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PSEUDO-LINEAR CONVERGENCE OF AN ADDITIVE SCHWARZ METHOD
FOR DUAL TOTAL VARIATION MINIMIZATION∗

JONGHO PARK†

Abstract. In this paper, we propose an overlapping additive Schwarz method for total variation minimization
based on a dual formulation. The O(1/n)-energy convergence of the proposed method is proven, where n is the
number of iterations. In addition, we introduce an interesting convergence property of the proposed method called
pseudo-linear convergence; the energy decreases as fast as for linearly convergent algorithms until it reaches a
particular value. It is shown that this particular value depends on the overlapping width δ, and the proposed method
becomes as efficient as linearly convergent algorithms if δ is large. As the latest domain decomposition methods for
total variation minimization are sublinearly convergent, the proposed method outperforms them in the sense of the
energy decay. Numerical experiments which support our theoretical results are provided.
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1. Introduction. This paper is concerned with numerical solutions of total variation
minimization by additive Schwarz methods as overlapping domain decomposition meth-
ods (DDMs). Total variation minimization was introduced first by Rudin, Osher, and
Fatemi [25], and it has become one of the fundamental problems in mathematical imag-
ing. Let Ω ⊂ R2 be a bounded rectangular domain. The total variation minimization model
problem on Ω is given by

(1.1) min
u∈BV (Ω)

{F (u) + TVΩ(u)} ,

where F (u) is a convex function, TVΩ(u) is the total variation of u on Ω defined by

TVΩ(u)= sup

{∫
Ω

udivp dx : p ∈ (C1
0 (Ω))2 such that |p(x)| ≤ 1 for almost all x ∈ Ω

}
,

with |p(x)| =
√
p1(x)2 + p2(x)2, and BV (Ω) is the space of functions in L1(Ω) with finite

total variation. Equation (1.1) contains an extensive range of problems arising in mathematical
imaging. For example, if we set F (u) = λ

2

∫
Ω

(u− f)2 dx in (1.1) for λ > 0 and f ∈ L2(Ω),
then we get the celebrated Rudin–Osher–Fatemi (ROF) model [25]:

(1.2) min
u∈BV (Ω)

{
λ

2

∫
Ω

(u− f)2 dx+ TVΩ(u)

}
.

In the perspective of image processing, a solution u of (1.2) is a denoised image obtained from
the noisy image f . A more complex example of (1.1) is the TV -H−1 model [6, 23, 26]:

(1.3) min
u∈BV (Ω)

{
λ

2

∫
Ω

∣∣∇(−∆)−1(u− f)
∣∣2 dx+ TVΩ(u)

}
,

where λ > 0 and (−∆)−1 denotes the inverse of the negative Laplacian with homogeneous
Dirichlet boundary conditions. Since (1.3) is known to incorporate several desirable properties
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TABLE 1.1
Difficulties in designing DDMs for (1.2) and (1.5).

problem obstacle grad-div

energy
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx
1

2

∫
Ω

[(divp)2 + |p|2] dx−
∫

Ω

f · p dx

solution scalar-valued, H1
0 (Ω) vector-valued, H0(div; Ω)

constraint yes no
strong convexity yes yes

smoothness yes yes
separability yes yes

Schwarz methods [2, 27] [22, 29]
convergence to

a global minimizer linear linear

problem ROF (1.2) dual ROF (1.5)

energy
λ

2

∫
Ω

(u− f)2 dx+ TVΩ(u)
1

2λ

∫
Ω

(divp + λf)2 dx

solution scalar-valued, BV (Ω) vector-valued, H0(div; Ω)
constraint no yes

strong convexity yes no
smoothness no yes
separability no yes

Schwarz methods
primal decomposition: [12, 13]
dual decomposition: [16, 17] [10, 15]

convergence to
a global minimizer

primal decomposition: not guaranteed [17]
dual decomposition: convergent [16, 17] sublinear [10, 19]

of higher-order variational models for imaging, such as the smooth connection of shapes, it
has various applications in advanced imaging problems including image decomposition [23]
and image inpainting [6]. One may refer to [9] for various other examples of (1.1).

In view of designing DDMs, several difficulties lie in the total variation term in (1.1). The
total variation functional is nonsmooth, i.e., it has no gradient, so that a careful consideration
is required to solve (1.1). Furthermore, since it measures the jumps of a function across edges,
it is nonseparable in the sense that

TVΩ(u) 6=
N∑
i=1

TVΩi
(u)

for a nonoverlapping partition {Ωi}Ni=1 of Ω in general. Due to those characteristics, it is
challenging to design Schwarz methods for (1.1) that converge to a correct solution. Indeed, it
was shown in [17] that Schwarz methods for (1.2), which is a special case of (1.1), introduced
in [12, 13] may not converge to a correct minimizer. We also point out that the Schwarz
framework for nonsmooth convex optimization proposed in [1] does not apply to (1.1) since
TVΩ(u) does not satisfy the condition in [1, equation (7)]; see [17, Claim 6.1].

Instead of (1.1), one may consider a Fenchel–Rockafellar dual formulation (see, e.g., [9])
of (1.1), which is given by

min
p∈(C1

0 (Ω))2
F ∗(divp) subject to |p(x)| ≤ 1, ∀x ∈ Ω,

or an alternative formulation

(1.4) min
p∈H0(div;Ω)

F ∗(divp) subject to |p(x)| ≤ 1, ∀x ∈ Ω,

in which the solution space is replaced by an appropriate Hilbert space

H0(div; Ω) =
{
p ∈ (L2(Ω))2 : divp ∈ L2(Ω) and p · n = 0 on ∂Ω

}
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and where F ∗ is the Legendre–Fenchel conjugate of F and n is the outer normal to ∂Ω. In
particular, a dual formulation of (1.2) is given by

(1.5) min
p∈H0(div;Ω)

1

2λ

∫
Ω

(divp + λf)2 dx subject to |p(x)| ≤ 1, ∀x ∈ Ω.

