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ON THE SOLUTION OF THE NONSYMMETRIC T-RICCATI EQUATION∗

PETER BENNER† AND DAVIDE PALITTA†

Abstract. The nonsymmetric T-Riccati equation is a quadratic matrix equation where the linear part corresponds
to the so-called T-Sylvester or T-Lyapunov operator that has previously been studied in the literature. It has applications
in macroeconomics and policy dynamics. So far, it presents an unexplored problem in numerical analysis, and both
theoretical results and computational methods are lacking in the literature. In this paper we provide some sufficient
conditions for the existence and uniqueness of a nonnegative minimal solution, namely the solution with component-
wise minimal entries. Moreover, the efficient computation of such a solution is analyzed. Both the small-scale
and large-scale settings are addressed, and Newton-Kleinman-like methods are derived. The convergence of these
procedures to the minimal solution is proven, and several numerical results illustrate the computational efficiency of
the proposed methods.
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1. Introduction. In this paper, we consider the nonsymmetric T-Riccati operator

RT : Rn×n → Rn×n, RT (X) := DX +XTA−XTBX + C,

where A,B,C,D ∈ Rn×n, and we provide sufficient conditions for the existence and unique-
ness of a minimal solution Xmin ∈ Rn×n to

(1.1) RT (X) = 0.

The solution of the nonsymmetric T-Riccati equation (1.1) plays a role in solving dynamics
generalized equilibrium (DSGE) problems [9, 22, 25]. “DSGE modeling is a method in
macroeconomics that attempts to explain economic phenomena, such as economic growth and
business cycles, and the effects of economic policy”1. Equations of the form (1.1) appear in
certain procedures for solving DSGE models using perturbation-based methods [9, 25].

Taking inspiration from the (inexact) Newton-Kleinman method for standard algebraic
Riccati equations, we illustrate efficient numerical procedures for solving (1.1). Both the
small-scale and large-scale settings are addressed. In particular, in the latter framework, we
assume the matrices A and D to be such that the matrix-vector products Av and Dw require
O(n) floating point operations (flops) for any v, w ∈ Rn. This is the case, for instance, when
A and D are sparse. Moreover, we suppose B and C to be of low rank. These hypotheses
mimic the usual assumptions adopted when dealing with large-scale standard algebraic Riccati
equations; see, e.g., [2, 5, 7, 10, 13, 17, 18, 19, 23, 24, 21] and the recent survey paper [3].

The following is a synopsis of the paper. In Section 2 we present the result about the
existence and uniqueness of a minimal solutionXmin to (1.1), namely the nonnegative solution
with component-wise minimal entries. A Newton-Kleinman method for the computation of
such aXmin is derived in Section 3, and its convergence features are proven in Section 3.1. The
large-scale setting is addressed in Section 3.2, where the convergence of an inexact Newton-
Kleinman method equipped with a specific line search is illustrated. Some implementation
details of the latter procedure are discussed in Section 3.3. Several numerical results showing
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the effectiveness of the proposed approaches are reported in Section 4, while our conclusions
are given in Section 5.

Throughout the paper we adopt the following notation: The matrix inner product is defined
as 〈X,Y 〉F := trace(Y TX) so that the induced norm is ‖X‖2 = 〈X,X〉F . In denotes the
identity matrix of order n, and the subscript is omitted whenever the dimension of I is clear
from the context. The brackets [·] are used to concatenate matrices of conforming dimensions.
In particular, a MATLAB-like notation is adopted, where [M,N ] denotes the matrix obtained
by augmenting M with N . A ≥ 0 (A > 0) indicates a nonnegative (positive) matrix, that
is, a matrix whose entries are all nonnegative (positive). Clearly, A ≤ 0 (A < 0) if −A ≥ 0
(−A > 0), and A ≥ B if A−B ≥ 0. Moreover, we recall that a matrix A is a Z-matrix if all
its off-diagonal entries are nonpositive. It is easy to show that a Z-matrix can be written in the
form A = sI −N , where s ∈ R and N ≥ 0. If s ≥ ρ(N), where ρ(·) denotes the spectral
radius, then A is called M-matrix.

Furthermore, we will always suppose that the following assumption holds.
ASSUMPTION 1.1. We assume that
• B is nonnegative (B ≥ 0) and C is nonpositive (C ≤ 0).
• I⊗D+(AT⊗I)Π is a nonsingular M-matrix where⊗ denotes the Kronecker product

while Π ∈ Rn2×n2

is a permutation matrix given by Π :=
∑n
i=1

∑n
j=1Ei,j ⊗ Ej,i.

The matrix Ei,j ∈ Rn×n in Assumption 1.1 is the matrix whose (i, j)-th entry is 1 while
all the others are zero.

Notice that I ⊗ D + (AT ⊗ I)Π being a nonsingular M-matrix implies that the T-
Sylvester operator ST : Rn×n → Rn×n, ST (X) := DX +XTA, has a nonnegative inverse,
i.e., S−1

T (X) ≥ 0 for X ≥ 0. For the standard Sylvester operator S : Rn×n → Rn×n,
S(X) := DX + XA, this is guaranteed by assuming A, D to be nonsingular M-matrices;
see, e.g., [10, Theorem A.20]. Another important consequence of Assumption 1.1 is the
monotonicity of ST , i.e., ST (X) ≥ 0 implies X ≥ 0; see, e.g., [8].

It is not easy to analyze the impact that Assumption 1.1 has on the coefficient matrices A
and D. Nevertheless, a careful inspection of the ordering of the entries of I ⊗D+ (AT ⊗ I)Π
shows that if the latter is a singular M-matrix, then A ≤ 0. Indeed, every entry of A appears,
at least once, as an off-diagonal entry in I ⊗ D + (AT ⊗ I)Π, and since the off-diagonal
components of an M-matrix are nonpositive, it must hold that A ≤ 0.

2. Existence and uniqueness of a minimal solution. In this section we provide suffi-
cient conditions for the existence and uniqueness of a minimal solution Xmin of (1.1). Our
result relies on the following fixed-point iteration:

X0 = 0,

DXk+1 +XT
k+1A = XT

k BXk − C, k ≥ 0.
(2.1)

THEOREM 2.1. The iterates computed by the fixed-point iteration (2.1) are such that

Xk+1 ≥ Xk, k ≥ 0,

and, if there exists a nonnegative matrix Y such that RT (Y ) ≥ 0, then Xk ≤ Y for any
k ≥ 0. Moreover, under this assumption, the sequence {Xk}k≥0 converges, and its limit is the
minimal nonnegative solution Xmin to (1.1).
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Proof. We first show that Xk+1 ≥ Xk for any k ≥ 0 by induction on k. For k = 0, we
have X1 = S−1

T (−C) ≥ 0 = X0 as C ≤ 0. We now assume that Xk̄ ≥ Xk̄−1 for a certain
k̄ > 0, and we show that Xk̄+1 ≥ Xk̄. We have

Xk̄+1 = S−1
T (XT

k̄ BXk̄ − C)

= S−1
T (XT

k̄ BXk̄) + S−1
T (−C) = S−1

T (XT
k̄ BXk̄) +X1 +Xk̄ −Xk̄

= S−1
T (XT

k̄ BXk̄) +X1 +Xk̄ − S−1
T (XT

k̄−1BXk̄−1 − C)

= S−1
T (XT

k̄ BXk̄ −XT
k̄−1BXk̄−1) +Xk̄.

