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OPTIMAL DIRICHLET CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS
ON NETWORKS∗

MARTIN STOLL† AND MAX WINKLER‡

Abstract. Differential equations on metric graphs can describe many phenomena in the physical world but
also the spread of information on social media. To efficiently compute the optimal setup of the differential equation
for a given desired state is a challenging numerical analysis task. In this work, we focus on the task of solving an
optimization problem subject to a linear differential equation on a metric graph with the control defined on a small set
of Dirichlet nodes. We discuss the discretization by finite elements and provide rigorous error bounds as well as an
efficient preconditioning strategy to deal with the large-scale case. We show in various examples that the method
performs very robustly.
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1. Introduction. Graphs and networks1 are ubiquitous in the modeling of physical phe-
nomena, the representation of data, and other applications [7]. While the graph Laplacian is a
crucial tool in the analysis of such networks [5, 10, 56, 61, 64, 67], there are many examples
where it is often not sufficient to only reflect the binary relationships of being connected or
not.

In order to model complex phenomena, one can extend the concept of a graph to a so-called
metric graph, where the differential operator describing the dynamics goes beyond the usually
applied graph Laplacian [43, 45]. A metric graph is a graph where a length is assigned to each
edge, and we define a differential operator, often called the Hamiltonian, on the graph domain.
There are many contributions dealing with PDEs on metric graphs, often tailored to particular
applications. In this paper, we focus on elliptic and parabolic problems often found in the
modeling of carbon nano-structures or groundwater flow (cf. [34, 47]), but besides that, also
hyperbolic problems have been studied intensively in the literature and cover many interesting
applications like gas dynamics and traffic flow [12, 13, 15, 16, 21, 24, 25, 27, 30, 53, 69].

Of particular interest in the context of PDE models is the control or identification of a
source term or parameter such that a desired or measured state is achieved. These questions
lead to optimal control2 problems governed by PDE models, which received much attention
over the last years; cf. [32, 33, 66]. Optimal control problems for ODE or PDE models on
networks are studied, e.g., in [11, 26, 37] mainly from an analytical perspective.

For the numerical treatment of these kind of problems, a couple of difficulties arise. While
for the discretization of PDEs in classical domains, a minimal angle condition constrains
the number of degrees of freedom that are connected to a vertex/mesh-point, this is not
the case when considering complex networks with dense adjacency structure or with highly
varying degree distributions, e.g., hubs in social networks. In these cases, the resulting
matrices stemming from the discretization are rather dense. Thus, it is a key objective in the
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numerical analysis to construct tailored discretizations and preconditioned iterative solvers
for the resulting systems of linear equations taking into account the adjacency structure of the
network as much as possible. As a first general work in this direction, we want to mention
the work of Arioli and Benzi [3], where the discretization and iterative solution of elliptic and
parabolic problems on graphs are studied.

In the present article we aim at an extension of this theory to Dirichlet control problems
constrained by elliptic or parabolic problems on metric graphs. We derive optimality conditions
for an optimal Dirichlet control problem with control constraints and construct a finite element
discretization. Furthermore, sharp discretization error estimates for the approximate controls
and the states in various norms are proved. Similar studies for related problems in bounded do-
mains can be found in [1, 8, 40, 46, 52, 68], where, e.g., linear convergence of the approximate
controls in the L2-norm can be proved, provided that the exact solutions are sufficiently regular.
A surprising observation in our setting is that the approximate controls uh converge even
quadratically with respect to the mesh parameter h > 0, i.e., the estimate |u− uh| ≤ Ch2 is
satisfied. This is due to the fact that the control space is finite-dimensional and the solutions on
graphs are more regular. Moreover, it will be confirmed that the discretization error estimate is
independent of the adjacency structure of the graph.

As a second main result we construct preconditioned iterative solvers for the resulting
discretized optimality conditions of control problems for elliptic and parabolic equations. We
propose a Schur-complement-based preconditioner [29, 39, 49, 50, 54, 63] and confirm that
the iterative method performs not only robustly with respect to changes in the regularization
and discretization parameter but also with respect to the adjacency pattern of the metric graph.

Finally, we want to mention that there are additional techniques that might allow for
a more efficient solution of PDEs and control problems in complex networks like model
reduction techniques [9, 42] or homogenization [28], but the setup there is for now different
from ours.

The model we use in this paper did not originate from a particular application as our
focus is on the development of a full framework ranging from discretization, error estimation,
to tailored iterative solvers. Our model provides a sufficient amount of complexity, and we
believe, while only considering a linear constraint here, that our results carry over to the
nonlinear case, which can then be used for real-world examples such as reaction-diffusion
systems in chemical engineering [20] or traffic density.

The paper is structured as follows. First, we formulate the model state equation and
summarize some preliminary results in Section 2. Moreover, we introduce a related optimal
control problem and derive the optimality system. Our discretization strategy is studied in
Section 3. There, we derive rigorous discretization error estimates for the finite element
approximation of the state equation and the approximation of a discrete Kirchhoff operator,
which appears in the discrete optimality system of the studied Dirichlet control problem. These
results are then used for error estimates of the approximate solutions of the optimal control
problem. An efficient solver for the optimality system and the corresponding preconditioners
are investigated in Section 4. In Section 5 we also study the case that the state equation is
parabolic. This requires a further discussion of a temporal discretization and an extension of
our preconditioners to the new time dimension. Finally, in Section 6, we test the theoretically
predicted behavior in several numerical experiments. To be more precise, we confirm that the
discretization error estimates are sharp and that the preconditioned method is robust.

2. Optimal Dirichlet control problems on metric graphs.

2.1. Differential equations on metric graphs. We consider an undirected graph
Γ = (V, E) consisting of a vertex set V = {vi}ni=1 and an edge set E . Each edge e ∈ E

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

394 M. STOLL AND M. WINKLER

connects a pair of nodes (vea, v
e
b) with vea, v

e
b ∈ V . We denote by m = |E| the number of edges

and by n = |V| the number of vertices.
Often the dynamics on the graph are based on the graph Laplacian defined as

L = D−W = EE>, where W is the weight matrix of the undirected graph, E its inci-
dence matrix, and D its degree matrix (cf. [67]). The graph Laplacian is in certain applications
not sufficient to describe the intricate relationships as it only reflects information about the
nodes being connected and the edge information encoded in the weight. A more sophisticated
representation follows from the now introduced concept of metric graphs.

In a metric graph each edge is identified with an interval of length Le > 0 on the real line,
and to each interval we associate a differential operator, such as, e.g., the one-dimensional
Schrödinger operator

(2.1) (Hy)(x) :=

(
− d2

dx2
+ c0(x)

)
y(x)

with a potential function c0. Then, one can formulate a differential equation of the form

(Hy|e)(xe) = f |e(xe) for all xe ∈ (0, Le),

where the functions f |e : (0, Le) → R, e ∈ E , are given source terms. Here, xe are local
coordinates associated to the edge e. With a slight abuse of notation we will sometimes
evaluate y|e at one of the vertices v ∈ V of e. Depending on the orientation of the local
coordinate xe, we then mean either y|e(0) or y|e(Le).

Additionally, we can impose boundary or vertex conditions to couple these equations.
There are of course several different vertex conditions, and we will distinguish among two
different types. First, at vertices v ∈ VK ⊂ V , we have homogeneous Neumann-Kirchhoff
conditions, i.e., there holds

(2.2) (Ky)(v) :=
∑
e∈Ev

d

dx
y|e(v) = 0,

with Ev the edge set incident to the vertex v. At vertices v ∈ VD := V \ VK, the solution y
satisfies Dirichlet conditions

y|e(v) = uv, for all e ∈ Ev,

where u ∈ RnD , nD := |VD|, is a vector containing the Dirichlet data. Note that if all
nodes are Dirichlet nodes, then the problem decouples into a set of one-dimensional problems,
and we exclude this trivial case by assuming |VK| 6= ∅. Other boundary conditions are not
discussed here but will be the subject of future research. For more information on vertex
conditions in metric graphs, we refer to [7, 23, 60].

The Kirchhoff-Neumann conditions are the natural boundary conditions for the differential
operator (2.1), as for each v ∈ V and test functions φ ∈ ⊗e∈EC∞(e) that are continuous in v
and vanish at v′ ∈ V \ {v}, the formula

(Ky)(v)φ(v) =
∑
e∈Ev

y|′e(v)φ|e(v) =
∑
e∈Ev

∫
e

[y′(x)φ′(x) + y′′(x)φ(x)] dx(2.3)

is satisfied. Here and in the following, we use the notation d
dxy|e(x) = y|′e(x) and omit the

subscript e unless the context requires otherwise. Throughout this article we consider the state
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equation

(2.4)


−y′′ + c0 y = f on all e ∈ E ,

(Ky)(v) = 0 for v ∈ VK,
y(v) = uv for v ∈ VD,

where f ∈ ⊗e∈EL2(e) and u ∈ RnD are given data.
For an appropriate treatment of this boundary value problem, we require some further

notation. We introduce the function spaces

L2(Γ) =
⊗
e∈E

L2(e) and H1(Γ) =
⊗
e∈E

H1(e) ∩ C0(Γ)

equipped with the norms

‖y‖2L2(Γ) :=
∑
e∈E
‖y‖2L2(e) , ‖y‖2H1(Γ) := ‖y‖2L2(Γ) +

∑
e∈E
‖y′‖2L2(e) .