The above dual formulation was first considered in [7]. If one has a solution of the dual
problem (1.4), then a solution of the primal problem (1.1) can be easily obtained by the
primal-dual relation; see [9]. One readily sees that (1.4) is a constrained minimization problem.
We note that the energy functional of (1.4) is not strongly convex. Even for (1.2), where F is
smooth, the energy functional of its dual problem (1.5) is not strongly convex due to the div-
operator therein. Hence, Schwarz methods proposed in [2, 27] for constrained optimization (in
particular, the obstacle problem) are not valid for either (1.4) or (1.5). Moreover, (1.4) is a
vector-valued problem related to the div-operator; it is usually more difficult to design DDMs
for vector-valued problems than for scalar-valued ones because of the huge null space of the
div-operator [22, 29]. The above mentioned difficulties for (1.2) and (1.5), which are special
cases of (1.1) and (1.4), respectively, are summarized in Table 1.1 with comparisons to some
related problems in structural mechanics: the obstacle problem and the grad-div problem.

Despite these difficulties, several successful Schwarz methods for (1.5) have been devel-
oped [10, 15, 19]. In [15], subspace correction methods for (1.5) based on a nonoverlapping
domain decomposition were proposed. Since then, the O(1/n)-energy convergence of over-
lapping Schwarz methods for (1.5) in a continuous setting was derived in [10], where n is
the number of iterations. In [19], it was shown that the methods proposed in [15] are also
O(1/n)-convergent. In addition, an O(1/n2)-convergent additive method was designed using
an idea of pre-relaxation. Inspired by the dual problem (1.5), Schwarz methods for (1.2) based
on dual decomposition were considered in [16, 17]. Recently, several iterative substructuring
methods for more general problems of the form (1.4) were considered [18, 20].

In this paper, we propose an additive Schwarz method for (1.4) based on an overlapping
domain decomposition. While the existing methods in [15, 19] for (1.5) are based on finite
difference discretizations, the proposed method is based on finite element discretizations
that were recently proposed in [14, 18, 20]. Compared to the methods in [10], the proposed
method has the advantage that it does not depend on either a particular function decomposition
or a constraint decomposition. We prove that the proposed method is O(1/n)-convergent
similarly to the existing methods in [10, 19]. In addition, we explicitly describe the dependency
of the convergence rate on the condition number of F . We investigate another interesting
convergence property of the proposed method, which we call pseudo-linear convergence. The
precise definition of pseudo-linear convergence is given as follows:

DEFINITION 1.1. A sequence {an}n≥0 of positive real numbers is said to converge
pseudo-linearly to 0 at rate γ with threshold ε if an converges to 0 as n tends to∞, and there
exist constants 0 < γ < 1, c > 0, and ε > 0 such that

an ≤ γnc+ ε, ∀n ≥ 0.

Note that the above definition reduces to ordinary linear convergence if ε = 0.
With a suitable overlapping domain decomposition, it is shown that the proposed method

is pseudo-linearly convergent with threshold O(|Ω|/δ2), where δ is the overlapping width
parameter of the domain decomposition. Therefore, the proposed method is expected to
converge to a minimizer much more rapidly than other sublinearly convergent methods if δ is
large. We provide numerical experiments which illustrate this behaviour.

The rest of this paper is organized as follows. In Section 2, we present finite element
discretizations for dual total variation minimization and an abstract space decomposition
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setting. An abstract additive Schwarz method is introduced in Section 3 with the corresponding
convergence results. In Section 4, overlapping domain decomposition settings for the proposed
method are presented. Applications of the proposed method to various imaging problems
of the form (1.1) are provided in Section 5. We conclude the paper with some remarks in
Section 6.

2. General setting. First, we briefly review finite element discretizations proposed
in [18, 20] for (1.4). All the results in this paper can naturally be generalized to polygonal
domains with quasi-uniform meshes, but we restrict our discussion to rectangular domains
with uniform meshes for simplicity; one may refer [14] for more general finite element
discretizations.

Each pixel in an image is regarded as a square finite element whose side length equals
h. Then the image domain composed of m1 × m2 pixels becomes a rectangular region
(0,m1h) × (0,m2h) in R2. Let Th be the collection of all elements in Ω, and let Eh be the
collection of all interior element edges. The lowest-order Raviart–Thomas finite element
space [24] on Ω with homogeneous essential boundary conditions is given by

Yh = {p ∈ H0(div; Ω) : p|T ∈ RT 0(T ), ∀T ∈ Th} ,

whereRT 0(T ) is the collection of all vector fields p: T → R2 of the form

(2.1) p(x1, x2) =

[
a1 + b1x1

a2 + b2x2

]
.

The degrees of freedom for Yh are given by the average values of the normal components over
the element edges. We denote the degree of freedom of p ∈ Yh associated to an edge e ∈ Eh
by (p)e, i.e.,

(p)e =
1

|e|

∫
e

p · ne ds,

where ne is a unit normal to e. We define the space Xh by

Xh =
{
u ∈ L2(Ω) : u|T is constant, ∀T ∈ Th

}
.

Then it is clear that divp ∈ Xh for p ∈ Yh. Obviously, the degrees of freedom for Xh are the
values on the elements; for u ∈ Xh, T ∈ Th, and xT ∈ T , we write

(u)T = u(xT ).

Let Πh: H0(div; Ω)→ Yh be the nodal interpolation operator, i.e., it satisfies

(Πhp)e =
1

|e|

∫
e

p · ne ds, p ∈ H0(div; Ω), e ∈ Eh.

Then the following estimate holds [22, Lemma 5.1]:
LEMMA 2.1. Let p ∈ Yh and θ be any continuous, piecewise linear, scalar function

supported in S ⊂ Ω. Then, there exists a constant c > 0 independent of |Ω| and h such that∫
S

[div(Πh(θp))]
2
dx ≤ c

∫
S

[div(θp)]
2
dx.
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The spaces Xh and Yh are equipped with the inner products

〈u, v〉Xh
= h2

∑
T∈Th

(u)T (v)T , u, v ∈ Xh,

〈p,q〉Yh
= h2

∑
e∈Eh

(p)e(q)e, p,q ∈ Yh,

and their induced norms ‖ · ‖Xh
and ‖ · ‖Yh

, respectively. We have the following facts for the
norms ‖ · ‖Xh

and ‖ · ‖Yh
.

LEMMA 2.2. The norm ‖ · ‖Xh
agrees with the L2(Ω)-norm in Xh, i.e.,

‖u‖Xh
= ‖u‖L2(Ω), ∀u ∈ Xh.

In addition, the norm ‖ · ‖Yh
is equivalent to the (L2(Ω))2-norm in Yh in the sense that there

exist constants c, c̄ > 0 independent of |Ω| and h such that

c‖p‖(L2(Ω))2 ≤ ‖p‖Yh
≤ c̄‖p‖(L2(Ω))2 , ∀p ∈ Yh.

