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CONTINUOUS TIME INTEGRATION FOR CHANGING TYPE SYSTEMS∗

SEBASTIAN FRANZ†

Abstract. We consider variational time integration using continuous Galerkin-Petrov methods applied to
evolutionary systems of changing type. We prove optimal-order convergence of the error in a cGP-like norm and
conclude the paper with some numerical examples and conclusions.
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1. Introduction. Let us start with an example where the type of a partial differential
equation changes over the spacial domain and the problem is equipped with homogeneous
Dirichlet boundary conditions. For this purpose, let n ∈ {1, 2, 3} be the spatial dimension and
Ω ⊂ Rn be a bounded set partitioned into measurable, disjoint sets Ωell,Ωpar, and Ωhyp. In
Ωhyp, a hyperbolic wave equation for U = (U1, U2) is given,

∂tU1 + div(U2) = F1, ∂tU2 + grad(U1) = F2 in Ωhyp,

with some force term F = (F1, F2). We will come to the boundary conditions for the spatial
operators in a moment. In Ωpar, a parabolic heat equation is given,

∂tU1 + div(U2) = F1, U2 + grad(U1) = F2 in Ωpar,

and in Ωell, an elliptic reaction-diffusion equations completes the setting,

U1 + div(U2) = F1, U2 + grad(U1) = F2 in Ωell.

Each of the above equations can also be expressed in their derived second-order formulation for
U1, namely (∂2

t −∆)U1 = ∂tF1 − divF2 for the wave equation, (∂t −∆)U1 = F1 − divF2

for the heat equation, and (1−∆)U1 = F1 − divF2 for the reaction-diffusion equation.
Denoting by χD the characteristic function of a domain D ⊂ Ω and defining the linear

operators

M0 =

[
χΩhyp∪Ωpar

0
0 χΩhyp

]
, M1 =

[
χΩell

0
0 χΩpar∪Ωell

]
, A =

[
0 div

grad◦ 0

]
,

where ◦ indicates homogeneous Dirichlet boundary conditions with respect to Ω, we can write
the above equations in a condensed way as

(1.1a) (∂tM0 +M1 +A)U = F.

By defining A as above, we have included the boundary conditions at ∂Ω into A. All that is
left is an initial condition at t = 0 as we are only interested in t ≥ 0:

(1.1b) M0U(0+) = M0U0.
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Now we are faced with the question, under which conditions the above problem (1.1) has a
unique solution.

In the following we assume that U0 is inD(A). Besides this, we may derive a condition on
the operators from a much more general theory. Most of the classical linear partial differential
equations arising in mathematical physics can be written in a common operator form. It has
been shown in [7] that this is the form of an evolutionary problem, given by (1.1), where ∂t
stands for the derivative with respect to time, M0 : H → H, M1 : H → H are bounded
linear selfadjoint operators on some Hilbert space H, A : D(A) ⊂ H→ H is an unbounded
skew-selfadjoint operator on H, and F is a given source term.

We are interested in a unique solution U of the above equation. For this purpose let ρ > 0,
and define the weighted L2-function space

Hρ(R;H) :=

{
f : R→ H : f meas.,

∫
R
‖f(t)‖2H exp(−2ρt) dt <∞

}
.

The space Hρ(R;H) is a Hilbert space endowed with the natural inner product given by

〈f, g〉ρ :=

∫
R
〈f(t), g(t)〉 exp(−2ρt) dt,

for all f, g ∈ Hρ(R;H), where 〈f(t), g(t)〉 is the inner product of H and ‖·‖H its associated
norm. We obtain a norm by setting ‖f‖2ρ := 〈f, f〉ρ. The associated weighted Hk-function
spaces are denoted by Hk

ρ (R;H), for k ∈ N. Now from [7, Theorem (solution theory)], the
following result can be concluded: If there exists a ρ0 > 0 and a γ > 0 such that for all ρ ≥ ρ0

and x ∈ H,

〈(ρM0 +M1)x, x〉 ≥ γ 〈x, x〉 = γ‖x‖2H,(1.2)

then there exists a unique solution U ∈ Hρ(R,H) for all right-hand sides F ∈ Hρ(R,H).
Furthermore, by the above condition 〈M0x, x〉 ≥ 0, it follows that there exists a root M1/2

0 of
M0. Note that the theory presented in [7] deals with vanishing initial conditions at t→ −∞.