Clearly, XT
k̄
≥ XT

k̄−1
, as Xk̄ ≥ Xk̄−1 by the induction hypothesis. Therefore, recalling that

B ≥ 0, we have

XT
k̄ BXk̄ −XT

k̄−1BXk̄−1 ≥ 0,

so that Xk̄+1 ≥ Xk̄.
We now suppose that there exists a nonnegative Y such thatRT (Y ) ≥ 0, and we show

that Xk ≤ Y for any k ≥ 0 by induction on k once again. The result is straightforward for
k = 0 as X0 = 0. We now assume that Xk̄ ≤ Y for a certain k̄ > 0, and we show that
Xk̄+1 ≤ Y . Since Xk̄ ≤ Y and B ≥ 0, XT

k̄
BXk̄ ≤ Y TBY so that −XT

k̄
BXk̄ ≥ −Y TBY .

Thus, we can write

0 ≤ DY + Y TA− Y TBY + C ≤ DY + Y TA−XT
k̄ BXk̄ + C,

and since by definition −XT
k̄
BXk̄ + C = −DXk̄+1 −XT

k̄+1
A, we get

0 ≤ DY + Y TA−DXk̄+1 −XT
k̄+1A.

This means that ST (Y −Xk̄+1) ≥ 0, which implies Y ≥ Xk̄+1 thanks to the monotonicity
of ST .

In conclusion, {Xk}k≥0 is a nondecreasing, nonnegative sequence bounded from above,
therefore it has a finite limit limk→+∞Xk = Xmin ≥ 0. Taking the limit on both sides
of (2.1) shows that Xmin is a solution of the equation RT (X) = 0. Moreover, Xmin is the
minimal nonnegative solution, as we have proven that Xmin ≤ Y for any nonnegative Y such
thatRT (Y ) ≥ 0.

A similar result has been shown in [15, Theorem 2.3] for the (standard) nonsymmetric
Riccati equation.

3. The (inexact) Newton-Kleinman method. Due to its possible slow convergence rate,
the fixed-point iteration (2.1) may not be attractive for the actual computation of the minimal
solution Xmin, and a Newton-Kleinman-like method can be more effective for this task.

The k-th iteration of the Newton method is defined as

R′T [X](Xk+1 −Xk) = −RT (Xk),

where R′T [X] denotes the Fréchet derivative of RT at X . For the nonsymmetric T-Riccati
operator, we have

R′T [X](Y ) = DY + Y TA− Y TBX −XTBY = (D −XTB)Y + Y T (A−BX),

and therefore the (k + 1)-st iterate of the Newton method is the solution of the T-Sylvester
equation

(3.1) (D −XT
k B)Xk+1 +XT

k+1(A−BXk) = −XT
k BXk − C.
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Depending on the problem size n, different state-of-the-art methods can be employed for the
solution of equations (3.1); see, e.g., [11, 12].

If n is moderate, say n ≤ O(103), then dense methods based on some decomposition
of the coefficient matrices can be employed to solve the T-Sylvester equations in (3.1). For
instance, in [11, Section 3] an algorithm based on the generalized Schur decomposition
of the pair (D,AT ) is presented for efficiently solving a T-Sylvester equation of the form
DX +XTA = C.

If the problem dimension does not allow for dense matrix operations, then equations (3.1)
must be solved iteratively. The iterative solution of the T-Sylvester equations may introduce
some inexactness in the Newton scheme leading to the so-called inexact Newton-Kleinman
method and affecting the convergence features of the latter. By using tools similar to the ones
presented in [5], in Section 3.2 we show how a specific line search guarantees the convergence
of the inexact Newton method.

However, we first need to guarantee that the sequence {Xk}k≥0 generated by (3.1) is
well-defined and that it converges to Xmin; this is the topic of the next section.

3.1. A convergence result. In this section we prove the convergence properties of the
Newton-Kleinman method (3.1). To this end, we first recall a couple of classic results about
M-matrices; see, e.g., [8, Chapter 6].

LEMMA 3.1. Let A be a Z-matrix. Then A is a nonsingular M-matrix if and only if there
exists a nonnegative vector v such that Av > 0. Moreover, if A is a nonsingular M-matrix and
B ≥ A is a Z-matrix, then B is also a nonsingular M-matrix.

To prove convergence of the Newton method to the minimal nonnegative solution Xmin

to (1.1), we also need the following lemma.
LEMMA 3.2. Assume that there exists a matrix Y such thatRT (Y ) > 0. Then it follows

that I ⊗ (D −XT
minB) + ((A−BXmin)T ⊗ I)Π is a nonsingular M-matrix.

Proof. Since Assumption 1.1 holds, we have that I ⊗D+ (AT ⊗ I)Π = rIn2 −N , with
N ≥ 0, r > ρ(N), and we can write

I ⊗ (D −XT
minB) + ((A−BXmin)T ⊗ I)Π

= I ⊗D + (AT ⊗ I)Π− (I ⊗XT
minB + (BXmin)T ⊗ I)Π)

= rI − (N + (I ⊗XT
minB + (BXmin)T ⊗ I)Π)︸ ︷︷ ︸

≥0

,

as B, Xmin ≥ 0. Notice that Xmin ≥ 0 exists since the hypotheses of Theorem 2.1 are
fulfilled. Therefore, I ⊗ (D −XT

minB) + ((A−BXmin)T ⊗ I)Π is a Z-matrix.
Moreover,

(D −XT
minB)(Y −Xmin) + (Y −Xmin)T (A−BXmin)

= DY −XT
minBY −DXmin +XT

minBXmin

+ Y TA− Y TBXmin −XT
minA+XT

minBXmin.

Since RT (Xmin) = 0, it follows that −DXmin −XT
minA + XT

minBXmin = C. Moreover,
adding and subtracting Y TBY , we get

(D −XT
minB)(Y −Xmin) + (Y −Xmin)T (A−BXmin)

= RT (Y ) + (Y −Xmin)TB(Y −Xmin).

To conclude, we notice that Y − Xmin ≥ 0, as Xmin is the minimal solution to (1.1) and
RT (Y ) > 0. Therefore,

(D −XT
minB)(Y −Xmin) + (Y −Xmin)T (A−BXmin) ≥ RT (Y ) > 0.
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This means that vec(Y −Xmin) is a nonnegative vector such that

(I ⊗ (D −XT
minB) + ((A−BXmin)T ⊗ I)Π)vec(Y −Xmin) > 0,

and I ⊗ (D −XT
minB) + ((A−BXmin)T ⊗ I)Π is thus a nonsingular M-matrix thanks to

Lemma 3.1.
THEOREM 3.3. If the assumptions of Lemma 3.2 hold, then the sequence {Xk}k≥0

computed by the Newton method (3.1) with X0 = 0 is well-defined and Xk ≤ Xk+1 ≤ Xmin

for any k ≥ 0. Moreover, {Xk}k≥0 converges to the minimal nonnegative solution Xmin

to (1.1).
Proof. For the Newton method (3.1) with X0 = 0, the matrix X1 is given by

DX1 +XT
1 A = −C.

Since the T-Sylvester operator ST has a nonnegative inverse by Assumption 1.1 and −C ≥ 0,
the first iterate X1 is nonnegative. Therefore the statements

Xk ≤ Xk+1, Xk ≤ Xmin, I ⊗ (D −XT
k B) + ((A−BXk)T ⊗ I)Π is an M-matrix,

hold for k = 0. We now assume that they hold for a certain k̄ > 0, and we show them for
k̄ + 1. We start proving that Xk̄+1 ≥ Xk̄. By definition, we have

(3.2) (D −XT
k̄ B)Xk̄+1 +XT

k̄+1(A−BXk̄) = −XT
k̄ BXk̄ − C,

so that

(D−XT
k̄ B)(Xk̄+1−Xk̄) + (Xk̄+1−Xk̄)T (A−BXk̄) = −DXk̄−XT

k̄ A+XT
k̄ BXk̄−C.