Higher-order Sobolev spaces Hm(Γ) with m > 1 are defined analogously. The L2(Γ)-
inner product is denoted by (f, g)L2(Γ) :=

∑
e∈E

∫
e
f(x) g(x) dx. To establish the essential

boundary conditions, we moreover define

H1
D(Γ) :=

{
y ∈ H1(Γ) : y(v) = 0 ∀v ∈ VD

}
.

In order to derive the weak formulation for the problem (2.4), we multiply each differential
equation by a test function w|e ∈ H1(e), integrate over e, and sum up the equations for all
e ∈ E . After an application of the integration-by-parts formula (2.3) and insertion of the vertex
conditions, we arrive at

(2.5) Find y ∈ H1(Γ): y(v) = uv, v ∈ VD, a(y, w) = (f, w)L2(Γ), ∀w ∈ H1
D(Γ),

with the bilinear form a : H1(Γ)×H1(Γ)→ R defined by

a(y, w) :=
∑
e∈E

∫
e

(y′(x)w′(x) + c0(x) y(x)w(x)) dx.

Throughout this article, the potential function c0 belongs to L∞(Γ) := ⊗e∈EL∞(e) and
satisfies c0 ≥ c > 0 a.e. in Γ. Moreover, the source term f belongs to L2(Γ). We can establish
the following existence and regularity result:

LEMMA 2.1. Let VD 6= ∅. Then, for each f ∈ L2(Γ), c0 ∈ L∞(Γ), with c0 ≥ c > 0,
and u ∈ RnD , the problem (2.5) has a unique solution y ∈ H2(Γ) satisfying

(2.6) ‖y‖H2(Γ) ≤ 2

√
M

γ

(
‖f‖L2(Γ) + CΓ |u|2

)
with M := (1 + ‖c0‖L∞(Γ)), γ := min{1, c}, and

CΓ := c

√
max
v∈VD

card(Ev) max
e∈E

(L−1
e + Le).

Here, c > 0 is a generic constant independent of u, f , c0, and Γ.
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Proof. First, we define an extension yu of u by

yu|e ∈ P1 ∀e ∈ E , yu(v) =

{
uv ∀v ∈ VD,
0 ∀v ∈ VK,

i.e., on each edge e ∈ E , yu|e is a linear function and satisfies the Dirichlet boundary conditions
in VD, as well as homogeneous Dirichlet conditions in VK. The problem (2.5) can then be
rewritten as

Find y0 ∈ H1
D(Γ) : a(y0, w) = (f, w)L2(Γ) − a(yu, w), ∀w ∈ H1

D(Γ),

and there holds y = y0 + yu. It is easy to show that a is bounded and coercive, i.e., the
estimates

a(y, z) ≤M ‖y‖H1(Ω) ‖z‖H1(Ω) ∀y, z ∈ H1(Ω),

a(y, y) ≥ γ ‖y‖2H1(Ω) ∀y ∈ H1(Ω),(2.7)

hold true. To show (2.7), we use the assumption that c0 is uniformly positive. The result
remains true for general c0 ≥ 0 and y ∈ H1

D(Ω) provided that VD 6= ∅. This follows from a
Poincaré inequality on graphs and is proved in [36, Lemma 3.1]. The existence and uniqueness
of a solution y0 ∈ H1

D(Γ) can be concluded from the Lax-Milgram-Lemma, and there holds

(2.8) ‖y0‖H1(Γ) ≤

√
M

γ

(
‖f‖L2(Γ) + ‖yu‖H1(Γ)

)
.

It remains to bound the norm of yu. To this end, let e ∈ E be arbitrary, and denote by v, v′ ∈ V
the endpoints of e. If v, v′ ∈ VK, then there holds yu|e = 0, and otherwise, if v ∈ VD, then
one easily computes

‖yu‖L2(e) ≤
√
Le
3
|uv − uv′ | and ‖y′u‖L2(e) =

√
1

Le
|uv − uv′ | ,

where we set uv′ = 0 in case of v′ ∈ VK. Summation over all e ∈ E yields

‖yu‖2H1(Γ) ≤ c
∑
v∈VD

∑
e∈Ev

|uv − uv′ |2
(
Le + L−1

e

)
(2.9)

≤ c max
v∈VD

card(Ev) max
e∈E

(L−1
e + Le) |u|22 .

Together with (2.8) this yields the estimate

‖y‖H1(Γ) ≤

√
M

γ

(
‖f‖L2(Γ) + CΓ |u|2

)
.

As the functions y|e solve −y|′′e + c0 y|e = f |e in e with fixed boundary data, the H2(e)-
regularity follows from standard arguments. Moreover, it is easy to deduce the following a
priori estimate

|y|2H2(Γ) ≤ ‖c0‖L∞(Γ) ‖y‖L2(Γ) + ‖f‖L2(Γ) ≤ 2

√
M

γ

(
‖f‖L2(Γ) + CΓ |u|2

)
,

where we have inserted the L2(e)-norm estimate in the last step.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

OPTIMAL CONTROL OF PDES ON NETWORKS 397

When considering the estimate (2.9) we can observe in which way the graph structure
influences the norm of the solution. In particular, the constant grows when there are extremely
small or long edges, when the function values uv in the Dirichlet nodes vary sharply, and
when the cardinality of Ev for some v ∈ VD is large. Note that this effects, for instance, hubs
in social networks, where the latter case can occur.

2.2. The optimal control problem. As an extension of the above, we now consider an
optimal control problem of the form

(2.10a) Minimize
1

2
‖y − ȳ‖2L2(Γ) +

β

2
|u|22 over y ∈ H1(Γ), u ∈ RnD

subject to the constraints

(2.10b)


−y′′ + c0 y = f on all e ∈ E ,

(Ky)(v) = 0 v ∈ VK,
y(v) = uv v ∈ VD,

and

(2.10c) ua ≤ u ≤ ub,

with a desired state ȳ ∈ L2(Γ) that shall be actuated and control bounds ua, ub ∈ RnD with
ua ≤ ub (understood component-wise). Here, |·|2 is the Euclidean norm in RnD . Other
choices for the objective functional are certainly possible, e.g., one could fit the outflow at
selected nodes v ∈ V by |(Ky)(v)− ȳv|. Moreover, when a sparse control is desired, the
`1-norm [62] could be used to measure control costs. The regularization parameter β is
assumed to be positive. This assumption already guarantees the existence and uniqueness of a
minimizer [66]. The state equation is understood in the weak sense (2.5). We can decompose
the state into a part depending linearly on u and a constant contribution, i.e., y = yu + yf ,
with yu ∈ H1(Γ), yu(v) = uv , for v ∈ VD, and yf ∈ H1

D(Γ) satisfying

a(yu, w) = 0 and a(yf , w) = (f, w)L2(Γ)

for allw ∈ H1
D(Γ). This decomposition allows us to introduce a linear control-to-state operator

S : RnD → L2(Γ) defined by u 7→ S(u) := yu, and one can eliminate the state equation in
the optimal control problem (2.10). Then, we arrive at the reduced optimization problem

(2.11) Minimize j(u) :=
1

2
‖Su+ yf − ȳ‖2L2(Γ) +

β

2
|u|22 s.t. u ∈ Uad,

with Uad := {u ∈ RnD : ua ≤ u ≤ ub} the set of admissible controls.
As S is linear, the functional j is quadratic and hence Fréchet-differentiable and convex.

By differentiation using the chain rule, we can derive the optimality condition which is the
variational inequality

(2.12) (Su+ yf − ȳ, S(w − u))L2(Γ) + β u>(w − u) ≥ 0 ∀w ∈ Uad.

Due to the convexity of j, this condition is also sufficient for u being the unique global solution
of (2.11). In order to derive a more handy form of the optimality condition, we investigate the
adjoint operator of S.

LEMMA 2.2. The adjoint operator S∗ : L2(Γ) → RnD has the representation
S∗ = −K ◦ P , where K is defined in (2.2) and P : L2(Γ) → H1

D(Γ) is defined by
y 7→ P (y) := p, with p ∈ H1

D(Γ) solving

a(w, p) = (y, w)L2(Γ) ∀w ∈ H1
D(Γ).
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Proof. Standard regularity results for elliptic problems imply that P even maps onto
H2(Γ) ∩H1

D(Γ). Consequently, p solves −p′′ + c0 p = y almost everywhere in Γ. Together
with the integration-by-parts formula (2.3), we obtain for all z ∈ RnD

(y, Sz)L2(Γ) = (−p′′ + c0 p, Sz)L2(Γ) = a(Sz, p)− (Kp)>z.