COROLLARY 1.1. Under condition (1.2) and if

F |R≥0
is continuous and F (t) = 0, t < 0,(1.3a)

U0 ∈ dom(A),(1.3b)

and

(M1 +A)U0 = F (0+),(1.3c)

then problem (1.1) has a unique solution U with

U(0+) = U0.

Proof. Equation (1.1) stated as a problem on R reads as

(∂tM0 +M1 +A)U = F + δ0M0U0,

where the initial condition M0U(0+) = M0U0 is included via the delta distribution δ0 at
t = 0 on the right-hand side.
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Let H0 denote the Heaviside function with the jump at t = 0. We obtain for U −H0U0

the evolutionary problem

(∂tM0 +M1 +A)(U −H0U0) = F − (M1 +A)H0U0 =: F̃ .

By (1.3) we have F̃ (t) = 0, t < 0, F̃ (0) = 0, and F̃ is continuous. Now [10] yields that the
problem for U −H0U0 has a unique solution in H1

ρ(R,H). Thus, U is the unique solution
of (1.1) and U(0+) = U0.

In the following we assume conditions (1.2) and (1.3) to be fulfilled. Then U0 are initial
data on the whole domain Ω, explicitly also in the elliptic and parabolic regime. But due to
the compatibility condition (1.3) they cannot be chosen independently of F .

In [6], this class of changing type problems was investigated numerically using a discon-
tinuous Galerkin approach for the discretisation in time. Here we want to apply a continuous
approach, namely the continuous Galerkin-Petrov method [1, 2, 3, 4, 8, 11].

Note that, like in [6], we deal in this paper with problems that have a changing type
over the given domain and could be rewritten into second-order form as shown above. But
then transmission conditions would have to be stated, which are automatically included in the
first-order formulation. This is a very useful feature of the general approach, and it allows
us to combine models from different parts of physics into one well-posed problem. We want
to emphasise that the time discretisation presented and analysed in this paper holds for all
problems of the above general class of first-order problems, only the spatial discretisation has
to be adapted to the operator A.

For our problem with the operator A, the Hilbert space H and D(A) can now be specified
to

H = L2(Ω)⊗ (L2(Ω))n and D(A) = H1
0 (Ω)⊗Hdiv(Ω).

REMARK 1.2. The solution theory requires A to be skew-selfadjoint, which in turn re-
stricts the choice of boundary data. Some simple choices are homogeneous Dirichlet boundary
conditions in the first component, encoded by grad◦ in the above operator A, homogeneous
Neumann boundary conditions in the second component, encoded by div◦, or periodic bound-
ary conditions in both components, encoded by grad# and div#. Inhomogeneous conditions
can always be transformed into homogeneous ones by a substitution altering the right-hand
side of the problem.

The paper is organised as follows. The precise formulation of the considered method is
stated in Section 2, while Section 3 deals with the existence of discrete solutions. In Section 4
we present error estimates, and Section 5 provides some numerical examples. Finally, Section 6
contains concluding remarks.

2. Numerical method. The discrete variational form of equation (1.1) uses a decompo-
sition of [0, T ] into M disjoint intervals Im = (tm−1, tm] of length τm = tm − tm−1, for
m ∈ {1, . . . ,M}. Furthermore, let Ω be discretised into Ωh by a regular simplicial mesh
that resolves the sets Ωell, Ωpar, and Ωhyp, i.e., each of these subdomains is a union of mesh
cells, and let h be the maximal diameter of the cells of Ωh. Furthermore, let r, k ≥ 1 denote
polynomial degrees. Then the piecewise polynomial function spaces for the trial and test
functions, respectively, are given by

Uτh := {u ∈ H1
ρ([0, T ],H) : u

∣∣
Im
∈ Pr(Im, V1 ⊗ V2),m ∈ {1, . . . ,M}},

Vτh := {v ∈ Hρ([0, T ],H) : v
∣∣
Im
∈ Pr−1(Im, V1 ⊗ V2),m ∈ {1, . . . ,M}},
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where the spatial spaces are

V1 :=
{
v ∈ H1

0 (Ω) : v|σ ∈ Pk(σ)∀σ ∈ Ωh
}
,

V2 := {w ∈ Hdiv(Ω) : w|σ ∈ RTk−1(σ)∀σ ∈ Ωh} ,

and therefore

V1 ⊗ V2 ⊂ D(A) ⊂ H.

