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AN UNCONDITIONALLY STABLE SEMI-IMPLICIT CUTFEM FOR AN
INTERACTION PROBLEM BETWEEN AN ELASTIC MEMBRANE AND AN

INCOMPRESSIBLE FLUID∗

KYLE DUNN†‡, ROGER LUI‡, AND MARCUS SARKIS‡

Abstract. In this paper we introduce a finite element method for the Stokes equations with a massless immersed
membrane. This membrane applies normal and tangential forces affecting the velocity and pressure of the fluid.
Additionally, the points representing this membrane move with the local fluid velocity. We design and implement a
high-accuracy cut finite element method (CutFEM) which enables the use of a structured mesh that is not aligned
with the immersed membrane, and we formulate a time discretization that yields an unconditionally energy stable
scheme. We prove that the stability is not restricted by the parameter choices that constrained previous finite element
immersed boundary methods and illustrate the theoretical results with numerical simulations.
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1. Introduction. Fluid dynamics problems with immersed boundaries have arisen in
many real world scenarios such as cardiac blood flow [40, 42] and cell mechanics [2]. Two
prevalent ideas are the immersed boundary method introduced by Peskin [41] and the immersed
interface method by LeVeque and Li [31, 32]. These are both finite difference methods
developed for very involved problems. We note that the immersed interface method was also
extended to the finite element method by imposing flux conservation and continuity of the
solution strongly at certain points of Γ; see [1, 11, 17, 18, 21, 22, 26, 27, 33, 34]. In the
immersed boundary method, the interface applies a local force when computing the fluid
velocity and pressure globally at each time step. The right-hand side function is defined
only on the interface and contains a Dirac delta function whose main purpose is to pass
information between Eulerian and Lagrangian coordinates. Peskin’s use of a finite difference
method requires a smoothing of the effects of the force applied by the membrane. Boffi and
Gastaldi extended these ideas to the finite element method in [5]. In their work, a variational
formulation in weak form is introduced, and the action of the forcing function, due to bending
and stretching, is now written as an integral over the immersed membrane. One can also show
that when the problem is written in the strong form, the force applied by the membrane to
the fluid is equal to the jump in the normal stress [29] of the fluid across the membrane. The
conditional energy stability of the method proposed in [5] was proved later in [6].

The framework of our finite element method begins with Nitsche’s formulation [39] in
order to weakly impose Dirichlet boundary conditions on fitted meshes. In [23], Nitsche’s
formulation was extended to the case where the domain boundary does not align with the
underlying finite element mesh. In our work, we employ one particular fictitious domain finite
element method known as CutFEM [8, 9, 12, 13], which allows us to divide the global domain
into two non-overlapping subdomains. This technique not only separates the stress on each
side, but also allows us to weakly impose a condition on the jump of the normal derivative
in lieu of the prescribed forcing function in the earlier work. Our numerical experiments
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show that optimal spatial convergence can be obtained using CutFEM when the interface is
described by a static, smooth parameterization.

CutFEM was implemented for the Stokes equation with an immersed boundary and a
P1-iso-P2 element in [24], where Hansbo et al. use a known a priori level set method to track
the interface. In that article it is noted that the optimality of their approach is independent of
the interface representation, which moves with a prescribed velocity. Some additional work
has been done on problems with a known interface velocity [25]. Our approach focuses on
the movement of the interface not known a priori. In other words, we let the interface move
with the velocity of the fluid, which is not known prior to solving the system at each time
step. Recently, this approach was considered in [16], wherein the interface was considered
as the zero level set of the function that is the solution of a pure advective partial differential
equation with the vector field equal to the fluid velocity. Here in this paper, we implement a
Q2-P1 time-depedent Stokes element [28, 30, 35, 36, 44] and track the immersed boundary
by updating the position of a fixed number of points sampled from the initial curve. One of
the contributions of our work here is the semi-implicit discretization of the force term and
the corresponding energy estimates for this fluid-membrane problem. As can be seen on
the right-hand side of (3.2), the implicitness of a fully-implicit method would appear in two
places: a) the position of the interface at time tn+1, which is needed for integration, and b) the
interface deformation, which depends on the velocity at tn+1. The idea of the semi-implicit
method is to make the method explicit in a) and implicit via extrapolation in b). This idea can
be found in general free-boundary problems such as in [19]; see also [3, 38, 43].

Using techniques similar to those presented in [3, 19, 38, 43], we show that our method is
energy stable on the finite difference immersed boundary method. We believe that the method
presented in this paper can be extended to time-depedent two-phase flows using results from
static interface problems with unfitted meshes for two-phase flows, which has been used by
many groups; see, e.g., [4, 9, 14, 15].

This paper is organized as follows. In Section 2 the model is derived, and the strong
formulation of the spatially continuous problem is introduced. Then in Section 3 we look
into the time discretization of the problem and prove stability results, building to the fully
discretized problem. In Section 4 we introduce the necessary notation and spaces of functions
en route to defining our finite element methods. We proceed to prove energy stability of the
proposed finite element problem, which is unconditional for our semi-implicit method and
yields a CFL-like condition for the explicit method. The results of some numerical tests are
shown and discussed in Section 5, and we draw conclusions in Section 6.

2. Model formulation. Consider a domain Ω in Rd, d = 2, 3, which can be any Lips-
chitz domain. For simplicity, we will define Ω := (0, 1)2. The following equations model
an elastic material inside Ω using the time-dependent incompressible Stokes equations. The
stress tensor is defined by T := −µε(u) + Ip, where ε(u) = 1

2 (∇u+ (∇u)T ) and p is the
pressure. To reduce notational clutter, define µ to be twice the traditional dynamic viscosity.
We assume that µ > 0 in order to impose proper boundary and interface conditions based on
integration by parts of the viscous term. Inside Ω there will be a closed curve Γ representing a
massless, elastic interface between two non-overlapping subdomains Ω1 and Ω2. Throughout
this paper, we let Ω1 denote the region exterior to the curve Γ such that ∂Ω1 = ∂Ω ∪ Γ and
Ω2 denote the interior region encapsulated by Γ. Throughout this work, µ is assumed to be
constant. We note that our results, with some minor modifications, hold also for the case where
µ jumps across Γ and varies mildly inside each Ωi; see [11, 14, 24] and Remark 4.4.

The description of the interface Γ and the model for the jump of the stress across Γ are
based on the immersed boundary method; see Peskin [41] and Boffi et al. [6]. As we will see
in Remark 3.1, it is advantageous to describe Γ, and therefore the jump of the stress, at time
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t in parametric form Γ(s, t) for s ∈ [0, L] and fixed L independent of time. In general, s is
not an arc-length parameterizaton of Γ at any time t. We use X(s, t) to denote the Cartesian
coordinates of Γ(s, t) corresponding to a point s for any given time t. Since this is a closed
curve, X(0, t) = X(L, t) for all time. To construct Γ(s, t), we first define Γ(s, 0) given by
a parametrization s ∈ [0, L]. The fact that Γ is not necessarily parameterized by arc-length
allows us to define an initial elastic membrane not only with bending, but also with stretching,
that is, |∂X/∂s| is not necessarily equal to one. For time t > 0, we let X(s, t) be the material
point on the elastic membrane that moves from an initial position X(s, 0), and also we assume
that the movement of a point X(s, t) on the interface is given by the fluid velocity at that point.
Hence, we impose continuity of the velocity

[[u]] = 0

on the interface. For a quantity φ defined over Ω, we denote φ1 = φ|Ω1
and φ2 = φ|Ω2

. Then
[[φ]] = (φ1 − φ2)|Γ denotes the jump of φ across Γ at a given point. We also impose a no-slip
condition on the interface, that is,

∂X(s, t)

∂t
= u(X(s, t), t).

The unit tangent vector, chosen to be in the direction of the parameterization, is defined in
terms of s by

τ =
1

|∂X/∂s|
∂X

∂s
.

The boundary tension T (s, t) of the elastic membrane is modeled using a generalized Hooke’s
law, where

T (s, t) = σ (|∂X/∂s| ; s, t) ,

and the function σ is defined below. By computing the elastic force on an arbitrary segment
between two points a and b, we find that

(Tτ )(b, t)− (Tτ )(a, t) =

∫ b

a

∂

∂s
(Tτ )(s, t) ds.

Since this equality holds for any choice of a and b, we know the force on Γ is defined in terms
of s by

(2.1) F =
∂

∂s
(Tτ ).

A slight modification of the proof of [29, Theorem 1] shows that for a force F defined in
terms of s ∈ [0, L],

[[pn]] = − (F · n)n

|∂X/∂s|
µ[[ε(u)n]] =

F− (F · n)n

|∂X/∂s|
.

