
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 54, pp. 420–442, 2021.
Copyright © 2021, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol54s420

STRUCTURED BACKWARD ERRORS IN LINEARIZATIONS∗

VANNI NOFERINI†, LEONARDO ROBOL‡§, AND RAF VANDEBRIL¶

Abstract. A standard approach to calculate the roots of a univariate polynomial is to compute the eigenvalues of
an associated confederate matrix instead, such as, for instance, the companion or comrade matrix. The eigenvalues of
the confederate matrix can be computed by Francis’s QR algorithm. Unfortunately, even though the QR algorithm is
provably backward stable, mapping the errors back to the original polynomial coefficients can still lead to huge errors.
However, the latter statement assumes the use of a non-structure-exploiting QR algorithm. In [J. L. Aurentz et al.,
Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 942–973]
it was shown that a structure-exploiting QR algorithm for companion matrices leads to a structured backward error
in the companion matrix. The proof relied on decomposing the error into two parts: a part related to the recurrence
coefficients of the basis (a monomial basis in that case) and a part linked to the coefficients of the original polynomial.
In this article we prove that the analysis can be extended to other classes of comrade matrices. We first provide an
alternative backward stability proof in the monomial basis using structured QR algorithms; our new point of view
shows more explicitly how a structured, decoupled error in the confederate matrix gets mapped to the associated
polynomial coefficients. This insight reveals which properties have to be preserved by a structure-exploiting QR
algorithm to end up with a backward stable algorithm. We will show that the previously formulated companion
analysis fits into this framework, and we analyze in more detail Jacobi polynomials (comrade matrices) and Chebyshev
polynomials (colleague matrices).
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1. Introduction. A standard approach to find the solutions of a univariate polynomial
equation is to convert the problem into an equivalent one where the eigenvalues of a matrix
are computed instead. The algebraic technique used to construct such a matrix is called a
linearization, and, albeit ultracentenarian, it is still the most popular initial step of modern
rootfinding algorithms, at least if all the polynomial roots are sought. For example, this is what
MATLAB’s roots function does [9] for polynomials expressed in the monomial basis, and it
is at the heart of chebfun/roots for polynomials expressed in the Chebyshev basis [23].

In the landmark paper [9] Edelman and Murakami cast a shadow on this strategy. They
showed that, even if the matrix eigenvalue problem is solved with a backward stable algorithm
such as QR [25], the whole approach can (depending on the specific linearized polynomial)
be catastrophically unstable. More recently, De Terán, Dopico, and Pérez [7] argued that,
if Fiedler linearizations [11] are used instead of the classical companion linearization [9],
then the potential misfortunes can be even more pronounced. Fortunately, Van Dooren and
Dewilde [24] showed that this problem could be circumvented by solving a generalized
eigenproblem instead; the disadvantage, however, is that this is significantly less efficient.

While De Terán, Dopico, and Pérez [7] and Edelman and Murakami [9] focused only
on polynomials expressed in the monomial basis, Nakatsukasa and Noferini [18] proved that
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analogous results on the dangers of always trusting the linearize-and-use-QR philosophy
can be stated for any degree-graded basis. That is, the beautiful idea of constructing the
so-called confederate matrix and then finding its eigenvalues by QR is potentially, depending
on the polynomial input, unstable. Again, for many bases of practical importance, switching
to a pencil and employing the QZ algorithm provably avoids any instabilities [15, 16, 18].
Less clear than for the monomial basis is the question under which conditions on the input
polynomial the QR-based approach is stable; Noferini and Pérez [20] gave a complete answer
for the Chebyshev basis, but we are not aware of any progress for other bases.

This story has recently seen a sudden twist towards positive news. All the aforementioned
results rely on the assumption that a general eigensolver, e.g., an unstructured QR algorithm, is
applied to the linearizing matrix. However, confederate matrices are typically highly structured.
Algorithms specifically designed to preserve and utilize this structure result in two advantages:
reduced computational and storage costs, and a structured backward error. Several such
algorithms can be found in the literature; see, for example, [3, 5, 14] for companion matrices
and the references therein for the case of unitary (fellow) and symmetric-plus-low-rank
(comrade) matrices.

Consider, for instance, the companion algorithm presented by Aurentz et al. [5]. There,
the authors proved that the structured QR algorithm has a backward error in the companion
matrix of the order of ‖p‖22εm for the rank-one part and of the order of εm for the unitary part
(with εm denoting the machine precision). This implies that as an eigensolver this particular
algorithm is not stable, and a blind application of the results of Edelman and Murakami [9],
merging both errors, would yield a backward error for the polynomial of the size ‖p‖32εm: an
apparent disaster as this is even worse than what the unstructured QR obtains: ‖p‖22εm. In the
numerical experiments, however, only an error of the form ‖p‖22εm was observed, insinuating
that something peculiar was happening with the errors.

Two years later, Aurentz et al. [2, 3], were able to improve their companion code to get
an error of the order of ‖p‖2εm for the rank-one part. According to the results of Edelman
and Murakami, this should have implied an error of size about ‖p‖22εm for the polynomial
coefficients. However, by considering a mixed backward error analysis, it was demonstrated
that the specific structure of the backward error in the companion matrix implies that as a
rootfinder, considering the backward error in the polynomial, the algorithm is backward stable
with a backward error bounded by ‖p‖2εm! This was the first time that a rootfinder based on
linearization and (structured) QR was proved to be stable in this stronger sense.

In the current paper we extend the backward error results of Aurentz et al. [3] to other
confederate matrices. As a first step, we present an alternative derivation of the same result
of [3], which is less coupled with the underlying algorithm and thus easier to generalize to
other bases. We examine how to cleverly map the structured backward error in the confederate
matrix back to the polynomial coefficients. As an example of particular interest we analyze
the case of Chebyshev polynomials (colleague matrices) in detail, see how the companion
results [3] fit in, and later discuss the extension to more general Jacobi polynomials (comrade
matrices).

More specifically, we address the following problem. We assume we are given a confeder-
ate pencil, that is, a structured-plus-rank-one pencil that linearizes a polynomial p expressed
in a degree-graded basis. The pencil is of the form M(x) + abT , where M(x) is independent
of p and links to the polynomial basis, and the rank-one addend abT encodes the coefficients
of p. This is precisely the scenario encountered for polynomials expressed in a broad class of
orthogonal polyomial bases, including monomials, Chebyshev, Legendre, ultraspherical, and
other Jacobi polynomials. Next, we assume that a structured eigensolver is used to compute
the eigenvalues of the structured pencil such that backward errors of different form can be
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attached to M(x) and to abT . The question of interest is to map the error back to p and to
characterize it, thereby assessing the overall stability of the rootfinding algorithm. We show
that under minimal assumptions on the pencil M(x) (satisfied in practice by most linearization
schemes), only the backward error in M(x) increases when mapping it back to the polynomial.

Our result thus clarifies the direction that should be followed in the development of stable
structured QR algorithms for polynomial rootfinding: one has to ensure that the backward
error in the “basis part” of the pencil, the addend M(x), is small and independent of the
polynomial under consideration.

The paper is structured as follows. In Section 2 we introduce confederate matrices, prove
properties essential for the article and refine them to comrade matrices. Section 3 discusses
the basic principles for the mixed backward error analysis; it is shown how the structured
error can be mapped back to the polynomials. In Section 4 we illustrate the main idea by
reconsidering the companion matrix and providing an alternative and simpler derivation of the
results of Aurentz et al. [5]. In Section 5 we provide specific bounds for polynomials in the
Chebyshev basis (colleague matrices) and come up with a conjecture for Jacobi polynomials.
We conclude with Section 6.

2. Confederate matrices. First we discuss general confederate matrices. Then we refine
the results to companion and comrade matrices and discuss the special case of colleague
matrices.