We can write

−DXk̄ −XT
k̄ A+XT

k̄ BXk̄ − C
= −(D −XT

k̄−1B)Xk̄ −XT
k̄ (A−BXk̄−1)−XT

k̄−1BXk̄

−XT
k̄ BXk̄−1 +XT

k̄ BXk̄ − C
= XT

k̄−1BXk̄−1 + C −XT
k̄−1BXk̄ −XT

k̄ BXk̄−1 +XT
k̄ BXk̄ − C

= (Xk̄ −Xk̄−1)TB(Xk̄ −Xk̄−1) ≥ 0,

since Xk̄ ≥ Xk̄−1 and B ≥ 0. If S(k)
T (X) := (D − XT

k̄
B)X + XT (A − BXk̄), then

(S(k)
T )−1 is nonnegative as the matrix I⊗(D−XT

k̄
B)+((A−BXk̄)T ⊗I)Π is a nonsingular

M-matrix by the induction hypothesis. Therefore, Xk̄+1 −Xk̄ ≥ 0.
We now show that Xk+1 ≤ Xmin. Considering again (3.2), we see that

(D −XT
k̄ B)(Xk̄+1 −Xmin) + (Xk̄+1 −Xmin)T (A−BXk̄)

= −DXmin −XT
minA+XT

k̄ BXmin +XT
minBXk̄ −XT

k̄ BXk̄ − C.

We change sign and, by adding and subtracting XT
minBXmin on the right-hand side, we get

(D −XT
k̄ B)(Xmin −Xk̄+1) + (Xmin −Xk̄+1)T (A−BXk̄)

= DXmin +XT
minA−XT

k̄ BXmin −XT
minBXk̄ +XT

k̄ BXk̄

+ C +XT
minBXmin −XT

minBXmin

= (Xmin −Xk̄)TB(Xmin −Xk̄) ≥ 0,
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where we have used the fact thatRT (Xmin) = 0, Xmin ≥ Xk̄, and B ≥ 0. Since S(k)
T has a

nonnegative inverse we conclude that Xmin −Xk̄+1 ≥ 0.
The last statement that we have to prove is that the matrix

I ⊗ (D −XT
k̄+1B) + ((A−BXk̄+1)T ⊗ I)Π

is a nonsingular M-matrix. Since Assumption 1.1 holds, we have the representation
I ⊗D + (AT ⊗ I)Π = rIn2 −N , with N ≥ 0, r > ρ(N), and we can write

I⊗(D −XT
k̄+1B) + ((A−BXk̄+1)T ⊗ I)Π

= I ⊗D + (AT ⊗ I)Π− (I ⊗XT
k̄+1B + (BXk̄+1)T ⊗ I)Π)

= rI − (N + (I ⊗XT
k̄+1B + (BXk̄+1)T ⊗ I)Π)︸ ︷︷ ︸

≥0

,

as B, Xk̄+1 ≥ 0. Therefore, I ⊗ (D − XT
k̄+1

B) + ((A − BXk̄+1)T ⊗ I)Π is a Z-matrix.
Moreover,

I ⊗ (D −XT
k̄+1B) + ((A−BXk̄+1)T ⊗ I)Π

≥ I ⊗ (D −XT
minB) + ((A−BXmin)T ⊗ I)Π

since Xk̄+1 ≤ Xmin and I ⊗ (D − XT
minB) + ((A − BXmin)T ⊗ I)Π is a nonsingular

M-matrix by Lemma 3.2. The matrix I ⊗ (D −XT
k̄+1

B) + ((A−BXk̄+1)T ⊗ I) is thus a
nonsingular M-matrix by Lemma 3.1.

In conclusion, the Newton sequence {Xk}k≥0 is well-defined, nondecreasing, and
bounded from above. Therefore, {Xk}k≥0 has a finite limit X∗, and, by taking the limit
on both sides of (3.1), it is easy to show that it is also a solution ofRT (X) = 0. Moreover, we
can show by induction that Xk ≤ H for any k ≥ 0 and H ≥ 0 withRT (H) ≥ 0. Since the
inequality is preserved for k → +∞, we conclude that X∗ ≤ H , and X∗ is thus the minimal
solution ofRT (X) = 0, i.e., X∗ = Xmin.

3.2. The large-scale setting. In this section, we consider T-Riccati equations of large
dimension. In this setting, unless the data A, B, C, and D are equipped with some particular
structure, equation (1.1) is not numerically tractable. For instance, the solution X would be,
in general, a dense n× n matrix that cannot be stored. Therefore, as already mentioned, we
assume that the matrices A and D are such that the matrix-vector products Av and Dw are
computable in O(n) flops for any v, w ∈ Rn. This is the case when, for instance, A and
D are sparse. Moreover, we assume B and C to be of low rank, namely B = B1B

T
2 , B1,

B2 ∈ Rn×p, and C = CT1 C2, C1, C2 ∈ Rq×n, where p+ q � n.
In case of algebraic Riccati equations, the assumptions above lead to a solution Z that

is often numerically rank deficient [1], and low-rank approximations of the form ZZT ≈ Z,
Z ∈ Rn×t, t� n, are therefore expected to be accurate. We think that also in the case of the
nonsymmetric T-Riccati equation it is possible to show that the singular values of the solution
X to (1.1) show a fast decay, and low-rank approximations can thus be sought. This may be
proven by combining the arguments in [1] with bounds for the decay of the singular values
of the solution of certain T-Sylvester equations [12]. However, this is beyond the scope of
this paper. We restrict ourselves to illustrate how low-rank approximations turn out to be
sufficiently accurate in the examples we tested.

Equation (1.1) can be written as

(3.3) RT (X) = DX +XTA−XTB1B
T
2 X + CT1 C2 = 0,
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and low-rank approximations to X are sought, namely we aim to compute and store only a
couple of low-rank matrices P1, P2 ∈ Rn×t, t� n, such that P1P

T
2 ≈ X .

The results presented in the previous section are still valid in the large-scale setting for
equation (3.3). The Newton method can still be applied, and the (k + 1)-st iterate can be
computed by solving the equation

(3.4) (D −XT
k B1B

T
2 )Xk+1 +XT

k+1(A−B1B
T
2 Xk) = −XkB1B

T
2 Xk − CT1 C2.

However, due to the large dimension of the problem, the exact solution to (3.4) cannot
be computed, and only an approximation X̃k+1 ≈ Xk+1 can be constructed by, e.g., the
projection methods presented in [12].

The iterative solution of equations (3.3) introduces some inexactness in the Newton
scheme leading to an inexact Newton method. The convergence result stated in Theorem 2.1
no longer holds for the inexact variant of the Newton procedure, and a line search has to be
performed to ensure the convergence of the overall scheme. This procedure is similar to the
one presented in [5] for the algebraic Riccati equations.

Given a matrix Xk ∈ Rn×n, α > 0, and ηk ∈ (0, 1), we want to compute a matrix
Sk ∈ Rn×n such that

(3.5) ‖R′T [Xk](Sk) +RT (Xk)‖ ≤ ηk‖RT (Xk)‖,

and then define the next iterate of the inexact Newton-Kleinman scheme as

(3.6) Xk+1 := Xk + λkSk,

where the step size λk > 0 is bounded away from zero and such that

(3.7) ‖RT (Xk + λkSk)‖ ≤ (1− λkα)‖RT (Xk)‖.

If we define the Newton step residual

(3.8) R′T [Xk](Sk) +RT (Xk) =: Lk+1,

then equation (3.5) can be written as ‖Lk+1‖ ≤ ηk‖RT (Xk)‖. Moreover, explicitly writing
the terms on the left-hand side in (3.8) yields

(D−XT
k B1B

T
2 )(Xk+Sk)+(Xk+Sk)T (A−B1B

T
2 Xk)+XT

k B1B
T
2 Xk+CT1 C2 = Lk+1,

so that the matrix X̃k+1 := Xk + Sk is the solution of the T-Sylvester equation

(3.9) (D−XT
k B1B

T
2 )X̃k+1 + X̃T

k+1(A−B1B
T
2 Xk) = −XT

k B1B
T
2 Xk−CT1 C2 +Lk+1.