Here Pk(σ) is the space of polynomials of degree up to k on the cell σ of Ωh, and RTk−1(σ)
is the Raviart-Thomas-space defined by

RTk−1(σ) = (Pk−1(σ))n + xPk−1(σ) ⊂ Pk(σ)n.

Note that we retain the regularity in space of the trial functions also for the test functions in
order to define a Galerkin method in space. Furthermore, if the mesh consists of quadrilateral
or hexahedral cells, then in the above definitions and statements, the polynomial space Pk(σ)
can be replaced by a mapped Qk-space including all polynomials of total degree k over a
reference element mapped onto σ. If the mesh is a combination of both types of cells, then a
combination of spaces also works with a suitable mapping ensuring continuity.

Let us localise in addition the scalar product in Hρ(R,H) to the time intervals Im by

〈f, g〉ρ,m :=

∫
Im

〈f(t), g(t)〉 exp(−2ρt) dt,

which induces the norm ‖f‖2ρ,m := 〈f, f〉ρ,m. Then the variational formulation using the
continuous Galerkin-Petrov method reads: Find Uτh ∈ Uτh such that for all V τh ∈ Vτh and
m ∈ {1, . . . ,M},

Bm(Uτh , V
τ
h ) := 〈(∂tM0 +M1 +A)Uτh , V

τ
h 〉ρ,m = 〈F, V τh 〉ρ,m,(2.1a)

where

Uτh (0) = IU0(2.1b)

is the initial value. Here I = (I1, I2) denotes the spatial interpolation operator, where
I1 : Hρ([0, T ], H1(Ω))→ Hρ([0, T ], V1) is locally the Scott-Zhang interpolant on each cell σ
(see [9] for a precise definition), and I2 : Hρ((0, t), H(div,Ω)∩(Ls(Ω))n)→ Hρ([0, T ], V2),
with s > 2, is the standard interpolator defined via moments; see [5]. Note that it is appropriate
to include the full initial conditions into the discrete problem; see Corollary 1.1.

3. Existence of a discrete solution. Let us start by defining Πτ
h as the orthogonal L2-

projection with respect to 〈·, ·〉ρ into the test space Vτh , i.e.,

〈U −Πτ
hU,W

τ
h 〉ρ = 0, for all W τ

h ∈ Vτh ,(3.1)

and R and N as the projectors onto the range and nullspace of M0, respectively, and

|||Uτh |||2ρ :=
1

2
‖M1/2

0 Uτh (T )‖2He−2ρT + ‖NUτh (0)‖2H + γ‖Πτ
hU

τ
h‖2ρ.

LEMMA 3.1. The seminorm |||Uτh |||ρ is a norm on Uτh .
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Proof. With Uτh being finite, we only have to show that |||Uτh |||ρ = 0 implies Uτh = 0.
Thus, let us assume that |||Uτh |||ρ = 0. Then it follows immediately that Πτ

hU
τ
h = 0, and due

to continuity, one degree of freedom is left for Uτh . On each time interval, Uτh is a multiple
of a weighted Legendre polynomial that is orthogonal to V τh with respect to 〈·, ·〉ρ. From
‖NUτh (0)‖H = 0, we conclude

NUτh (0) = 0,

and therefore NUτh = 0 because the Legendre polynomial is nonzero at the left boundary.
From ‖M1/2

0 Uτh (T )‖H = 0, we have similarly

RUτh (T ) = 0,

and therefore RUτh = 0 because the Legendre polynomial is nonzero at the right boundary.
With