2.1. Definition and properties of confederate matrices. Let φj be any degree-graded
(i.e., deg φj = j) polynomial basis such that, for all j = 0, . . . , n, φj has a leading coefficient
νj 6= 0 when expressed in the monomial basis. Let p be a polynomial of degree n, monic in
the basis {φj}. Denoting

Φ(x) =


φn−1(x)

...
φ1(x)
φ0(x)

 ,

we can write p(x) = φn(x) + cTΦ(x) for a unique coefficients vector c. Following [6, 18],
we now introduce the confederate matrix of p(x).

DEFINITION 2.1. The confederate matrix of p(x) = φn(x)+cTΦ(x) is the unique matrix
C satisfying

CΦ(x) = xΦ(x)− χ−1p(x)e1,

where χ = νnν
−1
n−1.

In the following theorem, the second item is classical [6]. The first item also dates back
to [6], although in a weaker form; it was stated in this form (without proof) in [18]. The third
item may be new in this general form although some special cases can be deducted from other
published results; for example, if {φj} is the monomial basis, then it is a consequence of [7],
and for the Chebyshev basis it can be proved using the analysis of [20].
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THEOREM 2.2. The following properties hold:
1. C is a (strong) linearization of p(x) (implying det(xI − C) = p(x)

νn
);

2. C can be written as

C = H − χ−1e1c
T ,

where H is Hessenberg and only depends on the basis {φj};
3. adj(xI − C)e1 = ν−1

n−1Φ(x).
Proof. We prove the three points separately.

1. It can be easily verified that xI − C belongs to the vector space L1 for the basis
{φj} [17, 19]. Since it is manifestly a nonsingular pencil, it is a strong linearization
for p by [19, Theorem 2.1] (or [17, Theorem 4.3] for the monomial basis). Since
det(xI − C) is monic in the monomial basis and p is monic in the basis {φj}, the
equality det(xI − C) = p(x)/νn follows.

2. Let H be the matrix that satisfies HΦ(x) = xΦ(x) − e1χ
−1φn(x). Since xφk(x)

has degree k + 1, for all k = 0, . . . , n − 2, it follows that H is Hessenberg by the
degree-gradedness of {φj}. Now,

χ(H − C)Φ = e1(p(x)− φn(x)) = e1c
TΦ(x).

Since this relation holds over R(x), a fortiori it is still true as a relation over R after
evaluating Φ(x) at any point. Thus, for any Vandermonde matrix V , we obtain

χ(H − C)V = e1c
TV ⇒ χ(H − C) = e1c

T ,

as desired.
3. By definition of C we have

χ(xI − C)Φ = p(x)e1.

As xI − C is regular, it is invertible over R(x). Hence we can premultiply by its
inverse (using det(xI − C) = p(x)/νn), to obtain

ν−1
n−1Φ(x) = adj(xI − C)e1.

REMARK 2.3. The matrix H is a square submatrix of the multiplication matrix M
in [19, Section 2], and it represents the multiplication-by-x operator in the quotient space
R[x]/〈χ−1φn〉.

EXAMPLE 2.4 (Companion matrix). Consider the monomial basis {φj} with φj(x) = xj .
We have φj(x) = xφj−1(x). As a consequence xΦ(x) = HΦ(x) + xne1, where H is the
downshift matrix, i.e., the matrix with only ones on the subdiagonal and zeroes elsewhere.

2.2. Comrade matrices. When the {φj} are orthonormal on a closed real interval and
have positive leading coefficients, the three-term recurrence

φj(x) = (αjx+ βj)φj−1(x)− γjφj−2(x)

holds for all j and for some βj ∈ R, αj = νjν
−1
j−1 > 0, γk = νjνj−2ν

−2
j−1 > 0 [22,

Theorem 3.2.1]. As a consequence, multiplication-by-x is encoded by

xφj−1(x) =
1

αj
φj(x)− βj

αj
φj−1(x) +

γj
αj
φj−2(x),
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which immediately implies that, in this case,

xΦ(x) = HΦ(x) + α−1
n φn(x)e1,

where H is tridiagonal and has positive subdiagonal/superdiagonal elements. In the case of
an orthogonal basis, the confederate matrix is also known as the comrade matrix of p. Note,
moreover, that, as displayed above, in this setting χ = αn so that for p(x) = φn(x) + cTΦ(x)
it holds that

C = H − α−1
n e1c

T .

The matrix H has the following form:

H :=


− βn
αn

γn
αn

1
αn−1

− βn−1

αn−1

γn−1

αn−1

. . . . . . . . .
1
α2

− β2

α2

γ2
α2

1
α1

− β1

α1

 .

We remark that for polynomials represented in the Chebyshev basis, the matrix C is called the
colleague matrix.

In addition, we note that, since αj and γj are positive, it is possible to perform a diagonal
scaling to the matrix H that makes it symmetric. Indeed, we can consider the matrix D−1HD,
where D is any diagonal matrix with entries

dk :=

√√√√ α1

αn−k+1

n−k+1∏
i=2

γi.

Observe that, in particular, dn = 1. This corresponds to choosing the orthogonal basis
φ̃j(x) := d−1

n−jφj(x) having formally set d0 := 1. The scaled matrices are as follows:

D−1HD =



− βn
αn

√
γn

αnαn−1√
γn

αnαn−1
− βn−1

αn−1

√
γn−1

αn−1αn−2

. . . . . . . . .√
γ3
α3α2

− β2

α2

√
γ2
α2α1√

γ2
α2α1

− β1

α1


,

D−1CD = D−1HD − χ̃−1e1c̃
T ,

where c̃ is the coefficient vector of p expressed in the scaled basis {φ0, φ̃1, . . . , φ̃n−1, φn}
and χ̃ =

√
α1αnγ2γ3sγn; the coefficient χ̃ is the analogue of χ for the rescaled basis

{φ0, φ̃1, . . . , φ̃n−1, φn}. From now on we work in this symmetrized setting, and we only
consider D−1CD. From the viewpoint of developing structured algorithms, this is particularly
relevant. If A = H + uvT , with H real symmetric or Hermitian and uvT of rank one,
then all the matrices obtained through the iteration of a QR method that can be written as
Ak := QkAQ

H
k , with Qk orthogonal or unitary, have the same property.
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This observation is key in the development of fast algorithms; in the monomial case, the
companion matrix can be similarly decomposed as the sum of a unitary and a rank-one part;
this property is also preserved by the QR iterations.

Fast algorithms for these classes of matrices often work on the structured (either Hermitian
or unitary) and rank-one part separately. Therefore, it is reasonable to assume that these parts
might be contaminated, throughout the iterations, by backward errors of different magnitudes.
Classical backward error analysis does not take this property into account, so we present a
more general backward error formulation in the next section.

3. Mixed backward error analysis. We are now ready to study the behavior of the
linearized polynomial p(x) under perturbations of the pencil xI − C. More precisely, we
consider xI − (C + δC), where C + δC has a mixed backward error of the following form:

(3.1) C + δC = H + δH + (e1 + δe1)(c+ δc)T .

We note that, for any δC, it is always possible to find a decomposition as the one in (3.1).
Indeed, for any choice of δe1 and δc, it suffices to choose δH := δC−δe1c

T−e1δc
T−δe1δc

T .
Our analysis will show that these terms provide different contributions to the backward error
in the polynomial with different amplification factors. In particular, it will show that errors in
δH may be amplified much higher when projecting the error back to the polynomial, whereas
the backward errors δe1 and δc are relatively less harmful.

By Theorem 2.2 the perturbed matrix C linearizes the polynomial

(3.2) p(x) + δp(x) := νn det(xI − C − δC).

Our aim is now to examine the size of δp(x) under the assumption that for the various actors
in (3.1) a bound is known. In particular, we assume to know appropriate positive εH , ε1, εc
such that

(3.3) ‖δH‖2 ≤ εH < 1, ‖δc‖2 ≤ εc, ‖δe1‖2 ≤ ε1.