It follows from (2.1) that if we choose σ(|∂X/∂s| ; s, t) to be proportional to |∂X/∂s|, i.e.,
σ(|∂X/∂s| ; s, t) = κ |∂X/∂s|, then the jump condition is defined by

(2.2) [[(µε(u)− p)n]] =
F(s, t)∣∣∂X
∂s (s, t)

∣∣ =
κ∣∣∂X

∂s (s, t)
∣∣ ∂2X

∂s2
(s, t).
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Physically, (2.2) means that the elastic interface will apply a force as it is stretched or bent at a
given point. Here, the jump condition is defined in terms of the respective quantities restricted
to Γ(t). For example,

[[(µε(u)− p)n]] =
(
(µε(u1(X(s, t), t))− p1(X(s, t), t))

− (µε(u2(X(s, t), t))− p2(X(s, t), t))
)
n(X(s, t), t)

for any s ∈ [0, L]. To ease the notation, we denote n = n1, i.e., the unit normal pointing
outward from the exterior Ω1.

We further impose a homogeneous Dirichlet condition on ∂Ω and homogeneous initial
conditions. Combining the Stokes equations with the continuity of velocity and (2.2), the
strong form of the equations to be solved is given in Problem 1.

Problem 1: Strong formulation

Find X(s, t), ui(x, t), and pi(x, t), for i = 1, 2, such that for all t ∈ (0, T ),

∂ui
∂t
− µ∇ · ε(ui) +∇pi = 0 in Ωi(t), i = 1, 2,(2.3a)

∇ · ui = 0 in Ωi(t), i = 1, 2,(2.3b)

[[(µε(u)− p)n]] =
κ∣∣∂X
∂s

∣∣ ∂2X(s, t)

∂s2
for s ∈ [0, L],(2.3c)

[[u]] = 0 for s ∈ [0, L],(2.3d)
u1 = 0 on ∂Ω,(2.3e)

∂X(s, t)

∂t
= u(X(s, t), t) for s ∈ [0, L].(2.3f)

u = 0 in Ωi(0), i = 1, 2,(2.3g)

REMARK 2.1. Note the time dependence of each subdomain and the location of the
interface. When deriving the weak formulation, our spaces of test functions depend on time as
well.

3. Discrete-time approximation. Given ∆t, we consider equally-spaced time steps
tn = n∆t, for 0 ≤ n ≤ Nt, where Nt is the number of time steps. We also let un =
u(x, tn) and pn = p(x, tn) be the discrete time approximations to the velocity and pressure,
respectively, to simplify notation. Then for each n, let Γn = Γ(tn) be the interface separating
the two subdomains Ωni = Ωi(tn). By our choice of notation, the location of the interface Γn

in discrete time is updated using uni , which has been solved within the subdomain from the
previous time step, Ωn−1

i . Below in the temporally discrete variations of (2.3a)–(2.3f), we use
a backward-difference approximation for ∂tui. In other words, the derivative with respect to
time at tn+1 is approximated by ∂tun+1

i = (un+1
i − uni )/∆t. We note that uni is solved in

Ωn−1
i and then Ωni is obtained by moving Γ(tn−1) with speed uni . Since uni is obtained in

Ωn−1
i and uni must be integrated over Ωni to solve for un+1

i , we define

ũn :=

{
un1 (x), for x ∈ Ωn−1

1 ,
un2 (x), for x ∈ Ωn−1

2 .
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Thus, ũn will be used in the integration of the backward difference in all temporally discrete
weak formulations below; see Problem 2.

REMARK 3.1. In Nitsche’s formulation of the interface problem, we must substitute
(2.3c) into an integral over Γ(t). We note that in its original form, we are integrating with
respect to a time-dependent arc length parameterization of the interface. Since (2.3c) is defined
in terms of s, we transform this integral over Γ(t) to an integral over [0, L]. We have the
following equalities:

(
[[(µε(u)− p)n]], {v}

)
Γ(t)

=

∫
Ω

[[(µε(u)− p)n]] · {v (x)} δ(x−X(s, t)) dx

=

∫ L

0

[[(µε(u)− p)n]] · {v (X(s, t))}
∣∣∣∣∂X∂s

∣∣∣∣ ds
= −

∫ L

0

κ
∂X

∂s
(s, t) · ∂

∂s
{v (X(s, t))} ds,

where we denote the average of a function φ by {φ} = 1
2 (φ|Ω1

+ φ|Ω2
).

The weak formulation can be obtained by the usual integration by parts on (2.3a)–(2.3b)
after multiplication by a test function. To symmetrize the problem for increased accuracy
and computational efficiency, we add consistent terms to the weak formulation as seen in
[10, 23, 24]. A nonsymmetric interior penalty method may also be used; see, e.g., [10, 24].

Recall that each integral over Γn will be expressed in terms of s. We also write Xn(s) =
X(s, tn) to simplify the notation. In the spatially continuous case, we simplify the inner
products involving the jump condition on the interface as follows:

• Explicit method:

(3.1)
(
[[(µε(u)− p)n]], {v}

)
Γn = −κ

∫ L

0

∂Xn(s)

∂s

∂

∂s
{v(Xn(s))} ds.

• Semi-implicit method:

(
[[(µε(u)− p)n]], {v}

)
Γn = −κ

∫ L

0

∂Xn+1

∂s

∂

∂s
{v(Xn(s))} ds

= −κ
∫ L

0

(
∂Xn

∂s
+ ∆t

∂

∂s

{
un+1(Xn(s))

}) ∂

∂s
{v(Xn(s))} ds.

(3.2)

Observe that the difference between (3.1) and (3.2) is the extrapolation used in the semi-
implicit method, where we solve for Xn+1 in (2.3f). Note that un+1(Xn) =

{
un+1(Xn)

}
in the spatially continuous problem, and the average is included for comparison to the discrete
case. The expression for the forcing function (3.2) incorporates the unknown velocity of the
interface at the current time step.

We formulate the continuous-space, discrete-time Problem 2, letting Y = Xn+1 for the
semi-implicit method and Y = Xn for the explicit method. For completeness, we note that
the implicit method sets Y = Xn+1 and integrates over Ωn+1 and Γn+1 in Problem 2 instead
of Ωn and Γn, respectively. Additional challenges arise with the implicit method because
Γn+1 and Ωn+1 are not known prior to integration, so we omit this discretization. We have
included the terms involving [[un+1]] in Problem 2 to compare to the one further discretized
in space, Problem 3, although [[un+1]] = 0 in the current continuous setting. For the same
reason, we include

{
∂
∂su

n+1(Xn(s))
}

= ∂
∂su

n+1(Xn(s)).
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Problem 2: Discrete-time weak formulation
Given (u0

1,u
0
2) ∈ [H1(Ω0

1)]2 × [H1(Ω0
2)]2, where

u0
1|∂Ω = 0, (p0

1, p
0
2) ∈ (L2(Ω0

1)× L2(Ω0
2))/R, X0 : [0, L]→ Ω.

Find for all 1 ≤ n ≤ Nt − 1 solutions (un+1
1 ,un+1

2 ) ∈ [H1(Ωn1 )]2 × [H1(Ωn2 )]2,
(pn+1

1 , pn+1
2 ) ∈

(
L2(Ωn1 )× L2(Ωn2 )

)
/R, and Xn+1 : [0, L]→ Ω such that

un+1
1 = 0 on ∂Ω, [[un+1]] = 0 on Γn, and

2∑
i=1

1

∆t
(un+1

i − ũn,vi)Ωn
i

+ µ(ε(un+1
i ), ε(vi))Ωn

i
− (pn+1

i ,∇ · vi)Ωn
i

−
(
{(µε(un+1)− pn+1)n}, [[v]]

)
Γn −

(
[[un+1]], {µε(v)n}

)
Γn

−
(
(µε(un+1

1 )− pn+1
1 )n,v1

)
∂Ω
−
(
un+1

1 , µε(v1)n
)
∂Ω

=

∫ L

0

κ
∂2Y

∂s2
(s) {v (Xn(s))} ds

(3.3a)

2∑
i=1

−(∇ · un+1
i , qi)Ωn

i
+
(
[[un+1]], {qn}

)
Γn + (un+1

1 , q1n)∂Ω = 0(3.3b)

for all (v1,v2) ∈ [H1(Ωn1 )]2 × [H1(Ωn2 )]2 and (q1, q2) ∈ L2(Ωn1 )× L2(Ωn2 ), and

Xn+1(s)−Xn(s)

∆t
= {un+1(Xn(s))} for s ∈ [0, L].(3.3c)

3.1. Energy estimates. The proposed semi-implicit method combines the analytical
simplicity and stability of the implicit method in [6] with the computational convenience of
the explicit method. For a quantity φ(s) defined on Γ, we define the norm over the reference
configuration R = [0, L] to be

(3.4) ‖φ‖2L2(R) :=

∫ L

0

(
φ(s)

)2
ds.

