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HYPERGRAPH EDGE ELIMINATION—A SYMBOLIC PHASE FOR HERMITIAN
EIGENSOLVERS BASED ON RANK-1 MODIFICATIONS∗

KARSTEN KAHL† AND BRUNO LANG†

Abstract. It is customary to identify sparse matrices with the corresponding adjacency or incidence graphs.
For the solution of a linear system of equations using Gaussian elimination, the representation by its adjacency
graph allows a symbolic factorization that can be used to predict memory footprints and enables the determination
of near-optimal elimination orderings based on heuristics. The Hermitian eigenvalue problem on the other hand
seems to evade such treatment at first glance due to its inherent iterative nature. In this paper we prove this assertion
wrong by revealing a tight connection of Hermitian eigensolvers based on rank-1 modifications with a symbolic edge
elimination procedure. A symbolic calculation based on the incidence graph of the matrix can be used in analogy to
the symbolic phase of Gaussian elimination to develop heuristics which reduce memory footprint and computations.
Yet, we also show that the question of an optimal elimination strategy remains NP-complete, in analogy to the linear
systems case.
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1. Introduction. The divide-and-conquer algorithm is a well-known method for com-
puting the eigensystem (eigenvalues and, optionally, associated eigenvectors) of a Hermitian
tridiagonal matrix [5, 7, 8]. It can be parallelized efficiently [3, 8], and even serially it is
among the fastest algorithms available [1, 7].

The method relies on the fact that if the eigensystem of a Hermitian matrix A0 is known,
then the eigenvalues of a “rank-1 modification” (or “rank-1 perturbation”) of this matrix,
A1 = A0 + ρzzH , can be determined efficiently by solving the so-called “secular equation”
[4, 11], and A1’s eigenvectors can also be obtained stably from those of A0 [12].

In the tridiagonal case this can be used to zero out a pair of off-diagonal entries tk+1,k

and tk,k+1 = tk+1,k near the middle of the tridiagonal matrix T such that T decomposes into
two half-sized matrices and a rank-1 modification,

T =

[
T1 0
0 T2

]
± tk+1,kzz

H ,

with a vector z containing nonzeros at positions k and k + 1 and zeros elsewhere. Having
computed the eigensystems of T1 and T2 (possibly by a recursive application of the same
scheme), the eigensystem of T is obtained from these using the rank-1 machinery.

In this work we extend this method to a more general setting. In Section 2 we show that
the eigensystem of a Hermitian matrix can be computed via a sequence of rank-1 modifications,
each of them removing entries of the matrix until a diagonal matrix is reached. Section 3
reviews some of the theory for rank-1 modifications, as far as it is essential for the subsequent
discussion.

While this approach in principle also works for full matrices, it benefits heavily from
sparsity. In Section 4 we show that the necessary work for a whole sequence of rank-1
modifications can be modelled in a graph setting, similarly to the fill-in arising in direct solvers
for Hermitian positive definite linear systems; cf., e.g., [6, 10]. However, the removal of nodes
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from the graph associated with the matrix is not sufficient to fully describe the progress of the
eigensolver; here, the removal of edges in hypergraphs [17] provides a natural description.

We present two ways to come back to node elimination. In Section 5 we consider the
dual hypergraph, and in Section 6 we will see that the edge elimination is closely related
to Gaussian elimination for the so-called edge-edge adjacency matrix (and thus to node
elimination for the graph associated with that matrix). In particular, an NP-completeness result
will be derived from this relation in Section 7. This result implies that, for a given sequence of
rank-1 modifications, it will not be practical to determine an ordering of this sequence that is
optimal in a certain sense.

Nevertheless, the hypergraph-based models allow us to devise heuristics for choosing
among the possible sequences of rank-1 modifications one such that the overall consumption
of resources is reduced. In Section 8 we discuss heuristics for the elimination orderings to
reduce memory footprint and computations.

Throughout the paper we assume that A ∈ Cn×n is Hermitian. The presentation is
aimed at sparse matrices, but “sparsity” is to be understood in the widest sense, including full
matrices.

2. Successive edge elimination. We first show that the Hermitian eigenvalue problem
AQ = QΛ can be solved by a series of rank-1-modified eigenvalue problems. One way to do
this is to have each rank-1 modification remove one pair of nonzero off-diagonal entries ak,`
and a`,k = ak,`, which in turn correspond to one edge of the undirected graph associated with
A. Thus we first introduce the basic graph notation we require.

DEFINITION 2.1. The undirected adjacency graph GA = (V,E) with vertex set V and
edge set E that is associated with A ∈ Cn×n is defined by

V = {1, . . . , n} and E = {{k, `} ⊆ V | k 6= `, ak,` 6= 0}.

As our method treats matrix entries by conjugate pairs and maintains hermiticity through-
out, it is sufficient to consider only entries in the upper triangle of the matrix. We will therefore
assume that k < `.

DEFINITION 2.2. For each edge {k, `} ∈ E with ak,` = rk,` · eiθk,` ∈ C, where
rk,` = |ak,`| and θk,` ∈ [0, 2π), we define a vector representation z{k,`} ∈ Cn of the edge by

(
z{k,`}

)
j

=


eiθk,` if j = k,

1 if j = `,

0 otherwise.

Using these vectors we can rewrite A as a sum of rank-1 modifications of a diagonal
matrix.