Proof. See [18, Remark 2.2].
In this setting, the following inverse inequality which is useful for the selection of

parameters for solvers for total variation minimization (e.g. [4]) holds:
PROPOSITION 2.3. For any p ∈ Yh, we have

‖ divp‖2Xh
≤ 8

h2
‖p‖2Yh

.

Proof. See [18, Proposition 2.5].
For the rest of the paper, we may omit the subscripts Xh and Yh from ‖ · ‖Xh

and ‖ · ‖Yh
,

respectively, if there is no ambiguity. We define the subset C of Yh as

C = {p ∈ Yh : |(p)e| ≤ 1, ∀e ∈ Eh} .

Then, we have the following discrete version of (1.4):

(2.2) min
p∈C
{F(p) := F ∗(divp)} .

One may refer to [14, 20] for further details on (2.2). In the sequel, we denote a solution
of (2.2) by p∗ ∈ Yh. In order to design a convergent additive Schwarz method for (2.2),
we require the following assumption on F , which is common in the literature on Schwarz
methods; see, e.g., [2, 27].

ASSUMPTION 2.4. The function F in (2.2) is α-strongly convex for some α > 0, i.e., the
map

u 7→ F (u)− α

2
‖u‖2

is convex. In addition, F is Frechét-differentiable, and its derivative F ′ is β-Lipschitz
continuous for some β > 0, i.e.,

‖F ′(u)− F ′(v)‖ ≤ β‖u− v‖, ∀u, v ∈ Xh.
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We define the condition number κ of F by

(2.3) κ =
β

α
,

where α and β are given in Assumption 2.4. In the case when F (u) = 1
2 〈u,Ku〉 − 〈g, u〉 for

some symmetric positive definite operator K: Xh → Xh and g ∈ Xh, it is straightforward to
see that κ agrees with the ratio of the extremal eigenvalues of K.

There are several interesting examples of F satisfying Assumption 2.4. First, we consider
the ROF model (1.2), i.e., F (u) = λ

2 ‖u− f‖
2 for λ > 0 and f ∈ Xh. Recall that the discrete

ROF model defined on Xh is given by

(2.4) min
u∈Xh

{
λ

2
‖u− f‖2 + TVΩ(u)

}
.

It is clear that Assumption 2.4 is satisfied with α = β = λ and the condition number
κ = β/α = 1. The second example is the TV -H−1 model: a natural discretization of (1.3) is
given by

(2.5) min
u∈Xh

{
λ

2
‖u− f‖2K−1 + TVΩ(u)

}
,

where K: Xh → Xh is the standard 5-point-stencil approximation of −∆ with homogeneous
essential boundary conditions [21] and ‖v‖K−1 =

〈
K−1v, v

〉1/2
for v ∈ Xh. Since K is

nonsingular, (2.5) satisfies Assumption 2.4. It is well-known that the condition number of K
becomes larger as the image size grows; a detailed estimate for the condition number can be
found in [21]. We note that a domain decomposition method for the TV -H−1 model was
previously considered in [26].

If F satisfies Assumption 2.4, then we have the following properties for F ∗ [9]:
PROPOSITION 2.5. Under Assumption 2.4, the function F ∗ in (2.2) is (1/β)-strongly

convex and Frechét-differentiable with a (1/α)-Lipschitz continuous derivative. Equivalently,
the following hold:

F ∗(u)− F ∗(v)− 〈(F ∗)′(v), u− v〉 ≥ 1

2β
‖u− v‖2, ∀u, v ∈ Xh,

‖(F ∗)′(u)− (F ∗)′(v)‖ ≤ 1

α
‖u− v‖, ∀u, v ∈ Xh.

A solution of a discrete primal problem

min
u∈Xh

{F (u) + TVΩ(u)}

can be obtained from the solution p∗ of (2.2) by solving

(2.6) min
u∈Xh

{F (u)− 〈u,divp∗〉} .

See [9] for details. Under Assumption 2.4, problem (2.6) is smooth and strongly convex.
Therefore, one can solve (2.6) efficiently by linearly convergent first-order methods such
as [9, Algorithm 5].

The Bregman distance [5] associated with F is denoted by DF , i.e.,

(2.7) DF (p,q) = F(p)−F(q)− 〈F ′(q),p− q〉 , p,q ∈ Yh.
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Note that

F ′(p) = div∗ ((F ∗)′(divp)) , p ∈ Yh,

where div∗: Xh → Yh is the adjoint of div: Yh → Xh. We have the following useful property
of DF [11, Lemma 3.1].

LEMMA 2.6. For any p, q, r ∈ Yh, we have

DF (r,p)−DF (r,q) = DF (q,p)− 〈F ′(p)−F ′(q), r− q〉 .

For later use, we state the following trivial lemma for the set C.
LEMMA 2.7. For any p, q ∈ C, we have

‖p− q‖2 ≤ 8|Ω|.

Proof. Note that |Ω| = m1m2h
2 and |Eh| = (m1 − 1)m2 +m1(m2 − 1) for an image

of size m1 ×m2. Using the inequality

‖p− q‖2 = h2
∑
e∈Eh

[(p)e − (q)e]
2 ≤ 4h2|Eh|,

the conclusion is easily obtained.
Next, we present a space decomposition setting for W = Yh. Let Wk, k = 1, . . . , N , be

subspaces of W such that

(2.8) W =

N∑
k=1

R∗kWk,

where Rk: W → Wk is the restriction operator, and its adjoint R∗k: Wk → W is the natural
extension operator. We state an additional assumption on (2.8) inspired by [2].

ASSUMPTION 2.8. There exist constants c1 > 0 and c2 ≥ 0 which satisfy the following
conditions: for any p, q ∈ C, there exists rk ∈Wk (k = 1, . . . , N ) such that

(2.9a) p− q =

N∑
k=1

R∗krk,

(2.9b) q +R∗krk ∈ C, k = 1, . . . N,

(2.9c)
N∑
k=1

‖ divR∗krk‖2 ≤ c1‖ div(p− q)‖2 + c2‖p− q‖2.

In Assumption 2.8, we call {rk} a stable decomposition of p− q. A particular choice of
spaces {Wk} and functions {rk} satisfying Assumption 2.8 based on an overlapping domain
decomposition of Ω will be given in Section 4.

We conclude this section by presenting two useful estimates for sequences of positive real
numbers.