Observe that, as discussed above, for given δC, infinitely many choices exist for δH, δc, δe1.
Thus, we may without any loss of generality assume to have picked one that is optimal (in the
sense of making our results as sharp as possible) for the values of εH , εc, ε1. Of course, it may
also happen that in practice an algorithm suggests a particular choice for which bounds for εH ,
εc, ε1 are “naturally" obtained (see, e.g., [3]).

In this section we will discuss the general setting, which holds for all confederate ma-
trices. In Sections 4 and 5 we will specialize to companion and comrade matrices, that is,
corresponding either to the monomial basis or a basis of polynomials orthogonal on a real
interval.

We will make the following assumptions in our analysis:
Assumption 1. The matrix H is normal; for instance, we will consider the case where H is

unitary (the monomial basis) and symmetric (the Chebyshev case and in general the
case of orthogonal polynomials on the real line).

Assumption 2. The backward errors in H, e1, c may be of very different magnitude. In
particular, to obtain strong backward stability on the polynomial, we will need
εH and ε1 to be bounded independently of the norm of the vector of polynomial
coefficients; on the contrary, εC may depend linearly on this value.

We stress that the second assumption, in particular the bound for εH , is the one which is
hard to obtain in practice when designing a structured algorithm. It does not hold for the
unstructured QR or QZ, and obtaining it was key in developing a backward stable algorithm for
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the monomial case in [3, 5]; we hope that our analysis will help to devise similar algorithms in
other bases, in particular for the Chebyshev one.

From now on, we use the notation .
= to indicate an equality that holds up to second

order in the terms εH , ε1, εc. Based on the expressions above, we can rewrite the perturbed
polynomial.

THEOREM 3.1. With the notation of (3.1), (3.2), and (3.3), the following first-order
expansion in εH , εc, ε1 holds:

(p+ δp)(x)
.
= p(x) + νn (det(xI −H − δH)− det(xI −H))

+ χδcTΦ(x) + νnc
T adj(xI −H)δe1+

+ νnc
T (adj(xI −H − δH)− adj(xI −H)) e1.

Proof. By (3.2) we have (p+ δp)(x) = νn det(xI − (C + δC)), which by Theorem 2.2
is equal to

(p+ δp)(x) = νn det(xI −H − δH) + νn(c+ δc)T adj(xI −H − δH)(e1 + δe1).

To obtain the statement, we first add p(x) and subtract its expansion obtained by Theorem 2.2.
Next, we discard higher-order terms and use the equalities νn−1 adj(xI −H)e1 = Φ(x) and
νn−1χ = νn.

Theorem 3.1 reveals that, in order to provide bounds for the perturbation δp(x), it is
essential to do a perturbation analysis related to determinants and adjugates. To this aim, we
provide a few results that will be useful in later proofs.

LEMMA 3.2 (Jacobi’s formula). LetX be any square matrix and δX a small perturbation.
Then,

det(X + δX) = det(X) + tr(adj(X)δX) +O(‖δX‖2).

A similar result can be given for the adjugate as well, which characterizes the effect of
small perturbations.

LEMMA 3.3. Let δX be a small perturbation (‖δX‖ < 1). Then,

(3.4) adj(I + δX) = (I − δX)(1 + tr(δX)) +O(‖δX‖2).

Proof. Since ‖δX‖ < 1, I + δX is invertible, and therefore we can write

adj(I + δX) = (I + δX)−1 det(I + δX).

We shall make a first-order approximation of both terms involved in the above equality.
Concerning the first one, we have that (I + δX)−1 .

= I − δX . To bound the change in the
determinant, we use Lemma 3.2 and obtain

det(I + δX) = 1 + tr(δX) +O(‖δX‖2),

which provides the sought first-order expansion (3.4).
LEMMA 3.4. Let A,B be two n × n matrices, and assume that A is normal with

eigenvalues λ1, . . . , λn. Then,

| tr(AB)| ≤ ‖B‖2
n∑
j=1

|λj |.
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Proof. Let A = QDQH be an eigendecomposition of A with Q unitary. Then, if we
denote by qj the columns of Q, we can write:

| tr(AB)| = | tr(QHAQQHBQ)| = | tr(DQHBQ)| ≤ |
n∑
j=1

λjq
H
j Bqj |.

Since |qHj Bqj | ≤ ‖B‖2, the result follows.
With these tools at hand, we are now able to bound the pointwise perturbation δp(ξ), i.e.,

the evaluation of the perturbation at any point ξ ∈ C. Later on, when going to comrade and
companion matrices, we will need to specify these points ξ to retrieve tight bounds for the
polynomial coefficients.

LEMMA 3.5. Let (p+ δp)(x) = det(xI − C − δC) be the perturbed polynomial. Then,
for every ξ ∈ C, we get the following first-order bound:

|δp(ξ)| ≤ Γ1(ξ)ε1 + Γc(ξ)εc + ΓH(ξ)εH +O(ε2H + ε21 + ε2c),

where

Γ1(ξ) := M(ξ)|φn(ξ)|‖c‖2, Γc(ξ) := χ‖Φ(ξ)‖2,
ΓH(ξ) := S(ξ)|φn(ξ)|+ Γc(ξ) (M(ξ) + S(ξ)) ‖c‖2,

having defined

S(ξ) :=

n∑
j=1

1

|ξ − rj |
, M(ξ) := max

j=1,...,n

1

|ξ − rj |
.

In the expressions for S(ξ) and M(ξ) above, rj denote the roots of the polynomial φn of
degree n.

Proof. Let us first note that, since φn(x) = νn det(xI −H) and since ξI −H is normal,
we have

‖(ξI −H)−1‖2 = max
j=1,...,n

1

|ξ − rj |
.

By Theorem 3.1 we have the following first-order approximation for δp(ξ):

δp(ξ)
.
= νn (det(ξI −H − δH)− det(ξI −H))(3.5)

+ χδcTΦ(ξ) + νnc
T adj(ξI −H)δe1(3.6)

+ νnc
T (adj(ξI −H − δH)− adj(ξI −H)) e1.(3.7)

We bound all the terms separately.
• We consider (3.5) first. By Lemma 3.2 we can write

det(ξI −H − δH)− det(ξI −H)
.
= tr(adj(ξI −H)δH).

Since ξI −H is a normal matrix, we can use Lemma 3.4 to obtain

νn|det(ξI−H−δH)−det(ξI−H)| .= νn| tr(adj(ξI−H)δH)| ≤ εH
n∑
j=1

φn(ξ)

|ξ − rj |
.
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• To bound the second term in (3.6), we use

‖adj(ξI −H)‖2 = |det(ξI −H)|‖(ξI −H)−1‖2 =
|φn(ξ)|
νn

max
j

1

|ξ − rj |
.

Bounding the first term just requires taking norms of all the factors involved.
• To bound (3.7), assuming ‖(ξI −H)−1δH‖ ≤ 1 and using Lemma 3.3, we write

adj(ξI −H − δH) = adj
(
(ξI −H)(I − (ξI −H)−1δH)

)
= adj(I − (ξI −H)−1δH) adj(ξI −H)
.
= (I + (ξI −H)−1δH)(1− tr((ξI −H)−1δH)) adj(ξI −H).

Then, using the fact that νn−1 adj(ξI −H)e1 = Φ(ξ), we have

νnc
T (adj(ξI −H − δH)− adj(ξI −H)) e1
.
= χcT

(
(ξI −H)−1δH − tr((ξI −H)−1δH)I

)
Φ(ξ).

Taking norms and combining all the results yields the desired bound.
The results we have proved are valid for any class of polynomials under the assumption

that H is normal1. We will use this idea to generalize the pointwise bound to a bound for the
coefficients in the case of the monomial basis and of orthogonal polynomials on a real interval.
These are the subjects of the next sections.