LEMMA 2.3. Let A ∈ Cn×n be sparse and Hermitian and GA = (V,E) its associated
graph. Then

(2.1) A = D +
∑
{k,`}∈E

rk,` · z{k,`}zH{k,`},

where D = diag(d1, . . . , dn) with

(2.2) di = ai,i −
∑

{k,`}∈E, i∈{k,`}

rk,` = ai,i −
n∑

j=1,j 6=i

|ai,j |.
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Proof. For each edge {k, `} with k < `, the rank-1 matrix rk,` · z{k,`}zH{k,`} is nonzero
only at the four positions (k, `)× (k, `), where we find(

rk,` · z{k,`}zH{k,`}
)
(k,`)×(k,`)

= rk,`

[
1 eiθk,`

e−iθk,` 1

]
=

[
rk,` ak,`
ak,` rk,`

]
.

Thus the ith diagonal entry is modified only by those edges starting or ending at node i, which
gives the first equality in equation (2.2). The second equality is a direct consequence of the
definition of E and the hermiticity of A.

REMARK 2.4. The entries of D in equation (2.1) correspond to the lower bounds of the
Gershgorin intervals. By defining z{k,`} differently, (z{k,`})k = −ieiθk,` and (z{k,`})` = i,
the rank-1 modifications become (−|ak,`|) · z{k,`}zH{k,`}, and thus one can also obtain a
representation of A similar to equation (2.1) such that the entries of D correspond to the upper
bounds of the Gershgorin intervals.

The solution of the Hermitian eigenvalue problem starting from equation (2.1) is now
straightforward. Fixing an ordering of the edges, i.e., defining E = {e1, . . . , e|E|}, we have

(2.3) A =
(
D + re1 · ze1zHe1

)
+

|E|∑
j=2

rej · zejzHej .

Assuming that the eigendecomposition of the Hermitian matrix D + re1 · ze1zHe1 has been
computed,

D + re1 · ze1zHe1 = Q1D1Q
H
1

with Q1 unitary, we can rewrite equation (2.3) as

A = Q1

(
D1 +

|E|∑
j=2

rej ·
(
QH1 zej

) (
QH1 zej

)H )
QH1 ,

i.e., we eliminated edge e1 from equation (2.1). Successive elimination of the remaining

|E|−1 edges involving the vectorQHj−1 · · ·QH1 ·zej = (
j−1∏
i=1

Qi)
H ·zej in step j, finally yields

the eigendecomposition of A,

A =

( |E|∏
j=1

Qj

)
D|E|

( |E|∏
j=1

Qj

)H
.

This approach is summarized in Algorithm 2.1.
In order to be able to compute the eigendecomposition in this way, we need an efficient

way to solve eigenproblems of the kind “diagonal plus rank-1 matrix”. It is well known that
these problems can be easily dealt with in terms of the secular function, as we review in
Section 3. In order to come up with a symbolic representation of the elimination procedure,
we have to analyze the effect of the elimination of a particular edge ej on the remaining edges.
This symbolic representation is developed in Section 4.

3. Computing eigenvalues of rank-1-modified diagonal matrices. In order to clarify
the main tool needed throughout the remainder of this work, we review some classical results
about the eigenvalues of rank-1 perturbed matrices. The results cited here date back to [9]
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Algorithm 2.1: Successive edge elimination.

1 Write A = D0 +
∑
e∈E

re · zezHe .

2 Choose an ordering of the edges e1, e2, . . . , e|E|.
3 Set Q = I .
4 for j = 1 to |E|
5 Calculate the eigendecomposition of Dj−1 + rej · zejzHej = QjDjQ

H
j .

6 for k = j + 1 to |E|
7 zek = QHj · zek .

8 Q = QQj .

and are also contained in [15, pp. 94–98]. They were later on used in [4, 5] to formulate the
divide-and-conquer method for tridiagonal eigenproblems.

THEOREM 3.1 ([4, Theorem 1]). LetD+ρzzH = QΛQH be the eigendecomposition of
the rank-1-modified matrix, where D = diag(d1, . . . , dn) ∈ Rn×n with d1 ≤ d2 ≤ . . . ≤ dn,
‖z‖ = 1, and ρ > 0. Then the diagonal entries of Λ = diag(λ1, . . . , λn) are the roots of the

“secular equation”

(3.1) f(λ) = 1 + ρ

n∑
j=1

|zj |2

dj − λ
.

More specifically, let the λj be ordered, λ1 ≤ λ2 ≤ . . . ≤ λn. Then it holds that

λj = dj + ρµj with 0 ≤ µj ≤ 1 for j = 1, . . . , n and
n∑
j=1

µj = 1.

Note that the requirement ‖z‖ = 1 can be dropped by replacing ρ with ρ/‖z‖2. There are
two important consequences of Theorem 3.1 found in [15, pp. 94–98].

LEMMA 3.2. Using the same notation as in Theorem 3.1, we obtain the following:
1. In case the eigenvalues of D are pairwise distinct, we find that λj = dj if and only if
zj = 0.