Due to p ∈ H1
D(Γ) there holds a(Sz, p) = 0. This implies S∗y = −Kp and proves the

assertion.
As a consequence, we can rewrite the optimality condition (2.12) using the equivalence

(Su+ yf − ȳ, Sw)L2(Γ) = (S∗(Su+ yf − ȳ), w)RnD = −(Kp, w)RnD ,

with p ∈ H1
D(Γ) the adjoint state being the weak solution of

(
− d2

dx2
+ c0

)
p = y − ȳ on all e ∈ E ,

(Kp)(v) = 0 v ∈ VK,
p(v) = 0 v ∈ VD,

with y = Su+ yf . This allows for a reformulation of the optimality condition (2.12) as

(β u−Kp)>(w − u) ≥ 0 ∀w ∈ Uad.

To summarize the previous investigations we state the following theorem:
THEOREM 2.3. The pair (u, y) ∈ Uad ×H1(Γ) is the unique global solution of (2.10a)–

(2.10b) if and only if some adjoint state p ∈ H1
D(Γ) exists such that the system

y(v) = uv v ∈ VD, a(y, w) = (f, w)L2(Γ) ∀w ∈ H1
D(Γ),(2.13a)

a(w, p) = (y − ȳ, w)L2(Γ) ∀w ∈ H1
D(Γ),(2.13b)

(β u−Kp)>(w − u)≥ 0 ∀w ∈ Uad(2.13c)

is satisfied.

3. Discretization and error analysis for the optimal control problem. In [3] the au-
thors study a finite element discretization of the variational problem (2.5) and their approach
will also form the basis of our investigations. For the convenience of the reader we briefly
repeat this discretization approach. On each edge e ∈ E we introduce an equidistant grid with
vertices {vea = ve0, v

e
1, . . . , v

e
ne

= veb}. This induces a decomposition of the one-dimensional
edge e into intervals Iek := (vek, v

e
k+1), k = 0, . . . , ne − 1. The global finite element space is

defined by

Vh :=
{
yh ∈ C(Γ) : yh|Iek ∈ P1, k = 0, . . . , ne − 1, e ∈ E

}
.

Here, the discretization parameter h > 0 is the maximal length of the intervals Iek , for
k = 0, . . . , ne − 1, e ∈ E . By ψej , j = 1, . . . , ne − 1, and φv, v ∈ V , we denote the nodal
basis functions of Vh satisfying ψej (v

e
j ) = 1, for j = 1, . . . , ne − 1, and φv(v) = 1, for v ∈ V .

Hence, each function yh ∈ Vh can be represented by

(3.1) yh(x) =
∑
e∈E

ne−1∑
j=1

yej ψ
e
j (x) +

∑
v∈V

yv φv(x).

The Galerkin approximation of (2.5) then reads:
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Find yh ∈ Vh, with yh(v) = uv for v ∈ VD, such that

(3.2) a(yh, wh) = (f, wh)L2(Γ) ∀wh ∈ Vh,D,

with Vh,D := Vh ∩H1
D(Γ).

Analogous to the continuous case, we split the discrete state yh into yu,h := Shu, where

Sh : RnD → Vh

denotes the discrete harmonic extension (harmonic with respect to the Hamiltonian H) of
the Dirichlet data u ∈ RnD and a function yf,h ∈ Vh,D satisfying homogeneous Dirichlet
conditions in the nodes VD. To be more precise, we have

yu,h(v) = uv, v ∈ VD, a(yu,h, wh) = 0 ∀wh ∈ Vh,D,(3.3)
a(yf,h, wh) = (f, wh)L2(Γ) ∀wh ∈ Vh,D,(3.4)

and a simple computation shows that yh = yh,u+yh,f . Finally, we can formulate the following
discretized optimal control problem:

Minimize over uh ∈ RnD , yh ∈ Vh,

(3.5a) Jh(yh, uh) :=
1

2
‖yh − ȳ‖2L2(Γ) +

β

2
|uh|22 ,

subject to the constraints

yh(v) = uh,v, v ∈ VD, a(yh, wh) = (f, vh)L2(Γ) ∀vh ∈ Vh,D,(3.5b)
ua ≤ uh ≤ ub.(3.5c)

As in the continuous case discussed in Section 2, we can derive a necessary and sufficient
optimality condition. In the elliptic case the control is finite-dimensional and as a result does
not require any discretization. First, we define the solution operator Ph : L2(Γ) → Vh,D of
the discretized adjoint equation by Ph(y) = ph, with

(3.6) a(wh, ph) = (y, wh)L2(Γ) ∀wh ∈ Vh,D.

For ph = Ph(y), the discretized Kirchhoff-Neumann operator Kh : Vh → RnD is defined in a
variational sense by

(Khph)(v) = a(φv, ph)− (y, φv)L2(Γ) ∀v ∈ VD.(3.7)

LEMMA 3.1. The adjoint of the operator Sh : RnD → Vh can be represented by

S∗h = −Kh ◦ Ph : L2(Γ)→ RnD .

Proof. Let y ∈ L2(Γ), z ∈ RnD , and ph = Ph(y) be arbitrary. We confirm, using the
definitions of Ph, Kh, and Sh as well as the properties wh := Shz −

∑
v∈VD zvφv ∈ Vh,D

and ph ∈ Vh,D, that

(y, Shz)L2(Γ) = (y, Shz −
∑
v∈VD

zv φv)L2(Γ) + (y,
∑
v∈VD

zv φv)L2(Γ)

= a(Shz −
∑
v∈VD

zv φv, ph) + (y,
∑
v∈VD

zv φv)L2(Γ)

=
∑
v∈VD

zv
(
−a(φv, ph) + (y, φv)L2(Γ)

)
= −

∑
v∈VD

zv (Khph)(v) = −z>(Khph).

This implies the desired result as Khph = (Kh ◦ Ph)y.
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Analogous to the continuous case investigated in Section 2, we can derive an optimality
system for (3.5a)–(3.5b) which reads:

Find uh ∈ Uad, yh ∈ Vh, with yh(v) = uh,v ∀v ∈ VD, ph ∈ Vh,D, such that

a(yh, wh) = (f, wh)L2(Γ) ∀wh ∈ Vh,D,(3.8a)
a(wh, ph) = (yh − ȳ, wh)L2(Γ) ∀wh ∈ Vh,D,(3.8b)

(β uh −Khph)>(wh − uh) = 0 ∀wh ∈ Uad.(3.8c)

This is a discrete version of the optimality system (2.13). Note that Kh(ph) 6= K(ph).
Using the exact Kirchhoff-Neumann operator K in the discrete optimality system is basically
possible, but as we have seen, only the variational Kirchhoff-Neumann map Kh yields the
favorable property that the approaches “first optimize then discretize” and “first discretize then
optimize” lead to the same discrete optimality system.

In the remainder of this section we study discretization error estimates for the approxi-
mation of the control |u− uh| and the states ‖y − yh‖H1(Ω). The most technical part of the
error analysis is the proof of an estimate for the approximate Kirchhoff-Neumann operator
Kh. The proof is based on a duality argument and requires the boundedness of the discrete
control-to-state operator.

LEMMA 3.2. Assume c0 ≥ c > 0. Then the operator Sh satisfies the boundedness
estimate

(3.9) ‖Shu‖H1(Γ) ≤ 2

(
M

γ

)3/2

CΓ |u|2

for arbitrary u ∈ RnD .
Proof. Recall the extension yu ∈ H1

D(Γ) of the Dirichlet data u ∈ RnD introduced in the
proof of Lemma 2.1. As yu is edge-wise linear, there holds yu ∈ Vh. Due to coercivity (2.7)
and Vh ⊂ H1(Ω) as well as Shu− yu ∈ Vh,D, we then deduce that

γ ‖Shu‖2H1(Γ) ≤ a(Shu, Shu) = a(Shu, yu) ≤M ‖Shu‖H1(Γ) ‖yu‖H1(Γ) .

Insertion of (2.6) yields the property (3.9).
As an important consequence, we also obtain the boundedness of the adjoint S∗h and thus

for the discrete Kirchhoff-Neumann operator Kh.
LEMMA 3.3. For arbitrary y ∈ L2(Γ) there holds the stability estimate

|S∗h y|2 = |Kh(Phy)|2 ≤ 2

(
M

γ

)3/2

CΓ ‖y‖L2(Γ) .