The matrix Lk+1 is never computed, and the notation in (3.9) is only used to indicate that X̃k+1

is an inexact solution to the equation (3.1) such that the residual norm ‖Lk+1‖ is sufficiently
small. In particular, this means that the iterative routine employed to solve (3.4) must be able
to provide us with the residual norm ‖Lk+1‖. When this is sufficiently small, the approximate
solution X̃k+1 is accepted. Once X̃k+1 is computed, we recover Sk by Sk = X̃k+1 −Xk,
and the new iterate can be defined as in (3.6).

The T-Riccati residual at Xk+1 can be written as

RT (Xk+1) = RT (Xk + λkSk) = (1− λk)RT (Xk) + λkLk+1 − λ2
kS

T
k B1B

T
2 Sk,
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and, if ηk ≤ η < 1 and α ∈ (0, 1− η), we have

‖RT (Xk + λSk)‖ ≤ (1− λ)‖RT (Xk)‖+ λ‖Lk+1‖+ λ2‖STk B1B
T
2 Sk‖

≤ (1− αλ)‖RT (Xk)‖,

for all λ ∈ (0, (1− α− η) ‖RT (Xk)‖
‖ST

k B1BT
2 Sk‖

]. In particular, the sufficient decrease condition (3.7)
is satisfied for all λ in the latter interval.

For the actual computation of the step size λk, we mimic the derivation given in [5,
Section 3] for the algebraic Riccati equation, and we exploit the expression of the residual
norm ‖RT (Xk + λSk)‖2 in terms of a quartic polynomial pk in λ. In particular,

pk(λ) := ‖RT (Xk + λSk)‖2 = (1− λ)2αk + λ2βk + λ4δk + 2λ(1− λ)γk − 2λ2(1− λ)εk − 2λ3ξk,

where

(3.10)

αk = ‖RT (Xk)‖2, βk = ‖Lk+1‖2,
γk = 〈RT (Xk), Lk+1〉F , δk = ‖STk B1B

T
2 Sk‖2,

εk = 〈RT (Xk), STk B1B
T
2 Sk〉F , ξk = 〈Lk+1, S

T
k B1B

T
2 Sk〉F .

The first derivative of pk(λ) is given by

p′k(λ) = −2(1− λ)αk + 2λβk + 4λ3δk + 2(1− 2λ)γk − 2λ(2− 3λ)εk − 6λ2ξk,

so that

p′k(0) = −2αk + 2γk = −2‖RT (Xk)‖2 + 2〈RT (Xk), Lk+1〉F + ‖Lk+1‖2 − ‖Lk+1‖2

= −‖RT (Xk)− Lk+1‖2 − ‖RT (Xk)‖2 + ‖Lk+1‖2 ≤ (η2
k − 1)‖RT (Xk)‖2 < 0,

as ηk ∈ (0, 1), and Sk is thus a descent direction.
The step size λk can be computed by exploiting the expression of the T-Riccati residual

norm in terms of pk(λ). For θk := min{1, (1− α− η)
√
αk/δk}, we propose to compute λk

as

(3.11) λk := argmin
(0,θk]

pk(λ).

The choice of the interval (0, θk] is motivated by the fact that if Xk and X̃k+1 are nonnegative
matrices, then also Xk+1 = Xk + λk(X̃k+1 −Xk) is nonnegative. Moreover, the sufficient
decrease condition is satisfied for λk ∈ (0, θk].

Clearly (3.11) is not the only way to compute λk. For instance, in [5, Section 3.2], a step
size computation based on the Armijo rule is explored in case of the inexact Newton-Kleinman
method applied to the algebraic Riccati equation, and such approach can be adapted to our
setting as well. The inexact Newton-Kleinman method with line search is summarized in
Algorithm 1.

Notice that we can employ the line search also in the small-scale setting. However,
in this case, we are often able to solve the T-Sylvester equations in line 3 of Algorithm 1
with very high accuracy so that ‖Lk+1‖ = 0 for all k, and the computation of the step
size λk simplifies accordingly. Indeed, it is easy to show that the quartic polynomial pk(λ)
has a local minimizer in (0, 2] for all k, and we can replace the computation of the step
size (3.11) by λk := argmin(0,2] pk(λ); see [4] for a line search technique within the exact
Newton-Kleinman method for algebraic Riccati equations.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

76 P. BENNER AND D. PALITTA

Algorithm 1: Inexact Newton-Kleinman method with line search (X0 = 0).

input :A,D ∈ Rn×n, B1, B2 ∈ Rn×p, C1, C2 ∈ Rq×n, ε > 0, η ∈ (0, 1),
α ∈ (0, 1− η).

output :Xk ∈ Rn×n approximate solution to (1.1).
for k = 0, 1, . . . , till convergence do

if ‖RT (Xk)‖ < ε · ‖CT1 C2‖ then
1 Stop and return Xk

end
2 Select ηk ∈ (0, η].
3 Compute X̃k+1 s.t.

(D−XT
k B1B

T
2 )X̃k+1+X̃T

k+1(A−B1B
T
2 Xk)T =−XT

k B1B
T
2 Xk−CT1 C2+Lk+1,

where ‖Lk+1‖ ≤ ηk‖RT (Xk)‖.
4 Set Sk = X̃k+1 −Xk.
5 Compute λk > 0 as in (3.11).
6 Set Xk+1 = Xk + λkSk.

end

In the next theorem we show convergence of Algorithm 1 to the minimal solution Xmin

under some suitable assumptions.
THEOREM 3.4. Let Assumption 1.1 and Lemma 3.2 hold, and assume that, for all k ≥ 0,

there exists a matrix X̃k+1 satisfying (3.9), where ‖Lk+1‖ ≤ ηk‖RT (Xk)‖.
(i) If the step sizes λk are bounded away from zero, λk ≥ λmin > 0 for all k, then
‖RT (Xk)‖ → 0.

(ii) If, in addition to (i), the matrices Lk+1 are nonpositive for all k ≥ 0 and such
that −RT (Xk) + Lk+1 ≥ 0, then the sequence {Xk}k≥0 generated by the inexact
Newton-Kleinman method with X0 = 0 is well-defined and Xk ≤ Xk+1 ≤ Xmin.
Moreover, {Xk}k≥0 converges to the minimal solution Xmin of (3.3).

Proof. The sufficient decrease condition (3.7) implies that, for any ` ≥ 0,

‖RT (X0)‖ ≥ ‖RT (X0)‖ − ‖RT (X`+1)‖ =
∑̀
k=0

(‖RT (Xk)‖ − ‖RT (Xk+1)‖)

≥
∑̀
k=0

λkα‖RT (Xk)‖ ≥ 0.

Taking the limit ` → +∞ and using the fact that λk ≥ λmin > 0 for all k, we have
‖RT (Xk)‖ → 0.

The proof of (ii) is given by induction on k. For k = 0 we have

DX̃1 + X̃T
1 A = −CT1 C2 + L1, ‖L1‖ ≤ η0‖CT1 C2‖.

Since I ⊗ D + (AT ⊗ I)Π is a nonsingular M-matrix by assumption, and CT1 C2 ≤ 0

and L1 ≥ 0, it follows that the matrix X̃1 is nonnegative. Then X1 := λ0X̃1 ≥ 0 as
λ0 = argmin(0,θ0] p0(λ) > 0. Moreover,RT (X0) = CT1 C2 ≤ 0. Therefore, the properties

(3.12) Xk ≤ Xk+1, Xk ≤ Xmin, RT (Xk) ≤ 0,
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and

(3.13) I ⊗ (D−XT
k B1B

T
2 ) + ((A−B1B

T
2 Xk)T ⊗ I)Π being a nonsingular M-matrix

hold for k = 0.
We now assume that the same holds also for a certain k̄ > 0, and we show properties

(3.12), (3.13) for k̄ + 1. We have

(D −XT
k̄ B1B

T
2 )X̃k̄+1 + X̃T

k̄+1(A−B1B
T
2 Xk̄) = −XT

k̄ B1B
T
2 Xk̄ − CT1 C2 + Lk̄+1,

‖Lk̄+1‖ ≤ ηk̄‖RT (Xk̄)‖,

so that

(D −XT
k̄ B1B

T
2 )(X̃k̄+1 −Xk̄) + (X̃k̄+1 −Xk̄)T (A−B1B

T
2 Xk̄) = −RT (Xk) + Lk̄+1.