2. In addition, if all zj 6= 0, then we find that dj < λj < dj+1, j = 1, . . . , n
(dn+1 =∞).

3. Assume there exists a multiple eigenvalue dj of D with multiplicity k; without loss of
generality dj−k+1 = . . . = dj−1 = dj and ‖zj−k+1,...,j‖ 6= 0. Then we find

λi = di, i = j − k + 1, . . . , j − 1, and dj < λj < dj+1 (dn+1 =∞).

Lemma 3.2 is one of the key algorithmic ingredients of the divide-and-conquer algorithm
for tridiagonal eigenproblems and leads to a technique known as “deflation.”

As described in [8] and exploited in the implementation of the divide-and-conquer method,
the root-finding problem of equation (3.1) is highly parallel and can be efficiently solved by a
modified Newton iteration using hyperbolae instead of linear ansatz functions.

Recall that in our context the vector for the jth rank-1 modification (elimination of ej)
is (
∏j−1
i=1 Qi)

H · zej . Therefore, Lemma 3.2 implies that this elimination only requires the
solution of the secular equation in at most

(3.2) Nej = nnz
(

(
∏
i<j

Qi)
H · zej

)
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intervals, where nnz(v) is the number of nonzero entries of a vector v. That is, at most Nej
of the entries of Dj−1 (i.e., eigenvalue approximations) change from Dj−1 to Dj . Further,
by Theorem 3.1, we obtain that all eigenvalues move in the same direction, and the total
displacement of these eigenvalues is given by rej · ‖(

∏
i<j Qi)

H · zej‖2 = 2|aej | because
rej = |aej | and the norm of the vector ‖zej‖ =

√
2 does not change under the orthogonal

transformation (
∏
i<j Qi)

H .
Using the above reasoning, one would be able to estimate the cost of the overall elim-

ination process for a given ordering of the edges if the number of nonzeros in the vectors
(
∏
i<j Qi)

Hzej could be predicted. In the following section we show how to do this.
Being able to analyze the influence of the ordering of the edges on the complexity of the

calculations (in terms of the number of roots of the secular equations that need to be calculated)
also allows us to determine an ordering that leads to low overall cost. This topic is discussed
in Sections 7 and 8.

4. Edge elimination, hypergraphs, and edge elimination in hypergraphs. In Sec-
tion 2 we have seen that the eigendecomposition of a Hermitian (sparse) matrix A can be
obtained by successively eliminating the edges e1, e2, . . . , e|E| of the graph GA associated
with the matrix A.

It is well known that in the context of Gaussian elimination for Hermitian positive definite
matrices, the effect of eliminating one node (corresponding to selecting a pivot row and
performing the row additions with this row) directly shows in the (undirected) graph GA:
removing the node and connecting all its former neighbors introduces exactly those edges
that correspond to the new fill-in produced by the row operations [6, 10]. This allows one to
determine the nonzero patterns of the matrices during the whole Gaussian elimination process
before executing any floating-point operation.

Something similar can be done to determine the nonzero patterns of the vectors

(
∏
i<j

Qi)
Hzej

resulting from preceding eliminations. However, as we are eliminating edges, the graph GA is
not adequate for this purpose. We have to generalize the concept of a graph and use what is
known in the literature as a hypergraph [17].

DEFINITION 4.1. An undirected hypergraph G = (V,E) is defined by a set of vertices
V = {v1, . . . , vn} and a set of hyperedges E = {e1, . . . , em}, where ∅ 6= ej ⊆ V .

EXAMPLE 4.2. The hypergraph with vertex set V = {1, 2, 3, 4, 5} and set of hyperedges
E = {e1, e2, e3, e4} = {{1, 2, 5}, {2, 3}, {1, 3, 4, 5}, {3, 4}} is depicted in Figure 4.1, where
each hyperedge is indicated by a closed line that contains all its vertices.

REMARK 4.3. The possibility to have edges with more or fewer vertices than two is the
only difference to the usual definition of an undirected graph. In particular, the graph GA of
the matrix can be considered as a hypergraph.

In order to analyze the nonzero pattern of the vector (
∏
i<j Qi)

Hzej for the jth rank-1
modification, we first note that this vector can be obtained in two ways: “left-looking”, when
it is needed, by accumulating all previous transformations QHi (i < j), or “right-looking”, by
applying each transformation QHi , once it has been computed, to all later zek . In the following
discussion, as well as in Algorithm 2.1, the right-looking approach is used.

We now consider the effect of one such operation from the matrix/vector point of view.
Let us assume that the edges are ordered and consider the elimination of the first edge, e1.
Assume without loss of generality that e1 = {1, 2}. By definition, ze1 has only two nonzero
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FIG. 4.1. Drawing of the hypergraph defined in Example 4.2 with V = {1, 2, 3, 4, 5} and hyperedges
e1 = {1, 2, 5}, e2 = {2, 3}, e3 = {1, 3, 4, 5}, and e4 = {3, 4}.

entries at the indices 1 and 2, and thus due to Theorem 3.1 and Lemma 3.2, we find

Q1 =

q11 q12
q21 q22

I(n−2)×(n−2)

 .
Hence, for all edges ej with ej ∩ e1 = ∅, we have QH1 · zej = zej . On the other hand, for all
edges ej with ej ∩ e1 6= ∅, we find that QH1 · zej has entries at the indices ej ∪ e1.

