)
× )(H

(k)
× )i(V

(k)
× )∗r(0) = (V

(k)
× )((V

(k)
× )∗AV

(k)
× )i(V

(k)
× )∗r(0) would be equal to Air(0)

for i ≥ k, and therefore, since the degree of the polynomial q is likely to be larger than k − 1
we do not get V (k)

× q(H
(k)
× )(V

(k)
× )∗r(0) = q(A)r(0).

To finish this section, we look at the very extreme case in which W 2(A) consists of
just one or two points. We show that in this case QFOM obtains the solution after just
one iteration in a larger number of cases than standard FOM or GMRES does. So assume
W 2(A) = {λ1, λ2}, where λ1 = λ2 is allowed.

LEMMA 3.6. Let n1, n2 ≥ 2. W 2(A) = {λ1, λ2} if and only if

(3.7) A =

[
λ1I A12

A21 λ2I

]
, where A12 = 0 or A21 = 0,

up to a permutation of λ1, λ2 on the diagonal.
Proof. For xi ∈ Cni , ‖xi‖ = 1, i = 1, 2 denote

α = x∗1A11x1, β = x∗1A12x2, γ = x∗2A21x1, δ = x∗2A22x2.

Then λ ∈W 2(A) iff

(3.8) (λ− α)(λ− δ)− βγ = 0

for α, β, γ, δ associated with such x1, x2. Now, if A is of the form (3.7), then βγ = 0, α = λ1,
and δ = λ2, which immediately gives that (3.7) is sufficient to get W 2(A) = {λ1, λ2}.

To prove necessity, assume W 2(A) = {λ1, λ2}. Since W (Aii) ⊆ W 2(A) for i = 1, 2
by Lemma 3.2 (iv) and since the numerical range is convex, this implies W (A11) = {µ1},
W (A22) = {µ2} with µ1, µ2 ∈ {λ1, λ2}. Consequently A11 = µ1I, A22 = µ2I . For a
proof by contradiction assume now that both A12 and A21 are nonzero. Then there exist
normalized vectors x1, x2, y1, y2 such that x∗1A12x2 6= 0 and y∗2A21y1 6= 0. For ε ∈ R,
consider z1 = x1 + εy1, z2 = x2 + εy2. Then z∗1A12z2 6= 0 for ε 6= 0 small enough and

z∗2A21z1 = x∗2A21x1 + ε(x∗2A21y1 + y∗2A21x1) + ε2y∗2A21y1.

This quadratic function in ε is nonzero for sufficiently small ε 6= 0. Thus, for ε 6= 0 sufficiently
small, taking the normalized versions of z1, z2 we get that the corresponding β and γ are both
nonzero. Consequently, the expression

(λ− µ1)(λ− µ2)− βγ

is nonzero for λ = µ1 ∈W 2(A), but zero at the same time by (3.8). Thus, at least one of the
matrices A12, A21 is zero. It follows that W 2(A) = {µ1, µ2} and consequently µ1 = λ1 and
µ2 = λ2 up to a permutation of λ1, λ2.
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With these preparations we obtain the following result.
THEOREM 3.7. Assume that n1, n2 ≥ 2 and 0 /∈ W 2(A) = {λ1, λ2}. Consider the

linear system

Ax = b.

Without loss of generality we assume that iterations start with the initial guess x(0) = 0. We
also denote by x∗ = A−1b the solution of the system. Then

(i) x(1)fom = x∗ if b is an eigenvector of A. In all other cases, x(2)fom = x∗.
(ii) x(1)qfom = x∗ if A12b2 is collinear to b1 (or 0). In all other cases, x(2)qfom = x∗.
Proof. By Lemma 3.6 we know that A has the form

A =

[
λ1I A12

0 λ2I

]
or A =

[
λ1I 0
A21 λ2I

]
,

and we focus on the first case. The second case can be treated in a completely analogous
manner. We first note that if λ1 6= λ2, the eigenvectors to the eigenvalue λ1 are of the form
[ x1
0 ] and the eigenvectors to the eigenvalue λ2 are given by

[
(λ2−λ1)

−1A12x2
x2

]
. If λ1 = λ2, all

vectors of the form [ x1
x2

] with A12x2 = 0 are eigenvectors. The theorem, thus, asserts that the
situations where FOM finds the solution in the first iteration are a true subset of the situations
in which QFOM obtains the solution in its first iteration.

To proceed, we observe that the minimal polynomial of A is p(z) = (z − λ1)(z − λ2) in
all cases except for the case where λ1 = λ2 and A12 = 0, i.e., when A = λ1I with minimal
polynomial p(z) = (z − λ1). Since x(1)fom ∈ K(1)(A, b), which is spanned by b, FOM obtains
the solution x∗ in the first iteration exactly in the case where b is an eigenvector of A. If b is
not an eigenvector of A, then the minimal polynomial is p(z) = (z − λ1)(z − λ2) so that the
grade of b is 2, and FOM obtains the solution x∗ in its second iteration.

