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PERTURBATION ANALYSIS OF MATRICES OVER
A QUATERNION DIVISION ALGEBRA*

SK. SAFIQUE AHMADT, ISTKHAR ALIf, AND IVAN SLAPNICARS

Abstract. In this paper, we present the concept of perturbation bounds for the right eigenvalues of a quaternionic
matrix. In particular, a Bauer-Fike-type theorem for the right eigenvalues of a diagonalizable quaternionic matrix is
derived. In addition, perturbations of a quaternionic matrix are discussed via a block-diagonal decomposition and
the Jordan canonical form of a quaternionic matrix. The location of the standard right eigenvalues of a quaternionic
matrix and a sufficient condition for the stability of a perturbed quaternionic matrix are given. As an application,
perturbation bounds for the zeros of quaternionic polynomials are derived. Finally, we give numerical examples to
illustrate our results.
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1. Introduction. The goal of this paper is the derivation of a Bauer-Fike-type theorem
for the right eigenvalues and a perturbation analysis for quaternionic matrices, as well as
a specification of the location of the right eigenvalues of a perturbed quaternionic matrix
and perturbation bounds for the zeros of quaternionic polynomials. The Bauer-Fike theorem
is a standard result in the perturbation theory for diagonalizable matrices over the complex
field. The theorem states that if A € M,,(C) is a diagonalizable matrix, with A = X DX 1,
and A + FE is a perturbed matrix, then an upper bound for the distance between a point
€ A(A + E) and the spectrum A(A) is given by [4]

1.1 i Al < k(XIE|.
(1.1) AglAI&)Iu Al < (X)) £

Here, x(X) = || X|||| X~!|| is the condition number of the matrix X. Applications of the
Bauer-Fike theorem over the complex field have been given in [6, 11, 21, 22, 30]. In general,
a quaternionic matrix similarity is meaningless for the left eigenvalues. However, there are
many results for quaternionic matrices on the similarity and the diagonalizability with respect
to the right eigenvalues.

Many authors have extended various results from the complex field to the non-commutative
skew field of the quaternions, for instance, the Jordan canonical form, the Schur decompo-
sition, the singular-value decomposition, the diagonalization of quaternionic matrices, etc.;
see [9, 17, 27, 28, 33]. On the other hand, Bauer-Fike-type results, a perturbation analysis of
quaternionic matrices, and a perturbation analysis of the zeros of polynomials over a skew
field have not yet been studied, even though the corresponding theory over the complex field
is well known in the literature. The perturbation analysis over the skew field of quaternions is
important in quantum physics, control theory, and mechanics; see, e.g., [1, 19, 25, 28].

Recently, some work on the location of zeros and on finding the zeros of quaternionic
polynomials became popular in the literature. Many research papers dealing with the problem
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of finding the zeros of quaternionic polynomials are available; see, e.g., [7, 12, 15, 16, 23,
24, 26, 29]. The focus is put on finding bounds and the location of the zeros of quaternionic
polynomials, which both are important research topics; see, e.g., [3, 18, 24].

In this paper, we extend the Bauer-Fike theorem over the complex field to the non-
commutative skew-field of quaternions. In particular, a Bauer-Fike-type theorem for the right
eigenvalues of a quaternionic diagonalizable matrix is derived. The results on the perturbation
theory of quaternionic matrices are presented utilizing the Jordan canonical form and the
block-diagonal decomposition form of quaternionic matrices. Also, the localization theorems
for the right eigenvalues of quaternionic matrices and a sufficient condition for the stability
of a perturbed quaternionic matrix are derived. An application of the aforementioned results
about perturbations of quaternionic matrices is the derivation of perturbation bounds for the
zeros of quaternionic polynomials of the form

(1.2) pi(2) = qm2™ + qm-12""" + -+ @1z + qo,
(1.3) pr(2) = 2" qm + 2" Yqm_1 + -+ 21 + qo,

where ¢;, z € H, (0 < j < m). The polynomials (1.2) and (1.3) are called “simple”, and
“monic” if ¢, = 1.

The paper is organized as follows. In Section 2, the notation and a few results from [9, 20,
33] are given. A Bauer-Fike-type theorem and perturbation theorems for the right eigenvalues
of quaternionic matrices are derived in Section 3. The localization theorems for the right
eigenvalues and a sufficient condition for the stability of a perturbed quaternionic matrix are
also given in Section 3. Section 4 is devoted to the perturbation analysis of quaternionic
polynomials. Finally, in Section 5, examples are given to illustrate our results.

2. Notation and preliminaries. Throughout this paper, the following notation and ter-
minology are adopted. R and C denote the fields of real and complex numbers, respectively.
The set of real quaternions is defined as

H = {q = ao + a1i + azj + ask : ap,a1,az2,a3 € R},

where i2 = j?2 = k% = ijk = —1. For ¢ € H], the conjugate and the modulus of ¢ are defined
by @ = ap — a1i — asj — ask and |q| := /a2 + a? + a3 + a2, respectively. R(a) and S(a)
denote the real and imaginary parts of a € C, respectively. The real part of a quaternion
q = ag+ a1i+ asj+ ask is defined as real(q) = ag. Let H" be the collection of all n2-column
vectors with entries in H. For x € H", the transpose of x is 7. If x = [x1,...,2,]7,
then the conjugate of z is defined as T = [T, ..., T,]T, and the conjugate transpose of z is
defined as ! = [77,...,7,]. For x,y € H", let (x,7y) := yx be the inner product and
lz|l2 = /{x,x) be the norm in H". The sets of m x n real, complex, and quaternionic
matrices are denoted by M.« (R), My xn(C), and M,, «,, (H), respectively. These sets are
simply denoted by M, (K), K € {R,C,H}, when m = n. I, denotes the n x n identity
matrix. For A = (a;;) € M, x»(K), the conjugate, transpose, and conjugate transpose of
A are defined as A = (a@;;), AT = (aji) € Muxm(K), and A” = (A)T € M,y (K),
respectively. For A € M,,(K), the Frobenius norm and the spectral norm of A are defined as

1A F = [trace (A% 4)]"/?