The situation for the ith elimination step is similar. Let the hyperedge ej denote the
nonzero pattern, i.e., the set of positions of the nonzeros of the current vector zj (after the
preceding transformations QHi−1 · · ·QH1 · zj). Then the transformed vector QHi · zj will have
nonzeros at the same positions ej if ej ∩ ei = ∅ and at positions ej ∪ ei if the two hyperedges
overlap.

REMARK 4.4. Strictly speaking this holds only if the transformation QHi · zj does not
introduce new (“cancellation”) zeros in the vector. In the symbolic processing for sparse linear
systems it is commonly assumed that this does not happen; we will do so as well.

We summarize the above observation in the following theorem.
THEOREM 4.5. Let G = (V,E) be an undirected hypergraph with E 6= ∅. Let x ∈ E be

the edge to be eliminated, and let

E = Ex ∪ E 6x, where

{
Ex = {e ∈ E | e ∩ x 6= ∅} and
E 6x = {e ∈ E | e ∩ x = ∅}.

Then the hypergraph after elimination of x is given by G̃ = (Ṽ , Ẽ) with Ṽ = V and
Ẽ = {e ∪ x, e ∈ Ex \ {x}} ∪ E6x.

Now it is easy to show that the subsequent elimination of all edges to compute the
eigendecomposition as described in Section 2 is equivalent to the elimination of all edges
in the same ordering from the hypergraph GA as defined here (starting with the graph GA).
Thus it is natural to discuss questions such as complexity and optimal edge orderings in the
“geometrical” context of these graphs as it has been successfully done for the solution of linear
systems; e.g., optimal node orderings to reduce fill-in.

REMARK 4.6. In the above discussion we have assumed that each step of the algorithm
eliminates a “true edge” e = {k, `}, zeroing a pair of matrix entries ak,` and a`,k. However,
this is not mandatory. Note that Theorem 4.5 describes the evolution of the nonzero patterns
also if the eliminated edge x is a hyperedge as well with more than just 2× 2 matrix entries
being touched by the corresponding rank-1 modification. In addition, the (off-diagonal) matrix
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entries at the positions x× x need not be zeroed out completely with the elimination. This
allows for more general elimination strategies, including the extremes

• each rank-1 modification zeroes one off-diagonal pair of matrix entries (cf. Section 2),
and

• the ith rank-1 modification zeroes the whole ith column and row of the matrix; this
typically leads to the minimum number of rank-1 modifications, but according to the
above, the operations QHi · ej will make the vectors dense very quickly,

as well as many intermediate variants. For example, if the underlying model leads to low-rank
off-diagonal blocks in the matrix, then these can be removed with a reduced number of steps:
for a size-(r × s) block of rank ρ, ρ rank-1 modifications (with identical hyperedges) are
sufficient instead of r · s. We will come back to this generalization in Section 7.

5. Duality between edge elimination and node elimination. In this section we will
show that edge elimination can also be expressed as node elimination in a suitable hypergraph.
This requires some preparation.

DEFINITION 5.1. Let G = (V,E) be a hypergraph with nodes V = {v1, . . . , vn} and
hyperedges E = {e1, . . . , em}. The (node-edge) incidence matrix IVE ∈ R|V |×|E| of G is
then defined by

(IVE)ij =

{
1, if vi ∈ ej ,
0, otherwise,

and the adjacency matrices of the hypergraph are given by

AV = IVE · ITVE ∈ R|V |×|V | (vertex-vertex adjacency matrix),

AE = ITVE · IVE ∈ R|E|×|E| (edge-edge adjacency matrix).

The latter two names are explained by the following lemma:
LEMMA 5.2. Given a hypergraphG = (V,E), its adjacency matrices have the properties

(AV )ij 6= 0 iff there exists e ∈ E such that vi, vj ∈ e,

i.e., nodes vi and vj are connected by at least one hyperedge, and

(AE)ij 6= 0 iff there exists v ∈ V such that v ∈ ei ∩ ej ,

i.e., the hyperedges ei and ej share at least one node v.
Proof. This follows immediately from Definition 5.1 and the calculation of matrix-matrix

products due to

(
IVE · ITVE

)
ij

=

|E|∑
k=1

(IVE)i,k ·
(
ITVE

)
k,j

=

|E|∑
k=1

(IVE)i,k · (IVE)j,k

and similarly for AE .
We also note that the transpose of the incidence matrix of G, ITVE , is also the incidence

matrix I∗VE of the dual of the hypergraph, which is defined as follows.
DEFINITION 5.3. Let G = (V,E) be a hypergraph with nodes V = {v1, . . . , vn} and

hyperedges E = {e1, . . . , em}. Then the dual of G is a hypergraph G∗ = (V ∗, E∗) with
nodes V ∗ = {v∗1 , . . . , v∗m} and hyperedges E∗ = {e∗1, . . . , e∗n} such that

e∗i = {v∗j ∈ V ∗ : vi ∈ ej}.
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By construction, edge elimination in a hypergraph is equivalent to node elimination in its
dual, as can be seen as well in the following small example.

EXAMPLE 5.4. Consider the hypergraph G = (V,E) of Example 4.2 (Figure 4.1) and its
dual G∗ = (V ∗, E∗) given by their incidence matrices IVE and I∗VE , respectively:

IVE =


1 0 1 0
1 1 0 0
0 1 1 1
0 0 1 1
1 0 1 0

 , I∗VE = ITVE =


1 1 0 0 1
0 1 1 0 0
1 0 1 1 1
0 0 1 1 0

 .