If we define total energy to be the sum of the kinetic and elastic energies

(3.5) En :=
1

2
‖un‖2L2(Ω) +

1

2
κ

∥∥∥∥∂Xn

∂s

∥∥∥∥2

L2(R)

,

then the following lemma shows that the energy of the system computed using Y = Xn+1 is
monotonically decreasing.

LEMMA 3.2. Let un+1, pn+1, and Xn+1 be solutions to (3.3a)–(3.3c) at time tn+1 with
Y = Xn+1. Then the following equality holds:

En+1 = En − 1

2

∥∥un+1 − un
∥∥2

L2(Ω)
−∆t

2∑
i=1

µ
∥∥ε(un+1

i )
∥∥2

L2(Ω)

− 1

2
κ(∆t)2

∥∥∇Γu
n+1
∥∥2

L2(Γn)
.

(3.6)
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Proof. Begin by letting v = un+1 and q = pn+1 in (3.3a)–(3.3b) and subtract (3.3b)
from (3.3a), where un+1 stands for un+1 = un+1

i on Ωni , for i = 1, 2. We note that for each
time step we have [[un+1]] = 0 on Γn and un+1

1 = 0 on ∂Ω. Thus, these boundary terms
disappear in (3.3a)–(3.3b). Using the symmetry of the bilinear form we are able to simplify
the difference of (3.3a) and (3.3b) to

1

∆t
(un+1 − un,un+1)Ω + µ(ε(un+1), ε(un+1))Ω

+ κ

∫ L

0

∂Xn+1

∂s
(s)

∂

∂s

{
un+1 (Xn(s))

}
ds = 0.

(3.7)

First, we can rewrite

2∑
i=1

µ(ε(un+1
i ), ε(un+1

i ))Ωn
i

=

2∑
i=1

µ
∥∥ε(un+1

i )
∥∥2

L2(Ωn
i )

= µ
∥∥ε(un+1)

∥∥2

L2(Ω)
.

Now simplifying the forcing term in (3.7), we have

κ

∫ L

0

∂Xn+1

∂s
(s)

∂

∂s

{
un+1 (Xn(s))

}
ds

=
κ

∆t

∫ L

0

∂Xn+1

∂s

(
∂Xn+1

∂s
− ∂Xn

∂s

)
ds

=
κ

2∆t

∫ L

0

(
∂Xn+1

∂s
+
∂Xn+1

∂s
− ∂Xn

∂s
+
∂Xn

∂s

)(
∂Xn+1

∂s
− ∂Xn

∂s

)
ds

=
κ

2∆t

∫ L

0

[(
∂Xn+1

∂s

)2

+

(
∂Xn+1

∂s
− ∂Xn

∂s

)2

−
(
∂Xn

∂s

)2
]
ds

=
κ

2∆t

(∥∥∥∥∂Xn+1

∂s

∥∥∥∥2

L2(R)

+

∥∥∥∥∂Xn+1

∂s
− ∂Xn

∂s

∥∥∥∥2

L2(R)

−
∥∥∥∥∂Xn

∂s

∥∥∥∥2

L2(R)

)

=
κ

2∆t

(∥∥∥∥∂Xn+1

∂s

∥∥∥∥2

L2(R)

+

∥∥∥∥∆t
∂

∂s
un+1(Xn)

∥∥∥∥2

L2(R)

−
∥∥∥∥∂Xn

∂s

∥∥∥∥2

L2(R)

)

=
κ

2∆t

(∥∥∥∥∂Xn+1

∂s

∥∥∥∥2

L2(R)

+ ∆t2
∥∥∇Γu

n+1
∥∥2

L2(Γn)
−
∥∥∥∥∂Xn

∂s

∥∥∥∥2

L2(R)

)
.

Using a similar manipulation for the first term on the left-hand side of (3.7), we obtain by a
simple calculation that

(un+1 − un,un+1)Ω =
1

2

(∥∥un+1
∥∥2

L2(Ω)
+
∥∥un+1 − un

∥∥2

L2(Ω)
− ‖un‖2L2(Ω)

)
.

Applying the above simplifications to each term in (3.7) and multiplying by ∆t we have (3.6).

We now turn to the explicit method, whose solution must satisfy equations (3.3a)–(3.3c)
with Y = Xn. The velocity un+1 and pressure pn+1 are computed by explicitly using the
interface location Γn and subdomains Ωni determined in the previous time step. The energy
estimate for the explicit method is similar to that of the semi-implicit method but lacks the
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stabilizing contribution of the extrapolation used to compute the force of the membrane in (3.2).
We have the following lemma.

LEMMA 3.3. Let un+1, pn+1, and Xn+1 be solutions to (3.3a)–(3.3c) at time tn+1 with
Y = Xn. Then the following equality holds:

En+1 = En − 1

2

∥∥un+1 − un
∥∥2

L2(Ω)
−∆t

2∑
i=1

µ
∥∥ε(un+1)

∥∥2

L2(Ω)

+
κ

2
(∆t)2

∥∥∇Γu
n+1
∥∥2

L2(Γn)
.

(3.8)

Proof. We begin with the simplification made in the previous proof:

1

∆t
(un+1 − un,un+1)Ω + µ(ε(un+1), ε(un+1))Ω

+ κ

∫ L

0

∂Xn

∂s
(s)

∂

∂s

{
un+1 (Xn(s))

}
= 0.

(3.9)

The proof for the explicit case is identical to the proof in the semi-implicit case with one
important difference in the treatment of the final term in (3.9). We have

κ

∫ L

0

∂Xn

∂s
(s)

∂

∂s

{
un+1 (Xn(s))

}
=

κ

∆t

∫ L

0

∂Xn

∂s

(
∂Xn+1

∂s
− ∂Xn

∂s

)
ds

=
κ

2∆t

∫ L

0

(
∂Xn+1

∂s
− ∂Xn+1

∂s
+
∂Xn

∂s
+
∂Xn

∂s

)(
∂Xn+1

∂s
− ∂Xn

∂s

)
ds

=
κ

2∆t

∫ L

0

[(
∂Xn+1

∂s

)2

−
(
∂Xn+1

∂s
− ∂Xn

∂s

)2

−
(
∂Xn

∂s

)2
]
ds

=
κ

2∆t

(∥∥∥∥∂Xn+1

∂s

∥∥∥∥2

L2(R)

−
∥∥∥∥∂Xn+1

∂s
− ∂Xn

∂s

∥∥∥∥2

L2(R)

−
∥∥∥∥∂Xn

∂s

∥∥∥∥2

L2(R)

)
.

The simplification of the last term in (3.9) shown above is almost identical to Lemma 3.2, but
the important difference is that the middle term in the final line above is negative. Now the
energy may not be decreasing.

To make more sense of the norm involving both Xn+1 and Xn, we can write it in terms
of the surface gradient of the velocity on Γ as follows:

κ

2∆t

∥∥∥∥∂Xn+1

∂s
− ∂Xn

∂s

∥∥∥∥2

L2(R)

=
κ

2∆t

∥∥∥∥∆t
∂

∂s
un+1(Xn)

∥∥∥∥2

L2(R)

=
κ∆t

2

∥∥∇Γu
n+1
∥∥2

L2(Γn)
.

We substitute the final expression into (3.9) along with the simplification of the time-derivative
term in the proof of Lemma 3.2 to get (3.8).

We note that for the discrete case, a trace theorem and an inverse inequality can be used for∥∥∇Γu
n+1
∥∥
L2(Γn)

to establish conditional stability; see [6]. From now on, we focus only on
the unconditionally stable semi-implicit method since the explicit case can be treated similarly.
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4. Discrete-space finite element approximation. The spatial discretization of the prob-
lem requires two steps. First, the interface Γ is discretized. Recall that we create a mapping
from the interval [0, L] to Γ(s, t) with X(0, t) = X(L, t) that is not necessarily an arc-length
parameterization. We choose equally-spaced points 0 = s0 < s1 < · · · < sm = L by letting
h̃ = L/m and sj = jh̃. We note that the set of points {sj}mj=0 need not be evenly spaced
but is chosen so for computational convenience. Then the initial immersed boundary Γ0 is
approximated by a polygon Γ0

h̃
with m vertices, where the jth vertex is obtained by evaluat-

ing X0
j = X(sj , 0). While {sj}mj=0 may be equally-spaced for computational convenience,

dist(Xn(sj),X
n(sj+1)) may not be uniform. The interface is then approximated by linear

segments between the points {Xn
j }.