If b1 6= 0 and b2 6= 0, the first iteration of QFOM obtains x(1)qfom as

x
(1)
qfom =

[
1
‖b1‖b1 0

0 1
‖b2‖b2

] [
λ1

1
‖b1‖ ‖b2‖b

∗
1A12b2

0 λ2

]−1 [‖b1‖
‖b2‖

]

=

[
1
‖b1‖b1 0

0 1
‖b2‖b2

] [ 1
λ1
− 1
λ1λ2

1
‖b1‖ ‖b2‖b

∗
1A12b2

0 1
λ2

] [
‖b1‖
‖b2‖

]
=

[ 1
λ1

(b1 − 1
λ2

1
‖b1‖2 b1b

∗
1A12b2)

1
λ2
b2

]
,

which is equal to the solution

x∗ =

[ 1
λ1

(b1 − 1
λ2
A12b2)

1
λ2
b2

]
exactly when the projector 1

‖b1‖2 b1b
∗
1 acts as the identity on A12b2, i.e., when A12b2 is zero

or collinear to b1. A similar observation holds if b1 = 0 or b2 = 0. In all other cases, by
Theorem 3.5 we have x(2)qfom = x∗ since the grade of b then equals 2.

3.3. QGMRES and QQGMRES. In principle, we can proceed in a manner similar to
QFOM to derive a “quadratic” GMRES method. Variationally, its iterates x(k)qgmr would be
characterized by

(3.9) x(k)qgmr ∈ x(0) +K(k)
× (A, r(0)), b−Ax(k)qgmr ⊥ AK

(k)
× (A, r(0)),
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which is equivalent to minimizing the norm of the residual ‖b − Ax‖ for the vector
x ∈ x(0) +K

(k)
× (A, r(0)). Thus, as for standard GMRES, we can compute the k-th iterate

x
(k)
qgmr as x(0) + V

(k)
× ηk, where ηk solves the least squares problem

(3.10) ηk = argmin

η∈Cd
(k)
×

‖r(0) −AV (k)
× η‖.

However, as opposed to standard GMRES, it is not possible to recast this n×d(k)× least squares
problem reducing the first dimension, since an analogue to the Arnoldi relation (2.1) does not
hold for the product spaces K(k)

× (A, r(0)). In particular, for x(k) ∈ x(0) +K(k)
× (A, r(0)), the

residual r(k) = r(0) − Ax(k) need not be contained in K(k+1)
× (A, r(0)). This fact prevents

approaches based on the variational characterization (3.9) to be realized with cost depending
exclusively on k and not on n.

As an alternative, we thus suggest an approach similar to truncated GMRES; see, e.g., [19].
We project the n×d(k)× least squares problem (3.10) onto a d(k+1)

× ×d(k)× least squares problem
by minimizing, instead of the whole residual ‖b−Ax(k)‖, only its orthogonal projection on
K(k+1)
× (A, r(0)).

DEFINITION 3.8. The k-th quadratic quasi GMRES (“QQGMRES”) iterate x(k)qqgmr is the
solution of the least squares problem

x(k)qqgmr = argmin
x∈x(0)+K(k)

× (A,b)

‖(V (k+1)
× )∗(b−Ax)‖.

Computationally, we have that x(k)qqgmr = x(0) +V
(k)
× ζk, where ζk solves the d(k+1)

× ×d(k)×
least squares problem

(3.11) ζk = argmin

ζ∈Cd
(k)
×

‖(V (k+1)
× )∗r(0) −H(k)

× ζ‖,

where

(3.12) H
(k)
× = (V

(k+1)
× )∗AV

(k)
× =

[
(V

(k+1)
1 )∗A11V

(k)
1 (V

(k+1)
1 )∗A12V

(k)
2

(V
(k+1)
2 )∗A21V

(k)
1 (V

(k+1)
2 )∗A22V

(k)
2

]

and where the structure of (V
(k+1)
× )∗r(0) is given in (3.5). In general, H(k)

× need not have full
(column) rank, in which case (3.11) will have more than one solution. The QQGMRES iterate
is then not uniquely defined unless we impose additional conditions on ζk from (3.11) like
having minimal norm, for example. Proposition 3.9 below will show that this more involved
situation does not occur if 0 6∈W 2(A).

3.4. Properties of QGMRES and QQGMRES. As for QFOM, there is no polynomial
interpolation property for QGMRES nor for QQGMRES. We can again present only simple
first elements of an analysis.

As solutions to least squares problems, the iterates x(k)qgmr and x(k)qqgmr are always defined.
They are uniquely defined in case of QGMRES, since AV (k)

× has full rank since V (k)
× has full

rank. For QQGMRES we prove the following statement.
PROPOSITION 3.9. The matrix H(k)

× from (3.12) has full rank if 0 6∈W 2(A).
Proof. The matrix H(k)

× is obtained from H
(k)
× by complementing it with two rows, one

after each block, and H(k)
× is nonsingular by Theorem 3.5 (iii). Thus, H(k)

× has full rank
d
(k)
× = d

(k)
1 + d

(k)
2 .
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QGMRES and QQGMRES also both have a finite termination property.
PROPOSITION 3.10. Let kmax ≤ g(r(0)) be as in the proof of Theorem 3.5. Then

x
(kmax)
qgmr = A−1b. Provided H(kmax)

× has full rank, we also have x(kmax)
qqgmr = A−1b.

