
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 54, pp. 483–498, 2021.
Copyright c© 2021, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol54s483

MATHEMATICAL ANALYSIS OF SOME ITERATIVE METHODS FOR THE
RECONSTRUCTION OF MEMORY KERNELS∗

MARTIN HANKE†

Abstract. We analyze three iterative methods that have been proposed in the computational physics community
for the reconstruction of memory kernels in a stochastic delay differential equation known as the generalized Langevin
equation. These methods use the autocorrelation function of the solution of this equation as input data. Although
they have been demonstrated to be useful, a straightforward Laplace analysis does not support their conjectured
convergence. We provide more detailed arguments to explain the good performance of these methods in practice. In
the second part of this paper we investigate the solution of the generalized Langevin equation with a perturbed memory
kernel. We establish sufficient conditions including error bounds such that the stochastic process corresponding to the
perturbed problem converges to the unperturbed process in the mean square sense.
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1. Introduction. The generalized Langevin equation is a stochastic delay differential
equation which serves, for example, as a model for the motion of a macroparticle in a solvent.
Let m be the mass and V = V (t) ∈ R3 the velocity of the macroparticle at time t. Then the
corresponding equation assumes the form

(1.1) mV̇ (t) = −
∫ t

−∞
k(t− τ)V (τ) dτ + FR(t) ,

where k is the so-called memory kernel and FR is a random force describing the force
resulting on the macromolecule due to local interactions in between the molecules of the
solvent. This random force is typically taken to be a stationary centered Gaussian process
whose autocorrelation function

(1.2) E
(
FR(τ + t)FR(τ)∗

)
=

1

β
k(t) , t ≥ 0 ,

is connected to the memory kernel in order to satisfy the so-called fluctuation dissipation
theorem (cf. Pottier [13]), i.e., to conserve the energy of the total system; accordingly, the
scalar β = (kBT )−1 depends on the temperature T , and kB is the Boltzmann constant.

In (1.1) we have formulated the generalized Langevin equation with an infinite horizon
in the past to emphasize that we are restricting ourselves to the stationary solution of this
problem corresponding to a physical system in thermodynamical equilibrium; see Section 5
for a more detailed discussion of this setting. The stationary solution V of (1.1) is again a
centered Gaussian process whose (rescaled) velocity autocorrelation function

(1.3) r(t) = βm E
(
V (τ + t)V (τ)∗

)
, t ≥ 0 ,

satisfies the deterministic delay differential equation

(1.4) m ṙ(t) = −
∫ t

0

k(t− τ)r(τ) dτ , r(0) = I .
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In computational physics the generalized Langevin equation is employed as a means to
avoid the explicit treatment of the solvent molecules in a numerical simulation of the system;
using (1.1), they only appear implicitly through the memory kernel and the corresponding
random force. Accordingly, to set up this effective model, one first has to determine a
suitable memory term. In principle, this can be done analytically using appropriate projection
techniques (the Mori-Zwanzig formalism, cf., e.g., Chen, Li, and Liu [1]), but for practical
purposes this is usually far too complicated. Instead, one can preliminary run all atom
molecular dynamics (MD) simulations—or even use experimental data—to compute the
velocity autocorrelation (1.3) and then search for a suitable memory kernel of the effective
model (1.1), where the goodness of fit is somehow determined by the error in (1.3). This is the
inverse problem that we are dealing with in the following.

The contributions of this paper are as follows. In Section 2 we recapitulate this inverse
problem from a mathematical perspective and provide some necessary theoretical background.
Then we consider in Section 3 two iterative methods for solving this problem that have recently
been introduced in the computational physics community. We provide an analysis of these
schemes to explain convergence (and nonconvergence) phenomena that have been observed in
these works. A variant of these two methods with somewhat different theoretical properties
is briefly considered in Section 4 for the sake of completeness. As a related but independent
topic we elaborate in Section 5 on admissible topologies for approximating the memory kernel,
such that the resulting stationary processes converge in the mean square sense to the reference
process. We conclude with some final remarks in Section 6.

2. The setting of the inverse problem. In the remainder of this paper we consider the
generalized Langevin equation (1.1) in d-dimensional space, i.e., V = V (t) ∈ Rd. Further
details about this stochastic integro-differential equation are postponed to Section 5.

Without loss of generality, we restrict ourselves to dimensionless variables, i.e., we let
m = β = 1, and throughout we make the assumption that the memory kernel is a continuous
and absolutely integrable matrix-valued function k : R+

0 → Rd×d. This implies that its
Laplace transform k̂ = k̂(s) is an analytic function of s ∈ C, Re s > 0, with values in
Cd×d, which extends continuously to the imaginary axis s = iξ, ξ ∈ R. Since k reappears as
autocorrelation function of the random force, cf. (1.2), it must be a function of positive type
(aka nonnegative definite) by Bochner’s theorem, cf., e.g., Cramér and Leadbetter [2]. This
means that the Hermitian matrix

(2.1) k̂(iξ) + k̂(iξ)∗

is positive semidefinite for every ξ ∈ R. In this paper we make the stronger assumption
that (2.1) is positive definite for every ξ ∈ R, in which case the function k is said to be of
strict positive type, cf. Gripenberg, London, and Staffans [3].