If we eliminate edge e1 in G or, equivalently, node v∗1 in G∗, then the resulting hypergraphs G̃
and G̃∗ are given by

ĨVE =


1 1 0
1 1 0
1 1 1
0 1 1
1 1 0

 , Ĩ∗VE =

 1 1 1 0 1
1 1 1 1 1
0 0 1 1 0

 ,
with boldface entries representing the growth of the hyperedges and their duals through the
elimination. Note that “node elimination” in a hypergraph is not the same as standard node
elimination in a graph; it corresponds to merging the top row into all non-disjoint rows of the
matrix I∗VE .

There is another way to describe edge elimination in GA as node elimination in a suitable
graph, and since this corresponds to a square matrix with symmetric nonzero pattern, it allows
one to draw on the results available for the solution of sparse symmetric positive definite linear
systems [6, 10]. To this end we take a closer look at the edge-edge adjacency matrix AE , more
specifically, at the process of executing Gaussian elimination for that matrix.

6. Gaussian elimination for the edge-edge adjacency matrix. LetG = (V,E) denote
a hypergraph. We now investigate how eliminating one of G’s edges changes the nonzero
pattern in the edge-edge adjacency matrix.

Let us first consider the symbolic elimination of an edge x, as defined in Section 4. This
elimination amounts to the following changes:

e ∈ E \ {x} →

{
e ∪ x, if e ∩ x 6= ∅,
e, otherwise.

In particular this implies that all edges e ∈ E \ {x} with e∩ x 6= ∅ share all vertices of x after
its elimination. Thus, in terms of the edge-edge adjacency matrix AE , the elimination results
in a full block of nonzero entries covering all e ∈ E \ {x} with e ∩ x 6= ∅.

On the other hand let us consider one step of symbolic Gaussian elimination applied to
the edge-edge adjacency matrix and note that AE is symmetric. Without loss of generality let
us assume that AE is permuted such that the edge x is listed first. Nonzero entries in the first
column of AE then correspond to edges e that share at least one vertex with x, i.e., for which
e ∩ x 6= ∅. Thus, in the symbolic elimination step we now have to merge the nonzero pattern
of the first matrix row into the nonzero pattern of each row corresponding to an edge e with
e∩ x 6= ∅. Due to symmetry this again results in a full block of nonzeros covering these edges
(a clique in the graph GAE

associated with the matrix) and corresponds exactly to the nonzero
pattern generated by the symbolic edge elimination.
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Thus, in terms of the edge-edge connectivity structure, the symbolic edge elimination
process is equivalent to a symbolic Gaussian elimination applied to the edge-edge adjacency
matrix. Therefore this source of complexity, caused by increasing connectivity among the
remaining edges, can be approached in the same way as it is done in Gaussian elimination
applied to sparse linear systems of equations.

Unfortunately, this does not cover all of the complexities of the process. If a fill-in element
appears in AE during Gaussian elimination, then this merely signals that all nodes from the
hyperedge ej will be joined to those of ei. Therefore, the overall fill-in reflects the number of
times when some hyperedge will grow. It does, however, not convey information about the
current number of nodes in the hyperedges, which would be necessary for assessing the cost
for the corresponding rank-1 modification; see equation (3.2).

7. NP-completeness results. In this section we will show that even the problem of
minimizing the “number of growths” is NP-complete.

This follows directly from a well-known result stating the NP-completeness of fill-in
minimization [16] together with the following lemma. (Recall that a symmetric matrix is
irreducible if its graph is connected.)

LEMMA 7.1. The nonzero pattern of any symmetric positive definite irreducible n-
by-n matrix can be interpreted as the edge-edge adjacency matrix of a suitable hypergraph
G = (V,E) with |E| = n edges.

Proof. Define

V = {vi,j | i > j, ai,j 6= 0},

that is, we have one node for each nonzero in the strict lower triangle of A. Let the set of
hyperedges be E = {e1, . . . , en}, where

ej = {vi,j | i > j, ai,j 6= 0} ∪ {vj,i | j > i, aj,i 6= 0},

i.e., ej contains just those nodes corresponding to nonzeros in column j or row j of A’s strict
lower triangle. Note that ej 6= ∅ because otherwise the jth row and column ofA would contain
just the diagonal entry, i.e., A were reducible. Then, for k > j we have

ek ∩ ej = {vi,j | i > j, ai,j 6= 0} ∩ {vk,i | k > i, ak,i 6= 0}

(the other three intersections being empty), and this is nonempty iff there is a node vi,j ≡ vk,i
in both column j and row k, i.e., ak,j 6= 0. Using Lemma 5.2, this implies that A and
AE = IHVEIVE have the same nonzero pattern.