Proof. As in the proof of Theorem 3.5, we have that x∗ = A−1b = x(0) + y∗ with
y∗ = A−1r(0) being contained in K(kmax)

× (A, r(0)). So x∗ satisfies the variational char-
acterization (3.9) with residual norm 0, and as such it is unique. This implies that x∗ is
identical to the QGMRES iterate x(kmax)

qgmr . For QQGMRES, we write y∗ ∈ K(kmax)
× (A, r(0))

as y∗ = V
(k)
× ζ. This ζ is a solution of the least squares problem (3.11), yielding the minimal

value 0 for the residual norm. IfH(kmax)
× has full rank, the solution of the least squares problem

(3.11) is unique. And since the QQGMRES iterate x(kmax)
qqgmr is obtained by solving this least

squares problem, it is equal to x∗.

Trivially, QGMRES computes iterates x(k)qgmr whose residuals r(k)qgmr are smaller in norm
than r(k)gmres, i.e., the residual of the k-th iterate x(k)gmres of standard GMRES, since QGMRES
minimizes the residual norm over a larger subspace. Moreover, since QQGMRES minimizes
over the same subspace as QGMRES, but minimizes the norm of the projection of the residual
rather than the norm of the residual itself, we also have that ‖r(k)qgmr‖ ≤ ‖r(k)qqgmr‖. Finally, note
that we cannot expect the relation ‖r(k)qqgmr‖ ≤ ‖r(k)gmres‖ to hold in general.

The residuals of the standard FOM and GMRES iterates satisfy (see, e.g., [19])

(3.13) ‖r(k)fom‖22 = ‖r(k)gmres‖22 /
(
1− ‖r

(k)
gmres‖22

‖r(k−1)gmres ‖22

)
,

which immediately explains that peaks in FOM are related to stagnation in GMRES. Relation
(3.13) genuinely relies on the fact that the approximation subspaces are Krylov subspaces.
It, thus, does not carry over to a similar relation between the QFOM and QGMRES residual
norms, and also not to QQGMRES residual norms.

4. Algorithmic aspects. An important practical question is how one can compute V (k)
×

and H(k)
× efficiently and in a stable manner. Interestingly, for the special case where A21 = I

and A22 = 0, which arises in the linearization of quadratic eigenvalue problems, this question
has been treated in many papers, starting with the second-order Arnoldi method from [1].
Recently, the two-level orthogonal Arnoldi method has emerged as a cost-efficient and at the
same time stable algorithm; see [9, 13, 14]. In the following, we describe how these approaches
generalize to arbitrary 2× 2 block matrices. We note that generalizing the stability analysis of
[9, 13, 14] is not straightforward, and a detailed analysis is beyond the scope of this paper.

The main idea is that we refrain from directly computing the orthogonal Arnoldi basis
V (k) from (2.1), but rather compute/update the orthonormal bases V (k)

1 , V
(k)
2 of its block

components while at the same time updating H(k)
× .

Assume that no breakdown occurs and no deflation is necessary. Then we have (see (3.2))

V (k) =

[
V

(k)
1 R

(k)
1

V
(k)
2 R

(k)
2

]
,

where the V (k)
i have k orthonormal columns, and the R(k)

i ∈ Ck×k are upper triangular. Since
the columns of V (k) are orthonormal, too, this implies

(4.1) (R
(k)
1 )∗R

(k)
1 + (R

(k)
2 )∗R

(k)
2 = (V (k))∗V (k) = I,
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showing that the matrix
[
R

(k)
1

R
(k)
2

]
∈ C2k×k also has orthonormal columns. Writing the Arnoldi

relation (2.1) in terms of the block components gives

A11V
(k)
1 R

(k)
1 +A12V

(k)
2 R

(k)
2 = V

(k+1)
1 R

(k+1)
1 H(k) =: V

(k+1)
1 H

(k)
1 ,

A21V
(k)
1 R

(k)
1 +A22V

(k)
2 R

(k)
2 = V

(k+1)
2 R

(k+1)
2 H(k) =: V

(k+1)
2 H

(k)
2 ,

(4.2)

where the matrices

H
(k)
i := R

(k+1)
i H(k) ∈ C(k+1)×k, i = 1, 2,

are upper Hessenberg.
The relation (4.2) reveals that V (k+1)

i can be obtained as an update of V (k)
i by adding

a new last column, and H(k)
i as an update of H(k−1)

i by adding a new last column and a
new last row. Thus, the new column of V (k+1)

i arises from the orthonormalization of the last
column of Ai1V

(k)
1 R

(k)
1 + Ai2V

(k)
2 R

(k)
2 against all columns of V (k)

i and it is nonzero. The
upper Hessenberg matrix H(k)

1 is obtained from H
(k−1)
1 by first adding a new last row of zeros

and then adding a new last column holding the coefficients from the orthonormalization. To
obtain a viable computational scheme, it remains to show that R(k+1)

i as well as H(k) (which
we need to get the QFOM or QGMRES iterates) can also be obtained from these quantities.
We do so by establishing how to get them as updates from H(k−1) and R(k)

i . In the very first
step we have

R
(1)
i = ‖bi‖, V

(1)
i = bi/‖bi‖, i = 1, 2,

unless bi = 0 in which case we let the corresponding R(1)
i be zero and let V (1)

i be a random
unitary vector.