4. Companion matrix. In this section we reconsider the error analysis of Aurentz et
al. [3] in view of this new theory. The derivation of [3] is based on running the Faddev-
Leverrier algorithm to compute the coefficients of the adjugates, and this is used to provide
bounds for its norm. This approach is not easily generalizable, despite the existence of a
Faddev-Leverrier scheme for non-monomial bases. Our new point of view yields a simple and
clean derivation of the results therein, based instead on an interpolation argument.

To analyze the backward error of an algorithm running on the companion matrix, we have
to rewrite the companion matrix slightly. Example 2.4 revealed that the Hessenberg matrix
H is the downshift matrix, and the eigenvalues can be retrieved from C = H − e1c

T , i.e.,
the downshift matrix plus a rank-one part. Structure-exploiting algorithms, however, rely on
the unitary-plus-low-rank structure, and rewriting C = H̃ − e1c̃

T , with H̃ = H − e1e
T
n and

c̃ = c+ eTn , is clearly of unitary-plus-low-rank form.
This has some impact on the backward error since we are now working with the basis

1, x, . . . , xn−1, xn + 1, instead of the classical monomial basis. Moreover, also the trailing
coefficient of our polynomial p has changed. For simplicity, we will therefore, from now on,
assume to be working in the basis 1, x, . . . , xn−1, xn + 1.

Eventually, we will use the Fast Fourier transform to retrieve the coefficients of δp. To
do so, we need to bound δp evaluated at the n-th roots of unity ξj , for j = 0, . . . , n − 1.
Lemma 3.5 provides

|δp(ξj)| ≤ Γ1(ξj)ε1 + Γc(ξj)εc + ΓH(ξj)εH .

Using the formulas of Lemma 3.5 yields Γ1(ξj) = 2M and ΓH ≤ 2S+
√
n+ 3(M+S)‖c‖2.

Recalling that φn(x) = xn + 1, we have that rj = e
(2j+1)π

n . Exploiting that |φi(ξj)| = 1, for
i < n, and χ = 1, we obtain Γc(ξj) = ‖Φ(ξj)‖2 ≤

√
n. The quantity M is the inverse of the

1We note that these perturbations might make H + δH non-normal, but this is not an issue for our analysis as
we always deal with expansions centered at H .
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distance between the n-th roots of the unity and rj , which can be bounded by M ≤ n
2 . To

bound S =
∑n
k=1

1
|ξj−rk| , we use

S =

n∑
k=1

1

|ξj − rk|
=

n∑
k=1

1

|1− e 2π
2n (2j+1)|

=

n∑
k=1

1∣∣2 sin
(
π
2n (2j + 1)

)∣∣
= 2

n/2∑
k=1

1

2 sin
(
π
2n (2j + 1)

)
and the fact that sinx > 2

πx, for x ∈ [0, π2 ]. As a result we obtain

S ≤ n

2
log

(
n

2
+

1

2

)
.

Combining all of this leads to

(4.1)
|δp(ξj)| ≤ n‖c‖2ε1 +

√
n εc + n log

(n
2

)
εH

+
n
√
n

2

(
1 + log

(
n

2
+

1

2

))
‖c‖2εH +O(ε2H + ε21 + ε2c).

As a result, we get for the Euclidean norm of the vector of coefficients of δp(x), denoted
as ‖δp‖2,

‖δp‖2 =

∥∥∥∥ 1√
n
F ∗q

∥∥∥∥
2

≤ ‖q‖∞ +O(ε2H + ε21 + ε2c),

where q = [δp(ξ0), . . . , δp(ξn−1)]T and F is the matrix of the discrete Fourier transform. The
last factor can be bounded by (4.1).

Reconsidering the algorithm of Aurentz et al. [3], we have that ε1 = 0, εH = εm, and
εc = ‖c‖2εm, where εm is the machine precision. Clearly we end up with the same bound
proposed by Aurentz et al., namely a linear dependency on ‖c‖2.

Before moving to orthogonal bases on real intervals and in particular Chebyshev and
Jacobi polynomials, we emphasize that the main ingredients playing a role in the bound are
related to the eigenvalues of the structured matrix H , namely their separation as measured by
the constants M,S of Lemma 3.5, and their good properties as interpolation points for the
chosen basis. These two quantities will play an important role in the analysis of the following
sections as well.

5. Orthogonal polynomials on a real interval. In this section, we consider a class of
degree-graded polynomials φi(x), for j ≥ 0, that are orthogonal on [−1, 1] with respect to a
positive measure w(x).

Our aim is to leverage Lemma 3.5 to provide a bound for the coefficients of the per-
turbed polynomial δp(x). To this aim, we provide the following result, which holds for any
polynomial family orthogonal on [−1, 1]; since this bound is not very explicit, we will then
specialize it to a few particular families of polynomials for which we can be more precise,
namely Chebyshev and later on all Jacobi polynomials.

THEOREM 5.1. In the notation of (3.1) and (3.3), let {φi} be a basis of orthogonal
polynomials on [−1, 1] such that H is real and symmetric. Let {ρj}nj=0 be distinct points in
[−1, 1], and {rj}nj=1 the roots of φn(x). Let {`j(x)}nj=0 be the Lagrange polynomials defined
by the nodes ρ0, . . . , ρn, and consider the matrix L such that Lij contains the i-th coefficient
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of `j(x) with respect to the basis {φi}. Then, the norm of the vector of coefficients of δp(x)
can be bounded by

‖δp‖∞ ≤ ‖L̂‖∞
(

max
j=0,...,n

Γ1(ρj)ε1 + Γc(ρj)εc + ΓH(ρj)εH

)
+O(ε2H + ε21 + ε2c),

where L̂ is the matrix with the first n rows of L and Γ1,Γc,ΓH are defined as in Lemma 3.5.
Proof. We note that δp(x) =

∑n−1
j=0 δpjφj(x) is a polynomial of degree n − 1. Its

coefficients can be recovered by interpolation at the points {ρ0, . . . , ρn}. Notice that these are
n+ 1 points, one more than actually required. Let Vn be the (n+ 1)× (n+ 1) generalized
Vandermonde matrix interpolating at these nodes in the prescribed basis. Hence, we have

δp0

...
δpn−1

0

 = V −1
n


δp(ρ0)
δp(ρ1)

...
δp(ρn)

 .
Note that L = V −1

n . Indeed, the entries of the inverse of a Vandermonde matrix are the
cofficients of the Lagrange polynomials with nodes ρ0, . . . , ρn. Therefore, we have, for
0 ≤ i ≤ n− 1,

|δpi| ≤
n+1∑
j=1

|Li+1,j ||δp(ρj)| ≤ ‖L̂‖∞ max
0≤j≤n

|δp(ρj)|,

where, by L̂, we denote the first n rows of L. The statement then follows by applying
Lemma 3.5.

5.1. Chebyshev polynomials. Chebyshev polynomials of the first kind play a special
role among orthogonal polynomials on [−1, 1], in particular thanks to their nice approximation
properties. For instance, they are the basis of the chebfun MATLAB toolbox [8] that aims
at making computing with functions as accessible as computing with matrices and vectors.

Their orthogonality measure is defined by the weight function w(x) = (1− x2)−
1
2 , and

they can be obtained through the recursive relations

Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) = 1, T1(x) = x.

We denote by Uk(z) the Chebyshev polynomials of the second kind, which can be obtained
by replacing the degree-1 polynomial by 2x and keeping the rest of the recursion unchanged.
The latter are orthogonal with respect to the weight

√
1− x2. Moreover, T ′n(x) = nUn−1(x),

and therefore the extrema of Tn(x) are the roots of Un−1(x).
Our aim in this section is to apply Theorem 5.1 to Chebyshev polynomials of the first kind,

making all the involved constants explicit or functions of the degree. To this aim, we need to
choose the interpolation nodes, and in this case we select ρj = cos(jπ/n), for j = 0, . . . , n,
which are the roots of Un−1(x) (with, additionally, the points ±1) and therefore the extrema
of Tn(x) on [−1, 1].