and |All2 = max {||Az||2 : x € H", ||z|]2 := 1},

respectively. A matrix A € M, (H) is said to be Hermitian if A = A, normal if
A" A = AAH | and invertible (nonsingular) if AB = BA = I for some B € M, (H),
where I is the identity matrix. The closed upper half plane in the complex plane is denoted by
Ct={a+Bi:a,f €R, 8> 0} and the nonnegative reals by R = {a: e € R, @ > 0}.
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Let A € M, (H) be an invertible matrix. Then the condition number of the matrix A is defined
as k(A) = ||Al]2 |A~||2. The set of zeros of a quaternionic polynomial p(z) is denoted
by Zu(p(z)). The set of complex zeros of a quaternionic polynomial p(z) is denoted by
Zc(p(2)). A Jordan block of size m associated with A € H is defined as

A1 0 0
0 A 1 0
Tm(N) = 0| € My, (H), AeH.
Do A1
00 ... 0 A

For z € H" and A € M, (H), we define real(z) = 3 (z + Z) and real(4) = 5 (A + A).
Any quaternionic vector z = y; + y2i + y3j + yak € H", where y,, € R, for k = 1,2, 3,4,
can be uniquely expressed as

= (y1 +yoi) + (y3 + yai)j = 21 + x2j, z1,x9 € C™.

Define a function v : H" — C?" by

xT
o= )

The vector 1, is called the complex adjoint vector of z. The function ) is an injective linear
transformation from H" to C2". The formulas for z; and z, are

x1 = real(z) — real(xi)i, x9 = —real(xj) — real(zk)i.

Similarly, any quaternionic matrix A = B1+ Byi+ Bsj+ Bsk € M, (H), where By, € M,,(R),
for k = 1,2, 3,4, can be uniquely expressed as

A= (Bl + Bgi) + (Bg + B4l)j =A + AQj, Al, Ay € Mn(C)
Define a function ¥ : M,, (H) — Ma,,(C) by

A A

The matrix W 4 is called the complex adjoint matrix of A. The function ¥ is an injective
H-homomorphism. The formulas for A; and A are

A; =real(A) — real(Ai)i, As = —real(Aj) — real(Ak)i.

Due to the non-commutativity of quaternions, there are two type of eigenvalues, namely the
right and left eigenvalues, defined as follows:

DEFINITION 2.1. Let A € M, (H). Then the left, the right, and the standard right
eigenvalues, respectively, are defined by

A(A) ={\ € H: Ax = Az for some nonzero x € H"},
A (A) ={X e H: Az = ) for some nonzero x € H"}, and
As(A) ={\ € C: Az = z )\ for some nonzero x € H", S(\) > 0}.
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Let p, ¢ € H. Then p and q are said to be similar, denoted by p ~ g, if

2.1 p~q< 30 #r € H such that p = r~tqr.
The set
2.2) [p)={ucH:u=pppforall 0+# pc H}

is called the equivalence class of p € H. It is well known [33, Theorem 2.2] that
(2.3) p ~ q < real(p) = real(q) and [p| = |q].

From (2.1), (2.2), and (2.3), [p] can be written as

2.4 [p] = {z € H : real(z) = real(p), |z| = |p|}.

From (2.4), we have D € [p].
DEFINITION 2.2. Let A € M,,(H). Then the quaternionic continuous-time system

% w(t) = Aw(t)
is stable if and only if A, (A) C H™ = {q € H : real(q) < 0}.

DEFINITION 2.3. Let A € M, (H). Then the matrix A is said to be nilpotent if there
exists a positive integer t such that A* = 0, where 0 is the zero matrix.

DEFINITION 2.4. Let A € M, (H). Then A is said to be a central closed matrix if
there exists an invertible matrix T such that T~' AT = diag(\1, Az, ..., \y), where \; € R,
(1<i<n).

Every quaternionic matrix A € M, (H) has exactly n right eigenvalues which are complex
numbers with nonnegative imaginary parts. Those right eigenvalues are said to be the standard
right eigenvalues of A. Moreover, if A is in triangular form, then every diagonal entry is a
right eigenvalue of A. Consequently, the A;’s are standard right eigenvalues.

We now present some basic and known facts for a matrix A € M,,(H) and its complex
adjoint matrix W 4 for a further development of our theory.

THEOREM 2.5 ([33, Theorem 4.2]). Let A, B € M,,(H), and o € R. Then

(@) Uy, = Iy,

(b) Yap =V, ¥p.

(c) ¥oa =a¥,.

(d) Vayp=Vy+ Up.

(e) Wan = (Va)".

(f) W1 = (Va)~Lif A1 exists.

(g) V4 is unitary, Hermitian, diagonalizable, invertible, or normal if and only if
A is unitary, Hermitian, diagonalizable, invertible, or normal, respectively.

LEMMA 2.6 ([20, Theorem 4.1]). Let A € M, (H). Then ¥ 4 € C*" and

[Az]2 _ W ayll2

max = max
lelz70 |lzll2  lylz0 |yl

Next, we give a relation between the spectral norm and the Frobenius norm of a quaternionic
matrix.

LEMMA 2.7 ([2, Lemma 3.5]). Let A € M,,(H). Then ||Alj2 < || 4| F.
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In general, the trace of a quaternionic matrix is not equal to the sum of the standard right
eigenvalues of that quaternionic matrix. For example, consider a quaternionic matrix

0 i
=Pl

The set of right eigenvalues of A is A,(A) = [g(fl + 1)} U {g(l + 1)} Clearly, the

standard right eigenvalues of A are \; = ?(—1 +1i) and Ao = %(1 + i). Hence,
trace(4) = 0 # V2i = A1 + A2. However, the trace of a quaternionic Hermitian ma-
trix is equal to the sum of the standard right eigenvalues of that quaternionic Hermitian matrix.
Thus, by the definition of the Frobenius norm of a quaternionic matrix A € M, (H), we have

[ = trace(A™ A) = > " X (AT A) < nAmax (AT A) = n||A|l3,
Jj=1

so that

[A]lF < VnllA]2.

More interesting results like the Jordan canonical form, the singular-value decomposition, and
the Schur decomposition of a quaternionic matrix may be found in [9, 27, 31, 32, 33].