Under these assumptions the delay differential equation (1.4) takes the form

(2.2) ṙ(t) = −
∫ t

0

k(t− τ)r(τ) dτ , r(0) = I ,

and it admits a unique solution r ∈ C1(R+,Rd×d) ∩ L1(R+
0 ,Rd×d) which satisfies

(2.3)
∫ t

0

k(t− τ)r(τ) dτ =

∫ t

0

r(t− τ)k(τ) dτ

and depends continuously on k (see [3] and Lemma 5.1 below). This solution is known as the
differential resolvent associated with k. The inverse problem of interest in this paper consists
in finding the memory kernel k associated with a given r.
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This inverse problem can be formulated as a linear problem by using (2.3) to rewrite (2.2)
as a Volterra integral equation

(2.4)
∫ t

0

r(t− τ)k(τ) dτ = −ṙ(t) , t > 0 ,

for k. In general this requires (i) the numerical differentiation of the given data to compute
the right-hand side of (2.4) and (ii) the subsequent solution of a first-kind Volterra integral
equation; since r(0) = I , the Volterra integral operator in (2.4) is 1-smoothing as defined in
Lamm [7], and hence, solving (2.4) is a moderately ill-posed problem. However, the integral
operator is also known approximately only because of the given uncertainties in the measured
differential resolvent.

Instead of solving the first-kind integral equation (2.4) one can differentiate this equation
to obtain the second-kind integral equation

(2.5) k(t) +

∫ t

0

ṙ(t− τ)k(τ) dτ = −r̈(t) , t > 0 .

The solution of this equation is well-posed, but first- and second-order derivatives of the data
are needed to set up the system. In the physical application mentioned above, this is no major
problem when the data are given by MD simulations, because the second derivative of r is the
autocorrelation function of the total force acting on the macroparticle, i.e., the right-hand side
of (1.1), while

ṙ(t) =
d

dt
E
(
V (τ + t)V (τ)∗

)
= E

(
V̇ (τ + t)V (τ)∗

)
, t ≥ 0 ,

is given by the correlation between the total force and the velocity; both are, in principle,
available in MD simulations. We refer to Linz [9] for an overview of numerical algorithms for
solving these two integral equations numerically.

Alternatively, one can formulate the inverse problem as a nonlinear inverse problem by
defining the forward operator A : k 7→ r that maps any absolutely integrable memory kernel
of strict positive type onto its associated differential resolvent, i.e., the solution of the delay
differential equation (2.2). Then one can apply various iterative methods for solving the
nonlinear problem

A(k) = r .

Typically, each iterative step of these methods requires an application of the forward map
A, i.e., a solution of (2.2) for a preliminary approximation of k, which is a well-posed task
provided that k satisfies the above assumptions. An example of such an iterative scheme is the
IMRV iteration introduced in [5], which will be investigated in Section 3.

Finally, we mention that the memory kernel is uniquely determined by the data r. For
if two continuous memory kernels k1 and k2 give rise to the same differential resolvent,
then (2.4) implies that∫ t

0

r(t− τ)(k1 − k2)(τ) dτ = 0 , 0 ≤ t <∞ ,

and it follows, e.g., from [9, Theorem 5.1] that the only continuous solution of this integral
equation is the zero solution, hence k1 = k2.
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3. Iterative methods for reconstructing the memory kernel. In this section we ana-
lyze two iterative methods for solving the inverse problem which have been suggested in the
computational physics literature.

We start with the IMRV iteration [5] mentioned above.1 It takes

(3.1) k0 = −r̈

as initial guess for the memory kernel and then continues recursively by computing

(3.2) kn+1 = kn + r̈n − r̈ , n = 0, 1, 2, . . .

Here, rn = A(kn) denotes the differential resolvent associated with kn, i.e.,

(3.3) ṙn(t) = −
∫ t

0

kn(t− τ)rn(τ) dτ , rn(0) = I .

The IMRV scheme can be implemented in a stochastic or a deterministic mode: The stochastic
mode—suggested in [5]—determines rn by solving the generalized Langevin equation (1.1)
with the memory kernel kn instead of k and by evaluating the resulting autocorrelation function
of the velocity. In the deterministic mode one either solves the above delay differential equation
for rn or the inhomogeneous equation

(3.4) r̈n(t) = −
∫ t

0

ṙn(t− τ)kn(τ) dτ − kn(t) , ṙn(0) = 0 ,

for ṙn. The latter is obtained from (3.3) by first using (2.3) and then differentiating. Again we
refer to [9] for numerical methods for solving (3.3) or (3.4).

In [11] Meyer, Pelagejcev, and Schilling proposed another iterative method for determin-
ing memory kernels in a more general nonequilibrium physical context. Restricted to the
equilibrium case (1.1) and rewritten in our notation here, the method employs the very same
initial guess (3.1) and proceeds by updating

(3.5) kn+1 = kn + ÿn − r̈ , n = 0, 1, 2, . . . ,

where yn is given by

ẏn(t) = −
∫ t

0

r(t− τ)kn(τ) dτ , yn(0) = I ,

and hence, ÿn satisfies

(3.6) ÿn(t) = −
∫ t

0

ṙ(t− τ)kn(τ) dτ − kn(t) , t > 0 .