Uτh = RUτh +NUτh = 0,

we arrive at the assertion.
LEMMA 3.2. It holds that

1

2
‖M1/2

0 Uτh (T )‖2He−2ρT + γ‖Πτ
hU

τ
h‖2ρ ≤

M∑
m=1

Bm(Uτh ,Π
τ
hU

τ
h ) +

1

2
‖M1/2

0 IU0‖2H.

Proof. Let us consider an arbitrary interval Im. Then it holds that

Bm(Uτh ,Π
τ
hU

τ
h ) = 〈∂tM0U

τ
h , U

τ
h 〉ρ,m + 〈M1Πτ

hU
τ
h ,Π

τ
hU

τ
h 〉ρ,m,

where the skew-symmetry of A and the definition of Πτ
h was used. For the first term we apply

integration by parts and obtain due to the exponential weight

〈∂tM0U
τ
h , U

τ
h 〉ρ,m = ρ〈M0U

τ
h , U

τ
h 〉ρ,m +

1

2
‖M1/2

0 Uτh (t)‖2He−2ρt
∣∣tm
tm−1

.

By the L2-orthogonality (3.1), it follows that

〈M0U
τ
h , U

τ
h 〉ρ,m = 〈M0(Uτh −Πτ

hU
τ
h ), Uτh−Πτ

hU
τ
h 〉ρ,m + 〈M0Πτ

hU
τ
h ,Π

τ
hU

τ
h 〉ρ,m

≥ 〈M0Πτ
hU

τ
h ,Π

τ
hU

τ
h 〉ρ,m,

and therefore

〈∂tM0U
τ
h , U

τ
h 〉ρ,m ≥ 〈ρM0Πτ

hU
τ
h ,Π

τ
hU

τ
h 〉ρ,m +

1

2
‖M1/2

0 Uτh (t)‖2He−2ρt
∣∣tm
tm−1

.

With the general existence assumption ρM0 +M1 ≥ γ and M0 ≥ 0, we obtain

Bm(Uτh ,Π
τ
hU

τ
h ) ≥ γ‖Πτ

hU
τ
h‖2ρ,m +

1

2
‖M1/2

0 Uτh (t)‖2He−2ρt
∣∣tm
tm−1

.

By summing up over the intervals, the statement follows.
It follows that

|||Uτh |||2ρ ≤
M∑
m=1

Bm(Uτh ,Π
τ
hU

τ
h ) +

1

2
‖M1/2

0 IU0‖2H + ‖NUτh (0)‖2H

=

M∑
m=1

〈f,Πτ
hU

τ
h 〉ρ,m +

1

2
‖M1/2

0 IU0‖2H + ‖NUτh (0)‖2H

≤ 1

2γ
‖f‖2ρ +

1

2
|||Uτh |||2ρ +

1

2
‖M1/2

0 IU0‖2H +
1

2
‖NIU0‖2H,
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and therefore

|||Uτh |||2ρ ≤
1

γ
‖f‖2ρ + ‖M1/2

0 IU0‖2H + ‖NIU0‖2H.(3.2)

This shows uniqueness, existence, and continuous dependence on f and U0 of the discrete
solution Uτh .

4. Error-estimation. Let us start by stating some interpolation error estimates.

Interpolation in time. Let us define Pr : H1
ρ([0, T ],H) → H1

ρ([0, T ],H), with
Pru

∣∣
Im
∈ Pr(Im,H) for all m ∈ {1, . . . ,M}, as the interpolation operator fulfilling lo-

cally for all m and v ∈ H1
ρ([0, T ],H),

(Prv − v)(tm−1) = 0, (Prv − v)(tm) = 0,

〈Prv − v, w〉ρ,m = 0 ∀w ∈ Pr−2(Im,H).

Although we have weighted norms and scalar products, the standard interpolation error
estimate

‖Prv − v‖ρ ≤ Cτ r+1‖∂r+1
t v‖ρ

holds for v ∈ Hr+1
ρ ([0, T ],H), where here and further on, C > 0 denotes a generic constant

and τ := max{τm}.
Interpolation in space. As previously stated, we use I = (I1, I2) as spatial interpola-

tion operator, where the first component

I1 : Hρ([0, T ], H1(Ω))→ Hρ([0, T ], V1)

is the Scott-Zhang interpolant and the second component

I2 : Hρ((0, t), H(div,Ω) ∩ (Lσ(Ω))n)→ Hρ([0, T ], V2),

with σ > 2, is the standard Raviart-Thomas interpolator. Here it holds (see [9]) that for all
v ∈ H1

0 (Ω) ∩Hs(Ω),

‖v − I1v‖0 ≤ Chs‖v‖r, ‖grad(v − I1v)‖0 ≤ Chs−1‖v‖s,

with 1 ≤ s ≤ k + 1, ‖v‖s denotes the Hs(Ω)-norm, and for all q ∈ Hs(Ω) such that
div q ∈ Hs(Ω), we have (see [5])

‖q − I2q‖0 ≤ Chs‖q‖s, ‖div(q − I2q)‖0 ≤ Chs‖div q‖s,

with 1 ≤ s ≤ k.