LEMMA 5.2. Let L̂ be the matrix defined as in Theorem 5.1 choosing as {φj} the
Chebyshev polynomials of the first kind and as nodes ρj = cos(jπ/n), for j = 0, . . . , n. Then,
‖L̂‖∞ ≤ 2.

Proof. We prove the result by showing that, for 1 ≤ i ≤ n, we have |L̂ij | ≤ 2
n , if

2 ≤ j ≤ n, and |L̂ij | ≤ 1
n , for j ∈ {1, n+ 1}. It immediately follows that the row sums of

|L̂| are bounded by 2, and thus the claim holds.
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For any i, j, since L̂ij is the Chebyshev coefficient corresponding to Ti−1 of `j−1(x), we
can recover it by writing

‖Ti−1(x)‖2L̂ij =

∫ 1

−1

`j−1(x)Ti−1(x)√
1− x2

dx, i, j = 1, . . . , n+ 1.

Here ‖Ti−1(x)‖ denotes the norm induced by the scalar product considered above. We note
that, if 2 ≤ j ≤ n, then `j−1(x) is divisible by (1− x)2, since it vanishes at ±1. Therefore,
for 1 ≤ j ≤ n − 1, we can define the degree-(n − 2) polynomial qj(x) := `j(x)/(1 − x2)
and rewrite the formula as follows:

L̂ij =
1

‖Ti−1(x)‖2

∫ 1

−1

qj−1(x)Ti−1(x)
√

1− x2 dx, 2 ≤ j ≤ n.

Since deg(qj−1(x)Ti−1(x)) = n + i − 3 ≤ 2n − 3, because we are assuming i ≤ n, we
can integrate the above identity exactly using a Chebyshev-Gauss quadrature formula with
Chebyshev polynomials of the second kind of degree n− 1, which yields

‖Ti−1(x)‖2L̂ij =

n−1∑
s=1

ws
1− x2

s

`j−1(xs)Ti−1(xs) =
wj−1

1− x2
j−1

Ti−1(xj−1).

For the Chebyshev-Gauss quadrature of the second kind, the ws are known explicitly and
are ws = π

n (1 − x2
s); this, combined with ‖Ti−1(x)‖2 ≥ π

2 and |Ti−1(xj−1)| ≤ 1, yields
|L̂ij | ≤ 2

n .
It remains to consider the case j ∈ {1, n+ 1}. Without loss of generality we can consider

j = 1, which is associated with `0(x). Since `0(x) has as roots the zeros of Un−1(x) and
−1, we can write it as `0(x) = γ(1 + x)Un−1(x) up to a scaling factor γ. The latter can be
determined by imposing `0(ρ0) = `0(1) = 1, which yields γ = (2n)−1 since Un−1(±1) = n.
Similarly, we can show that `n(x) = (2n)−1(1− x)Un−1(x). In addition, we may write

(1 + x)Un−1(x) =

n∑
j=0

fjTj(x), (1− x)Un−1(x) =

n∑
j=0

(−1)n−j+1fjTj(x),

where fj = 2 if 1 ≤ j ≤ n − 1 and 1 if j ∈ {1, n}. These equalities can be easily verified
using [1, (22.5.8), p. 778]. Hence, we can conclude that |L̂i1| = |L̂i,n+1| ≤ 1

n , and therefore
‖L̂‖∞ ≤ (n− 1) 2

n + 1
n + 1

n = 2.
To apply Theorem 5.1 we need to obtain bounds for the constants Γ1,Γc, and ΓH , which

in turn requires to bound the quantities M and S as defined in Lemma 3.5.
LEMMA 5.3. For Chebyshev polynomials, with the notation of Lemma 3.5 and ξ = ρj as

defined in Theorem 3.1, we have

M ≤ 3n2, S ≤ 5n2.

The above result is somewhat tedious to prove, so we delay the proof to Section 5.2; it
allows us to state the following corollary for the case of Chebyshev polynomials. Recall that,
given a monic polynomial p(x) =

∑n
j=0 pjTj(x), the (scaled) colleague matrix is given by:

(5.1) C = H − 1

2
e1c

T =



0 1
2

1
2 0

. . .
. . . . . . 1

2
1
2 0

√
2

2√
2

2 0


− 1

2
e1

[
pn−1, . . . , p1,

√
2p0

]
,
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as described in Section 2.2, since for Chebyshev polynomials of the first kind we have
αn = 2, βn = 0, γn − 1, with the only exception of α1 = 1.

COROLLARY 5.4. Let C = H − χ−1e1c
T be the scaled linearization for a polynomial

p(x) expressed in the Chebyshev basis given by (5.1). Consider perturbations ‖δH‖2 ≤ εH ,
‖δe1‖ ≤ ε1, and ‖δc‖ ≤ εc. Then, the matrix C+ δC := H + δH −χ−1(e1 + δe1)(c+ δc)T

linearizes the polynomial

p(x) + δp(x) :=

n∑
j=0

(pj + δpj)Tj(x),

where |δpj | ≤ (6‖c‖2ε1 + 2
√
nεc + (5 + 16

√
n‖c‖2)εH)n2 +O(ε2H + ε21 + ε2c).

Proof. This result follows by combining Lemma 3.5 with Theorem 3.1 and Lemma 5.3.
More precisely, the bound is obtained for the coefficients of the polynomial

p+ δp(x) =

n∑
j=0

(q + δqj)T̃j(x),

where T0(x) = (
√

2)−1T0(x) and T̃j(x) = Tj(x) otherwise. Therefore, we have δpj = δqj
and δp0 =

√
2(
√

2)−1δq0, so in particular |δp0| ≤ |δq0|.
The previous result tells us that a structured QR algorithm working on the Hermitian and

rank-one part separately and ensuring a low relative backward error for these two components
would give a backward stable rootfinding algorithm. Indeed, in that case we would have

εH . ‖H‖2εm, ε1 . εm, εc . ‖c‖2εm,

where . is used to denote the first-order inequality up to a constant and a low-degree polyno-
mial in the degree. Combining this fact with the result of Corollary 5.4 would guarantee that
the backward error in the polynomial is bounded by ‖δp‖ . (1 + ‖p‖)εm.

Before providing the details of the proof, we check experimentally the results of Corol-
lary 5.4 by generating polynomials expressed in the Chebyshev basis and measuring the impact
of perturbing H , e1, and c in the (scaled) colleague linearization. More precisely, we have
generated polynomials p(x) =

∑n
j=0 pjTj(x) with n = 5; the pj have been specifically

designed to be relatively unbalanced, a configuration that often triggers worst case behaviors
in QR-based rootfinders. More specifically, we have set:

pj =

{
γj 35.5 ηj j < n

1 j = n
, γj , ηj ∼ N(0, 1),

and we have perturbed the terms H,u, v with perturbations of relative norm 10−6. Our
motivation for this choice of the coefficients’ distribution and the perturbation norm is that we
wanted to explore difficult examples and check if yet we could retrieve meaningful results in
floating point arithmetic. The backward error has been computed in higher precision starting
from the eigenvalues relying on the MPFR library [12]. The results, showing the actual
backward errors and the bounds are reported in Figure 5.1. In each experiment we have
perturbed only one of the input data H,u, v.

The bounds from Corollary 5.4 are rather descriptive for the impact of the perturbations.
However, we find that for larger degrees, the quadratic terms in n tend to be pessimistic and
are rarely visible in practice. On the contrary, the dependency on c is encountered in generic
cases.
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FIG. 5.1. Experimental validation of the bounds from Corollary 5.4 for random Chebyshev polynomials with
unbalanced coefficients and degree 5. The dependency of the error on δc for perturbations δH and δe1 is clearly
visible, whereas the perturbations in c are not influenced by the norm of the polynomial coefficients.