This can be viewed as a linearized version of the IMRV method because the function ṙn of (3.4),
which depends nonlinearly on kn, is replaced by a linear approximation. The computation
of (3.6) can only be realized in the deterministic mode.

We mention that it follows from (3.6) that the update ÿn − r̈ of (3.5) is the residual of
the second-kind Volterra integral equation (2.5), which arises when k is replaced by kn. This
reveals that (3.5) is the standard Picard fixed point iteration (aka Richardson iteration, cf., e.g.,
Saad [14]) applied to the linear formulation (2.5) of the inverse problem.

1IMRV stands for Iterative Memory Reconstruction using the Velocity autocorrelation data r as input.
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It has to be emphasized that (in the above form) both iterative methods (3.2) and (3.5) are
not fail-proof because some iterates kn may happen not to be positive real, i.e., not to make
sense physically.

Before we return to this aspect it is instructive to investigate the two methods in the
Laplace domain. For this we denote by k̂n, r̂, and r̂n, the Laplace transforms of kn, r, and rn,
respectively, and observe that the convolution equation (2.2) corresponds to

(3.7) I − s r̂(s) = k̂(s)r̂(s) , Re s ≥ 0 ,

in the Laplace domain, i.e.,

(3.8) r̂(s) =
(
sI + k̂(s)

)−1
.

Further, the iteration (3.2) corresponds to

k̂n+1(s) = k̂n(s) + s2
(
r̂n(s)− r̂(s)

)
= k̂n(s) + s2r̂n(s)

(
k̂(s)− k̂n(s)

)
r̂(s) ,

and the Laplace transform ên of the iteration error en = kn − k thus satisfies

(3.9) ên+1(s) = ên(s) − s2r̂n(s)ên(s)r̂(s) .

In the scalar case (d = 1) this yields, for kn close to k,

ên+1(s) ≈
(
1− (sr̂(s))2

)
ên(s) ,

and therefore a necessary condition for local convergence of the IMRV iteration is that

(3.10)
∣∣1− (1 + k̂(s)/s

)−2∣∣ < 1

for all values of s = iξ, ξ ∈ R, along the imaginary axis.
The linearized iterative scheme (3.5), on the other hand, corresponds to

k̂n+1(s) = k̂n(s) − sr̂(s)k̂n(s) + sI − s2r̂(s) = k̂n(s) − sr̂(s)k̂n(s) + sr̂(s)k̂(s) ,

which corresponds to the recursion

(3.11) ên+1(s) =
(
I − sr̂(s)

)
ên(s)

for the corresponding iteration error; the scalar convergence criterion for the linearized scheme
therefore amounts to

(3.12)
∣∣1− (1 + k̂(s)/s

)−1∣∣ < 1 , s = iξ , ξ ∈ R ,

which is equivalent to

Im(k̂(iξ)/ξ) > −1

2
, ξ ∈ R .

Figure 3.1 displays the resulting domains that constrain the values of k̂(iξ)/ξ to satisfy
the convergence criterion (3.10) for the IMRV scheme and (3.12) for its linearized counterpart,
respectively. Note that the origin corresponds to the most favorable value of k̂(iξ)/ξ, for which
the convergence of both schemes is superlinear.

EXAMPLE 3.1. A standard example of a memory kernel is given by

k(t) = e−t , t ≥ 0 .
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FIG. 3.1. Convergence domain in the complex plane for k̂(iξ)/ξ, ξ ∈ R, of the IMRV method (3.2) (darker
gray) and for the linearized scheme (3.5) (lighter gray).

In this case

(3.13) k̂(s) =
1

s+ 1

and

k̂(iξ)

ξ
=

1

ξ + ξ3
− i

1

1 + ξ2
,

and the dashed curve in Figure 3.1 shows the corresponding values of k̂(iξ)/ξ in the complex
plane when ξ varies in R+, the arrow indicating the orientation for increasing frequencies.
(For negative values of ξ the sign of the real part is changing.) It can be seen that the points on
the curve belong to the convergence domain for large frequencies ξ only.

Despite the shortcomings of a possible break down and the fact that the above example
reveals that the two iterative methods cannot converge in general, they do perform reasonably
well in practice when suitably adapted (see below). This is due to the fact that the iteration
error decays rapidly for high frequencies, i.e., for large absolute values of ξ.

THEOREM 3.2. Assume that the continuous memory kernel k : R+
0 → Rd×d is of strict

positive type, is locally absolutely continuous, and that k and its derivative k̇ are absolutely
integrable. Then the errors en = kn − k of the IMRV iterates (3.2) and of the linearized
scheme (3.5) satisfy

(3.14) ên(iξ) = O(|ξ|−2n−3) , ξ ∈ R , |ξ| → ∞ ,

for every n ∈ N0.
Proof. The assumption that k and its time derivative k̇ belong to L1(R+,Rd×d) implies

that, for ξ ∈ R, we have

(3.15) k̂(iξ) =
1

iξ
k(0) +

1

iξ

∫ ∞
0

e−iξtk̇(t) dt = O(1/|ξ|) , |ξ| → ∞ .

Since k0 = −r̈ according to (3.1) and since r(0) = I and ṙ(0) = 0, it follows from (3.7)
that

k̂0(s) = sI − s2r̂(s) = sk̂(s)r̂(s)
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and

ê0(s) = sk̂(s)r̂(s) − k̂(s) = k̂(s)
(
sr̂(s)− I

)
= −

(
k̂(s)

)2
r̂(s) .