Second, we discretize the bulk fluid. The polygonal approximation Γ0
h̃

divides Ω into the
two approximate subdomains. As the discrete interface moves, these subdomains will change
and are denoted by Ωn

i,h̃
at time tn. Let Th partition Ω into squares with side length h. Then

the subset of Th that overlaps each Ωn
i,h̃

is denoted by

T ni,h := {K ∈ Th : meas2(K ∩ Ωn
i,h̃

) > 0},

where measd denotes the Lebesgue measure in d dimensions. These sets of elements are
further decomposed into two disjoint sets, T n,Ii,h and T n,Γh . We define the set of elements of
T ni,h strictly interior to Ωi,h̃ by

T n,Ii,h := {K ∈ T ni,h : K ⊂ Ωn
i,h̃
}.

Similarly, the set of elements of T ni,h whose interior is intersected by the interface Γn
h̃

is defined
by

T n,Γh := {K ∈ Th : meas1(K ∩ Γn
h̃
) > 0}.

Thus, for each i and n the relationship T ni,h = T n,Ii,h ∪ T
n,Γ
h holds. Consider the union of all

elements in T ni,h; we define the interior of each union to be the extended subdomain Ωn,ei,h .
These subdomains Ωn,ei,h depend on both Γn

h̃
and h and can be formally defined by

Ωn,ei,h := Int

 ⋃
K∈T n

i,h

K

 .

Many approximate quantities depend on h and h̃, although only one is used as a subscript. For
example, uni,h, pni,h, T n,Γh , and others depend on both h and h̃. The set of points {Xn

j }mj=0

depends only on h̃, and the polygon will be refined as h̃ decreases for fixed L.
It is worth noting that adjacent points on the discrete interface will not form clusters

in the dynamic system and need not be manually redistributed. As a set of adjacent points
begin to cluster, other points on the interface must be stretched away from one another due to
the incompressibility of the fluid inside the interface. The tangential elastic forces generated
along the interface by the stress jump condition (2.2) pull the clustering points away from one
another to alleviate localized higher tension; see Example 4 below.

4.1. Finite element problem. For each set of elements T ni,h we define the finite element
spaces

V n
i,h :=

{
v ∈ [C0(Ωn,ei,h )]2 : v|K ∈ [Q2(K)]2, ∀K ∈ T ni,h

}
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FIG. 4.1. Plot of example meshes with Fn,Γ
i,h highlighted with a red dotted line for each subdomain.

and

Mn
i,h := {q ∈ L2(Ωn,ei,h ) : q|K ∈ P1(K), ∀K ∈ T ni,h}.

Recall P1(K) is the space of linear functions defined on an element K. A general q ∈Mn
i,h

is discontinuous across each edge of the elements since a linear function in two variables is
defined by its value at three points. The spaceQ2(K) consists of biquadratic functions defined
on the element K with nine local degrees of freedom. A general v ∈ V n

i,h has components
which are continuous function across the elements.

Additional “ghost" penalty terms are included to mitigate the jumps of the flux and
pressure across the faces of elements, particularly to minimize spiking at the ghost nodes and
spurious oscillations. To add these to the minimizing functional, we first need to define the sets
of edges over which these jumps will be minimized, denoted Fn,Γi,h . Informally, we describe
each Fn,Γi,h as the union of all edges shared by two elements in T ni,h, where at least one of the
elements is in T n,Γh . Formally, these sets are defined by

Fn,Γi,h = {K ∩K ′ : K 6= K ′, and K ∈ T n,Γh , K ′ ∈ T ni,h}.

Figure 4.1 shows Fn,Γi,h for each subdomain.
Let K and K ′ be adjacent square elements with F = K ∩K ′ and define φ on K and φ′

on K ′. Below, [φ] = φ|F − φ′|F denotes the jump of a function over the face F . Then the
stabilizing ghost penalty terms are defined by

ji,h(ui,h,vi,h) =

1∑
`=0

∑
F∈Fn,Γ

i,h

∫
F

h2`+1
[
∂(`)
nF

(ε(ui,h)nF )
]
·
[
∂(`)
nF

(ε(vi,h)nF )
]
,

Ji,h(pi,h, qi,h) =

1∑
`=0

∑
F∈Fn,Γ

i,h

∫
F

h2`+1
[
∂(`)
nF
pi,h

] [
∂(`)
nF
qi,h

]
,

where ∂(0)
nF φ = φ and ∂(1)

nF φ stands for the derivative of each component of φ in the nF
direction.

Since the interface cuts through elements, we must weakly impose interface conditions
across Γn

h̃
. The jump of the stress is incorporated naturally by substitution into the integral
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resulting from integration by parts. To impose the weak interface continuity condition and
also the weak flux continuity condition, we must add mathematically consistent penalty terms

(4.1) γ1
µ

h

∫
Γn
h̃

[[uh]] · [[vh]] and γ2
h

∆t

∫
Γn
h̃

[[uh · n]][[vh · n]]

for some γ1 > 0 and γ2 > 0. We note that the second penalty term above is required to
establish the inf-sup condition when h/∆t dominates µ/h. If u is the exact solution, then
the jump of u is equal to zero and (4.1) will vanish for the velocity satisfying the system of
equations (2.3a)–(2.3f). Thus, addition of (4.1) will keep the variational formulation consistent
with the original problem. We enforce the Dirichlet boundary condition and zero-flux on ∂Ω
by adding the penalty terms

(4.2) γ1
µ

h

∫
∂Ω

(u1,h − 0) · v1,h and γ2
h

∆t

∫
∂Ω

(u1,h − 0) · nv1,h · n.

The parameterization coordinate of the jth vertex of Γn
h̃

is denoted sj , where 0 ≤ j ≤ m,
and the corresponding Cartesian coordinate pairs are Xn

h̃,j
= Xh̃(sj , n∆t). Additionally,

s0 = 0 and sm = L so that Xn
h̃,0

= Xn
h̃,m

for all n. To ease the notation, we will let Xn
j

denote the coordinate pair Xn
h̃,j

on the discrete interface.

For both explicit and semi-implicit temporal discretizations, we will find the following
simplification of (3.3a) with Y = Xn useful. After integration by parts on Γn

h̃
, we simplify

the right-hand side of (3.3a) using the fact that ∂X
n

∂s is constant on each edge of the polygon
Γn
h̃

. If we define

∂Xn
j

∂s
=

Xn
j+1 −Xn

j

sj+1 − sj
,

then the resulting simplification is written

−κ
∫ L

0

∂Xn

∂s

∂

∂s

{
v(Xn

h̃
(s))

}
ds = −κ

m−1∑
j=0

∂Xn
j

∂s

∫ sj+1

sj

∂

∂s

{
v(Xn

h̃
(s))

}
ds

= −κ
m−1∑
j=0

∂Xn
j

∂s

({
v(Xn

j+1)
}
−
{
v(Xn

j )
})

= κ

m−1∑
j=0

(
∂Xn

j+1

∂s
−
∂Xn

j

∂s

){
v(Xn

j+1)
}
.(4.3)

To simplify notation in Problem 3 we drop the “h" or “h̃" subscript from the discrete
approximation of the subdomains Ωnh,i, and the quantities unh, vnh , pnh, qnh , and Xn

h̃
. The

definition of γ1, γ2, γu, and γp are given later in the paper; see (4.10).
REMARK 4.1. To distinguish the difference between the explicit and semi-implicit

methods in Problem 3, we define a parameter ν which can be set to either 0 or 1. Setting ν = 1
yields the semi-implicit method, while ν = 0 leaves us with the explicit method; see the last
term of the left-hand side of (4.4b). We note that for the numerical tests we consider both
cases.
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Problem 3: Discrete-time finite element formulation
1. Solve for un+1

i and pn+1
i in

〈
Fn+1,v

〉
= κ

m−1∑
j=0

(
∂Xn

j+1

∂s
−
∂Xn

j

∂s

){
vn+1(Xn

j+1)
}

(4.4a)

2∑
i=1

1

∆t
(un+1

i − ũni ,vi)Ωn
i

+ (µε(un+1
i ), ε(vi))Ωn

i
− (pn+1

i ,∇ · vi)Ωn
i

−
(
{(µε(un+1)− pn+1)n}, [[v]]

)
Γn
h̃

−
(
[[un+1]], {µε(v)n}

)
Γn
h̃

−
(
(µε(un+1

1 )− pn+1
1 )n,v1

)
∂Ω
−
(
un+1

1 , µε(v1)n
)
∂Ω

+ γuj
n
i,h(un+1

i ,vi) + γ1
µ

h
([[un+1]], [[v]])Γn

h̃
+ γ1

µ

h
(un+1

1 ,v1)∂Ω

+ γ2
h

∆t
([[un+1 · n]], [[v · n]])Γn

h̃
+ γ2

h

∆t
(un+1

1 · n,v1 · n)∂Ω

+ νκ∆t

∫ n

Γh̃

∂un+1(Xn)

∂s

∂

∂s
{v(Xn(s))} ds =

〈
Fn+1,v

〉

(4.4b)

2∑
i=1

−(∇ · un+1
i , qi)Ωn

i
+
(
[[un+1]], {qn}

)
Γn
h̃

+ (un+1
1 , q1n)∂Ω

− γpJni,h(pn+1
i , qi) = 0

(4.4c)

for all vn+1
i ∈ V n

i,h and qn+1
i ∈Mn

i,h, i = 1, 2.
2. Solve for Xn+1

j using

Xn+1
j = Xn

j + ∆t{un+1(Xn
j )} for j = 0, . . . ,m.(4.4d)

4.2. Energy stability of the FEM. We are able to prove the unconditional stability of
the semi-implicit method in Problem 3 under the assumption below, similar to that seen in [37].