LEMMA 2.9. Let {an}n≥0 be a sequence of positive real numbers which satisfy

an − an+1 ≥
1

c2
(an+1 − γan)2, n ≥ 0,
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for some c > 0 and 0 ≤ γ < 1. Then we have

an ≤
1

c̃n+ 1/a0
,

where

c̃ =
(1− γ)2

2a0(1− γ)2 + (γ
√
a0 + c)2

.

Proof. See [10, Lemma 3.5].
LEMMA 2.10. Let {an}n≥0 be a sequence of positive real numbers which satisfy

an+1 ≤ γan + c, n ≥ 0,

for some c > 0 and 0 ≤ γ < 1. Then we have

an ≤ γn
(
a0 −

c

1− γ

)
+

c

1− γ
.

Proof. It is elementary.
REMARK 2.11. In [10, Lemma 3.5], it was proved that the sequence in Lemma 2.9

satisfies

(2.10) an − an+1 ≥
(

1− γ
γ
√
a0 + c

)2

a2
n+1.

Then (2.10) was combined with [28, Lemma 3.2] to yield the desired result. We note that
several alternative estimates for the O(1/n)-convergence of (2.10) with different constants
are available; see [3, Lemmas 3.6 and 3.8] and [8, Proposition 3.1].

3. An additive Schwarz method. In this section, we propose an abstract additive
Schwarz method for dual total variation minimization (2.2) in terms of the space decom-
position (2.8). Then several remarkable convergence properties of the proposed method are
investigated. Algorithm 1 shows the proposed additive Schwarz method for (2.2).

Algorithm 1 Additive Schwarz method for dual total variation minimization (2.2).

Choose p(0) ∈ C and τ ∈ (0, 1/N ].
for n = 0, 1, 2, . . .

r
(n+1)
k ∈ arg min

rk∈Wk,p(n)+R∗krk∈C
F
(
p(n) +R∗krk

)
, k = 1, . . . , N

p(n+1) = p(n) + τ

N∑
k=1

R∗kr
(n+1)
k

end

We note that an additive Schwarz method for the dual ROF model based on a constraint
decomposition of C was proposed in [10], which is slightly different from our method.
Differently from the method in [10], Algorithm 1 does not require an explicit decomposition
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of the constraint set C as in [10, Proposition 2.1]. A similar situation was previously addressed
in [2, 27] for the obstacle problem. In addition, the proposed method is applicable to not
only the ROF model but also general total variation minimization problems that satisfy
Assumption 2.4.

In order to analyze the convergence of Algorithm 1, we first present a descent rule for
Algorithm 1 in Lemma 3.1, which is a main tool for the convergence analysis. We note that
arguments using the descent rule are standard in the analysis of first-order methods for convex
optimization (see [4, Lemma 2.3], [8, equation (3.6)], and [9, equations (4.37) and (C.1)],
for instance). The proof of Lemma 3.1 closely follows that of [19, Lemma 3.2]. The main
difference is that Lemma 3.1 allows any smooth F , using the notion of Bregman distance,
while [19] is restricted to the dual ROF case. In addition, the decomposition of p− q is not
unique due to the overlapping of the subdomains, while it is unique in the nonoverlapping case
given in [19].

LEMMA 3.1. Let p, q ∈ C and τ ∈ (0, 1/N ]. We define r̂k ∈Wk, q̂ ∈ Y , and r̄k ∈Wk,
k = 1, . . . , N , as follows:

(i) r̂k ∈ arg min
rk∈Wk,q+R∗krk∈C

F (q +R∗krk), k = 1, . . . , N .

(ii) q̂ = q + τ

N∑
k=1

R∗kr̂k.

(iii) {r̄k}: a stable decomposition of p− q as in Assumption 2.8.
Then we have

τF(p) + (1− τ)F(q)−F(q̂) ≥ τ
N∑
k=1

(DF (q +R∗kr̄k,q +R∗kr̂k)−DF (q +R∗kr̄k,q)) .

Proof. As q + R∗kr̄k ∈ C by (2.9b), from the optimality condition of r̂k (cf. [19,
Lemma 2.2]), we have

F(q +R∗kr̄k)−F(q +R∗kr̂k) ≥ DF (q +R∗kr̄k,q +R∗kr̂k).

Summation of the above equation over k = 1, . . . , N yields

(3.1) τ

N∑
k=1

(F(q +R∗kr̄k)−F(q +R∗kr̂k)) ≥ τ
N∑
k=1

DF (q +R∗kr̄k,q +R∗kr̂k).

Note that

q̂ = q + τ

N∑
k=1

R∗kr̂k = (1− τN)q + τ

N∑
k=1

(q +R∗kr̂k).

Since 1− τN ≥ 0, we obtain by convexity of F that

(3.2) (1− τN)F(q) + τ

N∑
k=1

F(q +R∗kr̂k) ≥ F(q̂).
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On the other hand, by the definition of Bregman distance (2.7), condition (iii), and the convexity
of F , we have

τ

(
NF(q)−

N∑
k=1

F(q +R∗kr̄k)

)
= −τ

N∑
k=1

(〈F ′(q), R∗kr̄k〉+DF (q +R∗kr̄k,q))

= −τ 〈F ′(q),p− q〉 − τ
N∑
k=1

DF (q +R∗kr̄k,q)

≥ −τ(F(p)−F(q))− τ
N∑
k=1

DF (q +R∗kr̄k,q).

(3.3)

Summation of (3.1), (3.2), and (3.3) completes the proof.
With Lemma 3.1, the following property of sufficient decrease of F for Algorithm 1 is

straightforward (cf. [10, Lemma 3.3]).
LEMMA 3.2. In Algorithm 1, we have

F(p(n))−F(p(n+1)) ≥ τ

2β

N∑
k=1

‖divR∗kr
(n+1)
k ‖2, n ≥ 0,

where β is given in Assumption 2.4.
Proof. Substitute p by p(n), q by p(n), and r̄k by 0 in Lemma 3.1. Then r̂k = r

(n+1)
k ,

q̂ = p(n+1), and we obtain

F(p(n))−F(p(n+1)) ≥ τ
N∑
k=1

DF (p(n),p(n) +R∗kr
(n+1)
k ).