As

(3.16) r̂(iξ) = O(1/|ξ|) , |ξ| → ∞ ,

by virtue of (3.8), (3.14) holds true for n = 0 because of (3.15).
Now we proceed by induction. Consider the IMRV method first, and assume that the

assertion (3.14) is true for some n ∈ N0. From (3.15) and the definition of r̂n it then follows,
cf. (3.8), that

iξ r̂n(iξ) =
(
I +

k̂n(iξ)

iξ

)−1

=
(
I +

k̂(iξ)

iξ
+
ên(iξ)

iξ

)−1

= I + O(1/ξ2)

as |ξ| → ∞, ξ ∈ R, and the same estimate is true with r̂n replaced by r̂. Inserting this
into (3.9) and using the induction hypothesis (3.14), we thus conclude that

ên+1(iξ) = ên(iξ) −
(
I +O(1/ξ2)

)
ên(iξ)

(
I +O(1/ξ2)

)
= O(|ξ|−2n−5)

for |ξ| → ∞, as was to be shown.
For the iterative scheme (3.5) the argument is somewhat simpler because

I − iξr̂(iξ) = k̂(iξ)r̂(iξ) = O(ξ−2) , ξ ∈ R , |ξ| → ∞ ,

according to (3.15) and (3.16). The induction step thus follows immediately from (3.11).
Note the analogy between this result and known strategies for approximating the memory

kernel with Padé approximations of k̂, cf., e.g., [8, 10].
Translating Theorem 3.2 into the time domain, it says that for both iterative schemes2 the

iteration error en has 2n+ 1 continuous derivatives and there holds

en(0) = e′n(0) = . . . = e(2n+1)
n (0) = 0 .

This means that the function value of kn and its first 2n+ 1 derivatives at the origin coincide
with those of the true memory kernel—provided that the latter exist. As a result, the approx-
imate memories kn adapt well to the true memory near zero, and the interval where this fit
is good is likely to increase with n; in fact, as stated in [5], the errors in the data fit “did not
disappear but were only shifted to larger times t”. A related statement concerning the linear
iteration (3.5) can be found near the end of Section 2.2 in [12]. As a remedy it is suggested
in [5] to restrict the update of the memory kernel to a sliding time window.

Because of our assumption that k is continuous, it follows from (2.5) that r has two
continuous derivatives. This means that any lack of stability in solving the memory kernel
from (2.5) or via the iterative schemes (3.2) or (3.5) is connected to the numerical computation
of r̈, r̈n, or ÿn, respectively.

We finally mention that both iterative schemes can be modified by incorporating a relax-
ation parameter α > 0 and updating

kn+1 = kn + α(r̈n − r̈) or kn+1 = kn + α(ÿn − r̈) ,

2Unless some iterate kj , j = 1, . . . , n, fails to be strict positive real in the IMRV case.
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respectively. For the linear scheme it is easy to see that, in the scalar case, the domain of
convergence increases slightly for 0 < α < 1 and that convergence is assured if

Im
(
k̂(iξ)/ξ

)
>

α

2
− 1 , for all ξ ∈ R .

However, the Taylor approximation property of Theorem 3.2 is lost whenever α 6= 1. Qual-
itatively the same holds true for the IMRV scheme. Therefore the introduction of such a
relaxation parameter does not seem to make much sense.

4. A modified IMRV scheme. Another variant of the IMRV method has been used
in [6] because it led to better approximations of the memory kernel than the original IMRV
scheme when applied to a more complex physical application. This method employs first-order
derivatives instead of second-order ones and updates the kernel according to

(4.1) kn+1 = kn + α(ṙn − ṙ) , n = 0, 1, 2, . . . ,

where rn has the same meaning as in (3.3) and α > 0 is a relaxation parameter.
Translated into the Laplace domain, the iteration (4.1) corresponds to

k̂n+1(s) = k̂n(s) + αs
(
r̂n(s)− r̂(s)

)
= k̂n(s) + αsr̂n(s)

(
k̂(s)− k̂n(s)

)
r̂(s) ,

and hence, the iteration error obeys the recursion

(4.2) ên+1(s) = ên(s) − αsr̂n(s)ên(s)r̂(s) .

Proceeding as in the previous section it turns out that the Laplace transforms k̂n of kn do
not provide approximations with increasing accuracy at infinity. In fact, by making the
preassumption that all iterates kn stay in L1(R+,Rd×d), it then follows from (3.8) that for
s = iξ, with ξ ∈ R, it holds

r̂n(iξ) =
1

iξ
I + o(1/|ξ|) , |ξ| → ∞ ,

and similar for r̂(iξ). This shows that

ên+1(iξ) ≈ ên(iξ) − α

iξ
ên(iξ) , |ξ| → ∞ ,

to leading order, so that

(4.3)
∥∥ên+1(iξ)

∥∥2 ≈ (1 + α2/ξ2)
∥∥ên(iξ)

∥∥2
for |ξ| large , ξ ∈ R ,

where ‖ · ‖ denotes the spectral norm in Rd×d. Since the leading factor on the right-hand
side of (4.3) is greater than one, it follows that the error is stagnating or slighly increasing for
large absolute frequencies. This shows that a result similar to Theorem 3.2 (under whatsoever
assumptions on k) cannot hold true for the modified IMRV scheme.