PROPOSITION 2.8 ([27, Proposition 2.7]). Let A € M, (H). Then there exists an
invertible matrix Y € M, (H) such that

(2.5) Y LAY = diag(Jm, (M), Jma(X2), - -+ T (M),

where \; € H, \; € As(A) (1 <@ < k), and Jp,(N\;) are m; x m; Jordan blocks with
the right eigenvalues \;, respectively. Moreover, the right-hand side of (2.5) is uniquely
determined by A up to a permutation of diagonal blocks and up to a replacement of each \;
with any similar quaternion ji; .

LEMMA 2.9 ([33, Theorem 7.2]). Let A € M,,,«n,(H) be of rank r. Then there exist two
unitary matrices, U € M, (H) and V- € M, (H), such that

YXr 0

H _ r

UTAV = [0 0} ,

where ¥, = diag(o1,...,0,) and o; € R, 0; > 0, are the singular values of A. A also has

min{m, n} — r singular values that are zero.

THEOREM 2.10 ([9, Lemma 3.2]). Let A € M,,(H). Then there exist matrices T,V €
M, (H) such that

(a) VEAV =T, where V is a unitary matrix and T is an upper triangular matrix,

(b) every diagonal entry of T is contained in the closed upper complex half plane C.

THEOREM 2.11 ([9, Theorem 3.3]). Let A € M, (H) be normal. Then there exist a
unitary matrix V- € M,,(H) and a diagonal matrix D € M,,(H) such that

(a) VEAV = D,

(b) every diagonal entry of D is contained in the closed upper complex half plane C*.

3. Perturbation analysis of quaternionic matrices. Let A = (a;;) € M, (H) be parti-
tioned into k£ x k blocks,

All A12 PPN Alk

A21 A22 P AQk
A=(4y)=| . S : ’

Ay Are oo Agk

nxn
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where A; ; € My, », (H) is the (4, j)-block of A such that ng + - - - +ny = n. We now derive
some lemmas needed for the development of our theory.

LEMMA 3.1. Let a,b € C*. Then |a — b| < |a — b).

Proof. Suppose that @ = = + iy and b = p + ig, where z,p € R and 3y, ¢ € R*. We have

G.D la =0 = |z +iy — (p +ig)| = |(x —p) +i(y — q)l,
(3.2) [a—0b| =z —iy— (p+ig)| = |(x—p) +ily +q)-
It is known that if y,¢ € RT, then y + ¢ > y — ¢. Hence, from (3.1) and (3.2), we have
la —b] <l|a—b|. a
LEMMA 3.2. Consider oy, Br, & € R, where k = 1,2, and o2 + B? ++? = 1 and

a3 + B3 +~3 = 1. Then, cnas + B1B2 + 1172 < 1.
Proof. We have

(a1 — a2)? + (81— B2)> + (1 —2)° =2 — 2 (araz + B1 B2 + 7172) > 0,

that is, ajap + B1 62 + 7172 < 1. a
LEMMA 3.3. Let A\, pu € C*, and let p,n € H\ {0}. Then |X — p| < [p~*A\p — n~  un].
Proof. Consider

A=XN+ X1, p=p +p"i, plip=oni+ Bij+nk, 0t = i+ foj + 12k,

where oy, Br, vk € R, for k = 1,2, with af + 82 + 43 = a3 + 82 + 72 = 1. Then
P=D—pf =N =)+ )2+ (") =2\

Also,

Q=1lp~"Ap—n"tunl
— ()\/ _ Nl)2 + ()\//041 o ’u//a2)2 + ()\Hﬂl _ N//ﬂ2)2 + ()\”’)/1 _ /JJH'YQ)2
= = i)+ ()?[at + 67 + 7] + (1)?[ag + B3 + 73]
= 2X"1 e ag + B B2 +7172]-

From Lemma 3.2, we have
arag + 1B + 712 < 1.

Thus P < @, that is,

N—pl <|p~"Np—n"tum|. O

LEMMA 3.4. Let A € M,,(H) such that A* = 0,, for some positive integer t, where 0,, is
the n X n zero matrix. Then \Ilf4 = 09y, where 0g,, is the 2n X 2n zero matrix.

Proof. Consider A € M, (H) such that A* = 0,, for some positive integer ¢. Then
by taking the complex adjoint matrix of A* = 0,, and by applying Theorem 2.5, we have
Wpe = \Ifon = \I/f4 = 03y 0
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LEMMA 3.5. Let T € M,,(H) be partitioned as follows:

P q
Ty Tio

T=" .

q [ 0 Tx }

Define the linear transformation ¢ : Mpyxq,(H) — M,y (H) by ¢(X) = T11 X — XTh,
where X € M,y q,(H). Then ¢ is invertible if and only if A, (T11) N Ay (Ta) = 0. If ¢ is
invertible and Y € M,,(H) is defined by

Y = ﬁ;’ IZJ , ¢(Z2) = —Tha,

then Y 1TY = diag(Tu, T22).
Proof. Let X € M,y ,(H). Then from Lemma 2.9, we have

T q—r
Hoo v [ S 0
(3.3) vtxv=" { 7o ]

where ¥, = diag(o;) and r = rank(X). Assume ¢(X) = 0 for X # 0. Substituting (3.3)
into the quaternionic matrix equation 771 X = X7Tb, yields

A Al |X. 0 3, 0| [Bir B2

Asr Ase| |0 0| " |0 O [Bar Baal’
where UHTy1U = (A;j) and VH Ty, V = (B;;). By comparing blocks we see that Ay; = 0,
Bis =0, and A,.(A11) = A-(Bi1). Consequently,

0 # Ap(A11) = Ar(Bi1) € Ap(Tha) N AL (Tha).