Proof. First, we apply the definitions of Kh from (3.7) and Ph from (3.6), taking into
account that

∑
v∈VD uv φv − Shu ∈ Vh,D, and obtain

|Kh(Phy)|2 = sup
u∈RnD
|u|2=1

∣∣u>Kh(Phy)
∣∣

= sup
u∈RnD
|u|2=1

∣∣∣∣∣ ∑
v∈VD

uv
[
a(φv, Phy)− (y, φv)L2(Γ)

]∣∣∣∣∣
= sup

u∈RnD
|u|2=1

∣∣a(Shu, Phy)− (y, Shu)L2(Γ)

∣∣ .
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The first term on the right-hand side vanishes due to the definition of Sh (see (3.3)) and
Phy ∈ Vh,D. The last term can be bounded by means of the Cauchy-Schwarz inequality and
the stability estimate for Sh proved in Lemma 3.2.

Now, we are in the position to derive the following general error estimate:
LEMMA 3.4. Let (u, y) ∈ RnD × H1(Γ) and (uh, yh) ∈ RnD × Vh be the solutions

of (2.10) and (3.5), respectively. Then the error estimate

β |u− uh|2 ≤ 2

(
M

γ

)3/2

CΓ ‖y − ỹh‖L2(Γ) + |Kp−Khp̃h|2

is satisfied, where p is the adjoint state corresponding to u, and ỹh = Shu + yf,h and
p̃h = Ph(y − ȳ) are the Ritz projections of y and p.

Proof. Summation of the optimality conditions (2.13c) with w = uh and (3.8c) with
wh = u and using yh = Shuh as well as ph = Ph(Shuh + yf,h − ȳ) leads to

β |u− uh|22 ≤ (Kp−Khph, u− uh)

=
(
Kp−Kh(Ph(y − ȳ)) +Kh(Ph(y − (Shu+ yf,h))

+Kh(Ph(Sh(u− uh))
)>

(u− uh)

= (Kp−Khp̃h)>(u− uh) + (S∗h(y − ỹh))>(u− uh)

− (S∗h(Sh(u− uh))>(u− uh).(3.10)

Note that in the first step, we simply introduced the intermediate functions Kh(Phy) and
Kh(Ph(Shu)). In the last step we inserted the Ritz projections ỹh = Shu + yf,h and
p̃h = Ph(y − ȳ) of y and p, respectively, as well as S∗h = −Kh ◦ Ph.

For the first two terms on the right-hand side of (3.10), we get with the Cauchy-Schwarz
inequality

(Kp−Khp̃h)>(u− uh) ≤ |Kp−Khp̃h|2 |u− uh|2 ,

S∗h(y − ỹh)>(u− uh) ≤ 2

(
M

γ

)3/2

CΓ ‖y − ỹh‖L2(Γ) |u− uh|2 .

In the latter estimate we used the stability properties of S∗h proved in Lemma 3.3. The last
term on the right-hand side of (3.10) is non-positive and can be neglected.

It remains to derive error estimates for the two terms on the right-hand side of the general
estimate derived in Lemma 3.4. The first term is a simple L2(Γ)-error, and an estimate can be
simply obtained from the H1(Γ)-error estimate

(3.11) |y − ỹh|H1(Γ) ≤ c h |y|H2(Γ)

proved in [3, Theorem 3.2] and an application of the Aubin-Nitsche method. These arguments
imply

(3.12) ‖y − ỹh‖L2(Γ) ≤ c

√
M3

γ
h2 |y|H2(Γ) .

In both estimates the constant c is independent of y, u, f , and Γ. The second term, namely the
error estimate for the discrete Kirchhoff-Neumann operator, can also be deduced by a duality
argument.
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THEOREM 3.5. For given y ∈ L2(Γ), let p ∈ H1
D(Γ) be the solution of

a(w, p) = (y, w)L2(Γ) ∀w ∈ H1
D(Γ),

and denote by p̃h ∈ Vh,D its Ritz-projection, i.e., a(wh, p− p̃h) = 0 for all wh ∈ Vh,D. Then
the error estimate

|Kp−Khp̃h|2 ≤ c
M

γ
CΓ h

2 ‖y‖L2(Γ)

holds with a constant c > 0 independent of h, y, p, and Γ.

Proof. Let u ∈ RnD be an arbitrary vector. Applying the integration-by-parts for-
mula (2.3), which implies

(Kp)>u =
∑
v∈VD

uv
[
a(φv, p)− (y, φv)L2(Γ)

]
,

the definition ofKh from (3.7), the Galerkin orthogonality using
∑
v∈VD uv φv−Shu ∈ Vh,D,

and the definition of S yield

(Kp−Khp̃h)>u =
∑
v∈VD

uv a(φv, p− p̃h) = a(Shu, p− p̃h) = a(Shu− Su, p− p̃h)

≤ c ‖p− p̃h‖H1(Γ) ‖Su− Shu‖H1(Γ) ≤ c
M

γ
CΓ h

2 ‖y‖L2(Γ) |u|2 .

The last step of the previous estimate follows from the H1(Γ)-estimate (3.11) and Lemma 2.1.
The assertion finally follows from

|Kp−Khp̃h|2 = sup
u∈RnD
|u|2=1

∣∣(Kp−Khp̃h)>u
∣∣ ≤ c M

γ
CΓ h

2 ‖y‖L2(Γ) .

Now we are in a position to state the main result of this section.

THEOREM 3.6. Let f, ȳ ∈ L2(Γ), and β > 0 be arbitrary. The solutions (u, y) ∈ RnD ×
H1(Γ) and (uh, yh) ∈ RnD × Vh of (2.10) and (3.5), respectively, satisfy the error estimate

|u− uh|2 + C−1
Γ

(
‖y − yh‖L2(Γ) + h ‖y − yh‖H1(Γ)

)
≤ c(M,γ)β−1 CΓ h

2
(
‖f‖L2(Γ) + CΓ |u|2 + ‖y − ȳ‖L2(Γ)

)
with a constant c > 0 independent of h.
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Proof. The estimate for the control follows after insertion of the bound (3.12) and the
estimate of Theorem 3.5 into the one from Lemma 3.4. To obtain an estimate for the state, we
apply the triangle inequality

‖y − yh‖ ≤ ‖y − (Shu+ yf,h)‖+ ‖Sh(u− uh)‖ ,

where we used the decomposition yh = Shuh + yf,h; compare (3.3)–(3.4). Note that
Shu+ yf,h is the Ritz projection of y, and thus, the first term on the right-hand side can
be bounded by means of (3.11) for the L2(Γ)-norm and (3.12) for the H1(Γ)-norm. An
estimate for the second term follows from the stability of Sh shown in Lemma 3.2 and the
estimate derived for the controls.

4. Structure of the system matrices and preconditioning. We now discuss the struc-
ture of the discretized equations based on the considerations from the previous section as well
as the results given in [3]. The finite element discretization may also be interpreted as an
extension of the original graph Γ to the finite element nodes in the interior of each edge. This
yields an extended graph, which provides a lot of structure that we may exploit for both the
assembly of the finite element system matrices and the preconditioning of the saddle point
system (3.8).

4.1. Assembly of finite element matrices. We use a numbering of the nodes such that
the interior nodes come first followed by the original graph nodes; cf. (4.1). We note that the
incidence matrix for the interior nodes of an edge e ∈ E is structured and can be written as

Ee =


−1 1

−1 1
. . . . . .

−1 1

 ∈ R(ne−1)×ne .

The incidence matrix for all interior nodes on all edges is then given by

Ei = blkdiag({Ee}e∈E) ∈ Rm (ne−1)×mne ,

where ne is the same for all edges for simplicity. To also incorporate the original graph nodes,
we now introduce the matrices

E+ =
1

2
(E + |E|), E− =

1

2
(E− |E|),

with |E| being the component-wise absolute value of the incidence matrix E of the original
graph. We now establish the incidence matrix for the extended graph based on the original
graph nodes. For this consider

Ê+
j = E+

j ⊗ [1, 0, . . . , 0]︸ ︷︷ ︸
∈R1×nej

= [E+
j , 0, . . . , 0] ∈ Rn×nej ,

which allows us to incorporate outgoing edges, where E+
j indicates the j-th column of the

matrix E+ and nej = ne is the number of internal nodes on the edge ej . Here, the index j
runs from 1 to m = |E|. For the incoming edges we use

Ê−j = E−j ⊗ [0, 0, . . . , 1] = [0, . . . , 0,E−j ] ∈ Rn×ne .
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We see that due to the incorporation of the interior nodes, this somewhat stretches the incidence
matrix of the original graph. As a result the part of the incidence matrix representing the
original nodes becomes

Ev =
[
Ê+

1 + Ê−1 , Ê
+
2 + Ê−2 , . . . , Ê

+
m + Ê−m

]
∈ Rn×mne .

We then obtain the incidence matrix of the extended graph as

Ẽ =

[
Ei
Ev

]
∈ Rm (ne−1)+n×mne .