On the other hand, it has to be emphasized that, if

k0 = −r̈

as before, then k0(0) = −r̈(0) = k(0) because of (2.5), and then it follows from (4.1) and the
definition (3.3) of the differential resolvents that

kn+1(0) = kn(0) = . . . = k(0)
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for all n ∈ N0. Proceeding in the same way we conclude from (4.1) that

k̇n+1(0) = k̇n(0) + α
(
r̈n(0)− r̈(0)

)
= k̇n(0) + α

(
k(0)− kn(0)

)
= k̇n(0)

for all n ∈ N0 by virtue of (3.4), provided that k is continuously differentiable. Differentiat-
ing (2.5) once more we conclude that

k̇(0) = −...
r (0) − ṙ(0)k(0) = −...

r (0) = k̇0(0) ,

proving that

k̇n(0) = k̇(0) for all n ∈ N0 .

Repeating this argument one step further (sufficient smoothness assumed), we obtain that

k̈n(0) = . . . = k̈0(0) = −....
r (0) = k̈(0) −

(
k(0)

)2
for all n ∈ N0, i.e., the curvature of all approximate memory kernels has the same (wrong)
value—this gives evidence of the stagnation expected from the Laplace analysis.

We finally mention that, in the scalar case, a result similar to (4.3) also holds true for
s→ 0, s = iξ, with ξ ∈ R: Since

r̂n(iξ) = k̂n(0)−1 + O(|ξ|) , |ξ| → 0 ,

where

k̂n(0) =

∫ ∞
0

kn(t) dt

is real and positive, it follows from (4.2) that

ên+1(iξ) ≈ (1− iακξ)ên(iξ)

for |ξ| ≈ 0 and kn ≈ k, where

κ =
(∫ ∞

0

k(t) dt
)−2

> 0 .

This means that∣∣ên+1(iξ)
∣∣2 ≈ (1 + α2κ2ξ2)

∣∣ên(iξ)
∣∣2 for |ξ| small , ξ ∈ R ,

and for kn ≈ k, so that the error is stagnating or slightly increasing also for frequencies close
to zero in the scalar case.

EXAMPLE 4.1. To illustrate this result consider again the exponential memory kernel
from Example 3.1. In this example the recursion (4.2) simplifies for kn ≈ k to

(4.4) ên+1(s) ≈
(
1− αs(r̂(s))2

)
ên(s) .

Figure 4.1 displays the values of the factor

(4.5) qα(s) = 1− αs(r̂(s))2 = 1− αs
( s+ 1

s2 + s+ 1

)2

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

492 M. HANKE

FIG. 4.1. Values of qα(iξ) of (4.5) in the complex plane as ξ varies in R.

in front of ên(s) on the right-hand side of (4.4) along the imaginary axis, i.e., for s = iξ, ξ ∈ R.
The absolute value of this factor—for s ∈ iR—needs to be below one for local convergence of
the iteration (4.1).

The plot shows the corresponding values of qα for the two relaxation parameters α = 1
(solid line) and α = 0.5 (dashed line). For |ξ| → 0 and |ξ| → ∞ these function values do
indeed approach one from outside the unit disk. For α = 1 and ξ = ±1 we have q1(±i) = −1,
and |q1(iξ)| ≥ 1 for all other values of ξ ∈ R. On the other hand, q0.5(iξ) is mostly inside the
unit disk; only for |ξ| small and |ξ| large this fails to hold true.

Despite the lack of convergence for very small and large absolute frequencies, the example
above gives reason to hope for a decent performance of this modification of the IMRV scheme
with underrelaxation, i.e., with a positive relaxation parameter α� 1.

5. Mean square convergence. In the second part of this paper we determine topologies
for approximating the memory kernel to guarantee mean square convergence of the generalized
Langevin dynamics as the error in the memory kernel tends to zero. Before doing so we first
recall the concise specification of the corresponding stochastic differential equation and its
solution.

Let the continuous memory kernel k : R+
0 → Rd×d be absolutely integrable and of

strict positive type, and let F : R → Rd×d be a centered stationary Gaussian process on a
probability space (Ω,F ,P) with

E
(
F (τ + t)F (τ)∗

)
= k(t) , t ≥ 0 .

Then a stationary solution of the corresponding generalized Langevin equation

(5.1) V̇ (t) = −
∫ t

−∞
k(t− τ)V (τ) dτ + F (t) ,

is a centered Gaussian stochastic process V : R→ Rd × Rd on the same probability space
such that the joint process (F, V ) is stationary. It is easy to verify that this process is given by

(5.2) V (t) =

∫ t

−∞
r(t− τ)F (τ) dτ ,
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where r is the differential resolvent associated with k and V satisfies

E
(
V (τ + t)V (τ)∗

)
= r(t) , t ≥ 0 ,

and

E
(
F (τ + t)V (τ)∗

)
=

∫ 0

−∞
k(t− s)r(s) ds , s ∈ R ,

where we employ the extension r(t) = r(−t)∗ of the autocorrelation function to negative
values of the time t.