For k > 1, we write

R
(k+1)
i =

[
R

(k)
i r

(k+1)
i

0 ρ
(k+1)
i

]
and H(k) =

[
H(k−1) h(k)

0 η(k)

]
,

where R(k)
i and H(k−1) are known, and the remaining quantities are to be determined. Since

H
(k)
i equals

(4.3) R
(k+1)
i H(k) =

[
R

(k)
i H(k−1) R

(k)
i h(k) + η

(k)
i r

(k+1)
i

0 η(k)ρ
(k+1)
i

]
=

[
H

(k−1)
i h

(k)
i

0 η
(k)
i

]
,

it follows, using (4.1), that

[(R
(k)
1 )∗ 0]H

(k)
1 + [(R

(k)
2 )∗ 0]H

(k)
2 =

(
(R

(k)
1 )∗[R

(k)
1 r

(k+1)
1 ] + (R

(k)
2 )∗[R

(k)
2 r

(k+1)
2 ]

)
H(k)

= [I 0]H(k) = H(k).

Hence, we see that

h(k) = (R
(k)
1 )∗h

(k)
1 + (R

(k)
2 )∗h

(k)
2 ,

which allows for the computation of h(k) from known quantities. Once h(k) is known, (4.3)
can be used to compute

r̃
(k+1)
i = η(k)r

(k+1)
i = h

(k)
i −R

(k)
i h(k),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

552 A. FROMMER, B. JACOB, K. KAHL, C. WYSS, AND I. ZWAAN

at which point η(k) and the ρ(k)i are the only remaining quantities to be determined. Letting
η(k) be real valued (and nonnegative) allows its computation in at least two different ways.
The first is to consider the bottom right entry of (4.1), which gives

(η(k))2 = ‖η(k)r(k+1)
1 ‖2 + |η(k)ρ(k+1)

1 |2 + ‖η(k)r(k+1)
2 ‖2 + |η(k)ρ(k+1)

2 |2

= ‖r̃(k+1)
1 ‖2 + |η(k)1 |2 + ‖r̃(k+1)

2 ‖2 + |η(k)2 |2.

The second possibility is to determine η(k) from the (k + 1, k + 1) entry of the equality
(H(k))∗H(k) = (H

(k)
1 )∗H

(k)
1 + (H

(k)
2 )∗H

(k)
2 , which results in

(η(k))2 + ‖h(k)‖2 = ‖h(k)1 ‖2 + |η(k)1 |2 + ‖h(k)2 ‖2 + |η(k)2 |2,

using (4.1). The first method may be preferred, since it guarantees that the computed (η(k))2

is nonnegative, even with roundoff errors. Once η(k) has been determined, we get ρ(k)i as
ρ
(k)
i = η

(k)
i /η(k) from (4.3). Putting everything together yields the following proposition.

PROPOSITION 4.1. In iteration k, the quantities V (k+1)
i , R

(k+1)
i , and H(k)

i as well as
H(k) can be obtained from those of iteration k − 1 at cost comparable to one matrix-vector
multiplication with A, 2k vector scalings and additions with vectors of length n and additional
O(k2) arithmetic operations.

Proof. Computing the last column of V (k)
i R

(k)
i costs k vector scalings and additions

with vectors of length ni for i = 1, 2, which is comparable to k scalings and additions with
vectors of length n. Multiplication of these last columns with the Aij in (4.2) amounts to
one matrix-vector multiplication with A. Orthogonalizing the two resulting blocks against
all columns of V (i)

k costs again k scalings and additions of vectors of size n1 and n2, which
corresponds to additional k such operations on vectors of length n. All other necessary updates
as described before require O(k2) operations.

In the standard Arnoldi process, when η(k) = 0, we know that we have reached the
maximum size of the Krylov subspace, i.e., k is equal to the grade of the initial residual r(0),
and that A−1b is contained in K(k)(A, r(0)). Since by (4.3) we have η(k)i = ρ

(k)
i η(k), i = 1, 2,

we see that the two-level orthogonal Arnoldi method also stops when η(k) = 0. However, the
reverse statement need not necessarily be true, i.e., we can have η(k)i = 0 for i = 1, 2 without
having η(k) = 0. This would represent a serious breakdown of the two-level orthogonal
Arnoldi process. Of course, exact zeros rarely appear in a numerical computation, but near
breakdowns should be dealt with appropriately. In our implementation, we simply chose to
replace a block vector corresponding to some η(k)i ≈ 0 by a vector with just random entries.
This makes the book-keeping much easier, since then d(k)i = k for all k and i = 1, 2, while
keeping V (k)

× as a subspace of our approximation space.
The full algorithm is summarized in Algorithm 1. We assume no deflation is necessary

and no breakdown occurs for simplicity, but we can deal with this in practice in two ways.
When ṽ(k+1)

i is (numerically) linear dependent, we can either set v(k+1)
i to some random

vector and set η(k)i to zero, or we can set V (k+1)
i = V

(k)
i and H

(k)
i = [H

(k−1)
i h

(k)
i ].

The former approach requires less bookkeeping, but the latter approach can save space and
time. Another simplification compared to a practical implementation is the use of classical
Gram–Schmidt for the orthogonalization, instead of repeated Gram–Schmidt or modified
Gram–Schmidt. However, the algorithm does show how to avoid unnecessary recomputation
of quantities. In particular, we avoid recomputing matrix-vector products by updating the
products W (k)

ij = AijV
(k)
j , Z(k,k)

ij = (V
(k)
i )∗AijV

(k)
j , and Z(k+1,k)

ij = (V
(k+1)
i )∗AijV

(k)
j .