Error analysis. Note that we have for all V τh ∈ Vτh the Galerkin orthogonality

Bm(U − Uτh , V τh ) = 0(4.1)

for the solution U ∈ H1
ρ([0, T ],H) of (1.1) and Uτh ∈ Uτh of (2.1). We now want to estimate

the error U − Uτh and decompose it into U − Uτh = η + ξ, where

η = η1 + η2, η1 = U − PrU, η2 = Pr(U − IU), ξ = PrIU − Uτh ∈ Uτh .
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With (2.1b) it follows that

ξ(0) = PrIU(0)− Uτh (0) = IU(0)− IU(0) = 0.

LEMMA 4.1. For any m ∈ {1, . . . ,M} and V τh ∈ Vτh it holds that

〈(∂tM0 +M1 +A)ξ, V τh 〉ρ,m ≤ (‖(2ρM0 +M1)η‖ρ,m + ‖Aη‖ρ,m) ‖V τh ‖ρ,m.(4.2)

Proof. Using the Galerkin orthogonality (4.1), we obtain the error identity

〈(∂tM0 +M1 +A)ξ, V τh 〉ρ,m = −〈(∂tM0 +M1 +A)η, V τh 〉ρ,m.
Using integration by parts and the properties of Pr, we obtain for all w ∈ Vτh and
v ∈ H1

ρ([0, T ],H) that

〈∂tM0(v − Prv), w〉ρ,m = 2ρ〈M0(v − Prv), w〉ρ,m − 〈v − Prv, ∂tM0w〉ρ,m
+ 〈v − Prv, w〉 e−2ρt

∣∣tm
tm−1

= 2ρ〈M0(v − Prv), w〉ρ,m.
Thus, we get the error equation

〈(∂tM0 +M1 +A)ξ, V τh 〉ρ,m = −〈(2ρM0 +M1 +A)η, V τh 〉ρ,m,(4.3)

from which (4.2) follows by the Cauchy-Schwarz inequality.
From the error equation (4.3) and the stability estimate (3.2), we obtain

γ‖Πτ
hξ‖2ρ +

1

2
‖M1/2

0 ξ(T )‖2He−2ρT ≤ 1

γ
(‖(2ρM0 +M1)η‖2ρ + ‖Aη‖2ρ)(4.4)

by substituting Uτh := ξ and f := −(2ρM0 +M1 +A)η and noting that ξ(0) = 0.
In order to simplify the representation of the main result, let us define

Hk := Hk(Ω)⊗ (Hk(Ω))n and ‖U‖2Hk,ρ :=

∫ T

0

‖U(t)‖2k exp(−2ρt) dt.

THEOREM 4.2. Assume that the solution U of (1.1) has the regularity

U ∈ H1
ρ([0, T ];Hk) ∩Hr+1

ρ ([0, T ];H)

as well as

AU ∈ Hρ([0, T ];Hk) ∩Hr+1
ρ ([0, T ];H).

Then we have for the error of the numerical solution Uτh of (2.1) that

|||U − Uτh |||ρ ≤ C
(
τ r+1

(
‖∂r+1
t U‖ρ + ‖∂r+1

t AU‖ρ
)

+ hk
(
‖U‖Hk,ρ + ‖AU‖Hk,ρ + ‖U(T )‖Hke−ρT + ‖NU0‖Hk

) )
.