Note that in the physics community the generalized Langevin equation is often considered
to be a causal process, i.e., a process starting at t = 0 without any history and that the
random force F is independent of previous velocities. This causal form of the generalized
Langevin equation also has a stationary solution V with the very same autocorrelation function.
However, Hohenegger and McKinley [4] showed that the joint (causal) process (F, V ) fails to
be stationary.

To formulate the main result of this section we start from two different memory kernels
kj , j = 1, 2, with the above properties and their associated differential resolvents

(5.3) ṙj = −
∫ t

0

kj(t− τ)rj(τ) dτ , rj(0) = I .

We think of k1 to be the true memory kernel and of k2 to be its approximation.
To simplify the exposition we employ the binary operation ∗ to denote the convolution

(ϕ ∗ ψ)(t) =

∫ t

0

ϕ(t− τ)ψ(τ) dτ , 0 ≤ t <∞ ,

of two functions from L1(R+,Rd×d) or of a function from L1(R+,R) and a function from
L1(R+,Rd×d). In both function spaces we denote the associated norm by ‖ · ‖L1(R+), where
in the matrix valued case, the corresponding integrand is the spectral norm of the associated
matrices. As in Section 3 we write ϕ̂ for the Laplace transform of a given function ϕ from
L1(R+,R) or from L1(R+,Rd×d), respectively.

The following result is well-known; the proof is a combination of results and arguments
from [3], which we include here for the ease of the reader.

LEMMA 5.1. Let k1, k2 ∈ L1(R+,Rd×d) be of strict positive type. Then r1 and r2

belong to L1(R+,Rd×d), and there exist positive numbers δ = δ(k1) and ` = `(k1) such that

‖r2 − r1‖L1(R+) ≤ ` ‖k2 − k1‖L1(R+) ,

provided that ‖k2 − k1‖L1(R+) ≤ δ.
Proof. Let f(t) = e−t, t ≥ 0, and

(5.4) ϕj = f ∗ kj − fI , j = 1, 2 .

Obviously, ϕj ∈ L1(R+,Rd×d) and

I + ϕ̂j(s) =
(
1− f̂(s)

)
I + f̂(s)k̂j(s) =

1

s+ 1

(
sI + k̂j(s)

)
by virtue of (3.13). For arbitrary x ∈ Cd, x 6= 0, the function

u(s) = 2 Re
(
x∗
(
sI + k̂j(s)

)
x
)

= 2(Re s)x∗x + x∗
(
k̂j(s) + k̂j(s)

∗)x
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is a scalar harmonic function in the open right-half complex plane. Since kj is strict positive
real, u has positive boundary values on the imaginary axis, thus proving that u(s) > 0 for
all s ∈ C with Re s ≥ 0 by the maximum principle for harmonic functions. This shows that
sI + k̂j(s) and I + ϕ̂j(s) are invertible for every s with Re s ≥ 0.

The Paley-Wiener theory thus implies that the second-kind convolution equation

(5.5) qj + ϕj ∗ qj = ϕj = qj + qj ∗ ϕj

has a unique solution qj ∈ L1(R+,Rd×d), cf. [3, Section 2.4], the so-called resolvent associ-
ated with ϕj . It is easy to verify that

rj = fI − f ∗ qj ∈ L1(R+,Rd×d)

is the differential resolvent associated with kj , i.e., that it solves (5.3), and hence

(5.6) ‖r2 − r1‖L1(R+) ≤ ‖f‖L1(R+)‖q2 − q1‖L1(R+) = ‖q2 − q1‖L1(R+) .

From (5.5) it follows that

q2 +
(
(ϕ2 − ϕ1) − q1 ∗ (ϕ2 − ϕ1)

)
∗ q2 = q2 + (ϕ2 − q1 − q1 ∗ ϕ2) ∗ q2

= ϕ2 − q1 ∗ (q2 + ϕ2 ∗ q2) = ϕ2 − q1 ∗ ϕ2 ,

and therefore

‖q2‖L1(R+) − ‖ϕ2 − ϕ1‖L1(R+)(1 + ‖q1‖L1(R+))‖q2‖L1(R+)

≤ ‖ϕ2‖L1(R+)(1 + ‖q1‖L1(R+))

≤
(
‖ϕ1‖L1(R+) + ‖ϕ2 − ϕ1‖L1(R+)

)
(1 + ‖q1‖L1(R+)) .

Note that (5.4) implies that

‖ϕ2 − ϕ1‖L1(R+) ≤ ‖f‖L1(R+)‖k2 − k1‖L1(R+) = ‖k2 − k1‖L1(R+) ,

so that

(5.7) ‖q2‖L1(R+) ≤
(
‖ϕ1‖L1(R+) + ‖k2 − k1‖L1(R+)

)
(1 + ‖q1‖L1(R+))

1− ‖k2 − k1‖L1(R+)(1 + ‖q1‖L1(R+))
,

provided that ‖k2 − k1‖L1(R+) is so small that the denominator on the right-hand side of (5.7)
is positive.

Another use of (5.5) establishes the second-kind Volterra integral equation

q2 − q1 + ϕ1 ∗ (q2 − q1) = ψ

for q2 − q1 with right-hand side

ψ = ϕ2 − ϕ1 − (ϕ2 − ϕ1) ∗ q2 .