5.2. Proof of Lemma 5.3. Bounding the constant M in Lemma 5.3 requires providing a
lower bound for the pairwise distance between the roots of the Chebyshev polynomial of the
first kind of degree n, denoted by r1, . . . , rn, and the ones of the second kind of degree n− 1,
denoted by ρ1, . . . , ρn−1 extended with ±1 as ρ0 and ρn. In addition, bounding S requires an
upper bound for the sum of their inverses. To obtain such results, we exploit the fact that these
quantities are explicitly known:

(5.2) rj = cos

(
(2j + 1)π

2n

)
, j = 0, . . . , n− 1, ρj = cos

(
jπ

n

)
, j = 0, . . . , n.

Before stating the main result, we need to establish a few inequalities that will be key in the
proof.

LEMMA 5.5. Let x, y be two positive numbers such that 0 ≤ x ≤ π
2 and 0 ≤ x ≤ y ≤ π.

Then,

cos(x)− cos(y) ≥ 4

3π2
(y2 − x2).
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Proof. Let us consider two separate cases; if y ≤ π
2 , then we can rewrite cos(x)− cos(y)

as

cos(x)− cos(y) = 2 sin

(
x+ y

2

)
sin

(
y − x

2

)
≥ 2

π2
(y2 − x2),

where we used that sin(z) ≥ 2
π z, for z ∈ [0, π/2], and the fact that both x+y

2 and y−x
2 lie

in this interval. Then, we may consider π
2 ≤ y ≤ π. In this case, the condition y ≥ x is

trivially satisfied, so it can be ignored. Then, we note that cos(z) ≥ 1 − 2
π z, for z ∈ [0, π2 ],

and cos(z) ≤ 1− 2
π z, if z ∈ [π2 , π]. Hence,

cos(x)− cos(y) ≥
(

1− 2

π
x

)
−
(

1− 2

π
y

)
=

2

π
(y − x),

{
0 ≤ x ≤ π

2 ,
π
2 ≤ y ≤ π.

Under these assumptions, we also have (y + x) ≤ 3
2π, so we can conclude that

cos(x)− cos(y) ≥ 2

π
(y − x) =

2

π

y2 − x2

y + x
≥ 4

3π2
(y2 − x2).

Combining the inequalities obtained in the different parts of the domain yields the final result.

LEMMA 5.6. Let m ≥ 1, n ≥ 0 be positive integers. Then,

S1(m) :=

m−1∑
j=1

1

m2 − j2
≤ 1

3
, S2(m) :=

n∑
j=m+1

1

j2 −m2
≤ 3

4
.

Proof. The inequality for S2(m) can be obtained by extending the summation to infinity
and then performing a change of variable:

n∑
j=m+1

1

j2 −m2
≤

∞∑
j=m+1

1

j2 −m2
=

∞∑
j=1

1

(j +m)2 −m2

=

∞∑
j=1

1

j2 + 2mj
≤
∞∑
j=1

1

j2 + 2j
=

3

4
,

where the last equality can be obtained by proving, e.g., by induction, that the partial sums up
to N of the above series are equal to (3N2 + 5N)/(4N2 + 12N + 8). Taking the limit for
N →∞ yields the desired result.

For the first inequality, we note that the summand is an increasing function in j, and
therefore we can bound the summation by the integral2

m−1∑
j=1

1

m2 − j2
=

1

2m− 1
+

m−2∑
j=1

1

m2 − j2
≤ 1

2m− 1
+

∫ m−1

0

dx

m2 − x2

=
1

2m− 1
+

log(2m− 1)

2m
=: F (m).

2The explicit form of the integral can be obtained using the known primitive of 1
m2−x2 in terms of the hyperbolic

arctangent, and then using the expression of the latter by means of logarithms. The derivation is elementary but
tedious, so it has been omitted.
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Note that the term 1
2m−1 has been removed from the integral to avoid the singularity at x = m.

We now show that F (m) is decreasing, and therefore it is sufficient to evaluate it at a certain
m to obtain bounds for all m′ > m. To this aim, we compute

F ′(m) =
−2

(2m− 1)2
+

1

m2

(
m

2m− 1
− log(2m− 1)

2

)
= − 1

(2m− 1)2m
− log(2m− 1)

2m2
,

and it is immediate to verify that F ′(m) < 0 for m ≥ 1. We then substitute3 m = 6, and we
have

m−1∑
j=1

1

m2 − j2
≤ 1

11
+

log(11)

12
≤ 0.3, m ≥ 6.

A direct inspection shows that S1(2) = 1
3 and S1(m) ≤ 1

3 , for m ∈ {1, 3, 4, 5}. Therefore,
we conclude that S1(m) ≤ 1

3 for any m ≥ 1.
LEMMA 5.7. Let r1, . . . , rn be the roots of Tn(x), and ρj defined as in (5.2), and assume

n ≥ 2. Then, defining the function

fm(x) =
1

|x− rm|
,

we have that fm(ρj) ≤ 3n2, for any j = 0, . . . , n.
Proof. Recall that, in view of (5.2), ρj+1 ≤ rj ≤ ρj . Therefore, we only need to test the

bound for j ∈ {m,m+ 1}. Let us consider j = m first. We have:

fm(ρm) =
1

ρm − rm
=

1

cos
(

2m
2n π

)
− cos

(
2m+1

2n π
) .

Assume that 2m
2n π ≤ π/2. This is not restrictive thanks to the symmetry of the problem.

Indeed, one can use the change of variable θ 7→ π − θ, and reduce to the cases considered
below.

Then, using Lemma 5.5 to establish a lower bound for the denominator, we obtain

fm(ρm) ≤ 3π2

4
(

(2m+1)2π2

4n2 − (2m)2π2

4n2

) =
3n2

4m+ 1
≤ 3n2,

since m ≥ 0. The case j = m+ 1 is completely analogous.
The previous result provides a bound for the quantityM of Lemma 5.3. It is now necessary

to consider the summation of 1
|rm−ρj | in order to bound S.

LEMMA 5.8. Let r1, . . . , rn be the roots of Tn(x), ρj defined as in (5.2). If we define the
function

g(x) =

n∑
j=1

1

|x− rj |
,

then g(ρm) ≤ 5n2, for any m = 0, . . . , n.
Proof. As a preliminary reduction, note that it is sufficient to prove the claim under the

assumption that ρm ∈ [0, 1], which is equivalent to 2m
2n π ≤

π
2 . Indeed, both the sets of rm and

3The choice of m = 6 is motivated by the fact that the bound is not sharp for small values of m, so we only use
it for the elements m ≥ 6, and we verify the others by a direct computation.
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ρm are symmetric with respect to the imaginary axis, and therefore g(ρm) = g(−ρm).
We now rewrite the summation to remove the absolute values, recalling that rm+1 ≤ ρm ≤ rm:

g(ρm) =

m−1∑
j=1

1

rj − ρm︸ ︷︷ ︸
g1(m)

+

n∑
j=m+1

1

ρm − rj︸ ︷︷ ︸
g2(m)

+fm(ρm),

where fm(x) is defined according to Lemma 5.7. The last term can be bounded by 3n2. Let us
consider g1(m), for which we can write, using the same arguments of Lemma 5.7 and noting
that rj = cos( 2j+1

2n π) are such that 2j+1
2n π ≤ 2m

2n π ≤
π
2 ,

g1(m) =

m−1∑
j=1

1

rj − ρm
=

m−1∑
j=1

1

cos
(

(2j+1)π
2n

)
− cos

(
2mπ
2n

) ≤ m−1∑
j=1

3π2

4
(

4m2π2

4n2 − (2j+1)2π2

4n2

)
≤ 3n2

m−1∑
j=1

1

4m2 − (2j + 1)2
≤ 3n2

2m−1∑
j=1

1

(2m)2 − j2
≤ n2.