On the other hand, if A € A,.(T11) N A, (T52), then there exist nonzero vectors x, y € H™ such
that

Tiix = xA, Tgy =y,

Thus, y Ths = Ay*, and hence ¢(zy™) = 0. Finally, if ¢ is invertible, then the quaternionic
matrix Z exists and

el 8 3G

0 I 0 Tx| |0 T
_|Tnw TuZ—-ZTe+Te| _ |Tu 0 0
0 Tho 0 Tyl

We now establish a block diagonal decomposition of a quaternionic matrix, which reads
as follows.
THEOREM 3.6 (Block diagonal decomposition). Suppose that

Ty Ty ... Ty
gy _p_ |0 T2 oo T
0 0 ... Ty

is a Schur decomposition of A € M,,(H), and assume that the diagonal blocks Tj; are square.
If A (T;) N A (T;) = 0 whenever i # j, then there exists an invertible matrix Y € M,, (H)
such that

(UY)rAUY) = diag(Tis, - - -, Tyq)-

Proof. The proof is immediate by applying Lemma 3.5 and using induction. a
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3.1. A Bauer-Fike-type theorem for the right eigenvalues of diagonalizable quater-
nionic matrices. In general, quaternionic matrix similarity is meaningless for the left eigen-
values of a quaternionic matrix. On the other hand, quaternionic matrix similarity exists for
right eigenvalues. In addition, the Schur triangularization theorem for the right eigenvalues
of a quaternionic matrix has been proved in [9]. In this section, we give an extension of
the Bauer-Fike theorem (1.1). An extension of this theorem is not straightforward for the
right eigenvalues of a quaternionic diagonalizable matrix. For example, if  is a right eigen-
value of the perturbed quaternionic matrix (A + AA) € M, (H), then there exists a vector
x € H" such that (A + AA)z = zu = zpu — Az = AAx. However, in general, we
cannot write (ul — A)z = AAx or x(ul — A) = A Az due to the non-commutativity of the
quaternions. Fortunately, we can extend the theorem by applying the complex adjoint matrix
of a quaternionic matrix and Lemma 3.1, Lemma 2.6, and Lemma 3.3. We now derive the
Bauer-Fike-type theorem for a diagonalizable quaternionic matrix.

THEOREM 3.7. Let A € M, (H) be a diagonalizable matrix, that is, A = YAY !,
where Y € M, (H) is invertible and A = diag(\1, ..., A\,) with \; being the standard right
eigenvalues of A. If 1 is a standard right eigenvalue of A + A A, then

dist (1. A,(4)) = | min {0 = pl} < w(Y) DA

Moreover, we have

dist (&, A-(A)) = meigf(A) {In; — €|} < R(Y) |1 AA]2,

where £ € A.(A+ AA) and k(-) is the condition number with respect to the matrix 2-norm.

Proof. Let \; # p for any 4. Since p is a standard right eigenvalue of A + A A, there
exists 0 # 2z € H" such that (A + AA)x = zu. This system is equivalent to the complex
system

Vataats = uihs,
which implies
(Vataa — plan)p, = 0.
From this we can conclude that
(WA +Was — plon)p. = 0.
The above system can be written as
(1lon — Wy py-1)he = Yaarhy
and further as
Uy (ulan — VA) Wy 19, = Vaath,.
Thus,
(lon — UA)(Ty) " he = (Uy) " Waaty,
which yields

(Oy) " Ms = (plan — Ua) T {(Py) ' Waa Uy ](Py) 1)y
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Taking the matrix 2-norm (operator norm) on both sides, we get

1(y) ™ ulle < 1 (dzn — a) "2 [(2y) T CaaCy]llz [(Ty) ™ 2,
1< [[(dzn = Wa) " 2 [(2y) Iz [1aall2 [y 2,

1 1
_ Uy )y |0 Ty |5
AIEI}\(A){p‘i_U"‘)\i_MH”( v) 2 [Waallz [Py l2

1<

From Lemma 3.1, we have

1< Ty ) 7o || W v
\, na (A){|>\ |}H( v) 2 [Paallz [Py l2
1
Uy ) || W
min {|)\ — |} K:( Y)” AAHQ
Xi€AL(A)
< min {IA — pu}e(Py) [[Paallz.
i €A(
From Lemma 2.6, we obtain
i — < )|AA
min{h = gl < K(Y)[AA]

Lemma 3.3 yields

Xi—ply = inf {|n; -
I RCYRTI R TN

where € € A, (A + AA). Hence,

. e |
L dnf (g =€} < (V) [AAl. O

In particular, when A € M,,(H) is normal, Theorem 3.7 leads to the following corollary.
COROLLARY 3.8. Let A € M,,(H) be a normal matrix, and let u be a standard right
eigenvalue of the perturbed quaternionic matrix A + AA. Then

dist(yn, Au(4)) = min (|~ pl} < [A4].

Moreover, we have

ist(€ A(4) = min {ln; €1} < A4,
where £ € A (A+ AA).

Many relative perturbation bounds for the eigenvalues of a nonsingular complex diagonal-
izable matrix have been proved in [8]. However, due to the non-commutativity of quaternions,
the relative perturbation result [8, Corollary 2.2] is not easily extendable. Here, we extend
the result [8, Corollary 2.2] from the complex field to the skew field of the quaternions by
using the complex adjoint matrix of a quaternionic matrix and our results. We next derive the
following theorem for a relative perturbation bound of the right eigenvalues.

THEOREM 3.9. Let A € M, (H) be an invertible and diagonalizable matrix, that is,
A=YAY ™1, where Y € M, (H) is invertible and A = diag(\1, ..., \,) with \; being the
standard right eigenvalues of A. If p is a standard right eigenvalue of A + A A, then

) . i — 1 _
dlst(u,As<A>>=MEng%A){' " }gmmA LAA]L.
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Moreover, we have

dist (€, A, (A)) — L =E < w47 A4

1. {
mier-(A) | [nj]

where € € N.(A+AA) and K(Y) = ||Y||2 |Y 7 Y]|2 is the condition number of Y with respect
to the matrix 2-norm.

Proof. Let \; # p for any i. Since p is a standard right eigenvalue of A + A A, there
exists 0 # = € H" such that (A + AA)x = zu. This system is equivalent to the complex
system W 44 A pt, = pip,. Since A is an invertible matrix, by multiplying with —W¥ 41 from
the left, we obtain

U1 (VA +Tpn) Yy =—p¥a-11,,
(—I2n =V g-1p4) Yo = =¥ 4-1y,
(Y a1 — Iop) = Y p-1a 405,

The matrix A is diagonalizable, that is, A = YAY ™!, so

(W¥yp-1y -1 = Ion )by = Vg1 4y,
Uy (uWp-1 = Iop) Wy -11py = W17 405

After some manipulation, we get
(Ty) Mpy = (¥ p—1 — L) " H(Wy) T Wamiaa Ty ] (Ty )~ Hehy.