On the other hand, for any k, it follows by Proposition 2.5 that

DF (p(n),p(n) +R∗kr
(n+1)
k )

= F(p(n))−F(p(n) +R∗kr
(n+1)
k )−

〈
F ′(p(n) +R∗kr

(n+1)
k ),−R∗kr

(n+1)
k

〉
= F ∗(divp(n))− F ∗(div(p(n) +R∗kr

(n+1)
k ))

−
〈

(F ∗)′(div(p(n) +R∗kr
(n+1)
k )),− divR∗kr

(n+1)
k

〉
≥ 1

2β
‖ divR∗kr

(n+1)
k ‖2.

Thus, we readily get the desired result.
Using Lemmas 3.1 and 3.2, one can show O(1/n)-convergence of Algorithm 1 as follows:
THEOREM 3.3. In Algorithm 1, let ζn = α(F(p(n)) − F(p∗)), for n ≥ 0. Then there

exists a constant c̃ > 0 depending only on |Ω|, κ, τ , ζ0, c1, and c2 such that

ζn ≤
1

c̃n+ 1/ζ0
,

where κ is given in (2.3) and c1, c2 are given in Assumption 2.8.
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Proof. In Lemma 3.1, replace p by p∗, q by p(n), and r̂s by r
(n+1)
s . Then q̂ = p(n+1).

We obtain that

τF(p∗) + (1− τ)F(p(n))−F(p(n+1))

≥ τ
N∑
k=1

(
DF (p(n) +R∗kr̄k,p

(n) +R∗kr
(n+1)
k )−DF (p(n) +R∗kr̄k,p

(n))
)

= τ

N∑
k=1

(
DF (p(n),p(n) +R∗kr

(n+1)
k )−

〈
F ′(p(n) +R∗kr

(n+1)
k )−F ′(p(n)), R∗kr̄k

〉)
,

where the last equality is due to Lemma 2.6. It follows by Proposition 2.5 and the Cauchy–
Schwarz inequality that

ζn+1−(1− τ)ζn

≤ −τα
N∑
k=1

(
DF (p(n),p(n) +R∗kr

(n+1)
k )

−
〈
F ′(p(n) +R∗kr

(n+1)
k )−F ′(p(n)), R∗kr̄k

〉)
≤ τα

N∑
k=1

〈
F ′(p(n) +R∗kr

(n+1)
k )−F ′(p(n)), R∗kr̄k

〉
= τα

N∑
k=1

〈
(F ∗)′(div(p(n) +R∗kr

(n+1)
k ))− (F ∗)′(divp(n)),divR∗kr̄k

〉
≤ τ

N∑
k=1

‖ divR∗kr
(n+1)
k ‖‖divR∗kr̄k‖

≤ τ

(
N∑
k=1

‖ divR∗kr
(n+1)
k ‖2

) 1
2
(

N∑
k=1

‖divR∗kr̄k‖2
) 1

2

.

(3.4)

By (2.9c), Proposition 2.5, and Lemma 2.7, we have

N∑
k=1

‖ divR∗kr̄k‖2 ≤ c1‖ div(p(n) − p∗)‖2 + c2‖p(n) − p∗‖2

≤ 2κc1ζn + 8c2|Ω|
≤ 2κc1ζ0 + 8c2|Ω| =: c3.

(3.5)

Thus, it follows from (3.4) and (3.5) that

(3.6) ζn+1 − (1− τ)ζn ≤ τc
1
2
3

(
N∑
k=1

‖ divR∗kr
(n+1)
k ‖2

) 1
2

.

Combining (3.6) with Lemma 3.2, we get

(3.7) ζn − ζn+1 ≥
1

2τκc3
[ζn+1 − (1− τ)ζn]

2
.

Finally, invoking Lemma 2.9 for (3.7) completes the proof.
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To trace the dependency of the convergence of Algorithm 1 on parameters, we perform
some additional calculations starting from (3.7). By Lemma 2.9, we have

γ = 1− τ and c =
√

2τκc3 = 2
√
τκ(κc1ζ0 + 4c2|Ω|),

so that

1

c̃
= 2ζ0 +

(
(1− τ)

√
ζ0 + 2

√
τκ(κc1ζ0 + 4c2|Ω|)
τ

)2

≤ 2

[
1 +

(
1− τ
τ

)2

+
4κ2c1
τ

]
ζ0 +

32κc2|Ω|
τ

.

(3.8)

Hence, the constant c̃ in Theorem 3.3 depends on |Ω|, κ, τ , ζ0, c1, and c2 only. Moreover,
we observe that (3.8) is decreasing with respect to τ ∈ (0, 1/N ]. Hence, we may choose
τ = 1/N ; see also [10, Remark 3.1].

REMARK 3.4. In the ROF case (1.2), alternatively to Theorem 3.3, one can prove the
O(1/n)-convergence rate of Algorithm 1 by a similar argument as in [10]. Compared to [10],
our proof is simpler due to the descent rule, Lemma 3.1. Moreover, our estimate is independent
of N while that in [10] is not.

In addition to the O(1/n)-convergence, we prove that Algorithm 1 converges pseudo-
linearly, i.e., F(p(n)) decreases as fast as linear convergence until it reaches a particular value.
Theorem 3.5 provides a rigorous statement for the pseudo-linear convergence of Algorithm 1.

THEOREM 3.5. In Algorithm 1, let ζn = α(F(p(n))−F(p∗)), for n ≥ 0. Then we have

ζn ≤

(
1− τ

κ2(
√
c1 +

√
c1 + κ−2)2

)n(
ζ0 −

4c2|Ω|
κ
√
c1(c1 + κ−2)

)
+

4c2|Ω|
κ
√
c1(c1 + κ−2)

,

where κ is given in (2.3) and c1, c2 are given in Assumption 2.8.
Proof. Take any n ≥ 0. For the sake of convenience, we write

∆ =
1

2

N∑
k=1

‖ divR∗kr
(n+1)
k ‖2.

The starting points of the proof are (3.4) and (3.5):

ζn+1 ≤ (1− τ)ζn + τ(2κc1ζn + 8c2|Ω|)
1
2 (2∆)

1
2 .

Using the inequality

ab ≤ εa2 +
1

4ε
b2, 0 < ε < 1,

we readily get

ζn+1 ≤ (1− τ)ζn + τ

(
ζn +

4c2|Ω|
κc1

) 1
2

(4κc1∆)
1
2

≤ (1− τ)ζn + τ

[
ε

(
ζn +

4c2|Ω|
κc1

)
+

1

4ε
· 4κc1∆

]
= (1− τ + τε)ζn +

τκc1
ε

∆ +
4τεc2|Ω|
κc1

≤ (1− τ + τε)ζn +
κ2c1
ε

(ζn − ζn+1) +
4τεc2|Ω|
κc1

,

(3.9)
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where the last inequality is due to Lemma 3.2. Equation (3.9) can be rewritten as

ζn+1 ≤
(

1− τε(1− ε)
ε+ κ2c1

)
ζn +

4τε2c2|Ω|
κc1(ε+ κ2c1)

.