In order to build the finite element matrices, we incorporate the mesh-parameter he via

WE = blkdiag
({
h−1
e Ine

}
e∈E

)
∈ R(ni+m)× (ni+m),

ŴE = blkdiag
(
{heIne

}e∈E
)
∈ R(ni+m)× (ni+m),

with ni =
∑
e∈E(ne − 1), and in the case that all edges have the same number of interior

nodes, there holds ni = m (ne − 1). As was shown in [3], the stiffness and mass matrices A
and M have the following structure

A =

[
Ei
Ev

]
WE

[
E>i E>v

]
=

[
EiWEE

>
i EiWEE

>
v

EvWEE
>
i EvWEE

>
v

]
,

M =
1

6

∣∣∣Ẽ∣∣∣ŴE

∣∣∣Ẽ∣∣∣> + diag

{(∣∣∣Ẽ∣∣∣ŴE

∣∣∣Ẽ∣∣∣>)
i,i

}ni+m

i=1

 .

With the discretization of both the mass and the stiffness terms, we are now able to obtain
the matrix representation of the optimization problem, where the mass and stiffness matrix
are split according to free and Dirichlet-control variables. The mass matrix incorporating the
term c0 can be assembled in a similar fashion (cf. [3]), and we refer to it as Mc0 . Finally, the
system matrix representing the discrete bilinear form on the left-hand side of (3.2) is denoted
by

K = A + Mc0 .

4.2. The discrete optimality system. We want to further discuss the discrete optimality
system (3.8) from a linear algebra perspective aiming at efficient solvers for the optimal
control problem. To simplify the presentation we omit the control constraints so that the
optimality condition turns into a system of linear equations. The control-constrained case
can be discussed in a similar way using the techniques introduced in [65]. We start with the
ansatz (3.1), which allows for a representation of a function yh ∈ Vh by the coefficient vectors
y ∈ RN , N = m (ne − 1) + nK + nD, which are sorted in the form

(4.1) y =

yIyK
yD

 =̂

 coefficients related to ψej , j = 1, . . . , ne − 1, e ∈ E
coefficients related to φv , v ∈ VK
coefficients related to φv , v ∈ VD

 .
In the following, we directly incorporate the Dirichlet conditions by yD = u. Furthermore,
we may split the matrices K and M into

K =

KII KIK KID

KKI KKK 0
KDI 0 KDD

 and M =

MII MIK MID

MKI MKK 0
MDI 0 MDD

 ,
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respectively. Note that we assumed ne ≥ 1 to get the zero blocks. Moreover, under this as-
sumption, KKK , KDD, MKK , and MDD are diagonal matrices. In order to get a description
of the discrete optimality system (3.8) in a matrix-vector notation, we distinguish only among
Dirichlet nodes and free nodes and thus define

yF =

[
yI
yK

]
, KFF =

[
KII KIK

KKI KKK

]
, KFD =

[
KID

0

]
, KDF = K>FD.

Analogous definitions are used for the mass matrix M.
Furthermore, we define the load vector f by f>v = (f, vh)L2(Γ) and the vector ȳ by

ȳ>v = (ȳ, vh)L2(Γ). These vectors are decomposed as well in the form

f =

[
fF
fD

]
, ȳ =

[
ȳF
ȳD

]
.

With the previously introduced matrices and vectors we can write the optimality system (3.8)
in the form

(4.2)

MFF MFD K>FF
MDF MDD + β I K>FD
KFF KFD 0

yFu
pF

 =

ȳFȳD
fF

 .
Note that the sign of the adjoint state in this formulation is different from that in (3.8). This
results in a symmetric system matrix.

In fact, the system (4.2) is a saddle point or KKT matrix [6, 17]. For complex networks
with many connections it is infeasible to work with direct solvers [14] due to the higher
complexity and fill-in issues. While one could use non-standard conjugate gradient meth-
ods [29, 55, 59], we here employ MINRES [48] as a tailored scheme for symmetric and
indefinite matrices or GMRES [58] for the case of a nonsymmetric preconditioned systems. Of
course, the performance of this scheme will rely on the distribution of the eigenvalues, and
we need to improve the performance by introducing a suitably chosen preconditioner P. Its
design is discussed in the next part.

4.3. Preconditioning. It is well known [44] that an ideal preconditioner for saddle point
systems is given by

Pideal =

MFF MFD 0
MDF MDD + β I 0
0 0 S


with the Schur-complement defined as

S = [KFF KFD]

[
MFF MFD

MDF MDD + β I

]−1 [
K>FF
K>FD

]
.

While this preconditioner is attractive in producing an optimally clustered spectrum of the
preconditioned matrix, it is in general very expensive to apply as the matrix S is typically
dense. A more practical choice is obtained when we consider a block-diagonal approximation

Pideal ≈

M1 0 0
0 M2 0
0 0 S1
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with [
MFF MFD

MDF MDD + β I

]
≈
[
M1 0
0 M2

]
and S1 ≈ S.

To make these approximation more precise, we first focus on approximating the mass matrix
block and note that again an ideal preconditioner according to [44] is[
MFF MFD

MDF MDD + β I

]
≈
[
MFF 0
0 SM

]
, with SM = MDD + β I−MDFM

−1
FFMFD.

Many authors [49, 50, 70] have studied the behavior of the iterative solver with respect to
a changing regularization parameter by designing a preconditioner that proved robust to the
varying regularization parameter. We here want to study the behavior of the eigenvalues with
respect to β. For this we recall from [57] the eigenvalue bounds for a general saddle point
problem,

sp(A) ⊂
[1

2

(
λmin(A)−

√
λmin(A)2 + 4σmax(B)

)
,

1

2

(
λmax(A)−

√
λmax(A)2 + 4σmin(B)

) ]
∪
[
λmin(A),

1

2

(
λmax(A) +

√
λmax(A)2 + 4σmin(B)

)]
,

where in standard saddle point notation A refers to the saddle point matrix in (4.2) with the
blocks

A =

[
MFF MFD

MDF MDD + β I

]
, B =

[
KFF KFD

]
.

From the eigenvalue bounds we see that the dependence on β comes from the eigenvalues of
A, which we want to study now in some more detail considering that this matrix is symmetric.
There holds

xT
([

MFF MFD

MDF MDD

]
+

[
0 0
0 β I

])
x = xT

[
MFF MFD

MDF MDD

]
x + xT

[
0 0
0 β I

]
x,

and as a result we see that the eigenvalues are bounded from above and below by the sum of
the maximal and minimal eigenvalues of the individual matrices, respectively. This yields

λmin(M) ≤ λ(A) ≤ λmax(M) + β.

Obviously, the regularization parameter β has no influence on the smallest eigenvalue of the
(1, 1)-block of the saddle point matrix, and only for large values of β the maximal eigenvalues
of A are influenced.

For small values of β our preconditioning strategy needs to focus on the robustness with
respect to the mesh-parameter h. To verify this claim we measure the estimated condition
numbers of the saddle point matrix A with respect to a changing regularization and mesh
parameter for the benchmark problem on the L-shaped FD graph from Section 6.1. The
computational results reported in Table 4.1 confirm the expected behavior.

It remains to construct suitable approximations of the Schur complement matrices S and
SM . First, we approximate S by

S ≈ [KFF KFD]

[
MFF 0
0 SM

]−1 [
K>FF
K>FD

]
= KFFM

−1
FFK

>
FF + KFDS

−1
M K>FD.
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TABLE 4.1
Condition numbers for a graph generated from a finite difference discretization network on an L-shaped domain

in dependence of β and the number of unknowns nDOF of the FE discretization.

NDOF 244 2484 22132
β

10−1 8.7e+01 4.3e+02 2.1e+03
10−2 9.2e+01 4.1e+02 2.0e+03
10−3 8.8e+01 5.0e+02 2.2e+03
10−4 9.3e+01 4.6e+02 1.9e+03
10−5 9.5e+01 5.0e+02 2.0e+03
10−6 9.2e+01 4.5e+02 2.1e+03
10−7 9.4e+01 3.9e+02 2.0e+03

This approximation is still not very practical to work with since we would have to invert a
sum of matrix products. An efficient approximation of this sum follows from the choices
MFF ≈ DM := diag(MFF ) and SM ≈ DSM

:= MDD + β I −MDFD
−1
M MFD, which

yield

KFFM
−1
FFK

>
FF + KFDS

−1
M K>FD ≈ KFFD

−1
M K>FF + KFDD

−1
SM

K>FD.

Still, this approximation is difficult to work with as it involves a sum of terms. As we have
illustrated earlier, the dependence on β is rather benign, and the simple approximations

S ≈ KFFD
−1
M K>FF or S ≈ KFFM

−1
FFK

>
FF

perform very well in numerical experiments.
Alternatively, we want to construct a more sophisticated preconditioner based on a

matching approach [49, 51]

KFFD
−1
M K>FF + KFDD

−1
SM

K>FD ≈ (KFF + N)D−1
M (KFF + N)

>
,

which requires

ND−1
M N> = KFDD

−1
SM

K>FD.

This equivalence would hold true for

N =
(
KFDD

−1
SM

K>FD
)1/2

D
1/2
M .