Since this updating approach requires more memory, it should only be used if that extra
memory is available, and if matrix-vector products with A are sufficiently expensive.
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Algorithm 1: Quadratic FOM (QFOM).

Input: A11, A12, A21, A22, b1, b2, kmax, and τ
1 H(0) = [ ] and β = (‖b1‖2 + ‖b2‖2)−1/2

2 for i = 1, 2

3 ρ
(1)
i = ‖bi‖/β and v(1)i = bi/ρ

(1)
i

4 H
(0)
i = [ ], R(1)

i = [ρ
(1)
i ], and V (1)

i = [v
(1)
i ]

5 for k = 1 to kmax

6 for i = 1, 2 /* Update matrix products. */
7 for j = 1, 2

8 w
(k)
ij = Aijv

(k)
j

9 W
(k)
ij = [W

(k−1)
ij w

(k)
ij ]

10 Z
(k,k)
ij = [Z

(k,k−1)
ij (V

(k)
i )∗w

(k)
ij ]

11 for i = 1, 2 /* Update V
(k+1)
i and H

(k)
i . */

12 ṽ
(k+1)
i = W

(k)
i1 (R

(k)
1 e(k)) +W

(k)
i2 (R

(k)
2 e(k))

13 h
(k)
i = (V

(k)
i )∗ṽ

(k+1)
i

14 η
(k)
i = ‖ṽ(k+1)

i − V (k)
i h

(k)
h ‖

15 v
(k+1)
i = (ṽ

(k+1)
i − V (k)

i h
(k)
h )/η

(k)
i

16 V
(k+1)
i = [V

(k)
i v

(k+1)
i ] and H(k)

i =
[
H

(k−1)
i h

(k)
i

0T η
(k)
i

]
17 for j = 1, 2

18 Z
(k+1,k)
ij = [Z

(k,k)
ij ; (v

(k+1)
i )∗W

(k)
ij ]

/* Update H(k) and R
(k+1)
i . */

19 h(k) = (R
(k)
1 )∗h

(k)
1 + (R

(k)
2 )∗h

(k)
2

20 for i = 1, 2

21 r̃
(k+1)
i = h

(k)
i −R

(k)
i h(k)

22 η(k) = (‖r̃(k+1)
i ‖2 + |η(k)1 |2 + ‖r̃(k+1)

i ‖2 + |η(k)2 |2)1/2

23 for i = 1, 2

24 r
(k+1)
i = r̃

(k+1)
i /η(k), ρ(k+1)

i = η
(k)
i /η(k), and R(k+1)

i =
[
R

(k)
i r

(k+1)
i

0 ρ
(k+1)
i

]
/* Compute the approximation x

(k)
qfom and the residual

r
(k)
qfom. */

25 H
(k)
× =

[
Z

(k,k)
11 Z

(k,k)
12

Z
(k,k)
21 Z

(k,k)
22

]
and b(k)× = β

[
R

(k)
1 e(k)

R
(k)
2 e(k)

]
26

[
c
(k)
qfom

d
(k)
qfom

]
= (H

(k)
× )−1b

(k)
× and x(k)qfom =

[
V

(k)
1 c

(k)
qfom

V
(k)
2 d

(k)
qfom

]
27 r

(k)
qfom =

[
b1−W (k)

11 c
(k)
qfom−W

(k)
12 d

(k)
qfom

b2−W (k)
21 c

(k)
qfom−W

(k)
22 d

(k)
qfom

]
28 if ‖r(k)qfom‖ ≤ τβ then
29 return x(k)qfom

30 return x(kmax)
qfom
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From the pseudocode of the algorithm we can determine the computational cost per
iteration as follows. We count one matrix-vector multiplication with each of the blocks A11,
A12, A21, and A22, which equals one matrix-vector multiplication with A. Then we have
an orthogonalization cost of O((n1 + n2)k) = O(nk), which equals the orthogonalization
cost in the standard Arnoldi process. Updating the Zij costs O(nk) floating-point operations
per iteration, but does not have an equivalent cost in Arnoldi. The same is true for updating
the matrices H(k) and R(k+1)

i for i = 1, 2, although the cost is limited to O(k) flops in this
case. Computing c(k)qfom and d(k)qfom takes O(k3) floating-point operations, while computing the
approximation x(k)qfom and its residual r(k)qfom require O(nk). Clearly, computing the approxima-
tion and its residual is expensive, but there is no need to do it in every iteration. For example,
in a restarted version of the QFOM algorithm, we may decide to compute them only once
per restart, after the inner loop reaches kmax. When we add everything together, we see that
QFOM has the same asymptotic cost as FOM, although QFOM does require more memory.

With minor changes, we can change the code of Algorithm 1 to compute the QQGMRES
approximation instead of the QFOM approximation. One downside of QQGMRES is that we
cannot guarantee that its approximation, or even the residual norm of its approximation, is
better than that of GMRES. We can remedy this problem by interpolating between the GMRES
and the QQGMRES solution. Let r(k)gmres = b−Ax(k)gmres and r(k)qqgmr = b−Ax(k)qqgmr, then

‖b−A(αx(k)gmres + (1− α)x(k)qqgmr)‖2 = ‖αr(k)gmres + (1− α)r(k)qqgmr‖2

= α2‖r(k)gmres − r(k)qqgmr‖2 + 2α(<{(r(k)gmres)∗r(k)qqgmr} − ‖r(k)qqgmr‖2) + ‖r(k)qqgmr‖2.