The solution of this integral equation can be written in terms of the associated resolvent q1,
cf., [3, Section 2.3], i.e.,

q2 − q1 = ψ − q1 ∗ ψ ,
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which yields the estimate

‖q2 − q1‖L1(R+) ≤ (1 + ‖q1‖L1(R+))‖ψ‖L1(R+)

≤ (1 + ‖q1‖L1(R+))(1 + ‖q2‖L1(R+))‖ϕ2 − ϕ1‖L1(R+)

≤ (1 + ‖q1‖L1(R+))(1 + ‖q2‖L1(R+))‖k2 − k1‖L1(R+) .

The assertion thus follows from (5.6) and (5.7).
Recall that any centered stationary Gaussian process F : R→ Rd×d over a probability

space (Ω,F ,P) satisfying

E
(
F (τ + t)F (τ)∗

)
= k(t) , t ≥ 0 ,

for some k ∈ L1(R+,Rd×d) has a spectral representation

(5.8) F (t) =

∫ ∞
−∞

eiξtz(ξ) dW (ξ) ,

where

(5.9) z(ξ) =
1√
2π

(
k̂(iξ) + k̂(iξ)∗

)1/2
, ξ ∈ R ,

and where W is an associated two-sided d-dimensional Brownian motion over the same
probability space; see, e.g., [2]. Note that the matrix square root (5.9) is well-defined because
every autocorrelation function is of positive type.

In the sequel we denote by

‖F‖L2(Ω) =
(
E (F ∗F )

)1/2
the square root of the expected Euclidean norm squared of a d-dimensional real random
variable F on Ω.

THEOREM 5.2. Let k1, k2 : R+
0 → Rd×d be continuous and absolutely integrable

functions of strict positive type, and assume k̂2 − k̂1 to be absolutely integrable over the
imaginary axis. Denote by (F2, V2) the stationary solution of (5.1) with memory kernel k = k2

on the probability space (Ω,F ,P). Then the generalized Langevin equation (5.1) with k = k1

has a particular stationary solution (F1, V1) on the same probability space with

(5.10) sup
t∈R

∥∥F2(t)− F1(t)
∥∥
L2(Ω)

≤ 4
√
d/π3

∥∥k̂2 − k̂1

∥∥1/2

L1(iR)
.

Moreover, there exist positive numbers c and δ, depending only on k1, such that

(5.11)
∥∥V2(t)− V1(t)

∥∥
L2(Ω)

≤ c‖k2 − k1‖L1(R+) + c‖k̂2 − k̂1‖1/2L1(iR)

for every t ∈ R, provided that ‖k2 − k1‖L1(R+) ≤ δ.
Proof. Denote by zj the matrix square root (5.9) for k = kj , j = 1, 2. Let

F2(t) =

∫ ∞
−∞

eiξtz2(ξ) dW (ξ)

be the spectral representation of F2, cf. (5.8), and define

(5.12) F1(t) =

∫ ∞
−∞

eiξtz1(ξ) dW (ξ)
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for t ∈ R, using the very same Brownian motion. Then F1 is a stationary centered Gaussian
process on (Ω,F ,P) with

E
(
F1(τ + t)F1(τ)∗

)
= k1(t) , t ≥ 0 .

We make use of an estimate by Vainikko (see [15, p. 91]) for the stability of the square
root of self-adjoint nonnegative definite operators (with respect to the spectral norm ‖ · ‖),
namely

√
2π
∥∥z2(ξ)− z1(ξ)

∥∥ ≤ 4

π

∥∥(k̂2(iξ) + k̂2(iξ)∗
)
−
(
k̂1(iξ) + k̂1(iξ)∗

)∥∥1/2
.

Given our assumption that k̂2 − k̂1 is absolutely integrable over the imaginary axis, the Itô
calculus thus yields∥∥F2(t)− F1(t)

∥∥2

L2(Ω)
= trace

(∫ ∞
−∞

(
z2(ξ)− z1(ξ)

)(
z2(ξ)− z1(ξ)

)∗
dξ
)

≤ d
8

π3

∫ ∞
−∞

∥∥k̂2(iξ) + k̂2(iξ)∗ − k̂1(iξ)− k̂1(iξ)∗
∥∥dξ

≤ d
16

π3

∫ ∞
−∞

∥∥k̂2(iξ)− k̂1(iξ)
∥∥dξ

for every t ∈ R, and this implies (5.10).
Let rj be the differential resolvent (5.3) of kj , j = 1, 2. Then rj ∈ L1(R+,Rd×d) by

Lemma 5.1, and, according to (5.2),

(5.13) Vj(t) =

∫ t

−∞
rj(t− τ)Fj(τ) dτ , j = 1, 2 ,

is the velocity component of the stationary solution (Fj , Vj) of (5.1) with k = kj driven by
Fj . Since ∥∥F1(t)

∥∥2

L2(Ω)
= trace

(
E
(
F1(t)F1(t)∗

))
= trace

(
k1(0)

)
for every t ∈ R, we conclude from (5.10) and (5.13) that∥∥V2(t)− V1(t)

∥∥
L2(Ω)

≤ ‖r2 − r1‖L1(R+)

(
trace

(
k1(0)

))1/2

+ ‖r2‖L1(R+) sup
t∈R

∥∥F2(t)− F1(t)
∥∥
L2(Ω)

≤ ‖r2 − r1‖L1(R+)

(
trace

(
k1(0)

))1/2

+ 4
√
d/π3 ‖r2‖L1(R+)

∥∥k̂2 − k̂1

∥∥1/2

L1(iR)
.