By applying the method of proof of Theorem 3.7, we have

. . Ai — M _
dist (p, As(A)) = i {| . } <k(Y)||ATTAA|s,

as well as

dist (€, A, (4)) = M} < K(Y) A1 AAL,

1. {
nier-(A) | [nj]

where { € A, (A+ AA). 0O

Theorem 5.1 of [14] gives a universal eigenvalue bound. We extend this theorem from the
complex field to the skew field of quaternions as follows.

THEOREM 3.10. Let A € M,,(H) be an invertible and diagonalizable matrix, that is,
A =YAY ™! where Y € M, (H) is invertible and A = diag(\y, ..., \,) with \; being
the standard right eigenvalues of A. If 1 is a standard right eigenvalue of the invertible
quaternionic perturbed matrix A + AA, then

. |Xi — pl - -
Al I O P 9,
,\,gl\lﬁA) { M K(Y)||ATPAA(A+ AA)79|q

Moreover, we have

n; —§|} _ _
in <k(Y)||[ATPAA(A+ AA)TY|s,
n; €A (A) { |m:|P|€]4 Ol ( )l

where £ € A.(A+ AA) and k(-) is the condition number with respect to the matrix 2-norm.
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Proof. If i € A4(A), then the result follows. We assume that 1 ¢ As(A). Since
u ¢ Ag(A+ AA), there exists 0 # x € H™ such that (A + AA)x = xzp. This quaternion
system is equivalent to the complex system

Vataaybzs = p¥,.
This implies
wac = - (\I/A - /~L]'2n)71 \I/AA17ZJCE'
Let p and g be nonnegative integers including zero. Then
by = — (U4 — plz) " (W) (W) P Wau (Paran) @ (Tasan) s
From W44 A 4)¥, = uV,, we can easily see that (Uarna)? v, = uhp,. Thus,
—1
Py = — [/fq (Wa)' 77— pte (‘I’A)_p} (Pa) " Waa (Yatan) "¢
Using A = YAY !, we have
(3.4)
1
Yy = — [lfq (Typy-1) P —ple (‘I’YAYfl)_p} (Ua) " Waa(Yaran) "2y
From Theorem 2.5, we have
(Uypy-1)" P = (UyTpalya) P
- (xpypr (xyy)”) - (fonyfA (\Ify)*l) (xpy@A (xyy)*l)
—1 -1 —1\?
= (‘I’Y‘I’A (Fy) ) (‘I/Y (Ta) " (Ty) )

_ (\py (W) (\I/y)_l)p_l

Similarly, it follows that

1-p

(Tyry-1)' 77 =Ty (W) 77 (Ty) "
(Tyay—1) 7 =Wy (P2) 7 (Ty) "
Thus, (3.4) yields

by = — |y (W) TP (Ty) !

-1

— Iy ()P (W) T (W) T Waa (Wasan) ¢,

- 1— - —p] 7! -1
d)x = _\I/Y {,u 1 (\I/A) P /Ll ? (\IJA) p} (\I/Y) \IJ(AprA(A+AA)—Q)w:c-
By taking the 2-norm on both sides, we obtain
3.5

[bzlly < 1Ty |l x

2

el

K(Y) H (A‘PAA(A + AA)_q)

()™ = ™)

—1
)™, ¥ s ancaean-s

‘2'

(3.6) 1< H (M_q (,l/A)l—p _ Ml—q (\I,A)—P)

2
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Further, we have

(et =gty )

2

1 1
= B e () - e ()7 j

_ APl X[l
= max y — .
nehd () | I =l N = pl

From Lemma 3.1, we obtain

_ AP lpl? 1
o MEA(A) [Ny — pl

-1

— 1_ - -
H(u (W) P - (W) T) i X
MINN; €As(A) Tx;[Plpld

Now, (3.6) gives the inequality

- |Ai — u _ B
———— ¢ < kK(Y)[J[ATPAA(A+ AA)T|2.
AiénAlﬁA){|/\ip|u|q <s(Y)] (A+A4)72

As we have already seen,

in (e nlbe  inf o
AienklﬁA)ﬂ ml} mel}\?r(A)ﬂ??J &[}

where £ € A,.(A+ AA). Thus, we arrive at the desired result

Inj —5} _ _
in < k(Y)|[|[ATPAA(A+ AA)TY|,. ]
meAT(A){m',,W @) ( )]

Some special cases of Theorem 3.10 give several bounds for the right eigenvalues:
(1) Assume p = ¢ = 0. Then Theorem 3.10 is identical to Theorem 3.7 (Bauer-Fike-type
theorem).
(ii)) Assume p = 1, ¢ = 0. Then Theorem 3.10 is identical to Theorem 3.9 (relative
perturbation bound).
(iii)) Assume p = 0, ¢ = 1. Then Theorem 3.10 gives a new relative perturbation bound,
that is,

min {'A’? - “} < (V) [AA(A + AA)
X€ML (A) 1]

and

inf {"”_ﬂ} < k(Y)||AA(A + AA)Y,.
T[jGAr(A)

It is clear that the perturbed right eigenvalue is in the denominator.
We discuss a localization theorem for the standard right eigenvalues of the perturbed
quaternionic matrix A+ A A. We will see that a right (nonstandard) eigenvalue of the perturbed
quaternionic matrix A + A A is not necessarily contained in the union of n discs

3.7 Qi (A) ={z€C:|z—N| <k(Y) | AA]2}, i=1,2,...,n,
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where A is diagonalizable, that is, A = Ydiag()\;)Y ~! and \; € A,(A). For example, let

_{14+i 0 _|le O
L5 ey

Then

14+e+i 0

VI

] L AAf =

Since A is normal, x(Y) = 1. We set e = 10~3. From (3.7), we get the following two discs:
Q(A)={zeC:|z—1-i<107%}, Q(A)={z€C:|z—i<107%}.

The perturbed matrix A+ A A has two standard right eigenvalues, 1+ ¢+ 1i and i+ . However,
14 e —iis also aright eigenvalue of A + A A, but it is not contained in any of these discs.
Fortunately, from Theorem 3.7, all the standard right eigenvalues of A + A A are contained in
the union of the n discs (3.7), that is,

Ay(A+AA) CQA) = 0 Qi(A).

=1

The following result is a sufficient condition for the stability of the perturbed quaternionic
matrix A + AA.