Hence, the residual norm of the interpolated approximation is minimized for

αopt =
‖r(k)qqgmr‖2 −<{(r(k)gmres)∗r

(k)
qqgmr}

‖r(k)gmres − r(k)qqgmr‖2

if r(k)gmres 6= r
(k)
qqgmr. The residual norm of the approximation x(k)opt corresponding to αopt is

‖ropt‖2 =
‖r(k)gmres‖2‖r(k)qqgmr‖2 −<{(r(k)gmres)∗r

(k)
qqgmr}2

‖r(k)gmres − r(k)qqgmr‖2
,

and satisfies ‖ropt‖ ≤ min{‖rgmres‖, ‖rqqgmr‖}. Obtaining x(k)opt requires the computation of
the GMRES iterate x(k)gmres. This can be done without additional matrix-vector multiplications,
since by (3.2) we have

H(k) := (V (k+1))∗AV (k) =
[(
R

(k+1)
1

)∗ (
R

(k+1)
2

)∗]
H

(k)
×

[
R

(k)
1

R
(k)
2

]
.

So H(k) can be retrieved with cost O(k3). If we compute the GMRES coefficients ξk ∈ Ck in
the usual way from the least squares problem with H(k) and obtain x(k)gmres as

x(k)gmres = x(0) + V (k)ξk = x(0) +

[
V

(k)
1 0

0 V
(k)
2

]([
(R

(k)
1 )

R
(k)
2

]
ξk

)

we see that the additional cost for getting x(k)gmres and thus x(k)opt is comparable to that for
obtaining x(k)qqgmr and of order O(nk) +O(k3).
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5. Numerical experiments.

5.1. The Hain-Lüst operator. Hain-Lüst operators appear in magnetohydrodynam-
ics [6]. Their spectral properties, in particular their quadratic numerical range, were investi-
gated in a series of papers, e.g., in [11, 15, 16]. We consider the Hain-Lüst operator

A =

[
−L I
I q

]
defined on L2([0, 1]) × L2([0, 1]) where L = d2/dx2 is the Laplace operator on [0, 1] with
zero Dirichlet boundary conditions, I is the identity operator, and q denotes multiplication by
the function q(x) = −3 + 2e2πix. The domain of A is

D(A) = (H2([0, 1]) ∩H1
0 ([0, 1]))× L2([0, 1]).

We consider a discretization of A, approximating function values at an equispaced grid for
both blocks, i.e., we take xj = jh, j = 0, . . . , N + 1, h = 1/(N + 1) and obtain, using finite
differences, the discretized Hain-Lüst operator

A =

[
1
h2L I
I Q

]
∈ C2N×2N ,

with L = tridiag(−1, 2,−1) ∈ CN×N and Q = −3I + 2 diag(e2hπi, . . . , e2hNπi) ∈ CN×N ;
see [16] for more details.

Note that 1
h2L is Hermitian and thatQ is normal, so the numerical ranges of these diagonal

blocks of A satisfy

W1 := W ( 1
h2L) = 1

h2 [2− 2 cos(πh), 2 + 2 cos(πh)] =: [αmin(h), αmax(h)],

W2 := W (Q) = conv{−3 + 2e2πhj , j = 1, . . . , N} ⊆ C(−3, 2),

where C(−3, 2) is the circle with center −3 and radius 2. Since both numerical ranges
W1 and W2 are contained in the convex set W (A) we see that 0 ∈ W (A). The following
argumentation shows that, with the possible exception of very large values for h, we have
0 6∈W 2(A): any λ ∈W 2(A) satisfies

(5.1) (λ− x∗1 1
h2Lx1)(λ− x∗2Qx2) = (x∗1x2)(x∗2x1),

for some x1, x2 with ‖x1‖ = ‖x2‖ = 1. Assume that λ lies within the strip a < <(λ) < b
with −1 < a < 0 and 0 < b < αmin(h). Then we have d(λ,W1) > αmin(h)− b as well as
d(λ,W2) > a+ 1 for the distances of λ to the sets W1,W2. Taking absolute values in (5.1)
and using the bound |x∗1x2| ≤ 1 we thus see that the λ from this strip cannot be in W 2(A) if
(a + 1)(αmin(h) − b) > 1. This is the case, for example, if b < αmin(h) − 2 and a > − 1

2 .
Note that limh→0 αmin(h) = π2.

In all our examples we chose the right hand side b such that e, the vector of all ones, is
the solution, imposing boundary conditions also equal to 1 for the Dirichlet part. Our initial
guess is always x0 = 0. Figure 5.1 shows convergence plots for FOM, GMRES, QFOM,
QQGMRES and the interpolated QQGMRES method as described at the end of Section 4. The
figure displays the relative norm of the residual as a function of the invested matrix-vector mul-
tiplications. In the left part we took N = 1 023, the right part is for N = 16 383. We restarted
every method after m = 50 iterations to avoid that the arithmetic work and the storage related
with the (two-level) Arnoldi process becomes too expensive. Note that the figure displays the
residual norms at the end of each cycle only, which makes the convergence of some of the
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FIG. 5.1. Convergence plots for the discretized Hain-Lüst operator: N = 1023 (left) and N = 16 383 (right).

methods, in particular FOM, to appear smoother than it actually is. Two major observations
can be made: On the one side, the FOM type methods yield significantly larger residuals than
the GMRES type methods. For N = 1 023, the “quadratic methods” still make progress in
the later cycles while their “non-quadratic” counter parts then basically stagnate. There is no
such difference visible for dimension N = 16 383; convergence for all methods is very slow.