The result concerning g2(m) can be proven by following similar steps:

g2(m) =

n∑
j=m+1

1

ρm − rj
=

n∑
j=m+1

1

cos( 2mπ
2n )− cos( 2j+1

2n π)

≤ 3n2

4

n∑
j=m+1

1

j2 −m2
≤ 9

16
n2,

where once again we used Lemma 5.5, since m
n π ≤

π
2 , and then applied Lemma 5.6. Combin-

ing the bounds yields g(m) ≤ (3 + 1 + 9
16 )n2 ≤ 5n2.

5.3. The case of Jacobi polynomials. A natural extension of the approach described
in Section 5.1 is to provide explicit constants for Theorem 5.1 for the Jacobi polynomials
P

(α,β)
k (x), which are orthogonal with respect to the scalar product:

〈p, q〉 :=

∫ −1

−1

p(x)q(x)(1− x)α(1 + x)β dx.

The usual normalization for Jacobi polynomials is to impose that

P
(α,β)
k (1) =

(
k + α

k

)
.

Note that this choice in case of α = β = − 1
2 provides a scaled version of the Chebyshev

polynomials of the first kind and, when α = β = 1
2 , of the ones of the second kind. In

particular, Jacobi polynomials with this scaling are orthogonal but not orthonormal, and we
have

‖P (α,β)
k ‖2 =

∫ 1

−1

P
(α,β)
k (x)2(1− x)α(1 + x)β dx

=
2α+β+1

2k + α+ β + 1

Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + α+ β + 1)Γ(k + 1)
.
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The recursion coefficients for Jacobi polynomials are given by (see [1, Section 22]):

αk =
(2k + α+ β)(2k + α+ β − 1)

2k(k + α+ β)
, βk =

(α2 − β2)(2k + α+ β − 1)

2k(k + α+ β)(2k + α+ β − 2)
,

γk =
(k + α− 1)(k + β − 1)(2k + α+ β)

k(k + α+ β)(2k + α+ β − 2)
.

Hence, using the construction and the symmetrization procedure as in Section 2.2, we have
that

C =


bn cn−1

cn−1 bn−2
. . .

. . . . . . c1
c1 b1

− χ̃−1e1

[
d1pn−1, . . . , dnp0

]
,

where

bk =
β2 − α2

(2k + α+ β)(2k + α+ β − 2)
,

ck =
2

2k + α+ β

√
k(k + α)(k + β)(k + α+ β)

(2k + α+ β + 1)(2k + α+ β − 1)
,

and

(5.3) dk =

√
Γ(α+ k)Γ(β + k)Γ(α+ β + 2)

(k − 1)!(2k + α+ β + 1)Γ(α+ 1)Γ(β + 1)Γ(α+ β + k)
,

and we set d0 = 1 as described in Section 2.2. We observe that dk = O(k−
1
2 ) for large k;

if one was to perform the scaling of the basis numerically, this would yield the asymptotic
conditioning of the task. For the degrees that are typically of practical interest, this behaviour is
mild, and the scaling of the problem to get a structured matrix can be used without significantly
altering the conditioning of the problem.

The following lemma will be used in the proof of Lemma 5.10, which provides the
analogue result of Lemma 5.3 for Jacobi polynomials.

LEMMA 5.9. Let P (α+1,β+1)
n−1 (x) be the Jacobi polynomial of degree n−1, with α, β ≥ 1

2 .
If the coefficients fj satisfy

(1± x)Pn−1(x)(α+1,β+1) =

n∑
j=0

fjP
(α,β)
j (x),

then |fj | ≤ 6.
Proof. We first consider the case with (1 + x)P

(α+1,β+1)
n−1 (x). We report the following

relations among Jacobi polynomials, which can be found in [1, Section 22.7]. We have:

(1 + x)P
(α+1,β+1)
n−1 (x) = anP

(α+1,β)
n−1 + bnP

(α+1,β)
n ,(5.4)

P (α+1,β)
n (x) = cnP

(α,β)
n (x) + dnP

(α+1,β)
n−1 (x),(5.5)

where an = 2(n+β)
2n+α+β+1 , bn = 2n

2n+α+β+1 , cn = 2n+α+β+1
n+α+β+1 , and dn = n+β

n+α+β+1 . We note
that the repeated application of (5.5) yields the following:

P (α+1,β)
n (x) = cnP

(α,β)
n (x) + dncn−1P

(α,β)
n−1 (x) + dndn−1cn−2P

(α,β)
n−2 (x) + . . .+ dnsd1c0.
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Combining this observation with (5.4) finally yields

fj :=

{
bncn, if j = n,

(bndn + an)cj
∏n−1
s=j+1 ds, 0 ≤ j ≤ n− 1.

Thanks to our assumption that α, β ≥ 1
2 , we have that |dj | ≤ 1, and in particular this implies

that fj ≤ cj(|aj |+ bj). Since 1 ≤ cj ≤ 2, bj ≤ 1, and |aj | ≤ 2, we conclude that |fj | ≤ 6.
The proof for (1− x)P

(α+1,β+1)
n−1 (x) is similar so we omit it.

LEMMA 5.10. Consider the nodes ρ0 = −1, ρn = 1 and the roots ρj of P (α+1,β+1)
n−1 for

j = 1, . . . , n− 1. Moreover, let L̂ be the matrix defined as in Theorem 5.1, choose the nodes
as above, and let {φj} be the Jacobi polynomials P (α,β)

n . Then,

‖L̂‖∞ ≤ C(α,β)
n := 12 + (n− 1) max

j

∣∣∣∣∣ wj−1

1− x2
j−1

∣∣∣∣∣ 2n+ α+ β + 1

2α+β+1

(
α+ β + n− 1

max{α, β}

)
,

where wj and xj are the integration weights and nodes associated with the orthogonal
polynomial P (α+1,β+1)

n−1 (x).
Proof. The proof follows the same strategy and uses the same notation of the one given

for Chebyshev polynomials of the first kind. We have that

‖P (α,β)
i−1 (x)‖2L̂ij =

∫ 1

−1

`j−1(x)P
(α,β)
i−1 (x)(1− x)α(1 + x)β dx, i, j = 1, . . . , n+ 1.

If 2 ≤ j ≤ n, then `j−1(x) is divisible by (1 − x)2 since it vanishes at ±1. Therefore,
for 1 ≤ j ≤ n − 1, we can define the degree-(n − 2) polynomial qj(x) := `j(x)/(1 − x2)
and rewrite the formula as follows:

L̂ij =
1

‖P (α,β)
i−1 (x)‖2

∫ 1

−1

qj−1(x)P
(α,β)
i−1 (x)(1− x)α+1(1 + x)β+1 dx, 2 ≤ j ≤ n.

Since deg(qj−1(x)P
(α,β)
i−1 (x)) = n + i − 3 ≤ 2n − 3, because we are assuming i ≤ n, we

can integrate the above exactly using the Jacobi-Gauss quadrature formula associated with the
orthogonal polynomials P (α+1,β+1)

n , which yields

‖P (α,β)
i−1 (x)‖2L̂ij =

n−1∑
s=1

ws
1− x2

s

`j−1(xs)P
(α,β)
i−1 (xs) =

wj−1

1− x2
j−1

P
(α,β)
i−1 (xj−1).

Hence, we have that

|L̂ij | ≤ max
j

∣∣∣∣∣ wj−1

1− x2
j−1

∣∣∣∣∣
(

max{α, β}+ i− 1

i− 1

)
2i+ α+ β − 1

2α+β+1

Γ(i+ α+ β)Γ(i)

Γ(i+ α)Γ(i+ β)

= max
j

∣∣∣∣∣ wj−1

1− x2
j−1

∣∣∣∣∣ 2i+ α+ β + 1

2α+β+1

(
α+ β + i− 1

max{α, β}

)
.