ASSUMPTION 1. Given K ∈ T n,Γh , there exists K ′ ∈ T n,Ii,h , an integer N > 0, and N
elements {Kk}Nk=1 such that K1 = K, KN = K ′, and Kk ∩Kk+1 ⊂ Fn,Γi,h .

The next lemma is necessary to bound the strain on the extended subdomain Ωn,ei,h by
the strain on the original subdomain Ωn

i,h̃
. The result shows why it is necessary to include

ji,h(u,v) for stability. Here and in the rest of the paper we do not use the fact that the mesh is
structured.

LEMMA 4.2. Suppose v ∈ V n
i,h is continuous on Ωn,ei,h and Assumption 1 holds for T ni,h.

Then we have the following estimate:

‖ε(v)‖2L2(Ωn,e
i,h ) ≤ Cε

(
‖ε(v)‖2L2(Ωn

i,h̃
) + ji,h(v,v)

)
,

where Cε depends on neither v nor h.
Proof. Let K1 and K2 be neighboring square elements with a shared edge F = K1 ∩K2.

Note that ‖ε(v)‖2L2(Ωn,e
i,h ) and ji,h(v,v) do not depend on the directions of the Cartesian

coordinate axes in which we represent v. Therefore, without loss of generality, we assume
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nF = (1, 0) and v = (u, v), and their derivatives are using the canonical representation x-
and y-axis. We make use of the following result from [37, Lemma 5.1]:

(4.5) ‖v‖2L2(K1) ≤ Cm

‖v‖2L2(K2) +
∑

0≤`≤p

h2`+1

∫
F

|[∂`nF
v]|2
 ,

where v|K1
, v|K2

are polynomial functions of degree less than or equal to p. With V n
i,h defined

as above, the summation in (4.5) simplifies to p = 1. Denoting v = (u, v), we apply the
inequality (4.5) directly to each term of ε(v) : ε(v) = (∂xu)2 + 1

2 (∂xv + ∂yu)2 + (∂yv)2

and add the inequalities. Note that on any vertical edge, the jump of all y-derivatives will be
zero because v is continuous across F and v|F is simply a polynomial in each component.
Also on a vertical edge, the unit normal vector is nF = (1, 0), and it follows that

[∂`nF
(ε(v)nF )] · [∂`nF

(ε(v)nF )] = ([∂`x∂xu])2 +
1

4
([∂`x(∂xv + ∂yu)])2.

The resulting inequality is

‖ε(v)‖2L2(K1) =

∫
K1

(∂xu)2 +
1

2
(∂xv + ∂yu)2 + (∂yv)2

≤ Cm
(∫

K2

(∂xu)2 +
1

2
(∂xv + ∂yu)2 + (∂yv)2

+

1∑
`=0

h2`+1

∫
F

[∂`nF
∂xu]2 +

1

2
[∂`nF

(∂xv + ∂yu)]2
)

≤ 2Cm

(
‖ε(v)‖2L2(K2) +

1∑
`=0

h2`+1

∫
F

[∂`nF
(ε(v)nF )]2

)
.

Similarly for any horizontal edge, we let nF = (0, 1) and use the fact that [∂xu] = 0 to get
the same inequality.

Using Assumption 1, we are able to find a sequence of at most N adjacent elements
leading from an elementK1 ∈ T n,Γh to an elementKN ∈ T n,Ii,h . Applying the above inequality
across each of the edges Fk = Kk ∩Kk+1, for 1 ≤ k ≤ N − 1, we have

(4.6) ‖ε(v)‖2L2(K1) ≤ (2Cm)N

(
‖ε(v)‖2L2(KN ) +

N∑
k=1

1∑
`=0

∫
Fk

[∂`nFk
ε(v)nFk

]2

)
.

Repeating (4.6) for all K ∈ T n,Γh and denoting Cε = (2Cm)N completes the proof.
Recall the definition of the norm over the reference configuration R = [0, L]. For a

quantity φ(s) that is constant on each linear segment of the polygonal Γn
h̃

, we can simplify (3.4)
to

‖φ‖2L2(R) =

m−1∑
j=0

(φ(sj))
2

(sj+1 − sj).

Above, φ(sj) denotes the value of φ(s) on the interval (sj , sj+1). Using the definition of the
energy (3.5), we are able to prove the following theorem.
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THEOREM 4.3. Let un+1
i,h , pn+1

i,h , and Xn+1

h̃
be solutions to (4.4a)–(4.4d) at time tn+1

with ν = 1 and assume Assumption 1 holds. Then the following inequality holds:

En+1 ≤ En − 1

2

∥∥un+1
h − unh

∥∥2

L2(Ω)
+

1

2
κ

∥∥∥∥∥∂X
n+1

h̃

∂s
−
∂Xn

h̃

∂s

∥∥∥∥∥
2

L2(R)

+ ∆t

(
γ1
µ

h

∫
Γn
h̃

[[un+1
h ]]2 ds+ γ1

µ

h

∫
∂Ω

(un+1
1,h )2 ds

+ γ2
h

∆t

∫
Γn
h̃

[[un+1
h · n]]2 ds+ γ2

h

∆t

∫
∂Ω

(un+1
1,h · n)2 ds

+

2∑
i=1

(
γuji,h(un+1

i,h ,un+1
i,h ) + γpJi,h(pn+1

i,h , pn+1
i,h )

))
.

(4.7)

Proof. We first let vh = un+1
h and qh = pn+1

h in (4.4a)–(4.4c) and subtract (4.4c) from
(4.4b). After cancellation due to the symmetry of the L2-inner product and some simplification
we have

2∑
i=1

1

∆t

(
un+1
i,h − u

n
i,h,u

n+1
i,h

)
Ωn

i,h̃

+

2∑
i=1

µ
∥∥∥ε(un+1

i,h )
∥∥∥
L2(Ωn

i,h̃
)

− 2
(
[[un+1

h ]], {µε(un+1
h )n}

)
Γn
h̃

− 2
(
un+1

1,h , µε(u
n+1
1,h )n1

)
∂Ω

+ γujh(un+1
i,h ,un+1

i,h ) + γpJh(pn+1
i,h , pn+1

i,h )

+ γ1
µ

h

∫
Γn
h̃

[[un+1
h ]]2 + γ1

µ

h

∫
∂Ω

(un+1
1,h )2

+ γ2
h

∆t

∫
Γn
h̃

[[un+1
h ]]2 + γ2

h

∆t

∫
∂Ω

(un+1
1,h )2

= κ

m−1∑
j=0

(
∂Xn+1

j+1

∂s
−
∂Xn+1

j

∂s

){
un+1
h (Xn

j+1)
}
.