The desired inequality (5.11) thus follows from Lemma 5.1.
Theorem 5.2 provides a mean pathwise error bound for the two processes (F1, V1) and

(F2, V2), and this requires a proper “alignment” of the driving random forces F2 and F1, which
is achieved via (5.12). The spirit of this result is similar to the notion of strong convergence of
numerical algorithms for stochastic differential equations. The error bounds in the theorem
state that the expected distance between the processes F2 and F1 as well as V2 and V1 depends
on the error in the memory kernel, measured with respect to L1(R+) and also in terms of the
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L1-norm of its Laplace transform along the imaginary axis; the latter, however, enters via its
square root into these bounds.

Note that the assumption of Theorem 5.2 that k̂2 − k̂1 is absolutely integrable over the
imaginary axis means that k2 − k1 has a certain smoothness (for example, two absolutely
integrable derivatives are sufficient) and that k2(0) = k1(0); compare (3.15).

6. Conclusions. In this work we have analyzed three iterative methods that have recently
been introduced in the computational physics community to retrieve the unknown memory
kernel of a generalized Langevin equation from autocorrelation data of the resulting process.
Although all three methods are, in principle, doomed to diverge eventually according to our
analysis, they do have some appealing theoretical properties which justify their consideration
in practical applications. Concerning their performance in these applications and a discussion
of their respective merits, we refer to [5, 6, 11, 12].

The implementations which have been published in these references incorporate additional
post-processing steps to stabilize the iteration; these features add further nonlinearities and
increase their complexity, making it difficult to provide a conclusive theoretical analysis.
Our theorecial results are based on the assumption that the autocorrelation data and their
derivatives are given exactly. In the applications mentioned before these data are extracted
from numerical simulations, and hence, they are discrete and fail to be exact. The numerical
results in these works indicate a certain robustness of the considered iterative methods with
respect to discretization and measurement errors.

As an independent contribution we have seen in Section 5 that, if the primary purpose
of retrieving the memory kernel is to simulate the given process, then the memory should be
approximated in the norm of L1—both in time and along the imaginary axis in the Laplace
domain. In fact, the approximation in the Laplace domain is the more restrictive one, and it
enters with a sublinear Hölder-type estimate into the error bound.

Acknowledgements. The author likes to thank Janka Bauer, Gerhard Jung, Peter Kloe-
den, and Friederike Schmid for helpful discussions.

REFERENCES

[1] M. CHEN, X. LI, AND C. LIU, Computation of the memory functions in the generalized Langevin models for
collective dynamics of macromolecules, J. Chem. Phys., 141 (2014), Art. 064112, 12 pages.

[2] H. CRAMÉR AND M.R. LEADBETTER, Stationary and Related Stochastic Processes, Wiley, New York, 1967.
[3] G. GRIPENBERG, S.-O. LONDEN, AND O. STAFFANS, Volterra Integral and Functional Equations, Cambridge

University Press, Cambridge, 1990.
[4] C. HOHENEGGER AND S.A. MCKINLEY, Reconstructing complex fluid properties from the behavior of

fluctuating immersed particles, SIAM J. Appl. Math., 78 (2018), pp. 2200–2226.
[5] G. JUNG, M. HANKE, AND F. SCHMID, Iterative reconstruction of memory kernels, J. Chem. Theory Comput.,

13 (2017), pp. 2481–2488.
[6] , Generalized Langevin dynamics: construction and numerical integration of non-Markovian particle-

based models, Soft Matter, 14 (2018), pp. 9368–9382.
[7] P.K. LAMM, A survey of regularization methods for first-kind Volterra equations, in Surveys on Solution

Methods for Inverse Problems, D. Colton, H. W. Engl, A. K. Louis, J. R. McLaughlin, and W. Rundell,
eds., Springer, Vienna, 2000, pp. 53–82.

[8] H. LEI, N.A. BAKER, AND X. LI, Data-driven parameterization of the generalized Langevin equation, Proc.
Natl. Acad. Sci. USA, 113 (2016), pp. 14183–14188.

[9] P. LINZ, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.
[10] L. MA, X. LI, AND C. LIU, The derivation and approximation of coarse-grained dynamics from Langevin

dynamics, J. Chem. Phys., 145 (2016), Art. 204117, 13 pages.
[11] H. MEYER, P. PELAGEJCEV, AND T. SCHILLING, Non-Markovian out-of-equilibrium dynamics: A general nu-

merical procedure to construct time-dependent memory kernels for coarse-grained observables, Europhys.
Lett., 128 (2019), Art. 40001, 7 pages.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

498 M. HANKE

[12] H. MEYER, S. WOLF, G. STOCK, AND T. SCHILLING, A numerical procedure to evaluate memory effects in
non-equilibrium coarse-grained models, Adv. Theory Simul, 4 (2020), Art. 2000197, 8 pages.

[13] N. POTTIER, Nonequilibrium Statistical Processes, Oxford University Press, Oxford, 2010.
[14] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[15] G.M. VAINIKKO AND A.Y. VERETENNIKOV, Iteration Procedures in Ill-Posed Problems, Nauka, Moskau,

1986. (In Russian.)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