Proof. By the decomposition of the norm and the error, we have to estimate

‖Πτ
h(U − Uτh )‖ρ ≤ ‖Πτ

hη1‖ρ + ‖Πτ
hη2‖ρ + ‖Πτ

hξ‖ρ,
‖M1/2

0 (U − Uτh )(T )‖H ≤ ‖M1/2
0 η1(T )‖H + ‖M1/2

0 η2(T )‖H + ‖M1/2
0 ξ(T )‖H

= ‖M1/2
0 η2(T )‖H + ‖M1/2

0 ξ(T )‖H ,
‖N(U − Uτh )(0)‖H = ‖N(U − IU)(0)‖H .
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Using the above interpolation error estimates, we obtain

‖Πτ
hη1‖ρ = ‖η1‖ρ ≤ Cτ r+1‖∂r+1

t U‖ρ,
‖Πτ

hη2‖ρ = ‖η2‖ρ ≤ C‖U − IU‖ρ ≤ Chk‖U‖Hk,ρ,

‖M1/2
0 η2(T )‖H ≤ Chk‖U(T )‖Hk ,

‖N(U − IU)(0)‖H ≤ Chk‖NU0‖Hk .

For the remaining two terms we apply (4.4) and find

‖Πτ
hξ‖ρ ≤ C

(
τ r+1‖∂r+1

t U‖ρ + hk‖U‖Hk,ρ + τ r+1‖∂r+1
t AU‖ρ + hk‖AU‖Hk,ρ

)
and similarly for ‖M1/2

0 ξ(T )‖H . Combining these results proves the error estimate.
REMARK 4.3. In Theorem 4.2 we assumed a slightly higher regularity for U than what is

actually needed. Instead of assuming U ∈ H1
ρ([0, T ],Hk) for the point evaluation at t = T ,

the weaker assumption U ∈W 0,∞
ρ ([0, T ],Hk) suffices. But in order to prove that claim from

conditions for the right-hand side, the easiest way is to prove the above regularity and use
Sobolev’s embedding theorem.

REMARK 4.4. In this section we presented an error analysis for the fully discrete problem
of system of changing type. At the same time the result holds for all operators M0 and M1

fulfilling assumption (1.2). The analysis can also easily be adapted to general evolutionary
problems having a different spatial operator A by defining suitable discrete spatial function
spaces and the corresponding interpolation operators and providing sufficient interpolation
error estimates.

THEOREM 4.5. In the case of M0 > 0, e.g., for a purely hyperbolic problem, we can also
give a convergence result in the weighted L2-type norm ‖·‖ρ. Under the same conditions as in
Theorem 4.2, we have

‖U − Uτh‖ρ ≤ C
√

1 + T

[
τ r+1

(
‖∂r+1
t U‖ρ + ‖∂r+1

t AU‖ρ
)

+ hk
(
‖U‖Hk,ρ + ‖AU‖Hk,ρ + ‖∂tU‖Hk,ρ + ‖NU0‖Hk

) ]
.

Proof. For this result we need
• a local norm equivalence for all W τ

h ∈ Uτh ,

‖W τ
h ‖2ρ,m ≤ C1

(
γ‖Πτ

hW
τ
h ‖2ρ,m + τm‖M1/2

0 W τ
h (tm)‖2He−2ρtm

)
,

with a constant C1 independent of τm and W τ
h , that holds true because Πτ

hW
τ
h −W τ

h

is a multiple of a weighted Legendre polynomial of degree r, tm is not a zero of it,
and the scaling with respect to τm of the two terms is the same;

• a local estimate of the discrete error ξ with a localisation of the norms to the interval
[0, tm] instead of [0, T ],

‖ξ‖2ρ,[0,tm] +
1

2
‖M1/2

0 ξ(tm)‖2He−2ρtm

≤ C
[
τ2(r+1)

(
‖∂r+1
t U‖2ρ,[0,tm] + ‖∂r+1

t AU‖2ρ,[0,tm]

)
+h2k

(
‖U‖2Hk,ρ,[0,tm]+‖AU‖2Hk,ρ,[0,tm]+‖U(tm)‖2Hke−2ρT +‖NU0‖2Hk

)]
,

which follows by the same arguments as in Theorem 4.2;
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• a Sobolev embedding for tn < tm and U ∈ H1
ρ([tn, tm],H),

‖U(tm)‖2He−2ρtm ≤ Cinv
(

1

tm − tn
‖U‖2ρ,[tn,tm] + (tm − tn)‖∂tU‖2ρ,[tn,tm]