Since I ⊗ (D − XT
k̄
B1B

T
2 ) + ((A − B1B

T
2 Xk̄)T ⊗ I)Π is a nonsingular M-matrix by

the induction hypothesis and the right-hand side in the above expression is nonnegative by
assumption, we have X̃k̄+1 ≥ Xk̄. Then, Xk̄+1 = (1 − λk̄)Xk̄ + λk̄X̃k̄+1 ≥ Xk̄, since
λk̄ ∈ (0, 1].

We now show that Xk̄+1 ≤ Xmin. To this end we can show that X̃k̄+1 ≤ Xmin since
Xk̄+1 ≤ X̃k̄+1. Indeed,

Xk̄+1 = (1− λk̄)Xk̄ + λk̄X̃k̄+1 ≤ (1− λk̄)X̃k̄+1 + λk̄X̃k̄+1 = X̃k̄+1.

We have

(D −XT
k̄ B1B

T
2 )(X̃k̄+1 −Xmin) + (X̃k̄+1 −Xmin)T (A−B1B

T
2 Xk̄)

= −DXmin −XT
minA+XT

minB1B
T
2 Xk̄

+XT
k̄ B1B

T
2 Xmin −XT

k̄ B1B
T
2 Xk̄ − CT1 C2 + Lk̄+1,

and by changing the sign, adding and subtracting XT
minB1B

T
2 Xmin on the right-hand side, we

get

(D −XT
k̄ B1B

T
2 )(Xmin − X̃k̄+1) + (Xmin − X̃k̄+1)T (A−B1B

T
2 Xk̄)

= (Xmin −Xk̄)TB1B
T
2 (Xmin −Xk̄)− Lk+1,

where we used the fact thatRT (Xmin) = 0. Since Xmin ≥ Xk̄ by the induction hypothesis
and B1B

T
2 ≥ 0 and Lk+1 ≤ 0, it follows that the right-hand side in the above equation is

nonnegative so that X̃k̄+1 ≤ Xmin thanks to the fact that the induction hypothesis states that
I ⊗ (D −XT

k̄
B1B

T
2 ) + ((A−B1B

T
2 Xk̄)T ⊗ I)Π is a nonsingular M-matrix.

To show that I ⊗ (D − XT
k̄+1

B1B
T
2 ) + ((A − B1B

T
2 Xk̄+1)T ⊗ I)Π is a nonsingular

M-matrix, we can use the same argument as in the proof of Theorem 2.1, as Xk̄+1 ≤ Xmin.
The last statement we have to show isRT (Xk̄+1) ≤ 0. We can write

RT (Xk̄+1) = (D −XT
k̄+1B1B

T
2 )(Xk̄+1 −Xmin) + (Xk̄+1 −Xmin)T (A−B1B

T
2 Xk̄+1)

−DXmin −XT
minA−+XT

minB1B
T
2 Xk̄+1 +XT

k̄+1B1B
T
2 Xmin

−XT
k̄+1B1B

T
2 Xk̄+1 − CT1 C2.
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SinceXk̄+1−Xmin ≤ 0 and I⊗(D−XT
k̄+1

B1B
T
2 )+((A−B1B

T
2 Xk̄+1)T ⊗I)Π is a nonsin-

gular M-matrix, (D−XT
k̄+1

B1B
T
2 )(Xk̄+1−Xmin)+(Xk̄+1−Xmin)T (A−B1B

T
2 Xk̄+1) ≤ 0,

and we have

RT (Xk̄+1) ≤ −DXmin −XT
minA+XT

minB1B
T
2 Xk̄+1 +XT

k̄+1B1B
T
2 Xmin

−XT
k̄+1B1B

T
2 Xk̄+1 − CT1 C2

= −(Xmin −Xk̄+1)TB1B
T
2 (Xmin −Xk̄+1) ≤ 0,

as Xmin ≥ Xk̄+1 and B1B
T
2 ≥ 0.

In conclusion, the sequence {Xk}k≥0 computed by the inexact Newton-Kleinman method
with X0 = 0 and equipped with the line search (3.11) is well-defined, nondecreasing, and
bounded from above. Therefore, {Xk}k≥0 has a finite limit X∗ that is also a solution of the
T-Riccati equation since

0 = lim
k→+∞

‖RT (Xk)‖ = ‖RT ( lim
k→+∞

Xk)‖ = ‖RT (X∗)‖.

Moreover, it is easy to show that X∗ ≤ H for every nonnegative solution H to (1.1). Indeed,
by using the same argument that we employed to prove Xk ≤ Xmin for all k, we can show
that Xk ≤ H for all k. Since the inequality is preserved at the limit, we have X∗ ≤ H , hence
X∗ = Xmin.

The assumption on the sign of Lk+1 may remind the reader of the hypothesis made in [13]
for proving convergence of the inexact Newton-Kleinman method applied to the standard
algebraic Riccati equation. Indeed, in [13, Theorem 4.4], the matrix Lk+1 is supposed to be
positive semidefinite for all k2. However, as outlined in [5], this condition is hard to meet
in practice, and in [5, Theorem 10] a different approach is used for showing convergence
of the inexact Newton scheme. In our setting we do not see any particular drawback in
assuming Lk+1 nonpositive for every k. Moreover, if the projection method presented in [12]
is employed for the computation of X̃k+1, then the nonpositivity of Lk+1 may be further
explored by exploiting the explicit form of this residual matrix given in [12, Proposition 4.3].
However, this is beyond the scope of this paper. We also point out that the assumption
−RT (Xk) +Lk+1 ≥ 0 is somehow consistent with having ‖Lk+1‖ ≤ ηk‖RT (Xk)‖. Indeed,
both −RT (Xk) and −Lk+1 are nonnegative matrices so that −RT (Xk) + Lk+1 ≥ 0 implies
‖Lk+1‖ ≤ ‖RT (Xk)‖.

To conclude, we would like to mention that the assumptions on Lk+1 in Theorem 3.4
are automatically satisfied if ‖Lk+1‖ = 0, for all k ≥ 0, as in the small-scale setting.
Therefore, Theorem 3.4 shows convergence to the minimal nonnegative solution of the exact
Newton-Kleinman method equipped with a line search. The latter procedure may improve the
convergence rate of the exact Newton-Kleinman method, especially for the first iterations, as
shown in [4] for the standard algebraic Riccati equation; see Example 4.2 in Section 4.

3.3. Implementation details. In this section, we present some details for an efficient
implementation of Algorithm 1 in case of high-dimensional problems.

First of all, we recall that the computation of the Frobenius norm of low-rank matrices
does not need to assemble any n × n dense matrix. For instance, only q × q matrices are
actually involved in the computation of ‖CT1 C2‖ as

‖CT1 C2‖2 = trace(CT2 C1C
T
1 C2) = trace((C1C

T
1 )(C2C

T
2 )).