We take

ε = κ2
(√

c1 (c1 + κ−2)− c1
)
∈ (0, 1),

which maximizes ε(1−ε)
ε+κ2c1

so that

ε(1− ε)
ε+ κ2c1

=
1

κ2(
√
c1 +

√
c1 + κ−2)2

,

ε2

c1(ε+ κ2c1)
=

1

κ2
√
c1(c1 + κ−2)(

√
c1 +

√
c1 + κ−2)2

.

We note that similar computations were done in [2, 27]. Then it follows that

ζn+1 ≤

(
1− τ

κ2(
√
c1 +

√
c1 + κ−2)2

)
ζn +

4τc2|Ω|
κ3
√
c1(c1 + κ−2)(

√
c1 +

√
c1 + κ−2)2

.

By Lemma 2.10, we have

ζn ≤

(
1− τ

κ2(
√
c1 +

√
c1 + κ−2)2

)n(
ζ0 −

4c2|Ω|
κ
√
c1(c1 + κ−2)

)
+

4c2|Ω|
κ
√
c1(c1 + κ−2)

,

which is the desired result.
By Theorem 3.5, {F(p(n))} in Algorithm 1 converges pseudo-linearly with threshold

4c2|Ω|/κ
√
c1(c1 + κ−2). It means that if one can make c2|Ω|/c1 sufficiently small, then

the proposed method shows almost the same convergence pattern as a linearly convergent
algorithm. We shall consider in Section 4 means of how to make c2|Ω|/c1 small, and observe
the behavior of the proposed method in Section 5.

4. Domain decomposition. In this section, we present overlapping domain decompo-
sition settings for the proposed DDM. We decompose the domain Ω into N disjoint square
subdomains {Ωs}Ns=1 in a checkerboard fashion. The side length of each subdomain Ωs is
denoted by H . For each s = 1, . . . ,N , let Ω′s be an enlarged subdomain consisting of Ωs and
its surrounding layers of pixels with width δ for some δ > 0. The overlapping subdomains
{Ω′s}Ns=1 can be colored with Nc ≤ 4 colors such that any two subdomains are of the same
color if they are disjoint [10]. Let Sk be the union of all subdomains Ω′s with color k for
k = 1, . . . , Nc. We denote the collection of all elements of Th in Sk by Th,k. In what follows,
for two positive real numbers A and B depending on the parameters |Ω|, H , h, and δ, we use
the notation A . B to indicate that there exists a constant c > 0 such that A ≤ cB, where c is
independent of the parameters. In addition, we write A ≈ B if A . B and B . A.

We consider a DDM based on the domain decomposition {Ω′s}. Let N = Nc, and for
k = 1, . . . , N , we set Wk = Yh(Sk), where

(4.1) Yh(Sk) = {p ∈ H0(div;Sk) : p|T ∈ RT 0(T ), ∀T ∈ Th,k} ,

whereRT 0(T ) is defined in (2.1).
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By Lemma 3.4 in [29], there exists a continuous and piecewise linear partition of unity
{θk}Nk=1 for Ω subordinate to the covering {Sk}Nk=1 such that

supp θk ⊂ S̄k, θk ∈W 1,∞
0 (Sk),(4.2a)

0 ≤ θk ≤ 1,

N∑
k=1

θk = 1 in Ω,(4.2b)

‖∇θk‖L∞(Sk) .
1

δ
,(4.2c)

where S̄k is the closure of Sk and W 1,∞
0 (Sk) is defined as

W 1,∞
0 (Sk) = {θ ∈ L∞(Sk) : ∇θ ∈ L∞(Sk) and θ|∂Sk

= 0} .

One can show the following property of θk:
PROPOSITION 4.1. For 1 ≤ k ≤ N and p ∈ Yh, we have

‖ div(Πh(θkp))‖2 . ‖ divp‖2 +
1

δ2
‖p‖2.

Proof. Invoking (4.2) and Lemmas 2.1 and 2.2 yields

‖ div(Πh(θkp))‖2 =

∫
Ω

[div(Πh(θkp))]2 dx

.
∫

Ω

[div(θkp)]2 dx

.
∫

Ω

[∇θk · p]2 dx+

∫
Ω

[θk divp]2 dx

.
1

δ2

∫
Ω

|p|2 dx+

∫
Ω

(divp)2 dx

.
1

δ2
‖p‖2 + ‖ divp‖2.

We note that a similar calculation was done in [10, Lemma 3.2].
Using Proposition 4.1, the following stable decomposition estimate is obtained:
LEMMA 4.2. In the space decomposition setting (4.1), Assumption 2.8 holds with

c1 ≈ 1, c2 .
1

δ2
.

Proof. Clearly, we have c1 ≥ 1. Take any p,q ∈ C. For k = 1, . . . , N , we define
rk ∈ Yk by

R∗krk = Πh(θk(p− q)).

It is obvious that {rk} satisfies (2.9a) and (2.9b). By Proposition 4.1, we get

‖ divR∗krk‖2 . ‖ div(p− q)‖2 +
1

δ2
‖p− q‖2.

Summing the above equation over all k yields (2.9c) with c1 . 1 and c2 . 1/δ2.
REMARK 4.3. Lemma 4.2 cannot be applied to the nonoverlapping case (δ = 0) since

1/δ2 →∞ as δ → 0. On the other hand, in a finite difference discretization given in [7, 19], it
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can be proved that the nonoverlapping decomposition satisfies Assumption 2.8 with a similar
argument as in [19, Lemma 3.5].

Combining Theorem 3.5 and Lemma 4.2, we get the following result:
COROLLARY 4.4. For fixed τ > 0, Algorithm 1 with the domain decomposition (4.1)

converges pseudo-linearly at a rate γ with threshold ε > 0, where ε . |Ω|/δ2 and γ is
independent of |Ω|, H , h, and δ.