PROPOSITION 3.11. Let A € M,,(H) be a diagonalizable matrix, that is, A = Y AY 1,
where Y € M, (H) is invertible and A = diag(\1, ..., A\,) with \; being the standard right
eigenvalues of A. Assume that

(3.8) RO + k(YY) |AA, <0,  i=1,2,....n

Then the perturbed quaternionic matrix A + A A is stable.
Proof. Let p be any standard right eigenvalue of A + A A. Then from (3.7), we have
p € Ui, ©;(A). Without loss of generality, we may assume z € €;(A), that is,

I —N| < K(Y) |AA2.
Consider p = 11 + poi and \; = Ay + A2i. Now, from (3.8), we obtain
3.9) (1 — A1) + (p2 — A2)i| < —R(N) = — A1

The inequality in (3.9) can only be satisfied when p; < 0, that is, #(u) < 0. Since
R(p) = real(p~tup) forall p € H \ {0}, that is, the real part of the standard right eigenvalue
1 and the real part of the corresponding nonstandard right eigenvalues are the same. Thus,
p~'pp € H™. This shows that the matrix A + AA is stable. a

Let A € M,,(H) be a central closed matrix. Then, by Theorem 3.7, we obtain

i Ai — < k(YY) |AA] 2,
min (= ul} < w(Y) A4,

where \; are the real standard right eigenvalues of A, and p is a standard right eigenvalue of
A+ AA. Since p is a standard right eigenvalue of A + A A, there exists p € H \ {0} such
that p~!up = € is also a right eigenvalue of A + A A and

Ni—pl == pep = pNi —Ep =N =&,  i=12,...,n
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Thus, we have

1 i V< K(Y) |[AA]L.
(3.10) AénAlTr;A){IA ¢} <wr(Y) [[AA]2

From inequality (3.10), we can see that all right eigenvalues of A + A A are contained in the
union of n balls,

Gi(A)={z€eH: |z— \| <k(Y) ||AA]2}, i=1,2,...,n,

that is,

n

A(A+AA4)CG(A) =] Gi(A),

i=1

An interesting result in the perturbation theory in terms of residual vectors states the
following [13, Theorem 6.3.14]: if A € M, (C) is diagonalizable with A = YAY 1,
where A = diag(A1,...,\,), and £ € C” is a given nonzero vector with residual vector
r = A% — \i for some given A € C, then there is an eigenvalue \; of A for which

[I7]l2
1112

(3.11) A= \i| < w(Y)

Several bounds follow as special cases of (3.11):
Case (i): If A is normal, then there is some eigenvalue \; of A for which

[I7[l2
121]2

A= | <

Case (ii): If A is Hermitian and X is a given real number. Then for ||Z||2 = 1, we have
(3.12) A= Xi| < [I7l2-

Since real numbers commute with quaternions, a real left eigenvalue of a matrix
A € M,(H) is also a right eigenvalue of A and vice versa. By applying this argument,
we extend the result (3.12) from the complex field to the skew field of quaternions as follows.

THEOREM 3.12. Let A € M,,(H) be a Hermitian matrix. For some i € R and & € H"
with ||Z||2 = 1, define the residual vector r = Az — Z. Then |i — u| < ||r||2 for some
e A (A).

Proof. Since i € A, (A), we also have p € Aj(A). Now if i ¢ A,.(A), then i ¢ A;(A).
Hence (A — jil,,) ™! exists, so we can write r = AZ — [iZ as

&= (A—al,) 'r.

Since A is a Hermitian matrix, by Theorem 2.11, A is unitarily diagonalizable, that is,
VLAV = diag(u;), i = 1,2,...,n, for some quaternionic unitary matrix V. Now, by
applying the method of proof of Theorem 3.7, we have the desired result

min 0— it < |lr|la. O
meAsm){'” pil} <l
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3.2. Right eigenvalue perturbation bounds for non-diagonalizable quaternionic ma-
trices. Perturbation bounds for the eigenvalues of a complex matrix in the non-diagonalizable
case as well as the block diagonal decomposition of a complex matrix and Jordan blocks have
been studied in [5, 10]. We extend the perturbation result [5, Theorem 2] to the quaternionic
case via the block diagonal decomposition of quaternionic matrices.

THEOREM 3.13. Let A € M, (H). Consider A = YTY ', T = diag(V1,..., Vi),
where V; = N; + N; € M,,(H) is upper triangular, A; is diagonal, and Nj is strict upper
triangular, fori = 1,2, ... k. If p is a standard right eigenvalue of A+ A A, then there exists
Aj € Ag(A) such that

|)‘J - :U’| S max (X)Xl/nj) )

where x = [V "LAAY |2 32020 IN; |[§ and NT7 = 0, with N9 ™1 £ 0,

Proof. Let i ¢ A (A). Since p is a standard right eigenvalue of A + A A, there exists
0 # x € H" such that (A4+AA)x = xu. Then, following the method of proof of Theorem 3.7,
we get

(3.13) 1< |[(plon — 7)o [YTTAAY 2.
We have that

1 1 1
[eTan =) T~ i (T, — ¥v) 2 T, — %)

Define
1 1

Ipn, — WUy, ) !t o] T j
[ (1 2n; J) I2 max { lu=X;1° |IL_>‘7J‘|}

(3.14) =

Since N;” = 0, from Lemma 3.4, we obtain \IJ"NJ] = 0. As Nj is a strict upper triangular
quaternionic matrix, Wy, is also strict upper triangular. Hence,

(MI?HJ - \IJAJ') Uy, = Wy, (MI?TU - \I]Aj> :

Therefore,
1 n;
{(M—Enj —Wy,) \I’NJ} "=

Consequently, we get

nj—1 + B
(/“LIQHJ‘ - \IIV]'>71 = Z (_1)t [(/”LIQTIJ’ - \IjAj)il \IINJ] (FLI?”J’ - \IIAJ') '
t=0

Thus, we have

njfl t
-1 -1 1 ||N||2
I (don = )l = || (lan, = W)™ 2 <~ Y [J :

T
t=0

If 7 > 1, then

n;—1
-1 1
(3.15) | (lom, = 0v,) " ll2 < = >IN
t=0
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From (3.13), (3.14), and (3.15), we obtain

n;j—1
1% _
LS >INl (Y AAY ).
t=0
’I’Ljfl
Let x = |[Y'AAY |2 > [[N; 5. Then, 7 < y. If 7 < 1, then
t=0
1 njfl
-1 —1
(3.16) I (ulon = 7)™ o = | (el = W3,) ™ 2 < = >IN 5.
t=0

Hence, (3.13), (3.14), and (3.16) yield

n;j—1

>INl (1Y T AAY o).
t=0

1<
- 7—7Lj

Thus, 7% < y,and hence, 7 < ™. From the above, it is clear that |\;— | < max (x, x*/™),
where

nj—1
X =Y TTAAY | >IN [5. O
t=0

By taking an idea of [10, Corollary 1], we present a perturbation result for quaternionic
matrices via the Jordan canonical form of a quaternionic matrix.