However, since we do not want to take the square root of a possibly very large matrix, we
approximate the Schur-complement yielding

N = (DKDK)
1/2

D
1/2
M ,

where DKDK is the lumped version of KFDD
−1
SM

K>FD. While this approach fits well within
the preconditioning framework for a symmetric solver like MINRES [48], it would be possible
to avoid this using a non-symmetric matching strategy [49]. Let us look at the eigenvalue
distribution of the preconditioned saddle point matrix.

In Figure 4.1 we illustrate the eigenvalue distribution of the overall preconditioners
equipped with the different Schur-complement approximations, where we have used

Pi =

M 0 0
0 DSM

0
0 0 Si
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FIG. 4.1. Eigenvalue plots of the preconditioned KKT matrix.

with

S1 = KFFM
−1K>FF + KFDD

−1
SM

K>FD

S2 = KFFM
−1K>FF

S3 = (KFF + N)D−1
M (KFF + N)

>
.

The plot shows that there is no visible dependence on the parameter β when it comes to the
different preconditioners. As a result, we settle for the simplest one, P2, which will be the
preconditioner of choice for the remainder of this paper. In the case of control constraints as
discussed earlier, the linear systems maintain their saddle point structure, and preconditioning
remains essential. We refrain from a detailed discussion here and note that a combination
of the preconditioner proposed in this section and the technique used in [65] will lead to an
efficient method for the control-constrained case as well.

5. Dirichlet control problems with parabolic state equation.

5.1. Analysis of the continuous optimal control problem. As an extension of the
results from the previous sections, we study an optimal control problem governed by a
parabolic state equation. As a model problem, we consider

(5.1) Minimize J(y, u) :=
1

2

∫ T

0

‖y(t)− ȳ(t)‖2L2(Γ) dt+
β

2

∫ T

0

|u(t)|22 dt

over y ∈ L2(I;L2(Γ)) and u ∈ L2(I;RnD ), with a desired state ȳ ∈ L2(I;L2(Γ)) and the
time horizon I := (0, T ). The function spaces are defined by the usual Bochner integrals [19,
Chapter 7]. The state equation in the current setting reads

(5.2)


∂ty − y′′ + c0 y = f in I × e, e ∈ E ,

y = uv on I × VD,
Ky = 0 on I × VK,

y(0, ·) = 0 in Γ.

Due to the low a priori regularity of the control, u ∈ L2(I;RnD ), the state equation is not
well-posed in the weak sense. Thus, as usual for Dirichlet control problems with controls
in L2, we have to consider the state equation in a very weak sense. We follow the approach
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from [35] and define

(5.3)



Find y ∈ L2(I;L2(Γ)) with y(0) = 0:
〈∂ty(t), w〉X∗×X + (y(t),−w′′ + c0 w)L2(Γ)

= (f(t), w)L2(Γ) −
∑
v∈VD

uv(t) (Kw)(v),

for all w ∈ X,
with

X :=
{
w ∈ H2(Γ) ∩H1

D(Γ) : (Kw)(v) = 0 for all v ∈ VK
}
.

LEMMA 5.1. For each f ∈ L2(I;L2(Γ)) and u ∈ L2(I;RnD ), the problem (5.3) has a
unique solution y ∈ L2(I;L2(Γ)) ∩H1(I;X∗) ∩ C(I;H1

D(Γ)∗) depending continuously on
the input data.

We omit the proof as the result follows from the arguments in [35, Theorem 2.1]. Similar
results for a slightly different weak formulation with ∂t also acting on the test function can be
found in [22, Lemma 1]. We also refer to [2, 40], where the existence of very weak solutions
of elliptic equations is discussed.

As in the elliptic case we introduce the control-to-state operator S : L2(I;RnD ) →
L2(I;L2(Γ)) mapping a control u to the solution of (5.3) with f ≡ 0. The state can be
represented by

y = Su+ yf

with yf ∈ L2(I;H1
D(Γ)) ∩H1(I;H1

D(Γ)∗) ↪→ C(I;L2(Γ)) being the weak solution of (5.3)
with u ≡ 0.

Existence and uniqueness of a solution of (5.1)–(5.3) follow directly from the arguments
of [35, Proposition 3.1]. The necessary and sufficient optimality condition reads as follows.

THEOREM 5.2. Let f, ȳ ∈ L2(I;L2(Γ)). The optimal control problem (5.1)–(5.2) has a
unique solution (y, u) ∈ L2(I;L2(Γ))× L2(I;RnD ). Moreover, there exists an adjoint state
p ∈ L2(I;X) ∩H1(I;L2(Γ)) being the weak solution of the adjoint equation

(5.4)


−∂tp− p′′ + c0 p = y − ȳ in I × Γ,

p = 0 on I × VD,
Kp = 0 on I × VK,

p(T, ·) = 0 in Γ,

such that

β u−Kp = 0 a. e. on I × VD
is satisfied. This optimality condition is also sufficient.

Proof. First, we confirm the relation S∗ = −K ◦ P with the solution operator of (5.4),
P : L2(I;L2(Γ))→ L2(I;X) ∩H1(I;L2(Γ)). For arbitrary functions u ∈ L2(I;RnD ) and
z ∈ L2(I;L2(Γ)), we obtain with yu = Su and p = Pz the equality

(Su, z)L2(I×Γ) = (yu,−∂tp− p′′ + c0p)L2(I×Γ)

=

∫ T

0

〈∂tyu(t), p(t)〉X∗×X dt− 〈yu(T ), p(T )〉H1
D(Γ)∗×H1

D(Γ)

+ (yu,−p′′ + c0p)L2(I×Γ)

= −(u,Kp)L2(I;RnD ),
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where (5.3) and p(T, ·) = 0 are used in the last step. Consequently, the reduced objective
j(u) = J(S(u), u) is differentiable, and the standard necessary optimality condition reads
(j′(u), v)L2(I;RnD ) = (S∗(Su+yf−ȳ), v)L2(I;L2(Γ))+β(u, v)L2(I;RnD ) = 0 for all functions
v ∈ L2(I;RnD ). Substituting S and S∗ implies the result.

We cannot expect much regularity for the state related to a given control in L2(I;RnD ).
However, for the optimal solution, higher regularity can be deduced.

LEMMA 5.3. The optimal control, state, and adjoint state of (5.1)–(5.2) possess the
regularity

u ∈ H1/4(I;RnD ),

y ∈ L2(I;H1(Γ)) ∩H1/2(I;L2(Γ)),

p ∈ L2(I;X) ∩H1(I;L2(Γ)).

Proof. The desired result follows from bootstrapping arguments like in [22, Theorem 3.4]
and [35, Theorem 3.4]. From u ∈ L2(I;RnD ) and y ∈ L2(I × Γ), we conclude with
[19, §7, Theorem 5(ii)] that p ∈ L2(I;H2(Γ)) ∩H1(I;L2(Γ)). A trace theorem then gives
u = (1/β)Kp ∈ H1/4(I;RnD ). The regularity of the state is obtained from parabolic
regularity results in interpolation spaces [38].

REMARK 5.4. As in the proof of [35, Theorem 3.4] it is even possible to show that the
optimal state satisfies y ∈ H1(I;H1

D(Γ)∗), which is hence a solution of (5.2) in the usual
weak sense. With these arguments, the authors in [35] justify a direct discretization of the
standard weak form of the state equation, which we will also use in the following.

Moreover, one can even show higher regularity of the optimal solution, more precisely,
u,Kp ∈ H1/2(I;RnD ) and y ∈ L2(I;H3/2−ε(Γ))∩H3/4−ε(I;L2(Γ)) with arbitrary ε > 0,
provided that the desired state satisfies ȳ ∈ L2(I;H1(Γ)) ∩H1/2(I;L2(Γ)).

5.2. Discretization. In this section we investigate a discretization approach for the
optimal control problem based on a temporal discontinuous Galerkin scheme and standard
finite elements for the spatial variables. We refer to [41], where such an approach was studied
first in the context of optimal control problems.

For the time discretization we introduce an equidistant time grid 0 = t0 < t1 < . . . <
tnt

= T with discretization parameter τ := tk+1 − tk, k = 0, . . . , nt − 1, and define the
intervals I0 := {0} and Ik := (tk−1, tk], for k = 1, . . . , nt. The trial and test spaces for a
semi-discrete scheme are defined by

Vτ (X) = {v ∈ L∞(I;X) : v|Ik ∈ P0(X) for all k = 1, . . . , nt} ,

where X is an arbitrary Banach space. Each function wτ ∈ Vτ (X) can be represented by the
piecewise constant (in time) functions wk := wτ |Ik ∈ X . The coupling of the time intervals
is realized by introducing additional jump terms in the bilinear form. Hence, we define
Jwτ Kk = wk+1−wk, for k = 1, . . . , nt− 1, and Jwτ K0 = w1. The DG(0) semi-discretization
of the state equation (5.2) then reads:

Find yτ ∈ Vτ (H1(Γ)) with yτ (·, v) = Qτ (uv), v ∈ VD:

B(yτ , wτ ) :=

nt∑
k=1

∫
Ik

a(yk, wk) dt+

nt−1∑
k=0

(Jyτ Kk, wk+1)L2(Γ)

= (f, wτ )L2(I×Γ) ∀wτ ∈ Vτ (H1
D(Γ)).