REMARK 7.2. In most cases, the same nonzero pattern may also be obtained with
hypergraphs containing fewer nodes. It is therefore tempting to take IVE to be the nonzero
pattern of the Cholesky factor U from A = UHU in order to obtain the sparsity pattern of A
with a hypergraph containing just n nodes. Unfortunately, cancellation in the product UHU
may introduce zeros in A that are not present in the product IHVEIVE obtained this way, and
this cancellation can be structural. In fact, exhaustive search reveals that, for n = 5, the pattern

A =


1 0 1 1 1
0 1 1 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1


cannot be obtained as IHVEIVE with any hypergraph containing fewer than six nodes, and six
nodes are sufficient according to the proof of Lemma 7.1 because the strict lower triangle of A
contains six nonzeros.
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Note that for Lemma 7.1 we have assumed that we may start with a hypergraph; cf.
Remark 4.6. If this is not allowed and we restrict ourselves to eliminating “true edges,”
thus zeroing one pair of matrix entries ak,` and a`,k per step, then a simple combinatorial
argument shows that there must be symmetric positive definite matrices whose nonzero pattern
cannot be interpreted as that of an edge-edge adjacency matrix AE = ITVE · IVE to any graph
G = (V,E).

To see this, we note that the number of nonzero patterns for a symmetric n-by-n matrix
A is νA = 2n(n−1)/2 =

(
2(n−1)/2

)n
, because each of the n(n − 1)/2 entries in the strict

lower triangle may be zero or not. Now assume that the matrix has the same nonzero pattern
as ITVE · IVE for some graph G = (V,E) with n edges and some number of nodes v. Then
IVE ∈ Rv×n contains exactly two nonzeros in each of its columns, and we may assume without
loss of generality that v ≤ 2n, because at most 2n rows of IVE can contain a nonzero, and
rows with all zeros can be removed without affecting the product ITVE · IVE (this corresponds
to removing isolated nodes from G). Then there are at most

(
2n
2

)
= 2n(2n− 1)/2 possible

combinations for the positions of the two nonzeros in each column of IVE , leading to the

overall number of possible matrices IVE being bounded by νIVE
≤
(

2n(2n−1)
2

)n
. Since

2(n−1)/2 > 2n(2n−1)
2 for large n, we also have νA > νIVE

, and therefore not all symmetric
matrices can be interpreted as edge-edge adjacency matrices.

In this situation the proof of NP-completeness for fill-in minimization does not carry over,
and it is currently not known whether this restricted problem is indeed NP-complete.

In the light of these results one still may try to find orderings that lead to reduced
(arithmetic or memory) complexity without being optimal in the above sense. This will be
discussed in the following.

8. Heuristics for choosing edge elimination orderings. Based on the findings in Sec-
tions 2 and 4, it is natural to analyze the complexity of Algorithm 2.1 in terms of the overall
number of roots of the secular equation that have to be calculated during all edge eliminations.
Combining this analysis with the cost for the calculation of a single root of the secular equation
gives us direct access to the complexity of the Hermitian (sparse) eigenvalue problem.

LEMMA 8.1. Let GA = (V,E) be an undirected graph of a matrix A, interpreted as a
hypergraph. Further define an ordering of the edges e1, . . . , e|E|. Then the total number N of
secular equation roots that have to be calculated in Algorithm 2.1 is given by

N =

|E|∑
j=1

Nej ,

using the definition of Nej from equation (3.2).
Minimum incidence (MI) ordering. In analogy to the minimum-degree ordering in Gaus-

sian elimination, the first heuristic that comes to mind accounts for the number of incident
edges. In the hypergraph setting, two edges e and x are incident iff e ∩ x 6= ∅, i.e., when by
eliminating x, the edge e changes and vice versa. Introducing the quantities

µi(x) = |{e ∈ E | e ∩ x 6= ∅}|,

the strategy thus chooses in every step the edge with the fewest incident edges. Once an edge
x is eliminated, the number of incident edges needs to be updated only for all edges e that
have been incident with x.

Minimal root number (MR) ordering. Another heuristic is to account for the number of
roots of the secular equation that need to be calculated when eliminating a hyperedge. That is,
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TABLE 8.1
Symbolic elimination for the chain graph with N = 256 nodes. Reported are the accumulated number of roots

that need to be calculated over the whole elimination process. For comparison, the number of root calculations in the
divide-and-conquer algorithm for this problem is 256× log2(256) = 2048.

Heuristic µi µr µ
(1)
c µ

(2)
c∑

|x| 16766 2048 2048 2152

we define the quantities

µr(x) = |x|,

and the MR strategy chooses in every step the edge with the smallest number of contained
vertices. After the elimination of an edge, µr needs to be updated for all edges incident with
the eliminated edge.

Minimal roots/costs with look-ahead (MC). The last heuristic under consideration modi-
fies the MR heuristic by adding a look-ahead component. The elimination of an edge x incurs
a growth of all edges e with x ∩ e 6= ∅ by |x ∪ e| − |e| vertices. This in turn relates to the
number of roots that need to be calculated in a future elimination. Due to the fact that the cost
of eliminating an edge x with |x| nodes is proportional to |x|2, we consider the two measures

µ(k)
c (x) = |x|k +

∑
e∩x 6=∅

|x ∪ e|k − |e|k,

for k = 1, 2, and choose to eliminate the edge with the current smallest value of µ(k)
c . Due to

the look-ahead nature of the measure, updating it now involves not only the edges incident
with x but also the next-neighbors as well.

In order to assess the efficiency of these heuristics, they have been applied to matrices
with different sparsity patterns, i.e., different structures of the associated graph GA.