THEOREM 3.14. Let A € M,(H) with YYAY = J = diag(Jm,(\:)), where
Jm; (A) (1 <@ < t) are the Jordan blocks of A. Let AA € M,,(H). If u is a standard right
eigenvalue of A + A A, then

. 1 1
min e ——
1sist { 1Ty ) = L)l (T i) = aZim,) e

} < R(Y) [|AA]2,

where k(+) is the condition number with respect to the matrix 2-norm.

Proof. If 11 is not a standard right eigenvalue of any of the Jordan block matrices J,,, (A;),
then the statement is nontrivial. Since  is a standard right eigenvalue of A + A A, there exists
0 # x € H" such that (A + AA)x = xpu, and this system is equivalent to the complex system

Varaats = whe & (Yaraa —plon)pe =0 < (Va+Pas — plan), = 0.
Thus, A has a Jordan canonical form via the invertible quaternionic matrix Y. Hence,

(1l2n — Yy diag(J,,. (A))y-1)%z = Yaaths,
Uy (l2n = Yaiag( g, (0:))) Yy 1% = YAz,
(1an = diag (g, (3)) (Uy) " e = (Uy ) T WA A,

This implies that

(\I]Y)ilwm = (,U'IQn - \I/diag(Jmi()\i)))il[(\I/Y)il\IIAA\IJYK\I/Y)ilwm
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Taking the matrix 2-norm on both sides of the above equation, we obtain
1(Ty)  alla < 1 (1d2n = Yaiag(r,, x0) 2 I(2y) T Caa®y]lla [[(Uy) el
1< |(lon = Yaiag(r,,, 3:0)) " ll2 1(2y) 2 [aallz 19y ]2,
1< s {1, ) = ) o | (T O) = 1) 2}
1(y) 2l waallz ¥y ]2
1< fg?ft{||(sz()\z) - /‘Imz‘)_lH% H(sz(A%) - /j‘Imz‘)_IHQ} X
1C2y) iz [1Caallz €y -
The above inequality can be rewritten as
1
max {[|(Jm, (Ai) = L) 2, 1(Tms (Xi) = i, ) =2}

1<i<t
< (Wy) iz [Caallz [Ty l2,

that is,

1 1
min , < k(U Waals.
2 T 0~ B T 0O — i) = 0 [Paallz

Then, from Lemma 2.6, we have

1 1
min , ———— < k(YY) |AA] 2. ad
AT oWy e Wl T s w ST AT, ’

From Theorem 3.14, we conclude that all the standard right eigenvalues of the perturbed
quaternionic matrix A+ A A (where A is not necessarily a diagonalizable matrix) are contained
in the union of ¢ sets P;(A) = T;(A) U K;(A), i =1,...,t, where

T;(A) = {2 € C: [[(Jm,(N) = L)) M3 < K(Y)[|AA]l2},
Ki(A) = {z € C: ||(Jm; (Ni) = plin,) Iz < 6(Y) [|AA]2},

that is,

t t

Ad(A+ AA) € P(A) = (| Ti(A) u (| Ki(A)).

i=1 i=1
REMARK 3.15. From Lemma 2.7 it follows that all results for the 2-norm hold for the
Frobenius norm as well.

4. Perturbation bounds for the zeros of quaternionic polynomials. The companion
matrices of the simple monic polynomials p;(z) and p,(z) defined by (1.2) and (1.3), respec-
tively, are given by

Cpl = s Cpr :CT.

pi

—q —91 --- —Gm-1
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We need the following results.

PROPOSITION 4.1 ([29, Proposition 1]). Let A € H. Then X is a zero of the monic
polynomial p;(z) if and only if X is a left eigenvalue of its corresponding companion matrix
Cp,.

Analogous to Proposition 4.1, the following result is presented for p,.(z2).

PROPOSITION 4.2. Let A € H. Then X is a zero of the monic polynomial p,.(z) if and
only if X is a left eigenvalue of its corresponding companion matrix C, .

It is shown in [29, Corollary 1] that if A is a left eigenvalue of C,,,, then A is also a right
eigenvalue of C,,. Hence, all the zeros of the polynomial p;(z) are right eigenvalues of C,,, .
However, a right eigenvalue is not necessarily the zero of the polynomial p;(z). For example,
take a simple monic polynomial p;(2) = 22 + jz + 2. Its companion matrix is

0 1
a-[% 1]

Here i is a right eigenvalue of C),, however, i is not a zero of p;(z).

COROLLARY 4.3 ([29, Corollary 1]). If A is a left eigenvalue of the companion matrix
Cp,, then it is also a right eigenvalue.

THEOREM 4.4. Let pi(z) = 2™ + Z;n:_ol qr2" be a quaternionic simple monic poly-
nomial. Let Cp, = Ydiag(Vi,Va,..., Vi)Y L with V; = A; + N; € M, (H) being
upper triangular, \; diagonal, and N; strict upper triangular, for i = 1,2,...,t. As-
sume that pi(z) = 2™ + Zzzol Q2" is a perturbation of pi(z) with @i = qi + Aqy,
|Aqp] < 6 k=0,1,....,m— 1. Let e;, = [0,...,0,1]7 € R™. Then for any complex
zero Zy, € Zc(pi(z)), there exists a complex zero z; € Zc(pi(%)) such that

|2 — 25| < max(x, x"/™),

where

'n,]‘—l

X=YTTAC,Y 2 Y INil3,  ACH = —em[Ado, -, Agim1].
n=0

Proof. Let us consider the companion matrix C), corresponding to the simple monic
polynomial p;(z) such that C,,, = Ydiag(Vi,Va,...,V;)Y 1. From the definition of the

matrix AC), = —e,,[Aqo, - . ., Ag¢m—1], it follows that
0 1 0 0
0 0 1 0
sz + ACPL = . . . . .
0 0 0o ... 1
—@o @ @ - —Gm1