2Notice that in [13] the authors were looking for a maximal solution so that they required Lk+1 to be positive
semidefinite. Here we are computing the minimal solution, and we thus ask Lk+1 to be nonpositive.
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The most expensive part of Algorithm 1 is the solution of the large-scale T-Sylvester equations
in line 3. These equations can be solved, e.g., by employing the projection method presented
in [12]. Given the T-Sylvester equation

DX +XTA = −CT1 C2,

an approximate solution Xm ∈ Rn×n of the form Xm = VmYmW
T
m ≈ X is constructed,

where the orthonormal columns of Vm,Wm ∈ Rn×` span suitable subspaces KVm
and KWm

,
respectively, i.e., KVm

= Range(Vm) and KWm
= Range(Wm). We will always assume that

Vm and Wm have full rank so that dim(KVm) = dim(KWm) = `. If this is not the case, then
deflation strategies as the ones presented in [16] can be implemented to overcome the possible
linear dependence of the spanning vectors. The `× ` matrix Ym is computed by imposing a
Petrov-Galerkin condition on the residual matrix Rm = DXm +XT

mA+ CT1 C2 with respect
to the space KWm

⊗ KWm
. This condition is equivalent to computing Ym by solving the

reduced T-Sylvester equation

(3.14) (WT
mDVm)Ym + Y Tm (V TmAWm) = −(WT

mC
T
1 )(C2Wm);

see [12, Section 3]. Equation (3.14) can be solved by employing, e.g., Algorithm 3.1 presented
in [11], as the small dimension of the coefficient matrices allows for the computation of the
generalized Schur decomposition of the pair (WT

mDVm, (V
T
mAWm)T ).

The effectiveness of the projection framework presented in [12] is strongly related to the
choice of the approximation spaces KVm and KWm . In [12] it is shown how the selection of
these spaces may depend on the location of the spectrum Λ(A−TD) of A−TD. In particular,
if Λ(A−TD) is strictly contained in the unit disk, it is suggested to select

KVm
= K�

m(A−TD,A−T [CT1 , C
T
2 ]), and

KWm
= AT · KVm

= K�
m(DA−T , [CT1 , C

T
2 ]),

where

K�
m(A−TD,A−T [CT1 , C

T
2 ])

= Range(
[
A−T [CT1 , C

T
2 ], A−TDA−T [CT1 , C

T
2 ], . . . , (A−TD)m−1A−T [CT1 , C

T
2 ]
]
)

is the block Krylov subspace generated by A−TD and A−T [CT1 , C
T
2 ]. On the other hand, if

Λ(A−TD) is well outside the unit disk, then the roles of A and D are reversed, and we can
choose

KVm
= K�

m(D−1AT , D−1[CT1 , C
T
2 ]), and

KWm
= D · KVm

= K�
m(ATD−1, [CT1 , C

T
2 ]).

However, in general, the spectrum of A−TD is neither strictly contained in the unit disk nor
well outside it, and the employment of the extended Krylov subspaces

KVm = EK�
m(A−TD,A−T [CT1 , C

T
2 ]), and

KWm = AT ·EK�
m(A−TD,A−T [CT1 , C

T
2 ]),

(3.15)

where

EK�
m(A−TD,A−T [CT1 , C

T
2 ]) := K�

m(A−TD,A−T [CT1 , C
T
2 ])

+ K�
m(D−1AT , D−1[CT1 , C

T
2 ]),
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is recommended in this case. It has been shown that the projection method based on the
extended Krylov subspaces (3.15) performs quite well in most of the results reported in [12,
Section 7], and if this procedure fails to converge, then also the projection schemes based
on the block Krylov subspaces above fail as well. Therefore, we also adopt the extended
Krylov subspaces (3.15) as approximation spaces in the solution of the sequence of T-Sylvester
equations (3.4) arising from the inexact Newton-Kleinman scheme.

The coefficient matrix defining the equations in (3.4) are of the form D −XT
k B1B

T
2 and

A−B1B
T
2 Xk so that the spaces

EK�
m((A−B1B

T
2 Xk)−T (D−XT

k B1B
T
2 ), (A−B1B

T
2 Xk)−T [CT1 , C

T
2 , X

T
k B1, X

T
k B2]),

and

(A−B1B
T
2 Xk)T ·EK�

m((A−B1B
T
2 Xk)−T (D −XT

k B1B
T
2 ),

(A−B1B
T
2 Xk)−T [CT1 , C

T
2 , X

T
k B1, X

T
k B2]),

have to be computed at each Newton step k ≥ 0. Such constructions require to solve linear
systems of the form (A+MNT )z = y, where M,N ∈ Rn×p are low-rank, and the Sherman-
Morrison-Woodbury (SMW) formula

(A−MNT )−1 = A−1 +A−1M(I −NTA−1M)−1NTA−1,

can be employed to this end; see, e.g., [14, Equation (2.1.4)].
Algorithm 2 summarizes the projection method for the solution of the (k + 1)-st T-

Sylvester equation (3.4), where we suppose that the k-th iterate Xk is given in low-rank
format, namely Xk = P1,kP

T
2,k, Pk ∈ Rn×tk , tk � n.

To compute the residual norm ‖Lk+1‖ we do not need to construct the dense n × n
residual matrix

Lk+1 = (D − P2,kαααB
T
2 )(VmYmW

T
m)

+ (VmYmW
T
m)T (A−B1βββ

TP2,k) + P2,kαααβββ
TP2,k + CT1 C2.

Indeed, it is easy to show that

‖Lk+1‖ = ‖τττm+1,m(eTm ⊗ I4(p+q))Ym‖,

where τττm+1,m := WT
m+1(D−P2,kαααB

T
2 )Vm and em ∈ Rm is them-th canonical basis vector

of Rm; see [12, Proposition 5.1]. At the k-th iteration of the Newton-Kleinman scheme, we
can set ε = ηk‖RT (Xk)‖ as inner tolerance for Algorithm 2.

The computation of the coefficients in (3.10) needed for calculating the step size λk can
be carried out at low cost. Indeed, even if it is not evident, all the quantities in (3.10) consist
of inner products with low-rank matrices, and they are thus cheap to evaluate as recalled at the
beginning of this section. In particular, if Xk = P1,kP

T
2,k is the k-th iterate of the Newton-

Kleinman scheme and X̃k+1 = P̃1,k+1P̃
T
2,k+1 is the matrix computed by Algorithm 2, then

we can write

RT (Xk) = DXk +XT
k A−XT

k B1B
T
2 Xk + C1C

T
2

= [DP1,k, P2,k,−P2,k(PT1,kB1), CT1 ][P2,k, A
TP1,k, P2,k(PT1,kB2), CT2 ]T ,

Lk+1 = (D −XT
k B1B

T
2 )X̃k+1 + X̃T

k+1(A−B1B
T
2 Xk) +XT

k B1B
T
2 Xk + CT1 C2

= [DP̃1,k+1,−P2,kαααβ̃ββ
T
, P̃2,k+1, P̃2,k+1, P̃2,k+1α̃αα

T
, CT1 ]·

[P̃2,k+1, P̃2,k+1, A
T P̃1,k+1,−P2,k(βββα̃αα

T
), P̃2,k+1β̃ββ

T
, CT2 ]T ,

Sk = X̃k+1 −Xk = [P̃1,k+1,−P1,k][P̃2,k+1, P2,k]T ,
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Algorithm 2: Extended Krylov subspace method for T-Sylvester equations.
input :A,D ∈ Rn×n, B1, B2 ∈ Rn×p, C1, C2 ∈ Rq×n, P1,k, P2,k ∈ Rn×tk ,

tk � n, ε > 0, mmax > 0
output :P̃1,k+1, P̃2,k+1 ∈ Rn×tk+1 , tk+1 � n, s.t. X̃k+1 = P̃1,k+1P̃

T
2,k+1 is an

approximate solution to (3.4)

1 Set ααα = PT1,kB1 and βββ = PT1,kB2.
2 Set H = [CT1 , C

T
2 , P2,kααα, P2,kβββ].