I. The chain graph. In order to enable a comparison of our approach to the tridiagonal
divide-and-conquer algorithm, we first apply the symbolic process to a chain of N nodes,
which is the graph corresponding to a tridiagonal matrix. The divide-and-conquer strategy
for this graph results in the calculation of N roots on each level of the recursion for a total of
N log2(N) roots.

As can be seen from the results in Table 8.1, both the strategy that chooses the edge
with the currently smallest number of contained vertices, based on µr, as well as the strategy
that accounts for the current and future cost of eliminating an edge, based on µ(1)

c , result
in elimination orderings which are equivalent to the divide-and-conquer strategy. While the
strategy based on the measure µ(2)

c comes close to the optimal total number of roots, the
strategy based on choosing to eliminate the edge with the least number of incident edges fails
spectacularly and eliminates the edges in lexicographic ordering.

The progress of the elimination for a chain graph with N = 8 nodes is shown in Fig-
ure 8.1. Again, µr and µ(1)

c achieve the same
∑
|x| value as the tridiagonal divide-and-conquer

approach, N log2(N) = 24, µ(2)
c is slightly worse (

∑
|x| = 25), and µi leads to the lexico-

graphic ordering (
∑
|x| = 35).

II. Banded matrices. Banded matrices with (semi-)bandwidth b, i.e., ak,` = 0 whenever
|`− k| > b, can be handled in different ways.

Analogously to the tridiagonal case, we can start the elimination process with the graph
GA that is associated with the matrix and now contains |E| = n− b(b+ 1)/2 edges {k, `},
where k, ` ∈ {1, . . . , n} and k < ` ≤ k + b. Thus, the elimination of each edge corresponds
to zeroing one pair of entries within the band.
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FIG. 8.1. Order of (hyper)edge elimination for a size-8 tridiagonal matrix with the strategies (from left to
right) Minimum incidence (MI, minimize µi(x)), Minimal root number (MR, minimize µr(x)), Minimal roots with
look-ahead (MC1, minimize µ(1)c (x)), and Minimal costs with look-ahead (MC2, minimize µ(2)c (x)). For each of
the seven elimination steps (a) to (g), the remaining (hyper)edges are shown together with their µ values, and the
(hyper)edge selected for elimination is highlighted as a dotted line. If the minimum is not unique, then the “first”
minimizing hyperedge (clockwise) is chosen for elimination.
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FIG. 8.2. Overall number of roots (magenta), effort for the secular equations (green), and for the eigenvector
updates (red) for bandwidths b = 1 (left), b = 2 (center), and b = 4 (right). Squares correspond to the µr heuristic,
starting with the graph GA, and solid lines correspond to the same heuristic, starting with the hypergraph HA

described in the main text.

Divide-and-conquer algorithms for banded eigenvalue problems typically follow a differ-
ent strategy; cf., e.g., [2]. Here, the matrix is considered to be block tridiagonal with some
block size m ≥ b, and the super-diagonal blocks Aj,j+1 are nonzero only in a b× b triangle at
their lower left corner. These off-diagonal blocks are zeroed out by a sequence of b rank-1
modifications, where the length-2b vectors z = (uT , vT )T can be determined from an SVD
Aj,j+1 = UΣV ∗ of that triangle. To allow for this procedure, we start with a “true” hypergraph
HA containing, for each j, a number ofm identical size-m hyperedges {(j−1)m+1, . . . , jm}
with the nodes of block Aj,j (this covers the computation of Aj,j’s eigenvalues and -vectors)
and b identical size-2b hyperedges {jm− b+ 1, . . . , jm, jm+ 1, . . . , jm+ b} (covering the
rank-1 modifications for zeroing Aj,j+1).

Figure 8.2 displays the results for both approaches (solid lines: starting with GA; squares:
starting with HA) for bandwidths b = 1 (tridiagonal—here both approaches coincide), b = 2,
and b = 4, and block size m = b. We report the statistics for the overall number of roots
to compute, roots =

∑
|x|, the overall cost of the secular equations, secular =

∑
|x|2, and

the overall cost of the eigenvector updates, updates =
∑
|x|2cx, where cx is the number of

columns in Q that are affected by eliminating x. All numbers are for the heuristic µr, which
performed almost identically to µ(1)

c and slightly better than µ(2)
c , whereas µi was much worse.

The data clearly indicate that roots ∼ n, secular ∼ n2, and updates ∼ n3. A closer look re-
veals that µr, applied toHA, indeed essentially leads to the banded divide-and-conquer scheme
as described above. Since the overall work is dominated by the final length-n rank-1 modifi-
cations, this explains why roots, secular, and updates increase linearly with b when starting
with HA (the band divide-and-conquer does b full-length rank-1 modifications), whereas they
are of order b2 when starting with GA (then the final b(b + 1)/2 rank-1 modifications are
full-length). In particular, the complexity of the band divide-and-conquer scheme is lower by
a factor ≈ (b+ 1)/2.