It is known that the left eigenvalues of C), and the zeros of p;(z) are the same. Also, the left
spectrum of C), falls into the right spectrum of Cp,,. Theorem 3.13 gives the perturbation
bound for the standard right eigenvalues of a quaternionic matrix and a perturbed quaternionic
matrix. As we know that standard right eigenvalues of a quaternionic matrix are complex
numbers, by the method of proof of Theorem 3.13, we get the desired result. a
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THEOREM 4.5. Let pi(z) = 2™ + ZZ:OI qi2" be a quaternionic simple monic poly-
nomial with its companion matrix Cp,, = YDY 1, D = diag(A1,...,Am), At € As(A),
t=1,2,...,m. Assume that p;(z) = z™ + Z?;ol Qu2" is a perturbation of py(z) with
@k = qk + Aqr, |Agqi| <€, (0 <k <m—1). Then the zeros of p;(z) and p;(z) are given by

inf |Z — 2| < K(Y)[|AC, |2,
sl B al < s () Al
2j € Zu(pi(2))

where ACy, = —em[Aqo, ..., Agm—1] with e, = [0,...,0,1]7 € R™.

Proof. By applying Theorem 3.7 and the method of proof of Theorem 4.4, we get the
desired result. a

REMARK 4.6. Similar results can be obtained for the zeros of p,(z).

5. Numerical examples. In this section, we give some numerical examples to illustrate
our results.
EXAMPLE 5.1. Let us consider a quaternionic matrix

2 -2 j+k
A=|-k 2 -1

The complex adjoint matrix of A is

2 0 0 0 -2 1+i
\IIAZ[Al Aﬂ, Ar=10 2 —1|, Ay=1|-i 0 0
—A2 —A 0 1—-i 1 -1 0 0

Since VU 4 is diagonalizable, by Theorem 2.5, A is diagonalizable as well. The standard right
eigenvalues of A are 1,1 + 1, and 1 + i, so A;(A) = {1,1 + i}, where 1 + i appears with
multiplicity 2. From [17, Theorem 3.1], there exist a nonsingular quaternionic matrix ¥ such
that Y 71 AY = diag(1,1 +1i,1 +i). Here,

1+i i i
Y=1]1j Jj 0
-k -k —j
Consider the perturbation matrix
0 0 0
AA=10 0 €], e=10"1Y.
€ € €
Then,
2i —2j jt+k
A+AA=| -k 2 —1+4e€

—j+e 1—i4+e 1+4¢€

Therefore, |AA|2 = e/(1 + v/2) and A (A + AA) = {1 + 1.0001i, 1.0001 + 0.9999i},
where 14 1.0001i appears with multiplicity 2. The condition number of Y is x(Y") = 10.2193
and

min {|\; — = min P — = 0.0001.
Ai,eAs(A){| ul} N €Ar(A), £eAr(A+AA){|77 h
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Hence, Theorem 3.7 is verified.
EXAMPLE 5.2. Consider the quaternionic matrix

1 -i -j k
i 1 -2k j
j 2%k 7 —i

k - i 1

The complex adjoint matrix of A is

1 —i 0 0 0 0 -1 i
A A i1 000 0 0 -2 1
‘I’A[—A2 —Al]’ Q=10 o 7 Sl =1 a0 o
0 0 1 1 -i -1 0 0

A is Hermitian and, by Theorem 2.5, W 4 is Hermitian as well. The set of standard right
eigenvalues of Ais A;(A4) = {—1,1,2,8}. Also, from Theorem 2.11, the matrix A is unitarily
diagonalizable, that is, Y7 AY = diag(—1,1,2,8), where Y € M, (H) is a unitary matrix
and A;(A) = A,.(A). Let

0 00 O 1 —i —j k
o0 0 e - R 1 -2k j+e
AA = 00 ¢ ol e=10"", A+AA= . 9k The —ite
€ € € € —k+4+e —j+e i+e 1+e€

Then, ||AAll2 = 0.0024 and

Ags(A+ AA) = {1.0003 + 0.00011i, 2.0005 + 0.00051, —0.9997 + 0.00031i, 8.0009}.

Since the matrix A is Hermitian, x(Y') = 1 in Theorem 3.7. Moreover, A is a central closed
as well as a normal matrix, hence Corollary 3.8 is verified, too.

EXAMPLE 5.3. Lettg = 2i = (0,2,0,0), t; = j = (0,0,1,0), t2 = k = (0,0,0,1).
Following [24], the quaternionic Vandermonde matrix is defined as

11 1 11 1
A=ty t1 t2 =1]21 j k
3 3 t3 -4 -1 -1

The complex adjoint matrix of A is

11 1 000
\IfAz[_/Z _‘%ﬂ, A= |21 0 0|, Ay=10 1 i
2 ! —4 -1 1 00 0

The eigenvalues of ¥ 4 are

0.8014 + 1.700071, 0.8014 — 1.70007i, — 0.4552 + 1.9952i,
—0.4552 — 1.9952i,  —0.3462 + 1.0469i, — 0.3462 — 1.0469i,

hence U 4 is diagonalizable, and, by Theorem 2.5, A is diagonalizable as well. The set of
standard right eigenvalues is

As(A) ={0.8014 + 1.70007i, —0.4552 4 1.9952i, —0.3462 + 1.0469i},
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and there exists an invertible matrix Y € M,, (H) such that Y "1 AY = diag(A4(A)). Let

Then,

00 0 1 1 1
AA=10 0 0|, e=10"3, A+AA=| 2i j k
e 0 ¢ —44+e¢ -1 —1+4c¢€

AAlz =1.4x 1073 and

Ay(A+ AA) = {0.8016 + 1.7009i, —0.4549 + 1.9950i, —0.3457 + 1.0470i}.

Since k(Y) > 1, we have x(Y)||AA]|2 > 0.0014. Also,

in {|\ —pl} = i : — &[]} = 0.0002,
Ai?}&m{‘ plt o in {ni — €1}
EEAL(A+AA)

hence Theorem 3.7 is verified.
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