)
,

with a constant Cinv independent of U , tn, and tm.
Then it follows that

‖ξ‖2ρ ≤ C1

(
γ‖Πτ

hξ‖2ρ +

M∑
m=1

τm‖M1/2
0 ξ(tm)‖2He−2ρtm

)

≤ C1(1 + T )

[
τ2(r+1)

(
‖∂r+1
t U‖2ρ + ‖∂r+1

t AU‖2ρ
)

+ h2k

((
1 +

Cinv
T

)
‖U‖2Hk,ρ + ‖AU‖2Hk,ρ

+ Cinv‖∂tU‖2Hk,ρ + ‖NU0‖2Hk

)]
,

where the Sobolev embedding for ‖U(T )‖Hke−ρT uses the whole interval [0, T ] and for
‖U(tm)‖Hke−ρtm only [tm−1, tm], as well as τm ≤ 1. Together with the interpolation error
bound

‖η‖ρ ≤ ‖η1‖ρ + ‖η2‖ρ ≤ C
(
τ r+1‖∂r+1

t U‖ρ + hk‖U‖Hk,ρ

)
,

the claim follows.

5. Numerical examples. We consider two examples with unknown solutions. Simu-
lations with known smooth solutions were also performed, and the theoretical convergence
orders were observed. The following two examples show a more realistic behaviour in the
case of systems of changing type. The fact that both examples have initial values zero is
not a restriction. We look into the convergence behaviour also with respect to the weighted
L2-norm ‖·‖ρ in addition to the |||·|||ρ-norm, in order to compare the results with those of
the discontinuous Galerkin method from [6]. In the finite discrete setting, both norms are
equivalent. All computations were done in the finite-element framework SOFE1.

5.1. 1+1d example. Let us consider a first example with one spatial dimension and a
combination of a hyperbolic and an elliptic region. To be more precise, let Ω = [−π, π],
Ωhyp = [−π, 0], and Ωell = [0, π]. As final time, we set T = 4π. The problem is stated as[

∂t

[
χΩhyp

0
0 χΩhyp

]
+

[
χΩell

0
0 χΩell

]
+

[
0 ∂x
∂̊x 0

]]
U = F,(5.1)

with homogeneous Dirichlet conditions for the first component of U : R× R→ R× R, the
initial condition U0 = 0, and a right-hand side F (t, x) = (f(t, x), g(t, x)) · χ≥0(t), where
χ≥0(t) is the characteristic function of the non-negative time line, and

f(t, x) =
1

5
sin(3t) + min{t, π} cos(3x), g(t, x) = sin(t)

(
1− x2

π2

)
.

Thus, F is continuous on R, and it holds that F (t) = 0 for t ≤ 0. Therefore, the solution
theory of [7] gives the existence of a unique solution U that is continuous in time. Figure 5.1

1github.com/SOFE-Developers/SOFE
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FIG. 5.1. Solution of the problem (5.1). First component (left) and second component (right).

TABLE 5.1
Errors and rates for example (5.1).

cGP-method dG-method

M = 2N |||Uref − Uτh |||ρ ‖Uref − Uτh‖ρ,[0,T ] ‖Uref − Uτh‖ρ,[0,T ]

k = 2, r = 1

256 2.120e-02 8.890e-04 1.808e-04
512 5.746e-03 1.88 3.136e-04 1.50 7.751e-05 1.22

1024 1.787e-03 1.68 1.380e-04 1.18 3.496e-05 1.15
2048 7.036e-04 1.35 6.739e-05 1.03 1.580e-05 1.15

k = 3, r = 2

256 8.806e-04 1.05 1.187e-04 6.058e-05
512 4.163e-04 1.08 5.489e-05 1.11 2.642e-05 1.20

1024 1.906e-04 1.13 2.492e-05 1.14 1.137e-05 1.22
2048 8.581e-05 1.15 1.114e-05 1.16 4.669e-06 1.28

displays plots of the components of the solution in the domain. Note that the first component
has a kink along x = 0, i.e., it is continuous but not differentiable in x. As mesh we use an
equidistant mesh of N cells in Ω and M cells in [0, T ]. In order to calculate the errors, we
use a reference solution Uref instead of the unknown solution U . The reference solution is
computed on a 4096× 2048 mesh with polynomial degrees k = 4 and r = 3.