(4.8)

The term on the right-hand side of (4.8) is obtained using (4.3) and (4.4d) as follows:

κ

m−1∑
j=0

(
∂Xn+1

j+1

∂s
−
∂Xn+1

j

∂s

){
un+1
h (Xn

j+1)
}

= −κ
∫ L

0

∂Xn+1

∂s

∂

∂s

{
un+1
h (Xn

h̃
(s))

}
ds

= −κ
∫ L

0

∂Xn

∂s

∂

∂s

{
un+1
h (Xn

h̃
(s))

}
ds

− κ∆t

∫ L

0

{
∂un+1

h (Xn)

∂s

}
·
{
∂un+1

h (Xn)

∂s

}
ds

= κ

m−1∑
j=0

(
∂Xn

j+1

∂s
−
∂Xn

j

∂s

){
un+1
h (Xn

j+1)
}

− κ∆t

2

∫ L

0

{
∂un+1

h (Xn)

∂s

}
·
{
∂un+1

h (Xn)

∂s

}
ds.
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Following the same simplification as in Lemma 3.2 we have

2∑
i=1

(
un+1
i,h − u

n
i,h,u

n+1
i,h

)
Ωn

i,h̃

=
1

2

(∥∥un+1
h

∥∥2

L2(Ω)
+
∥∥un+1

h − unh
∥∥2

L2(Ω)
− ‖unh‖

2
L2(Ω)

)
and

κ

m−1∑
j=0

(
∂Xn+1

j+1

∂s
−
∂Xn+1

j

∂s

){
un+1
h (Xn

j+1)
}

=
κ

2∆t

∥∥∥∥∥∂X
n+1

h̃

∂s

∥∥∥∥∥
2

L2(R)

+

∥∥∥∥∥∂X
n+1

h̃

∂s
−
∂Xn

h̃

∂s

∥∥∥∥∥
2

L2(R)

−
∥∥∥∥∂Xn

h̃

∂s

∥∥∥∥2

L2(R)

 .

Now we focus on controlling the integrals over the boundaries. First, using the Cauchy-
Schwarz inequality and a generalized inequality of arithmetic-geometric means, we have for
any γ1 > 0

2
(
[[un+1

h ]], {µε(un+1
h )n}

)
Γn
h̃

≤ γ1µ

h

∥∥[[un+1
h ]]

∥∥2

L2(Γn
h̃

)
+
hµ

γ1

∥∥{ε(un+1
h )

}∥∥2

L2(K∩Γn
h̃

)

=
γ1µ

h

∥∥[[un+1
h ]]

∥∥2

L2(Γn
h̃

)
+

2∑
i=1

∑
K∈T n

i,h

hµ

γ1

∥∥∥ε(un+1
i,h )

∥∥∥2

L2(K∩Γn
h̃

)
.

Now we look to bound the norm of the average of the symmetric gradient over the interface,
which has been separated into an interior and exterior component using the triangle inequality.
For some function v ∈ H1(K), with the help of [20, Lemma 1] and noting that the polygonal
interface Γn

h̃
is Lipschitz,

‖v‖2L2(K∩Γn
h̃

) ≤ C1

(
h−1 ‖v‖2L2(K) + h ‖∇v‖2L2(K)

)
≤ C1h

−1 ‖v‖2L2(K) + C1 · C̃Ih−1 ‖v‖2L2(K) .(4.9)

Here, C1 is the constant from [20] and C̃I is the constant from the well-known finite element
inverse inequality

‖∇v‖2L2(K) ≤ C̃Ih
−2 ‖v‖2L2(K) .

Letting v be each component of the symmetric part of the gradient in (4.9) and adding the
resulting inequalities and denote CI = C̃I + 1 yields∥∥∥ε(un+1

i,h )
∥∥∥2

L2(K∩Γn
h̃

)
≤ C1CIh

−1
∥∥∥ε(un+1

i,h )
∥∥∥2

L2(K)
,

and we can control the inner product over Γn
h̃

by

(
[[un+1

h ]], {µε(un+1
h )}

)
Γn
h̃

≤ γ1µ

h

∥∥[[un+1
h ]]

∥∥2

L2(Γn
h̃

)
+
C1CI
γ1

2∑
i=1

∑
K∈Th

µ
∥∥∥ε(un+1

i,h )
∥∥∥2

L2(K)

=
γ1µ

h

∥∥[[un+1
h ]]

∥∥2

L2(Γn
h̃

)
+
C1CI
γ1

2∑
i=1

µ
∥∥∥ε(un+1

i,h )
∥∥∥2

L2(Ωn,e

i,h̃
)
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≤ γ1µ

h

∥∥[[un+1
h ]]

∥∥2

L2(Γn
h̃

)
+
C1CICε

γ1

(
µ
∥∥ε(un+1

h )
∥∥2

L2(Ω)

+

2∑
i=1

µji,h(un+1
i,h ,un+1

i,h )

)
,

where the final inequality is the result of Lemma 4.2. Similarly, we have

2
(
un+1

1,h , µε(u
n+1
1,h )

)
∂Ω
≤ γ1µ

h

∥∥∥un+1
1,h

∥∥∥2

L2(∂Ω)
+
C1CICε

γ1
µ
∥∥ε(un+1

h )
∥∥2

L2(Ω)
.

Now we combine all of these inequalities and choose γ1 so that 2C1CICε

γ1
≤ 1 and multiply

both sides by ∆t to get (4.7).
To establish the discrete inf-sup condition for Q2-P1 time-depedent Stokes elements for

CutFEM, see [24, 28, 30, 35, 36, 44]. This will be published elsewhere in the context of the
CutFEM shown in this work. We note however that to establish energy stability, we only need
to control ([[un+1]], {qn+1}n)Γn

h̃
= ([[un+1]] · n, {qn+1})Γn

h̃
. Using similar arguments as in

the sources above we have:

1. If µ/h dominates h/∆t, then we control via

([[un+1]] · n, {qn+1})Γn
h̃
≤ γ1µ

h

∥∥[[un+1
h ]]

∥∥2

L2(Γn
h̃

)
+

h

4γ1µ

∥∥{qn+1}
∥∥2

L2(Γn
h̃

)
,

2. If h/∆t dominates µ/h, then we control via

([[un+1]] · n, {qn+1})Γn
h̃
≤ γ2h

∆t

∥∥[[un+1
h · n]]

∥∥2

L2(Γn
h̃

)
+

∆t

4γ2h

∥∥{qn+1}
∥∥2

L2(Γn
h̃

)
.

Hence, let us define

(4.10) γp = min

{
1

4γ1µ
,

∆t

4γ2h2

}
and γu = γ1µ+ γ2

h2

∆t
.

REMARK 4.4. We now highlight the most relevant changes of the discrete formulation
in the presence of diffusive coefficient jump across Γ. We indicate the changes in (4.4a) and
(4.4c); see [11, 14, 24]. Let the index “−” be the side where µ− = min{µ1, µ2}. The average
{φ} = 1

2 (φ|Ω1 + φ|Ω2) is replaced by {φ} = φ−, and the penalty term γ1
µ
h

∫
Γn
h̃

[[un+1
h ]]2 ds is

replaced by γ1
µ−
h

∫
Γn
h̃

[[un+1
h ]]2 ds. The remaining changes are natural; just take µi when the

integration is in Ωn
i,h̃

.

5. Numerical results. Below we illustrate the theoretical findings and some approxima-
tion results with numerical simulations. The numerical test cases confirm the unconditionally
energy stability of the semi-implicit method and the conditionally stability of the explicit
method.

In each example we choose the computational domain to be the square Ω = (0, 1)2 with
the fluid initially at rest. Let the reference configuration for Γ be the unit interval, i.e., L = 1.
We subdivide the interval [0, 1] into m + 1 equally-spaced points sj . Then the step size in
[0, 1] is h̃ = 1/m. Note that the spacing h̃ can be chosen entirely independent of h. However,
in the numerical experiments that follow, h̃ is selected based on the bulk fluid mesh size h by
choosing m such that the initial interface discretization {X0

j}mj=0 := {Γ(sj , 0)}mj=0 roughly
satisfies

max
j
|X0

j+1 −X0
j | ≤ h/2.
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In other words, the maximum distance between two points in the original discretization is less
than or equal to half of the bulk fluid element size. The procedure used to determine m in each
example is as follows:

1. fix h,
2. discretize Γ(s, 0) using a fine spacing s = 0, 0.001, . . . , 1 to obtain a relatively

smooth discretization of the interface,
3. set m by scaling the number of points in the fine discretization by the ratio of the

maximum segement length in the fine discretization to the goal maximum segment
length 2h, i.e.,

m =

⌈
1001 ·

(
max

j=0,...,1000

|Γ(sj+1, 0)− Γ(sj , 0)|
2h

)⌉
.

We choose the penalty parameters from (4.1) and (4.2) to be γ1 = γ2 = 10. With our
choice of uniform h̃ we further expect Γn

h̃
to approach a regular polygon with the sampled

points equally spaced along the interface.
In each example, since the coupled problem can be reduced to a second-order in time

partial differential equation, the immersed boundary should oscillat,e and due to the viscosity it
should converge to a circular steady state. Due to the incompressibility of the fluid, the interior
area enclosed by the membrane should not change in time. Another goal of the numerical tests
is to show the good approximation of these properties.