Here, Qτ : L2(I;X) → Vτ (X) denotes the temporal L2-projection. The term for k = 0 in
the second sum, namely (Jyτ K0, w1)L2(Γ) = (y1, w1)L2(Γ), is used to incorporate the initial
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conditions. If the integrals over t are approximated by the rectangle rule, then this approach is
equivalent to the well-known backward Euler method.

Note that the bilinear form can be equivalently expressed as

B(yτ , wτ ) =

nt∑
k=1

∫
Ik

a(yk, wk) dt−
nt∑
k=1

(yk, Jwτ Kk)L2(Γ),

with Jwτ Knt := −ynt . When changing the role of trial and test functions, the latter term
realizes a discretization of a parabolic problem for w ≈ wτ going backward in time. The term
for k = nt realizes a homogeneous terminal condition at t = T . This fits with the structure of
the adjoint equation (5.4).

Next, we insert our spatial discretization from Section 3 and arrive at the fully discrete
scheme:

Find yτh ∈ Vτ (Vh) with yτh(·, v) = Qτ (uv), v ∈ VD :

(5.5) B(yτh, wτh) = (f, wτh)L2(I×Γ) ∀wτh ∈ Vτ (Vh,D),

where wkh := wτh|Ik ∈ Vh, for k = 1, . . . , nt.
In order to discretize the optimal control problem, we use a control approximation

uτh ∈ Vτ (RnD ), which is piecewise constant in time as well. The discretized version of the
control problem (5.1) then reads

(5.6) Minimize
1

2
‖yτh − ȳ‖2L2(I;L2(Γ)) +

β

2
‖uτh‖2L2(I;RnD )

over yτh ∈ Vτ (Vh) and uτh ∈ Vτ (RnD ) subject to (5.5). An optimality system of (5.6) can
be deduced with the Lagrange formalism. To be more precise, one can show that the pair
(yτh, uτh) ∈ Vτ (Vh)× Vτ (RnD ) is the optimal solution if and only if some discrete adjoint
state pτh ∈ Vτ (Vh,D) exists satisfying

(5.7)


yτh(t, v) = uτh,v(t) ∀t ∈ I, v ∈ VD,

B(yτh, wτh) = (f, wτh)L2(I;L2(Γ)) ∀wτh ∈ Vτ (Vh,D),

B(wτh, pτh) = (yτh − ȳ, wτh)L2(I;L2(Γ)) ∀wτh ∈ Vτ (Vh,D),

(β uτh, zτ )L2(I;RnD ) = (Kτh(pτh), zτ )L2(I;RnD ) ∀zτ ∈ Vτ (RnD ).

The discrete Kirchhoff-Neumann operator Kτh : Vτ (Vh)→ Vτ (RnD ) is defined by

(Kτh(pτh), zτ )L2(I;RnD ) = B(Ehzτ , pτh)− (yτh − ȳ, Ehzτ )L2(I;L2(Γ)) ∀zτ ∈ Vτ (RnD ),

with Eh an arbitrary extension operator onto Vh. A straightforward calculation again gives
S∗τh = −Kτh ◦ Pτh with Pτh the solution operator of the discrete adjoint equation, which
implies the last equation in (5.7).

An error estimate for the control approximation can be deduced by the arguments from [22,
Theorem 4]:

THEOREM 5.5. Let f, ȳ ∈ L2(I;L2(Γ)). Assume that the temporal and spatial discretiza-
tion parameters are related to each other by means of τ = O(h2). Then the solutions of (5.1)
and (5.6) satisfy the error estimate

‖u− uτh‖L2(I;RnD ) + ‖y − yτh‖L2(I;L2(Γ)) ≤ c h
1/2.
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REMARK 5.6.
a) The result of Theorem 5.5 is sharp under the regularity assumptions on ȳ and f . As ex-

plained in Remark 5.4, the solutions may be more regular for, e.g.,
ȳ ∈ H1/2(I;L2(Γ)), and one would then expect a higher convergence rate than
predicted in Theorem 5.5. This is indeed confirmed by numerical experiments, but
a proof of this observation is still an open problem and will be addressed in future
research.

b) The convergence rate is limited by the low regularity of the solution. Increasing the
polynomial degree for the approximations will not lead to an improvement of the
convergence rate.

c) If a stronger norm for the regularization were used, e.g., Hs(I;RnD ) with s > 0,
then the optimal solution would be more regular leading to better approximation
properties; see [46, 68].

5.3. Preconditioning of the parabolic problem. Similar to the investigations in Sec-
tion 4 we use a matrix-vector representation of the optimality system (5.7), namelyMFF MFD K>FF

MDF MDD + βI K>FD
KFF KFD 0

yFu
pF

 =

ȳFȳD
fF

 ,
where we abuse the notation from before to denote by yF , u, and pF the vectors containing
state, control, and adjoint state for all time-steps and similarly for the right-hand side. In the
following, nt denotes the number of time steps. We have

MFF = Int
⊗ τMFF , MFD = Int

⊗ τMFD,

MDF = Int
⊗ τMDF , MDD = Int

⊗ τMDD,

I = Int
⊗ τInD ,

KFF = C⊗MFF + Int
⊗ τKFF , KFD = C⊗MFD + Int

⊗ τKFD.

Here the matrix C represents the time-discretization, e.g.,

C =


1 0 . . . 0

−1 1
. . . 0

0
. . . . . . 0

0 . . . −1 1

 ∈ Rnt×nt .

The preconditioning strategy that we propose for the parabolic case follows the pattern that we
presented earlier. Namely, we use[

MFF MFD

MDF MDD + βI

]
≈
[
MFF 0
0 MDD + βI −MDFM−1

FFMFD

]
,

and then again

SM =MDD + βI −MDFM−1
FFMFD,

and, utilizing the Kronecker product representation, this becomes

SM = Int
⊗ τ

(
MDD + β I−MDFM

−1
FFMFD

)
.
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We can now use the approximation blkdiag(MFF ,SM ) for the construction of the Schur-
complement preconditioner of the parabolic problem.

We could again employ a matching argument for the time-dependent Schur complement
leading to

KFFM−1
FFK

>
FF +KFDD−1

SMK
>
FD ≈ (KFF +N )M−1

FF

(
K>FF +N

)
,

but again, as the eigenvalues show a rather benign dependence on β, the overall preconditioner
is taken as

P =

M 0 0
0 SM 0
0 0 KFFM−1

FFK>FF

 ,
where we use a direct solver for the spatial components within the preconditioner. In fu-
ture research we will investigate multigrid schemes for higher efficiency. We illustrate the
preconditioner’s effectiveness in the next section.

6. Numerical experiments. In this section we illustrate how the methodology developed
in this paper performs when applied to several challenging datasets. Our implementation
is based on MATLAB. For the iterative solver we rely on the standard implementation of
MINRES within MATLAB. We run the algorithm until a relative tolerance of 10−8 is reached.

(a) Star-shaped network (b) L-shaped FD graph

FIG. 6.1. Optimal solutions of Dirichlet control problems. The red lines represent the edges of the graph, the
blue lines represent the optimal state, and the green stars are the control nodes.

6.1. Preconditioning. The purpose of the preconditioners that we designed is to provide
fast and robust methods that lead to a method exploiting as much as possible the structure of
the saddle point problems presented above. While for certain smaller and non-complex graphs
the use of direct solvers is very efficient, the motivation for constructing preconditioners is
the applicability to complex networks and also more challenging differential equations that
contain time-derivatives and possibly parameter dependencies.

The first example we consider is a simple star graph, where we have one internal node
and all remaining nodes are leaf nodes. The solution of a Dirichlet boundary control problem
on such a graph is illustrated in Figure 6.1a. The required number of iterations of the iterative
MINRES-method using the symmetric preconditioner constructed in Section 4.3 are reported
in Table 6.1a. Obviously, our iterative solver is robust, both with respect to the regularization
parameter β and the discretization parameter h. It also can be observed that our method
outperforms the unpreconditioned iterative solver.
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As a second example, we consider a finite difference graph of an L-shaped domain, also il-
lustrated in Figure 6.1b. To generate this graph we used the Matlab function “numgrid(’L’,N)”,
where N is the number of vertices at the long edges of an L-shaped domain. In the experiment
we used 12 randomly selected controllable nodes. The number of GMRES iterations are
presented in Table 6.1b. As in the previous example, we observe robustness of the number
of iterations with respect to changes in β and the number of finite element nodes. We see a
slight mesh-dependence for an increasing number of degrees of freedom, but the number of
iterations stay rather small.