3 Perform economy-size QR, [H, (A−B1(BT2 Pk)PTk )−1H] = [V(1)
1 ,V(2)

1 ]γγγ, where
γγγ,∈ R4(q+p)×4(q+p).

4 Set V1 = [V(1)
1 ,V(2)

1 ].
5 W1← orthonormalize the columns of (A−B1βββ

TPT2,k)TV1.
for m = 1, 2, . . . , till mmax do

6 Compute next basis block Vm+1 as in [12] and set Vm+1 = [Vm,Vm+1].
7 Wm+1← orthonormalize the columns of (A−B1βββ

TPT1,k)TVm+1 w.r.t. Wm.
8 Set Wm+1 = [Wm,Wm+1].
9 Update Tm = WT

m(D − P2,kαααB
T
2 )Vm, Km = V Tm (A−B1βββ

TPT2,k)Wm as in
[12].

10 Update G1 = WT
m[CT1 , P2,kααα] and G2 = WT

m[CT2 , P2,kβββ
T ].

11 Solve TmYm + Y TmKm = −G1G
T
2 .

if ‖Lk+1‖ = ‖(D − P2,kαααB
T
2 )(VmYmW

T
m) + (VmYmW

T
m)T (A−

B1βββ
TP2,k) + P2,kαααβββ

TP2,k + CT1 C2‖ ≤ ε then
12 Break and go to 13.

end
end

13 Factorize Ym, and retain Ŷ1,m, Ŷ2,m ∈ R4m(q+p)×tk+1 , tk+1 ≤ 4m(q + p),
Ŷ1,mŶ

T
2,m ≈ Ym.

14 Set P̃1,k+1 = VmŶ1,m, P̃2,k+1 = WmŶ2,m.

where ααα = PT1,kB1, βββ = PT1,kB2, α̃αα = P̃T1,k+1B1 and β̃ββ = P̃T1,k+1B2.

4. Numerical examples. In this section we report some results regarding the numeri-
cal solution of the nonsymmetric T-Riccati equation (1.1). Different instances of (1.1) are
considered, and both the small-scale and the large-scale scenario are addressed.

When n is moderate, the T-Sylvester equations arising from the Newton-Kleinman
scheme (3.1) are solved by means of Algorithm 3.1 presented in [11]. We show that even
when equations (3.1) are solved exactly, a line search can improve the convergence rate of
the Newton-Kleinman scheme by maintaining a monotone decrease in the residual norm.
We always set the threshold for the relative residual norm to be equal to 10−12 for small
n. Moreover, we report the number of iterations, i.e., the number of T-Sylvester equations
solved, to achieve such accuracy, as well as the final relative residual norm and the overall
computational time in seconds.

For problems of large dimensions, the inexact Newton-Kleinman method is employed
in the solution of (1.1) together with Algorithm 2 as inner solver. The tolerance for the outer
relative residual norm achieved by the Newton scheme is set to 10−6 while the one for the inner
solver changes as the iterations proceed accordingly to the discussion in Section 3.3, where
ηk = 1/(1 + k3). Such a value of ηk has been proposed, e.g., in [5] in the context of inexact
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Newton methods for algebraic Riccati equations, and it leads to a superlinear convergence of
the Newton procedure.

Also in the large-scale setting we report the total number of T-Sylvester equations that
need to be solved to get the desired accuracy, along with the average number of inner iterations,
the final relative residual norm, and the computational time for solving the problem. Moreover,
since the memory requirements are one of the main issue in the numerical solution of large-
scale matrix equations, we also document the storage demand of the solution process, which
corresponds to the dimension of the largest spaces (3.15) constructed. The rank of the
final numerical solution is reported to show that, at least in the tested examples, a low-
rank approximate solution to (1.1) can be sought. All results were obtained with MATLAB
R2017b [20] on a Dell machine with two 2GHz processors and 128 GB of RAM.

We would like to mention that, while in Example 4.1, Assumption 1.1 is fulfilled, the
coefficient matrices considered in Example 4.2 and 4.3 do not necessarily give rise to a
nonsingular M-matrix I ⊗D + (AT ⊗ I)Π. Nevertheless, we are still able to compute an
approximate solution that provides a small relative residual norm. This proof of concept
numerically shows that the class of T-Riccati equations which admits a solution may be larger
than the one considered in this paper, and further studies are necessary.

EXAMPLE 4.1. In the first example we consider a slight modification of Example 1 in [6].
In particular, we define the n× n matrices

D=


4 −1

4 −1
. . .

. . .
4 −1

4

, A=


−1 −1

−1 −1
. . .

. . .
−1 −1

−1

, E=


−1 −1

−1 −1
. . .

. . .
−1 −1

−0.9

,

together with B = −A/‖A‖, and C = E/‖E‖.
We consider moderate values of n to be able to verify that the conditions in Assumption 1.1

are fulfilled. Clearly, B ≥ 0 and C ≤ 0 for all n. Moreover, for all the tested values of n, the
matrix I ⊗D + (AT ⊗ I)Π is a nonsingular M-matrix. Indeed, such a matrix is a Z-matrix as
all its off-diagonal entries are nonpositive. Moreover, its spectrum is contained in the right
half open plane3, and I ⊗D + (AT ⊗ I)Π is thus a nonsingular M-matrix.

In Figure 4.1 (left) we report the results for different values of n along with the smallest
eigenvalue of the corresponding matrix I ⊗D + (AT ⊗ I)Π. In particular, we document only
the results obtained by the Newton method without line search since, for this example, the
latter technique does not significantly improve the converge behavior of the Newton scheme.

As predicted by the analysis in the previous sections, the Newton method is able to
compute a nonnegative solution for all tested n. In Figure 4.1 (right) we display the computed
solution in a logarithmic scale for the case n = 100.

EXAMPLE 4.2. In this example, we consider the same coefficient matrices as in [12,
Numerical test 7.1]. In particular, the matrices D,A ∈ Rn×n come from the finite difference
discretization on the unit square of the 2-dimensional differential operators

LD(u) = −uxx − uyy + y(1− x)ux + γu, and LA(u) = −uxx − uyy,

respectively, with γ = 104. Homogeneous Dirichlet boundary conditions are considered.
We first tackle the case of moderate problem dimensions and choose B,C ∈ Rn×n to be

full random matrices. In Table 4.1 we report the results for different n.

3This is a necessary and sufficient condition for a real Z-matrix to be a nonsingular M-matrix; see, e.g., [8].
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n Its Rel. Res
Time
(secs) λmin

100 3 5.08e-13 0.42 1+1e-3
300 3 1.42e-14 2.95 1+1e-4
500 3 1.88e-14 9.41 1+4e-5
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-30

100

lo
g

(X
i,
j) -20

80

mesh(log(X))

j

-10

50 60

i

0

40
20

0 0

FIG. 4.1. Example 4.1. Left: Results for different values of (moderate) n. Right: Computed solution in a
logarithmic scale for n = 100.

TABLE 4.1
Example 4.2. Results for different values of (moderate) n.

n Its Rel. Res Time (secs)
w/o line search 324 8 8.51e-15 11.28

w/ line search 5 2.99e-14 7.54
w/o line search 784 10 8.62e-14 99.94

w/ line search 8 2.32e-14 73.73

For this example, the exact line search discussed at the end of Section 3.2 is effective
in decreasing the number of iterations necessary to achieve the prescribed accuracy leading
to a speed-up of the solution process. In particular, a small step size λ1 is computed at the
first iteration avoiding an increment in the relative residual norm and allowing us to faster
reach the region where quadratic convergence occurs. This is apparent from Figure 4.2, where
the relative residual norms produced by the Newton-Kleinman method with and without line
search are plotted for the case n = 784. We can appreciate how a monotone decrease in the
relative residual norm is obtained if the line search is performed.