5.1. Example 1: spatial convergence. The results in Table 5.1 illustrate the convergence
of our method for the steady-state problem

−µ∇ · ε(ui) +∇pi = f in Ωi, i = 1, 2,

∇ · ui = 0 in Ωi, i = 1, 2.
(5.1)

The boundary condition for u1 on ∂Ω and jump conditions [[(µε(u)− p)n]], [[u · n]], and [[u]]
on Γ are chosen to match the exact test solutions

u1 =

[
sin(x) cos(y)
− cos(x) sin(y)

]
, p1 = sin(2πx) cos(2πy),

u2 =

[
xe−xy

−ye−xy
]
, p2 = x2y2.

(5.2)

The exact solution in (5.2) exhibits nonzero jumps in the velocity and stress across the
interface, independent of our choice of Γ. Table 5.1 was generated using a circular interface of
radius r = 0.3 centered at (0.5, 0.5). The discrete interface Γh̃ was constructed by choosing
the reference configuration to be the unit interval, i.e., L = 1, with h̃ = 1/400 (i.e., m = 400).
The H1 error observed in these tables is optimal since we are using Q2-P1 elements. Note
that the rates k seen in Table 5.1 correspond to the convergence rate O(hk). We also see
superconvergence in the L2- and H1-norms of the velocity and near-optimal convergence in
the other norms.

To compute the L2- and H1-error, we extend u to Ωi,h̃ when necessary using (5.2) and
compute the norms of the difference ui−ui,h on each subdomain. The L∞- andW 1,∞-norms
are computed using the difference ui − ui,h at all the nodes where the degrees of freedom of
uh is imposed, and also include the points on Γh̃, including each sj and all points where Γh̃
intersects edges of elements in Ti,h by interpolating uh.
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TABLE 5.1
Error tables for (a) the velocity and (b) the pressure solving (5.1) in Example 1. The numbers shown are the

values of the difference between the approximate solution and the exact solution given by (5.2) in the specified norm
with spatial grid size h. Each rate k corresponds to the convergence rate O(hk).

(a) Error of the velocity.

1/h L2 k H1 k L∞ k W 1,∞ k
8 6.0751e-4 1.2079e-2 2.9443e-3 1.5822e-1
16 5.7992e-5 3.4 2.8194e-3 2.1 4.0194e-4 2.9 5.0981e-2 1.6
32 4.0155e-6 3.9 4.7479e-4 2.6 4.6180e-5 3.1 1.3094e-2 2.0
64 3.8898e-7 3.4 8.4839e-5 2.5 7.5565e-6 2.6 3.7782e-3 1.8
128 3.0663e-8 3.7 1.5375e-5 2.5 9.9287e-7 3.0 1.0938e-3 1.8

(b) Error of the pressure.

1/h L2 k H1 k L∞ k W 1,∞ k
8 3.7455e-2 1.3695 2.3560e-1 6.5007

16 7.1874e-3 2.4 6.1616e-1 1.2 5.2798e-2 2.2 2.9639 1.1
32 1.7328e-3 2.1 3.0661e-1 1.0 1.6484e-2 1.7 2.0968 0.5
64 4.1940e-4 2.0 1.5074e-1 1.0 5.4817e-3 1.6 1.3588 0.6

128 1.0151e-4 2.0 7.4491e-2 1.0 1.4711e-3 1.9 7.4067e-1 0.9

TABLE 5.2
Normalized deviation of the interior area at t = 0.5 from the initial interior area in Example 2. Results obtained

using µ = 1 and κ = 10 with ∆t and h as shown.

∆t
2.5e-3 1.25e-3 6.25e-4 3.125e-4

16 -1.6336e-04 -8.0403e-05 -3.8474e-05 -1.7869e-05
1/h 32 -1.9443e-04 -1.0152e-04 -5.4441e-05 -2.9699e-05

64 -1.8896e-04 -9.6995e-05 -5.1840e-05 -2.8784e-05

5.2. Example 2: ellipse. The second example is a common scenario found in the related
literature [7, 32]. The interface Γ will begin as an ellipse where the initial points chosen are
sampled from

X0(s) =

[
0.3 cos(2πs) + 0.5
0.4 sin(2πs) + 0.5

]
, s ∈ [0, 1].

The discrete interface Γ0
h̃

is approximated by mapping m+1 equally-spaced points from [0, 1],
where m = 162 for N = 32 in this example. It is worth noting that the lengths of two adjacent
segments on Γ0

h̃
may be different. Since h̃ is chosen to be constant across each reference

segment throughout all simulations, in addition to bending, the result is also a “tension" force,
or a stretching in the direction tangent to Γ0

h̃
. The effects of such a force will be emphasized in

Example 4; see Figure 5.9.
As seen in Figure 5.1, the solution computed using the explicit method, with parameters

chosen such that an instability occurs, blows up very quickly as the energy fails to dissipate.
With a smaller time step, we see a more gradual increase in energy as the method does not fail
so quickly. The semi-implicit method exhibits the theoretical energy stability over the explicit
method and remains stable with each set of parameters tested. Figure 5.2 shows the position of
the interface at three time steps capturing one intermediate step before steady state is achieved
prior to t = 1.
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FIG. 5.1. Plot of the energy of the system in Example 2 comparing the explicit and semi-implicit methods with
µ = 1, κ = 12, h = 1/32, and ∆t = 0.05 (� for explicit, ◦ for semi-implicit) or ∆t = 0.01 (∗ for explicit, ×
for semi-implicit). The lines connecting data points are included when plotting the results of the explicit method to
highlight the steep increase in energy.

Table 5.2 provides the normalized deviation at time t = 0.5 from the original interior
area. Due to the incompressibility of the fluid, the optimal result is a constant interior area
as the interface moves. Recall that m is the number of points sampled from Γ0 to form the
polygon Γ0

h̃
. As the mesh size h decreases, we increase m. In addition to improving the initial

approximation of each subdomain, the conservation of the interior becomes more accurate
as the mesh is refined. We also see significant improvement in the conservation of interior
area as ∆t is refined. In Table 5.2 we see that the deviation from the interior area is no larger
than 0.05% with the chosen parameters, and can be reduced to less than 0.008% by refining h
and ∆t. It is worth noting that in this example a greater improvement is seen by reducing ∆t
compared to reducing h.

We now turn to some observations of the temporal convergence of the semi-implicit
method. In Table 5.3 the convergence of fluid velocity in the L2-norm over the domain
Ω is estimated using Richardson extrapolation. The value of the ratio shown in the table
corresponds to

r∆t = log2

( ∥∥u∆t − u∆t/2

∥∥
L2(Ω)∥∥u∆t/2 − u∆t/4

∥∥
L2(Ω)

)
,

whereu∆t is the approximation ofu at t = 0.1 computed using time step ∆t. The convergence
of the method can be seen to be of order O(∆tr). Since the method is high-order in h, the
error is dominated by time discretization errors, and Table 5.3 shows that the error of the fluid
velocity in the L2-norm is asymptotically linear in ∆t.

Figure 5.3 displays the point-wise linear convergence of the interior and exterior traction
to Γh̃. The traction is computed at the midpoint of each segment of Γh̃, corresponding to
sj+ 1

2
in the reference configuration because the normal vector is not well-defined at each

vertex of the polygon Γh̃. In each plot the traction at t = 0.1 computed using ∆t = 0.1/26 is
compared to the traction computed using ∆t = 0.1/23, ∆t = 0.1/24, and ∆t = 0.1/25. Each
line shows the sum of the absolute value of the difference in each component of the traction
vector at each point sj+ 1

2
in the reference configuration. Similarly, Figure 5.4 shows the
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FIG. 5.2. Plot of the position of the interface shown at t = 0, t = 0.05, and t = 1. Simulation run with
µ = 0.01, κ = 50, N = 32, ∆t = 0.01, and the initial configuration given in Example 2.

TABLE 5.3
Temporal convergence rates r∆t using Richardson extrapolation for Example 2 (ellipse) and Example 3 (heart)

with µ = 10 and κ = 1. The results from this test indicate linear convergence of velocity u in the L2-norm when
using the semi-implicit method.

∆t

0.1 0.1/2 0.1/22 0.1/23 0.1/24 Avg.
Ellipse 1.0165 0.9905 1.3825 1.9083 0.5673 1.1730
Heart 3.7075 2.3262 -0.9455 4.7735 1.2742 2.2272

linear convergence in the interface location. The interface location at t = 0.1 computed using
∆t = 0.1/26 is compared to the traction computed using ∆t = 0.1/23, ∆t = 0.1/24, and
∆t = 0.1/25. The sum of the absolute value of the difference in each coordinate X(sj , 0.1) is
plotted.