TABLE 6.1
Number of iterations of MINRES required to reach a relative tolerance of 10−8 for different regularization

parameters β and discretization parameters NDOF = n+m (ne − 1). The values in parentheses are the number of
iterations for the unpreconditioned method, provided that the method converged after 2000 iterations.

(a) Star graph – Iterations

NDOF 114 494 2022 8150 32694
β

10−1 8 (18) 8 (40) 8 (124) 8 (418) 8 (1437)
10−2 8 (18) 8 (41) 8 (126) 8 (394) 8 (1306)
10−3 10 (11) 11 (35) 8 (129) 8 (413) 8 (1375)
10−4 8 (18) 8 (41) 8 (130) 8 (417) 8 (1416)
10−5 8 (18) 8 (40) 8 (130) 8 (416) 8 (1400)

(b) FDM graph – Iterations

NDOF 44 564 5300 45684
β

10−1 17 (26) 23 (607) 18 (–) 19 (–)
10−2 19 (27) 25 (557) 20 (–) 14 (–)
10−3 19 (27) 25 (539) 19 (–) 21 (–)
10−4 19 (27) 25 (605) 21 (–) 18 (–)
10−5 19 (27) 26 (617) 21 (–) 14 (–)

6.2. Discretization error estimates. In this experiment we want to test whether the
convergence behavior predicted by Theorem 3.6 is also observed in experiments. To this end,
we use again the FDM graph of an L-shaped domain as already considered in the previous
section. The input data for the optimal control problem are β = 0.01, ȳ ≡ 1, f ≡ 0.5, c0 ≡ 1,
and ua = −∞, ub = 1.4. The exact solution is illustrated in Figure 6.1b. The constrained
problem is solved by a primal-dual active set strategy [31] realized as follows. For a given
iterate u(n) with corresponding state y

(n)
F and adjoint state p

(n)
F , we compute the residual

r(n) := ȳD −KDFp
(n)
F −MDFy

(n)
F −MDDu

(n) − β u(n)

and determine the set of active and inactive indices by means of

A(n) = {i : [r(n) + β (u(n) − ub)]i > 0}, I(n) = {1, . . . , nD} \ A(n),
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and the matrices I
(n)
A = diag(1i∈A(n) : i = 1, . . . , nD), I(n)

I = I − I
(n)
A . Then, instead

of (4.2), we solve MFF MFD K>FF
I
(n)
I MDF I

(n)
I (MDD + β I) + I

(n)
A IIK

>
FD

KFF KFD 0


y(n+1)

F

u(n+1)

p
(n+1)
F

 =

 ȳF
I
(n)
I ȳD + I

(n)
A ub

fF

 ,
and repeat this procedure for n = 0, 1, . . . until A(n+1) = A(n) holds.

We repeated the computation of the optimal Dirichlet control problem for the parameters
ne = 2k, k = 1, 2, . . . , 9. On all refinement levels the control constraint was active at 5
nodes and inactive at 15 nodes. The discretization error for the control and the state in the
L2(Γ)- and H1(Γ)-norm is obtained by a comparison of the solution with the solution on the
finest grid with k = 15. In Table 6.2 the absolute values of the error and the experimental
convergence rates are summarized. Obviously, the measured convergence rates confirm that
the error estimates from Theorem 3.6 are sharp.

TABLE 6.2
Absolute error of the discrete controls in |·|2 and states in ‖·‖L2(Γ) and |·|H1(Γ). The numbers in parentheses

are experimental convergence rates. Here, NDOF is the number of degrees of freedom for the state variable, i.e., the
number of nodes in the extended graph.

NDOF h |u− uh|2 ‖y − yh‖H1(Γ) ‖y − yh‖L2(Γ)

529 2−2 1.43e-02 (1.96) 3.38e-01 (1.00) 1.59e-02 (1.96)
1121 2−3 3.59e-03 (1.99) 1.69e-01 (1.00) 4.00e-03 (2.00)
2305 2−4 8.99e-04 (1.99) 8.47e-02 (1.00) 1.00e-03 (2.00)
4673 2−5 2.25e-04 (1.99) 4.23e-02 (1.00) 2.50e-04 (2.00)
9409 2−6 5.61e-05 (2.00) 2.11e-02 (1.00) 6.25e-05 (2.00)
18881 2−7 1.39e-05 (2.00) 1.05e-02 (1.00) 1.56e-05 (2.00)
37825 2−8 3.43e-06 (2.02) 5.29e-03 (1.00) 3.94e-06 (1.99)
75713 2−9 7.97e-07 (2.10) 2.64e-03 (1.00) 1.04e-06 (1.91)

TABLE 6.3
Number of iterations of the GMRES-method for the solution of an optimal Dirichlet control problem on the

Minnesota graph in dependence of the regularization parameter β and the number of finite element nodes NDOF. The
numbers in parentheses stand for the computing time in seconds.

NDOF 104328 209992 421320 843976
β

10−1 22 (0.27) 22 (0.36) 24 (0.83) 24 (1.73)
10−2 20 (0.17) 22 (0.36) 25 (0.87) 24 (1.74)
10−3 18 (0.16) 20 (0.33) 22 (0.77) 22 (1.60)
10−4 18 (0.15) 18 (0.29) 22 (0.76) 22 (1.63)
10−5 18 (0.14) 20 (0.32) 22 (0.77) 22 (1.63)

6.3. Other networks. We now illustrate by two more examples that the technique pre-
sented by us does apply to more general complex networks. The first example is the road
network of Minnesota3 illustrated in Figure 6.2a. Also for this problem, the preconditioner we

3https://www.cise.ufl.edu/research/sparse/matrices/Gleich/minnesota.html
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(a) Road network of Minnesota (b) Ego network of Facebook

FIG. 6.2. Example networks investigated in Section 6.3.

studied is robust with respect to β and h; see Table 6.3. The second complex network we use is
the Facebook Ego Network Dataset4 displayed in Figure 6.2b. We here have 5,228,870 degrees
of freedom, and the solver is able to obtain the solution after 38 iterations for β = 10−3 and
37 iterations for β = 10−4.

In Table 6.4 we illustrate the performance of our method when applied to Erdös-Renyi
graphs [18]. We generate a random graph with n = 150 nodes and a connection probability p
that is varied. We additionally increase the number of degrees of freedom on an edge ne. It
can we seen that the number of iterations remains fairly constant for changing connectivities
and different degrees of freedom.

TABLE 6.4
Number of iterations of the GMRES-method for a problem on an Erdös-Renyi graph with connection probability

p and n = 150 nodes.

p .1 .2 .3
NDOF(ne)

292,992 (ne = 2) 33 30 33
3,431,904 (ne = 4) 36 33 34

12,806,640 (ne = 6) 33 33 33
31,807,104 (ne = 8) 30 27 29

6.4. Parabolic case. We here briefly illustrate the performance of the suggested precon-
ditioner for the parabolic optimal control problem. Table 6.5 provides the number of iterations
of the restarted GMRES method. We set the restart parameter to 10. It is also possible to
choose MINRES, which will then lead to higher number of iterations but also a more accurate
solution when compared to the solution computed using a direct method. This is likely due to
the different ways in which convergence is measured in both methods.

We can see from Table 6.5 that the number of iterations is robust with respect to changes
in the discretization parameters for space and time as well as changes in the regularization
parameter β. We test the performance on three different networks and observe the robustness
of the iterative method when applied to each network.

7. Conclusion & Outlook. In this paper we discussed a PDE-constrained optimization
problem on a complex network. The steady PDE-operator and the objective function were

4 https://blogs.mathworks.com/loren/2016/02/03/visualizing-facebook-networks-with-matlab/
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TABLE 6.5
Number of iterations of the GMRES-method for the solution of the parabolic optimal Dirichlet control problem

for the finite difference (FDM), facebook (fb), and Minnesota (mn) networks.

β 10−1 10−2 10−3

NDOF

FD
M

18,396 33(0.29) 36 (0.21) 36 (0.19)
173,040 33(1.20) 37 (1.28) 37 (1.29)

1,487,808 24(9.99) 30 (15.53) 30 (17.31)
fb

7,348,530 33(52.21) 33 (121.90) 33 (97.69)
30,904,650 33(307.82) 33 (246.46) 34 (256.96)

m
n 1,584,720 36(13.68) 40 (14.35) 40 (13.19)

3,873,920 33(22.39) 40 (31.34) 40 (26.26)

discretized using finite elements. A rigorous error analysis showed quadratic convergence for
the controls, which is also confirmed by the numerical experiments. We further discussed the
matrix structure following [3], and we proposed a preconditioning strategy for the saddle point
system representing the first-order optimality conditions. The robustness of the preconditioned
methods with respect to changes in the regularization and discretization parameters is also
observed in numerical experiments. We were able to extend the preconditioning strategy to
the case of a parabolic constraint leading to an efficient solution procedure also for complex
networks. This is an important first step towards tackling realistic applications, as we believe
that much of our methodology can be carried over to the case when nonlinear and time-
dependent state equations are considered.
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