It remains to consider the case j ∈ {1, n + 1}. We can consider j = n + 1 first, which
is associated with `n(x). Since `n(x) has as roots the zeros of P (α+1,β+1)

n−1 (x) and −1,
we can write it as `n(x) = γ(1 + x)P

(α+1,β+1)
n−1 (x) up to a scaling factor γ. The latter
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can be determined by imposing `n(ρn) = `n(1) = 1, which yields γ = Γ(α+1)Γ(n)
2Γ(α+n) since

P
(α+1,β+1)
n−1 (1) = Γ(α+n)

Γ(α+1)Γ(n) . Similarly, `0(x) = (−1)n Γ(β+1)Γ(n)
2Γ(β+n) (1 − x)P

(α+1,β+1)
n−1 (x).

In addition, we may write

(1 + x)P
(α+1,β+1)
n−1 (x) =

n∑
j=0

fjP
(α,β)
j (x), (1− x)P

(α+1,β+1)
n−1 (x) =

n∑
j=0

gjP
(α,β)
j (x),

where |fj |, |gj | ≤ 6 in view of Lemma 5.9. Hence, we can conclude that |L̂i1|+|L̂i,n+1| ≤ 12,
and therefore

‖L̂‖∞ ≤ 12 + (n− 1) max
j

∣∣∣∣∣ wj−1

1− x2
j−1

∣∣∣∣∣ 2n+ α+ β + 1

2α+β+1

(
α+ β + n− 1

max{α, β}

)
.

In fact, we cannot directly use Lemma 5.10 as we are working with the scaled basis
d−1
n−i+1P

(α,β)
i−1 . In other words, we actually need a bound for ‖DL̂‖∞, D being the diagonal

scaling matrix D = diag(d1, . . . , dn). This is readily obtained as ‖DL̂‖∞ ≤ ‖D‖‖L̂‖∞,
with ‖D‖ = max1≤i≤n di.

REMARK 5.11. We note that C(α,β)
n involves the quantity µ(α,β)

n := maxj

∣∣∣ wj−1

1−x2
j−1

∣∣∣.
Observe that µ(− 1

2 ,−
1
2 )

n = π
n , and this fact is used in the proof of Lemma 5.2. For other Jacobi

polynomials, numerical experiments suggest that, at least if α = β, then µ(α,β)
n ≈ π

n+α+ 1
2

.
We are not aware of a proof of this conjecture; some asymptotic results in this direction can be
found in [21].

In order to provide the final result for Jacobi polynomials, we need the analogue of
Lemma 5.3 that is stated for Chebyshev polynomials.

LEMMA 5.12. For Jacobi polynomials P (α,β)
n , with the notation of Lemma 3.5 and

ξ = ρj as defined in Theorem 3.1, there exist two moderate constants ηM and ηS , depending
on α, β, such that

M ≤ ηMn2, S ≤ ηSn3.

Proof. In view of the Frenzen-Wong formula [13] we may write the roots of P (α,β)
n as

cos(θn,k), with

θn,k = tk +
1

N2

((
α2 − 1

4

)
1− tk cot(tk)

2tk
− α2 − β2

4
tan

(
tk
2

))
+O(n−3),

where tk :=
jα,k
N , N := n + α+β+1

2 , and jα,k are the positive roots of the Bessel function
Jα(x). We now estimate the distance between consecutive roots by writing

θn,k+1 − θn,k = tk+1 − tk +
1

N2
h(tk, tk+1) +O(n−3),

where h(·, ·) collects the terms in front of 1
N2 in the difference. It is known that the roots jα,k

of the Bessel function Jα(x) are simple and asymptotically distributed in such a way that
jα,k+1 − jα,k ∼ π for k →∞, and the smallest root is strictly positive. Hence, we observe
that we can give an inclusion for tk of the form

tk ∈
[
Cmin

n
, π − Cmax

n

]
, Cmin, Cmax > 0.
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The constants above only depend on α, β and not on n. In addition, since the roots are well
separated for k →∞, we may set γα := infk |jα,k+1 − jα,k| > 0.

We now note that, to bound the separation, it is sufficient to consider k = 1, . . . , dn2 e; for
the other roots, we may just swap the role of α, β and apply the same argument. For such
k, tk belongs to (assuming n ≥ 2) the interval [Cmin

n , 3π
4 ], and therefore it is immediate to

verify that the coefficient of the 1
N2 -term in the Frenzen-Wong formula is uniformly bounded.

Hence, for n→∞, we have

θn,k+1 − θn,k ≥
2 max{γα, γβ}
2n+ α+ β + 1

+O(n−2).

Evaluating the cosine at these angles yields that, for large n,

| cos(θn,k+1)− cos(θn,k)|−1 ∼ O(n2).

Hence, there exists a constant ηM that uniformly bounds the above quantity for all n, which
allows us to derive the first bound of the Lemma. For the second, it is sufficient to sum all
these bounds over all k′ 6= k. Note that, by construction, the constants ηM , ηS do not depend
on n but only on α, β.

We remark that we doubt that this bound is optimal for ηS : we conjecture that a clever
analysis of the bounds would lead, using similar techniques as the ones in Lemma 5.3, to
control the growth of S quadratically in n. We leave the analysis of this conjecture as an open
problem.

Combining Lemma 5.10 with Lemma 5.12 yields the following result.
COROLLARY 5.13. Let C = H − χ−1e1c

T be the linearization for a polynomial p(x)

expressed in the scaled Jacobi basis d−1
n−jP

(α,β)
j , for j = 0, . . . , n, where dj are defined

in (5.3). Consider perturbations ‖δH‖2 ≤ εH , ‖δe1‖ ≤ ε1, and ‖δc‖ ≤ εc. Then, the matrix
C + δC := H + δH − χ̃−1(e1 + δe1)(c+ δc)T linearizes the polynomial

p(x) + δp(x) :=

n∑
j=0

(pj + δpj)d
−1
n−jP

(α,β)
j (x),

where

|δpj | ≤ ηDĈ(α,β)
n

(
ηM‖c‖2ε1n2 + χ̃εcn

5
2 + (ηSn

3 + (ηM + ηS)χ̃n
7
2 )‖c‖2εH

)
+O(ε2H + ε21 + ε2c),

Ĉα,βn = C
(α,β)
n

(
max{α,β}+n

n

)
, with C(α,β)

n defined as in Lemma 5.10 and ηD :=
maxj dj
minj dj

.
Proof. The result follows by applying Theorem 5.1 together with Lemmas 5.10 and 5.12

and using the fact that

|d−1
n−jP

(α,β)
j (x)| ≤

(
max{α,β}+n

n

)
minj dj

.

6. Conclusions. We have presented a backward error analysis applicable to computing
roots of polynomials through structured QR solvers. The results cover the cases where the
error has the same normal-plus-rank-one structure of the confederate matrix, and the backward
errors on the various parts have different magnitudes.
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This often happens in practice when the structure is exploited, as in the algorithm presented
in [5] for the monomial case. We have provided an alternative derivation that recovers the
results of the stability analysis in [5].

These results have then been extended to the Chebyshev and Jacobi bases with explicit
bounds provided. This indicates the requirements that a QR-based rootfinder in these bases
needs to have in order to obtain a stable rootfinding algorithm.

Some related topics might be subject to future investigation. For instance, an algorithm
for symmetric-plus-rank-one matrices arising from polynomial rootfinding, satisfying the
proposed stability constraints, does not exist yet. Our hope is that this paper suggests research
directions to develop one.

Another research line stemming from this analysis is extending the results to the case
of matrix polynomials. Polynomial eigenvalue problems can be solved using unitary-plus-
low-rank solvers in the monomial basis [4] or symmetric-plus-low-rank ones for more general
bases [10]. However, the use of the determinant to recover the linearized polynomial is not
applicable in the matrix polynomial setting, and other more involved questions, such as the
accurate (stable) computation of the eigenvectors, are of interest as well.
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