In a second numerical experiment we therefore report results of a geometric multigrid
method as an attempt to cope with large condition numbers. For a given discretization with step
size h = 1/(N+1) withN+1 = 2k we construct the system at the next coarser level to be the
discretizaton with hc = 2h = 1/(Nc + 1) with Nc + 1 = 2k−1. We stop descending the grid
hierarchy when we reachN = 7, where we solve the corresponding 14×14 system by explicit
inversion of A. Interpolation between two levels of the grid hierarchy is done using standard
linear interpolation from the neighboring grid points; restriction is the standard adjoint of
interpolation. For the smoothing iteration we test one or five steps of standard GMRES versus
one or two steps of QFOM. We always performed V-cycles with pre-smoothing. In addition,
we report results using the Kaczmarz smoother [24], the standard smoother for indefinite and
non-symmetric problems. The left part of Figure 5.2 gives the resulting convergence plots for
the multigrid methods for N = 1 023, the right part for N = 16 383.

From these plots it is apparent that QFOM is a well-working smoothing iteration for
the multigrid method, whereas GMRES is not, even not for larger numbers of smoothing
steps per iteration. Using one step of Kaczmarz smoothing, we obtain a slow, but convergent
method. Since Kaczmarz works on the normal equations, one smoothing step is roughly
twice as costly as one step of the other smoothing methods considered here. If we want to
obtain a convergence speed similar to that with one step of QFOM smoothing, our numerical
experiments showed that we have to invest more than ten Kaczmarz smoothing iterations
for both dimensions. The bottom line is that for both dimensions considered here, using
one step of QFOM smoothing is by far the best method, with GMRES smoothing resulting
in stagnation and Kaczmarz smoothing being at least one order of magnitude more costly.
As a complement to these findings, Figure 5.3 illustrates the mesh size independence of the
convergence behavior of the multigrid method with QFOM smoothing. It shows that the
number of iterations required to reduce the initial residual by a factor of 10−12 is basically
independent of h.

5.2. The Schwinger model. Our second example is the Schwinger model in two-
dimensions that arises in computations of quantum electrodynamics (QED). QED models the
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FIG. 5.2. Convergence plots for geometric multigrid for the Hain-Lüst operator for QFOM, GMRES, and
Kaczmarz smoothing and different numbers of smoothing steps ν; N = 1023 (left), N = 16 383 (right).
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FIG. 5.3. Number of multigrid iterations needed to reduce the initial residual by 10−12 as a function of N .

interactions of electrons and photons and is oftentimes used as a simpler model problem for
the 4-dimensional problems of quantum chromodynamics (QCD). It is a quantum field theory,
meaning that physical quantities arise as expected values of solutions of partial differential
equations whose coefficients are coming from the quantum background field, i.e., they are
stochastic quantities obeying a given distribution. The Schwinger model is a discretization of
the Dirac equation

Dψ = (σ1 ⊗ (∂x +Ax) + σ2 ⊗ (∂y +Ay))ψ = ϕ,

on a regular, 2-dimensional N ×N Cartesian lattice, where the spin structure* is encoded by
the Pauli matrices

σ1 =

[
1

1

]
, σ2 =

[
i

−i

]
and σ3 =

[
1
−1

]
*The σ-matrices are generators of a Clifford algebra and arise in the derivation of the Dirac equation from the

Klein-Gordon equation. They give rise to the internal spin (i.e., angular momentum) degrees of freedom of the fields
ψ [4]. Note that although our discussion is limited to this particular choice of generators, all the results that follow
extend to any other of the admissible choices of the σ-matrices.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

558 A. FROMMER, B. JACOB, K. KAHL, C. WYSS, AND I. ZWAAN

x x+ ex

x+ ey x+ ex + ey

Ux(x)

Ux+ey (x+ ey)

Uy(x) Uy+ex(x+ ex)

FIG. 5.4. Naming conventions in the Schwinger model.

and Aµ encodes the background gauge field. In the Schwinger model we have Aµ ∈ R.
Using a central covariant finite difference discretization for the first order derivatives, and
introducing a scaled second-order stabilization term one writes the action of the discretized
operator D ∈ C2N2×2N2

of the Schwinger model at any lattice site x on a spinor ψ(x) ∈ C2

as

(5.2)



(Dψ) (x) = (m0 + 2)ψ(x)

+
1

2

∑
µ∈{x,y}

((I − σµ)⊗ Uµ(x))ψ(x+ eµ)

+
1

2

∑
µ∈{x,y}

(
(I + σµ)⊗ Uµ(x− eµ)

)
ψ(x− eµ).