5.3. Example 3: heart. The third example is used to ensure that energy stability still
holds regardless of the convexity of the interface and displacement of the centroid of the
interior subdomain. The original curve is constructed as the sum of two translated cardioids
and is parameterized by s ∈ [0, 1] as follows:

X0(s) =
1

20

[
cos(2πs) (7(1− sin(2πs)) + 3(1− cos(2πs))) + 24
sin(2πs) (3(1− sin(2πs)) + 7(1− cos(2πs))) + 24

]
.

Again, the discrete initial interface Γ0
h̃

is approximated using m + 1 equally-spaced points
from [0, 1], however, now we let m = 186 for N = 32.

The energy plots in Figure 5.5 show that the energy in the explicit method becomes
unstable slower than in the previous example. However, the semi-implicit method remains
stable. Figure 5.6 displays the position of the interface as it deforms and moves toward the
top-right corner of Ω, approaching a circular steady state. In this figure we observe a quick
deformation to a convex interior at t = 0.05 and a translation of this region in the subsequent
time steps. Table 5.4 gives the normalized deviation from the original interior area at time
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(a) Interior traction.
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(b) Exterior traction.

FIG. 5.3. The above figure illustrates the convergence of the traction at t = 0.1 to the “true" solutions u∗i and
p∗i computed using ∆t = 0.1/26. Parameters used are µ = 0.1 and κ = 1. The initial interface configuration
is that described in Example 2. The quantity plotted is

∑2
i=1 |(ε(ui) − pi) − (ε(u∗i ) − p∗i )| evaluated at each

midpoint on Γh̃, where ui and pi are solved using the ∆t specified in the legend. Point-wise convergence of the
interior and exterior traction is observed.

t = 0.5. Similar to the previous example, we see more improvement from a reduction of ∆t
than from a refinement of h. Here, the area loss is reduced almost linearly with the reduction
in ∆t and very little corresponding to a smaller mesh size h.

In Table 5.3 the temporal convergence of the velocity in the L2-norm is estimated using
Richardson extrapolation alongside the rate of convergence estimates for the previous example.
One can see that the rate of convergence is super-linear in both examples.

Figure 5.7 illustrates the point-wise convergence of the interior and exterior traction.
The traction is evaluated at the midpoint of each segment of Γh̃, and the quantity plotted is
analogous to that in the previous example. Figure 5.8 displays the convergence of the interface
at t = 0.1 using refined values of ∆t compared to the interface location at t = 0.1 using
∆t = 0.1/26.

5.4. Example 4: stretched circle. The fourth example is chosen to emphasize the effects
of a nonuniform tension around the perimeter of Γ0

h̃
. The initial configuration is a circle of
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FIG. 5.4. Plot of the difference between the interface location at t = 0.1 computed using the time step indicated
in the plot and the “true" solution computed using ∆t = 0.1/26. Parameters used are µ = 0.1 and κ = 1, and the
initial interface configuration is that described in Example 2. The quantity plotted is the sum of the absolute value of
the difference at each midpoint on Γh̃.
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FIG. 5.5. Plot of the energy of the system in Example 3, comparing the explicit and semi-implicit methods with
µ = 1, κ = 12, N = 32, and ∆t = 0.025 (� for explicit, ◦ for semi-implicit) or ∆t = 0.01 (∗ for explicit, ×
for semi-implicit). The lines connecting data points are included when plotting the results of the explicit method to
highlight the steep increase in energy.

TABLE 5.4
Normalized deviation of the interior area at t = 0.5 from the initial interior area in Example 3. Results obtained

using µ = 1 and κ = 10 with ∆t and h as shown.

∆t
2.5e-3 1.25e-3 6.25e-4 3.125e-4

16 4.3740e-03 2.3318e-03 1.2818e-03 7.7174e-04
1/h 32 5.1529e-03 2.8014e-03 1.4961e-03 8.0600e-04

64 5.0489e-03 2.7171e-03 1.4206e-03 7.3541e-04
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FIG. 5.6. Plot of the position of the interface shown at t = 0, t = 0.05, and t = 1. Simulation run with
µ = 0.01, κ = 50, N = 32, ∆t = 0.01, and the initial configuration from Example 3.

radius 1
4 centered at

(
1
2 ,

1
2

)
with its parameterization given by

X0(s) =
1

4

[
cos(2πs) + 2
sin(2πs) + 2

]
, s ∈ [0, 1].

Previously we chose equally-spaced points from the interval [0, L] when the tension of each
segment was arbitrary. Since Γ0

h̃
is a circle, we must sample at nonuniform sj to prescribe a

nonuniform tension on the edges of the polygon Γ0
h̃

. The parameter values s̃j used to compute
X0
j = X0(s̃j) are the m+ 1 evenly spaced points sj ∈ [0, 1] mapped by the cubic function

s̃j =
1

5

(
16s3

j − 24s2
j + 13sj

)
.

The result of this simulation, computed using the semi-implicit method, will be a leftward
moving circle as a force tangent to the interface is applied to the fluid. Equilibrium is obtained
when the points on the circle are equally spaced and the total force applied to the fluid is zero.
Figure 5.9 displays the position of the points on the interface at three time steps. These plots
highlight the leftward motion and the even distribution of the points on Γn

h̃
near the steady

state at t = 1. In this example, the semi-implicit method is unconditionally stable.

6. Conclusions. In this work, we presented a new finite element method for solving
the unsteady Stokes equations with an immersed membrane that moves with the velocity of
the fluid, not known a priori. We successfully combined the classical immersed boundary
method with Nitsche’s formulation and CutFEM to solve this problem in two dimensions.
The proposed method maintains the use of the Dirac delta function to pass the force applied
by the immersed structure in the Lagrangian frame to the fluid in the Eulerian frame. We
developed a semi-implicit discretization and added the necessary consistent penalty terms to

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

AN UNCONDITIONALLY STABLE SEMI-IMPLICIT CUTFEM 319

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reference location

0

0.5

1

1.5

2

2.5

 t = 0.1 /2
3

 t = 0.1 /2
4

 t = 0.1 /2
5

(a) Interior traction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reference location

0

0.05

0.1

0.15

0.2

0.25

0.3

 t = 0.1 /2
3

 t = 0.1 /2
4

 t = 0.1 /2
5

(b) Exterior traction.

FIG. 5.7. The above figure illustrates the convergence of the traction at t = 0.1 to the “true" solutions u∗i and
p∗i computed using ∆t = 0.1/26. Parameters are set to µ = 10 and κ = 1. The initial interface configuration
is that described in Example 3. The quantity plotted is

∑2
i=1 |(ε(ui) − pi) − (ε(u∗i ) − p∗i )| evaluated at each

midpoint on Γh̃, where ui and pi are solved using the ∆t specified in the legend. Point-wise convergence of the
interior and exterior traction is observed.

maintain energy stability. The stability of our method is proved and verified in each example
of our numerical results. This semi-implicit method was tested alongside the explicit CutFEM
method, which is the algorithm directly analogous to the original finite element immersed
boundary method [5]. Using CutFEM we improved the spatial convergence of the velocity to
second-order, compared to existing first-order methods, of the fluid near the interface compared
to existing methods [5, 6]; however, we continued the use of a polygonal approximation to the
interface for its simplicity in computing the location of Γn+1

h̃
.

The numerical results demonstrate that if the polygonal approximation to the interface is
refined as the mesh is refined, we obtain optimal spatial convergence in Example 1, as shown
in Table 5.1. We also observe in Examples 2– 4 the theoretical unconditional energy stability
proved in this work. The conservation of area in each subdomain is desired and obtained for
sufficiently small values of h and ∆t. The trends observed in Table 5.2 and Table 5.4 are
seen for sufficiently small values of ∆t. As we refine ∆t, we see an improvement in area
conservation as ∆t is refined; however, we may not observe such trends as h is reduced.

The backward Euler scheme was shown to be first-order in time. Higher-order in time
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FIG. 5.8. Plot of the difference between the interface location at t = 0.1 computed the time steps indicated in
the plot and the “true" solution computed using ∆t = 0.1/26. Parameters used are µ = 10 and κ = 1, and the
initial interface configuration is that described in Example 3. The quantity plotted is the sum of the absolute value of
the difference at each point midpoint on Γh̃.
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FIG. 5.9. Position of the interface at t = 0, t = 0.05, and t = 1. We let µ = 1, κ = 10, ∆t = 0.01,
and N = 32 and use the initial configuration from Example 4. An encircled red × is used to denote X(s0, t) for
reference. We display every 6th point on the interface to reduce clutter.

methods are an interesting topic for future work. The extension to higher-order finite dif-
ferences and Crank-Nicolson schemes are nontrivial and require further investigation. In
particular, ũ defined in the beginning of Section 3 should be defined in a different way to
preserve incompressibility.
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