From Corollary 4.4, we can deduce several notable facts about Algorithm 1. As ε . |Ω|/δ2,
the proposed DDM converges as fast as a linear convergent algorithm until the energy error
becomes very small if δ is chosen large. Indeed, we will see in Section 5 that the energy
error decreases linearly to the machine error if δ is chosen such that |Ω|1/2/δ is less than
about 27. Moreover, since γ does not depend on |Ω|, H , h or δ, the linear convergence rate of
Algorithm 1, which dominates the convergence behavior, is the same regardless of |Ω|, δ, and
the number of subdomains. To the best of our knowledge, such an observation is new in the
field of DDMs. Usually, the linear convergence rate of additive Schwarz methods depends
on δ; see [27], for example. However, in our case, the value of δ affects only the threshold ε
but not the rate γ.

In the DDM described above, the local problems in Ω′s (s = 1, . . . ,N ) have the following
general form:

(4.3) min
rs∈Yh(Ω′s),q+(Rs)∗rs∈C

F (q + (Rs)∗rs) ,

where q ∈ Yh, Yh(Ω′s) is defined in the same manner as (4.1) and (Rs)∗: Yh(Ω′s)→ Yh is the
natural extension operator. Let ps = rs +Rsq. Then (4.3) is equivalent to

(4.4) min
ps∈Cs

{Fs(ps) := F ∗ (div(Rs)∗ps + gs)} ,

where Cs is the subset of Yh(Ω′s) defined by

Cs = {ps ∈ Yh(Ω′s) : |(ps)e| ≤ 1, ∀e ∈ Eh such that e is in the interior of Ω′s}

and

gs = div(I − (Rs)∗Rs)q.

Existing state-of-the-art solvers for (2.2) (see [9]) can be utilized to solve (4.4); we have

F ′s(ps) = Rs div∗ ((F ∗)′ (div(Rs)∗ps + gs)) .

REMARK 4.5. For unconstrained, strongly convex, vector-valued problems such as the
grad-div problem, one can obtain a stable decomposition such that c1 is dependent on δ
and c2 = 0 by using the discrete Helmholtz decomposition (see, e.g., [22, Lemma 5.8]). In
this case, a linear convergence rate depending on δ is obtained by the same argument as
Theorem 3.5. However, it seems that such a stable decomposition is not available in our case,
i.e., for constrained and non-strongly convex problem; see Table 1.1. Numerical experiments
presented in Section 5 will show the following phenomena: Algorithm 1 converges not linearly
but pseudo-linearly, i.e., the convergence rate deteriorates when F(p(n))−F(p∗) becomes
sufficiently small, and the linearly convergent part of Algorithm 1 does not depend on δ.

5. Applications. In this section, we introduce several applications of the proposed
method. We also provide numerical experiments which support our theoretical results pre-
sented above.
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(a) Peppers 512× 512. (b) Noisy image (PSNR: 19.11). (c) ROF, N = 16 × 16 (PSNR:
24.41).

(d) Cameraman 2048× 2048. (e) Noisy image (PSNR: 19.17). (f) ROF, N = 16 × 16 (PSNR:
25.35).

FIG. 5.1. Test images and their results of Algorithm 1 applied to (2.4) forN = 16× 16 with d/δ = 26.

All algorithms were implemented in C with MPI and performed on a computer cluster
composed of seven machines, where each machine is equipped with two Intel Xeon SP-
6148 CPUs (2.4GHz, 20C) and 192GB RAM. Two test images “Peppers 512 × 512” and
“Cameraman 2048× 2048” that we used in our experiments are displayed in Figures 5.1(a)
and (d). As a measurement of the quality of image restoration, we provide the PSNR (peak
signal-to-noise ratio); the PSNR of a corrupted image u ∈ Xh with respect to the original
clean image uorig ∈ Xh is defined by

PSNR(u) = 10 log10

(
MAX2|Ω|
‖u− uorig‖2

)
,

where MAX = 1 is the maximum possible pixel value of the image. In the following, we take
the side length of the elements h = 1 and denote the side length of Ω by d, i.e., d = |Ω|1/2
for square images such as in Figure 5.1. The scaled energy error α(F(p(n)) − F(p∗)) of
the nth iterate p(n) is denoted by ζn, where the minimum energy F(p∗) is computed by 106

iterations of FISTA [4].

5.1. The Rudin–Osher–Fatemi model. The Fenchel–Rockafellar dual problem of the
discrete ROF model (2.4) is stated as

(5.1) min
p∈C

{
F(p) :=

1

2λ
‖ divp + λf‖2

}
,

and one can obtain the Frechét derivative of F as

F ′(p) =
1

λ
div∗ (divp + λf) .
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(a) Peppers 512× 512, log-log plot. (b) Peppers 512× 512, normal-log plot.

(c) Cameraman 2048× 2048, log-log plot. (d) Cameraman 2048× 2048, normal-log plot.

FIG. 5.2. Decay of the relative energy error ζn/ζ0 of Algorithm 1 applied to (5.1) for d/δ = 2k (k =
5, 6, . . . , 9) withN = 8× 8.

The projection onto C can be easily computed by the pointwise Euclidean projection [18].
Therefore, (5.1) can be solved efficiently by, e.g., FISTA [4]. Note that for the case of (5.1),
the primal-dual relation (2.6) reduces to the following:

u∗ = f +
1

λ
divp∗,

where u∗ ∈ Xh solves (2.4).
For our experiments, test images shown in Figures 5.1(a) and (d) were corrupted by

additive Gaussian noise with mean 0 and variance 0.05; see Figures 5.1(b) and (e). The
parameter λ in (2.4) is chosen as λ = 10. In Algorithm 1, we set τ = 1/4. The local problems
in Ω′s, s = 1, . . . ,N , are solved by FISTA [4] with L = 8/λ and the stopping criterion

(5.2)
‖ div(r

(n+1)
s − r

(n)
s )‖2

|Ω′s|
≤ 10−18 or n = 1000.

We note that the parameter selection L = 8/λ is due to Proposition 2.3. The resulting
images for the case 16× 16 are given in Figures 5.1(c) and (f), and they show no trace on the
subdomain boundaries.

First, we observe how the convergence rate of Algorithm 1 is affected by d/δ. Figure 5.2
shows the decay of the relative energy error ζn/ζ0, for d/δ = 2k (k = 5, 6, . . . , 9), when
the number of subdomains is fixed by N = 8 × 8. As Figures 5.2(a) and (c) illustrate,
the threshold of the pseudo-linear convergence decreases as d/δ decreases, which verifies
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(a) Peppers 512× 512, log-log plot. (b) Peppers 512× 512, normal-log plot.