III. Structured graphs. Structured graphs are often encountered in discretizations of
partial differential equations. The resulting graphs are planar and usually possess a large
diameter. In Figure 8.3 we report results in terms of the accumulated number of roots

∑
|x|

and the cost of root elimination
∑
|x|2 of the hypergraph edge elimination approach for a

uniform 16 × 16 lattice. We compare the results for the four heuristics with a statistical
baseline of 20 random elimination orderings. (Random orderings roughly correspond to
processing the nonzeros just in the order in which they may have been inserted into a sparse
data structure.) As can be seen from the figure, all four heuristics yield largely reduced cost
measures compared to the baseline. Notably, the ordering of the heuristics in terms of the two
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FIG. 8.3. Accumulated number of roots
∑
|x| (top) and root calculation costs

∑
|x|2 (bottom) for a regular

16 × 16 lattice graph with N = 256 nodes. Results for the heuristics are plotted as (µi,4), (µr,�), (µ(1)c , ◦),
and (µ

(2)
c , �) (towards the left), and the boxplots close to the right summarize the results for 20 random elimination

orderings.
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FIG. 8.4. Accumulated number of roots
∑
|x| (top) and root calculation costs

∑
|x|2 (bottom) for a triangula-

tion of the unit disc with N = 1313 nodes. Results for the heuristics are plotted as (µi,4), (µr,�), (µ(1)c , ◦), and
(µ

(2)
c , �). The boxplots represent results of 20 random elimination orderings.

cost measures is not identical, i.e., an overall minimal number of accumulated root calculations
does not immediately lead to a minimal accumulated root elimination cost.

Next we apply the same test setup to a graph that is a triangulation of the unit disc
with 1313 nodes. In Figure 8.4 we report the accumulated number of roots

∑
|x| and the

root elimination costs
∑
|x|2 for the four heuristics and report the statistical baseline of 20

random orderings. Again we see that all four heuristics are clearly better than using a random
elimination ordering.

IV. Sparse random graphs. Finally we compare the heuristics for randomly generated
graphs. We use the Matlab built-in function sprandsym to generate an undirected graph
with N nodes with a nonzero density of 8

N . The average degree of the resulting graphs is thus
approximately 8. We now test the heuristics for 20 such graphs of size N = 128. In Figure 8.5
we report the number of edges of the matrices used in the tests.

In Figure 8.6 we report the results of the heuristics applied to these randomly generated
sparse graphs. We report both the accumulated number of roots

∑
|x| as well as the accumu-

lated cost of root calculations
∑
|x|2. In order to gauge the potential gains realized by the

heuristics, we include boxplots of 20 random elimination orderings as well.
Overall, our experiments suggest that, while none of the proposed strategies is consistently

superior, choosing the hyperedge with minimum µ
(1)
c -value for elimination seems to be a
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FIG. 8.5. Number of edges |E| of 20 randomly generated sparse graphs.
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FIG. 8.6. Accumulated number of roots
∑
|x| (top) and root calculation costs

∑
|x|2 (bottom) for the 20

randomly generated sparse graphs. Results for the heuristics are plotted as (µi,4), (µr,�), (µ(1)c , ◦), and (µ
(2)
c , �).

Each boxplot represents results of 20 random elimination orderings.

reasonable way to reduce both cost measures, the total number of roots to compute,
∑
|x|,

and the operations to do this,
∑
|x|2.

9. Concluding remarks. We have shown in this paper that symmetric eigensolvers
based on rank-1 modifications can be interpreted as an elimination process, where all edges of
the corresponding graph need to be eliminated. This symbolic equivalence is facilitated by a
hypergraph point of view and in complete analogy to the vertex elimination that characterizes
the symbolic solution of linear systems by means of Gaussian elimination.

Furthermore, we showed that the hypergraph information in every stage of the elimination
process is captured by the symbolic Gaussian elimination applied to the edge-edge adjacency
matrix—a formal dual to the regular vertex-vertex adjacency matrix. Exploiting this con-
nection, we were able to transfer the result of NP-hardness for the calculation of an optimal

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

66 K. KAHL AND B. LANG

elimination ordering from the linear systems case to the symmetric eigenvalue problem.
While optimality cannot be achieved, we proposed different heuristics to determine good

elimination orderings and numerically explored their use. In particular, we compared them to
a baseline of random elimination orderings, where they proved to be vastly superior to this
baseline. We also explored if the chosen heuristics are able to reproduce the optimal ordering
in case that the graph of the matrix is a chain graph, i.e., the matrix is tridiagonal. In this case,
the proposed edge elimination algorithm with optimal elimination ordering is equivalent to an
iterative (rather than recursive) formulation of the divide-and-conquer approach to tridiagonal
symmetric eigenvalue problems.

Considered from the point of view of this paper, the usual approach of an initial reduction
to tridiagonal form and the subsequent solution of the tridiagonal eigenvalue problem can
be viewed as the reduction to a chain graph with subsequent edge elimination, for which an
optimal elimination strategy is known.

Note that several other algorithms for solving Hermitian tridiagonal eigenvalue problems
are known, such as QR or MRRR, and some of these may be faster than divide-and-conquer in
certain situations. However, they cannot be related to elimination in hypergraphs or graphs in
the way proposed in this work.

The equivalence of the Hermitian eigenvalue problem and symbolic hypergraph edge
elimination can be easily transferred to the calculation of the singular value decomposition
based on the observation that the singular value decomposition AV = UΣ of A ∈ Cm×n can
be computed by considering the Hermitian eigenvalue problem[

0 AH

A 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]
.

More efficient techniques avoiding the increase in problem size and the issues in “tearing apart”
U and V may be possible by considering non-Hermitian rank-1 updates and directed graphs
based on the theory in [13, 14]; this will be the subject of future investigations.
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