Table 5.1 shows the results for different values of M and N and different polynomial
degrees k and r. We let k = r + 1 as the theory gives for smooth U the convergence order
min{k, r + 1} if N and M are proportional. For the continuous Galerkin-Petrov method, we
observe only a convergence rate between 1 and 2 in both norms. Increasing the polynomial
degree reduces the error, but does not improve the rate much. A reason for this behaviour could
be that U is not smooth enough for the error estimates to hold due to jumping coefficients
in space and a non-differentiable right-hand side. Unfortunately, the exact solution for this
problem and thus its precise regularity are unknown.

For comparison, we also computed approximations with the discontinuous Galerkin
method from [6] that uses globally discontinuous piecewise polynomials of degree r in time
and the same approximation in space as the method described in this paper. The errors given
in the remaining columns show a similar behaviour with convergence rates between 1 and 2.
Nevertheless, the errors are smaller for the discontinuous approach.
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FIG. 5.2. First component of U at times t = 5`/16, for ` ∈ {1, . . . , 6}, (top left to bottom right) of the
problem (5.2).

TABLE 5.2
Errors ‖Uref − Uτh‖ρ,[0,T ] and rates for example (5.2).

cGP-method dG-method

M = 2N |||Uref − Uτh |||ρ ‖Uref − Uτh‖ρ,[0,T ] ‖Uref − Uτh‖ρ,[0,T ]

k = 2, r = 1

16 3.989e-02 1.961e-02 7.821e-03
32 1.972e-02 1.02 9.199e-03 1.09 3.018e-03 1.37
64 9.435e-03 1.06 3.751e-03 1.29 8.813e-04 1.78
96 5.603e-03 1.29 1.324e-03 1.50 2.920e-04 1.59

k = 3, r = 2

16 1.041e-02 5.499e-03 2.790e-03
32 3.689e-03 1.50 1.435e-03 1.94 6.385e-04 2.13
64 1.248e-03 1.56 4.430e-04 1.70 2.248e-04 1.51

5.2. 1+2d example. As a second example we consider the last example of [6]. Let
T = 5.2, Ω = (0, 1)2 ⊂ R2, Ωhyp =

(
1
4 ,

3
4

)2
, and Ωell = Ω \ Ω̄hyp The problem is given by[

∂t

[
χΩhyp

0
0 χΩhyp

]
+

[
χΩell

0
0 χΩell

]
+

[
0 div

grad◦ 0

]]
U =

[
f
0

]
,(5.2)

where

f(t,x) = 2 sin(πt) · χR<1/2×R(x).

Figure 5.2 displays some snapshots of the first component of the solution
U : R× R2 → R× R2, approximated by a numerical simulation. Again we use equidis-
tant meshes with N cells in each dimension of space and M cells in [0, T ]. As reference
solution Uref replacing the unknown exact solution, we use an approximation calculated with
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M = 192, N = 96, k = 3, r = 2, and M = 128, N = 64, k = 4, r = 3, respectively.
In Table 5.2, the results are shown. Similarly to the previous example we do not achieve
the optimal convergence order for both methods. Here the data and the right-hand side have
jumps along interior lines, which reduces the maximum regularity of the solution. Again the
discontinuous Galerkin method has smaller errors.

6. Conclusions. The continuous solution of an evolutionary system with continuous
right-hand side can be approximated by several methods. Here we investigated the continuous
Galerkin-Petrov method that has optimal convergence order for smooth solutions in the |||·|||ρ-
norm. The benefit of the continuous method compared to the discontinuous Galerkin method
is continuity, which implies a non-dissipative behaviour. In our examples with unknown
solutions, which are probably not smooth enough, the discontinuous Galerkin method is
slightly better. Furthermore, these examples show that an increase of the polynomial degree
in space beyond 2 and in time beyond 1 gives no huge benefit. This is different for smooth
solutions—here both methods achieve the high theoretical convergence orders.
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sions on the existence of solutions for evolutionary problems and the anonymous reviewer for
the helpful comments. Also thanks goes to L. Ludwig for providing SOFE.
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