(c) Cameraman 2048× 2048, log-log plot. (d) Cameraman 2048× 2048, normal-log plot.

FIG. 5.3. Decay of the relative energy error ζn/ζ0 of Algorithm 1 applied to (5.1) forN = 2×2, . . . , 16×16
with d/δ = 26.

Corollary 4.4. Furthermore, in the cases when d/δ ≤ 27, the threshold is so small that the
behavior of Algorithm 1 is just as for linearly convergent algorithms. Thus, the proposed
method is as efficient as linearly convergent algorithms in practice. We also observe from
Figures 5.2(b) and (d) that the linear convergence rate of Algorithm 1 is independent of δ as
noted in Corollary 4.4.

Next, we consider the performance of the proposed DDM with respect to the number of
subdomains N . Figure 5.3 shows the decay of ζn/ζ0 when N varies from 2× 2 to 16× 16
with d/δ = 26. We readily see that the convergence behavior of Algorithm 1 is almost the
same regardless of N . Hence, we conclude that the convergence rate of Algorithm 1 does not
depend on N .

Finally, we compare the convergence behavior of the proposed method with two recently
developed DDMs for the ROF model [18, 19]. The following algorithms were used in our
experiments:

• ALG1: Algorithm 1, N = 8× 8, d/δ = 26.
• PDD: Primal DDM proposed in [18], N = 8× 8, L = 4.
• FPJ: Fast pre-relaxed block Jacobi method proposed in [19], N = 8× 8.

As shown in Figure 5.4, as the number of iterations increases, the convergence rate of ALG1
becomes eventually faster than those of PDD and FPJ, which were proven to be O(1/n2)-
convergent. We note that numerical results that verify the superior convergence properties of
PDD and FPJ compared to existing O(1/n)-convergent DDMs were presented in [18, 19].
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(a) Peppers 512× 512. (b) Cameraman 2048× 2048.

FIG. 5.4. Decay of the relative energy error ζn/ζ0 of various DDMs applied to (5.1),N = 8× 8.

REMARK 5.1. Even though the proposed method is based on finite element discretizations,
a direct comparison with methods based on finite difference discretizations such as FPJ is
possible by virtue of the equivalence relation presented in [18, Theorem 2.3].

5.2. The TV -H−1 model. Now, we consider the discrete TV -H−1 model (2.5). The
dual problem of (2.5) is given by

(5.3) min
p∈C

{
F(p) :=

1

2λ
‖ divp‖2K + 〈f, divp〉

}
,

where ‖v‖K = 〈Kv, v〉1/2, for v ∈ Xh. The Frechét derivative F ′(p) can be easily computed
as

F ′(p) =
1

λ
div∗(K divp + λf).

If we have a solution p∗ ∈ Yh of (5.3), then a solution u∗ ∈ Xh of (2.5) can be obtained by

u∗ = f +
1

λ
K divp∗.

Now, we present the numerical results of Algorithm 1 for (5.3). The corrupted test images
Figures 5.1(b) and (e) are used as f in (5.3). We set λ = 10. In Algorithm 1, the parameter τ
is chosen by τ = 1/4, and the local problems in Ω′s, s = 1, . . . ,N , are solved by FISTA [4]
with L = 64/λ and the stopping criterion (5.2). The parameter selection L = 64/λ is derived
from Proposition 2.3 and the Gershgorin circle theorem for K [21].

Figure 5.5 shows the decay of the relative energy error ζn/ζ0 for various values of d/δ
whenN = 8×8. We observe the same dependency of the convergence rate on d/δ as the ROF
case: Algorithm 1 behaves as a linearly convergent algorithm if d/δ ≤ 27, and the rate of linear
convergence is independent of δ. As Figure 5.6 indicates, the dependency of the convergence
rate of Algorithm 1 is independent ofN ; the convergence rates whenN = 2× 2, . . . , 16× 16
are almost the same. In conclusion, Corollary 4.4 is verified for the TV -H−1 model, as well
as the ROF model.

It is interesting to observe that the pseudo-linear convergence of Algorithm 1 is not
contaminated even in the case of a large condition number κ. While the condition number
of (2.5) is much larger than the one of (2.4) in general, the pseudo-linear convergence is evident
for both problems. The threshold of the pseudo-linear convergence presented in Theorem 3.5
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(a) Peppers 512× 512, log-log plot. (b) Peppers 512× 512, normal-log plot.

(c) Cameraman 2048× 2048, log-log plot. (d) Cameraman 2048× 2048, normal-log plot.

FIG. 5.5. Decay of the relative energy error ζn/ζ0 of Algorithm 1 applied to (5.3) for d/δ = 2k (k =
5, 6, . . . , 9) withN = 8× 8.

has an upper bound independent of κ as follows:

4c2|Ω|
κ
√
c1(c1 + κ−2)

≤ 4c2|Ω|
c1

.

Therefore, one can conclude that this observation is indeed reflected in Theorem 3.5.

6. Conclusion. We proposed an additive Schwarz method based on an overlapping
domain decomposition for total variation minimization. Contrary to the existing work [10], we
showed that our method is applicable to not only the ROF model but also to more general total
variation minimization problems. A novel technique using a descent rule for the convergence
analysis of the additive Schwarz method was presented. With this technique, we obtained the
convergence rate of the proposed method as well as the dependency of the rate on the condition
number of the model problem. In addition, we showed the pseudo-linear convergence property
of the proposed method, in which the convergence behavior of the proposed method is as for
linearly convergent algorithms if the overlapping width δ is large. Numerical experiments
verified our theoretical results.

Recently, the acceleration technique proposed in [4] was successfully applied to nonover-
lapping DDMs for the ROF model, and accelerated methods were developed [18, 19]. However,
it is still open how to adopt the acceleration technique to overlapping DDMs for general total
variation minimization.

As a final remark, we note that the convergence analysis in this paper can be easily applied
to either a continuous setting or a finite difference discretization with slight modification.
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(a) Peppers 512× 512, log-log plot. (b) Peppers 512× 512, normal-log plot.

(c) Cameraman 2048× 2048, log-log plot. (d) Cameraman 2048× 2048, normal-log plot.

FIG. 5.6. Decay of the relative energy error ζn/ζ0 of Algorithm 1 applied to (5.3) forN = 2×2, . . . , 16×16
with d/δ = 26.
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