In here Uµ corresponds to a discrete version of the stochastically varying gauge field with
Uµ(x) ∈ C, |Uµ(x)| = 1 for all x, and m0 sets the mass of the simulated theory. The naming
convention of this formula is depicted in Figure 5.4, and we refer to the textbook [4], e.g., for
further details. The canonical 2× 2 block structure of the Schwinger model matrix arises from
the spin structure: we reorder the unknowns in ψ according to spin, i.e., we take

ψ =

[
ψ1

ψ2

]
,

where ψ1 ∈ CN2

collects all the spin 1 components ψ1(x) of ψ(x) =
[
ψ1(x)
ψ2(x)

]
∈ C2 at all

lattice sites, and similarly for ψ2. Then the reordered discretized Schwinger model matrix,
acting on the reordered vector

[
ψ1(x)
ψ2(x)

]
, is given as

D =

[
A B
−B∗ A

]
.

Here, the diagonal blocks A correspond to the discretized second order stabilization term
and are thus called gauge Laplace operators, while the off-diagonal blocks B correspond to
the central finite covariant difference discretization of the Dirac equation. Using (5.2) we see
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that the action of the blocks A and B on a vector ψ1, ψ2 is given as

(Aψ1)(x) = (m0 + 2)ψ1(x)− 1

2

∑
µ∈{x,y}

Uµ(x)ψ1(x+ eµ)

− 1

2

∑
µ∈{x,y}

Uµ(x− eµ)ψ1(x− eµ),

(Bψ2)(x) = − 1

2
(Ux(x)ψ1(x+ ex) + i · Uy(x)ψ1(x+ ey))

+
1

2

(
Ux(x− ex)ψ1(x− ex)− i · Uy(x− ey)ψ1(x− ey)

)
.

From this we see that the mass parameter m0 induces a shift by a multiple of the identity in A,
which we make explicit in writing A = A0 +m0I .

In our tests we consider the “symmetrized” operator Q := Σ3D with Σ3 = σ3 ⊗ IN ·N .
Due to A∗ = A,B∗ = −B this operator

Q =

[
A B
B∗ −A

]
=

[
A0 +m0I B

B∗ −A0 −m0I

]
is Hermitian, but indefinite.

The quadratic range W 2(Q) has two connected components to the left and right of 0
on the real axis, provided m0 > −αmin, the smallest eigenvalue of A0. This can be seen as
follows: Let x1, x2 ∈ CN×N be two normalized vectors and let[

x∗1Ax1 x∗1Bx2
x∗2B

∗x1 −x∗2Ax2

]
=:

[
α1 β

β −α2

]
.

Then any eigenvalue λ of this matrix satisfies

(λ− α1)(λ+ α2) = |β|2

=⇒ (<(λ)− α1)(<(λ) + α2) = |β|2 + =(λ)2.

The last equality cannot be satisfied if −α2 < <(λ) < α1. In particular, if m0 > −αmin, the
equality cannot be satisfied if |<(λ)| < m0 + αmin, since α1, α2 ≥ m0 + αmin.

For our tests we use a gauge configuration obtained by a heat bath algorithm excluding the
fermionic action, which results in the smallest eigenvalue αmin ofA0 being approximately 0.11.
Figure 5.5 reports results for two different choices of m0. As in the first example we perform
a restart after every 50 iterations. The first choice for m0 is m0 = −0.1 > −αmin, so that the
quadratic range indeed has two connected components with a gap around 0. The second is
m0 = −0.21 < −αmin, so that W 2(Q) consists of only one component containing 0. The
figure shows that a marked improvement can be observed for the “quadratic” methods if the
quadratic range consists indeed of two different connected components (left plot), whereas
this advantage is lost to a large extent for the second choice for m0, where W 2(Q) does not
indicate a spectral gap (right plot). In this case, the system is also severely ill-conditioned,
so that the convergence of all methods considered is much slower. As a reference, we also
included convergence plots for the MINRES method [19], an algorithmic variant of GMRES
tailored towards Hermitian and indefinite systems, which relies on short recurrences and thus
does not require restarts. Very remarkably, for m0 = −0.1 even though we performed about
40 restarts, QFOM performs very similarly to MINRES, whereas MINRES outperforms all
other methods for α = −0.21. We also note that for this example and for both choices for
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FIG. 5.5. Convergence plots for the Schwinger model, αmin ≈ 0.11, N = 128. Left: m0 = −0.1 > −αmin.
Right: m0 = −0.21 < −αmin.

m0, interpolated QQGMRES does not differ substantially from standard (restarted) GMRES.
Without showing the corresponding convergence plots, let us at least mention that when
decreasing m0 from −0.1 to −0.21 we observe for a long time a convergence behavior very
similar to that for the largest value −0.1, even when m0 is already smaller than −αmin.

Note that the symmetrized Schwinger model matrix Q =
[
C B
B∗ −C

]
is an example of

a saddle point problem, and we showed that W 2(Q) ∩ (−α, α) = ∅ if C is Hermitian and
positive definite with α its smallest eigenvalue. This can be extended to non-Hermitian
matrices of the form T =

[
A B
B∗ −C

]
, where A and C are such that <(W (A)) ≥ α > 0

and <(W (C)) ≥ γ > 0 by showing that W 2(T ) has empty intersection with the strip
{z ∈ C : −γ < <(z) < α}. So QFOM and QQGMRES are adapted to such kind of saddle
point problems. On the other hand, if T =

[
A B
B∗ 0

]
, it is easy to show that 0 ∈W (T ) for any

choice of A, so that the basic property 0 6∈W 2(T ) motivating QFOM and QQGMRES is not
met.
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