In the large-scale setting, we consider low-rank matrices B = B1B
T
2 , B1, B2 ∈ Rn×p,

and C = C1C
T
2 , C1, C2 ∈ Rn×q, such that Bi, Ci have unit norm and random entries for

i = 1, 2. The matrices A and D are as before. In Table 4.2 we report the results for different
values of p, q, and n.

TABLE 4.2
Example 4.2. Results for different values of p, q and n.

n p q Its (inner) Mem. Rank(X) Rel. Res. Time (secs)

10,000
1 1 13 (6.46) 160 28 8.33e-7 15.65
1 5 6 (6.66) 624 87 5.14e-7 52.15
5 10 6 (6.00) 1,560 186 4.39e-7 110.12

22,500
1 1 15 (10.60) 352 26 5.18e-7 69.19
1 5 convergence not achieved
5 10 convergence not achieved

32,400
1 1 convergence not achieved
1 5 convergence not achieved
5 10 convergence not achieved
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FIG. 4.2. Example 4.2. Relative residual norms produced by the Newton-Kleinman with and without line search
for n = 784.

We notice that for the largest values of n, the inexact Newton-Kleinman method does not
always achieve the desired accuracy in terms of the relative residual norm. Indeed, for a certain
k > 0, Algorithm 2 does not manage to solve the k-th equation (3.1) of the Newton-Kleinman
scheme4, and we thus stop the process. In Figure 4.3 (left) we plot in a logarithmic scale the
T-Riccati relative residual norm for the case n = 22, 500 and p = 1, q = 5. For this example,
the residual norm decreases (non monotonically) until Algorithm 2 is no longer able to solve
the eighth T-Sylvester equation

(4.1) (D −XT
7 B1B

T
2 )X̃8 + X̃T

8 (A−B1B
T
2 X7)T = −XT

7 B1B
T
2 X7 − CT1 C2.

In particular, in Figure 4.3 (right), the relative residual norm (solid line) produced by Algo-
rithm 2 when applied to equation (4.1) is reported. We can appreciate how the residual norm
smoothly decreases in the first 18 iterations, and, after an erratic phase, it starts increasing
until the 35th iteration when we stop the procedure. In Figure 4.3 (right) we also plot the
threshold (dashed line) passed to Algorithm 2, i.e., η7 · ‖RT (X7)‖, and we can realize how
the relative residual norm gets very close to the desired accuracy without reaching it. A similar
behavior has been observed also for the other tests where convergence has not been achieved.
We think it may be interesting to further study the convergence property of Algorithm 2 as
also the solution of the T-Riccati equation (1.1) can benefit from this.

When the desired accuracy is achieved, the rank of the computed numerical solution X is
rather small compared to the problem size n for all the tested values of p and q. This suggests
that it may be reasonable to investigate in depth the trend of the singular values of the exact
solution to (1.1) in order to justify the search for low-rank approximate solutions and the
development of low-rank numerical schemes.

EXAMPLE 4.3. The last example we consider consists in a slight modification of [15,
Example 6.1]. In the small-scale setting we generate a random matrix R = rand(2n, 2n) ∈
R2n×2n and define W = diag(R1)−R, where 1 = (1, . . . , 1)T ∈ R2n. Then, A,D ∈ Rn×n
are chosen according to the partition

W =

[
D M
N A

]
,

and B = −N/‖N‖. We also define an n× n matrix X∗ with random entries and unit norm,
and we compute C = DX∗ +XT

∗ A−XT
∗ BX∗.

4Some examples where Algorithm 2 does not converge are reported also in [12].
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FIG. 4.3. Example 4.2, n = 22, 500, p = 1, and q = 5. Left: ‖RT (Xk)‖/‖CT
1 C2‖ for k = 0, . . . , 7. Right:

relative residual norm produced by Algorithm 2 when applied to equation (4.1) (solid line) and η7 · ‖RT (X7)‖
(dashed line).

The results for different n are collected in Table 4.3, where we also report the relative
error between the computed solution and X∗.

TABLE 4.3
Example 4.3. Results for different values of (moderate) n.

n Its Rel. Res. Err. Rel. Time (secs)
w/o line search 500 3 1.06e-14 7.78e-11 10.80
w/ line search 3 3.48e-13 6.01e-10 10.84

w/o line search 1,000 3 1.49e-14 9.33e-10 78.59
w/ line search 3 1.78e-13 1.45e-9 78.99

The Newton-Kleinman method with line search performs in a very similar manner with
respect to the case where no line search is used. Indeed, in this example, the computed step
size λk is always close to one, for every k.

For the large-scale setting we have to construct the coefficient matrices in a different
way to be able to allocate them. To this end we compute two sparse matrices F,G ∈ Rn×n
with random entries via the MATLAB function sprand5, and we shift them to ensure their
nonsingularity. We thus define D = F + (ρ(F ) + 1)I and A = G + (ρ(G) + 20)I . As in
Example 4.2, we consider low-rank matrices B = B1B

T
2 , B1, B2 ∈ Rn×p, and C = C1C

T
2 ,

C1, C2 ∈ Rn×q such that Bi, Ci have unit norm and random entries for i = 1, 2.
In Table 4.4 we report the results for different values of p, q, and n.
In this example, we manage to reach the desired accuracy for every value of p, q, and n

that we tested. Moreover, the numerical solution turns out to be low-rank in all the experiments
we ran.

We notice that the computational timings in Table 4.4 are several orders of magnitude
smaller than the ones reported in Table 4.2 even when the problem dimension, the rank of B
and C, and the number of outer iterations are very similar. This is mainly due to the following
factors. The average numbers of inner iterations in Table 4.2 is larger than the ones reported in
Table 4.4. Therefore, even if we solve a similar number of T-Sylvester equations to converge,
the ones in Example 4.2 require a larger space to be solved leading to an increment in both the

5The density of the nonzero entries is set to be equal to 1/n.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

86 P. BENNER AND D. PALITTA

TABLE 4.4
Example 4.3. Results for different values of p, q, and n.

n p q Its (inner) Mem. Rank(X) Rel. Res. Time (secs)

10,000
1 1 4 (1.5) 32 4 6.19e-7 0.16
1 5 5 (1.8) 144 29 1.18e-8 1.11
5 10 5 (1.8) 360 60 2.35e-9 3.27

50,000
1 1 4 (1.5) 32 4 6.48e-7 0.79
1 5 5 (1.8) 144 29 1.18e-8 5.44
5 10 5 (1.8) 360 60 1.19e-9 14.88

100,000
1 1 4 (1.5) 32 4 6.30e-9 1.48
1 5 5 (1.8) 144 28 1.80e-8 11.33
5 10 5 (1.8) 360 60 4.71e-10 24.49

memory allocation and the computational efforts. As presented in [12] and outlined in Sec-
tion 3.3, the effectiveness of Algorithm 2 is related to the location of the spectrum of the matrix
(A−B1B

T
2 Xk)−T (D −XT

k B1B
T
2 ), where D −XT

k B1B
T
2 and A−B1B

T
2 Xk are the coef-

ficient matrices defining the k-th T-Sylvester equation (3.4) in the Newton sequence. In partic-
ular, Algorithm 2 performs better whenever this spectrum is well inside/outside the unit circle;
see [12]. When we consider the data from Example 4.2 for n = 10, 000, p = 1, and q = 5, it
turns out that the largest spectral interval of the matrices (A−B1B

T
2 Xk)−T (D −XT

k B1B
T
2 ),

k = 1, . . . , 6, is [1.12, 507.65]. For the data in Example 4.3 with the same values of n, p, and
q, such a spectral interval is given by [0.06, 0.12]. Therefore, when we deal with Example 4.3,
the eigenvalues of (A−B1B

T
2 Xk)−T (D −XT

k B1B
T
2 ) are highly clustered inside the unit

circle, while the ones related to Example 4.2 belong to a larger spectral interval that is rather
close to the boundary of the unit circle.

Moreover, the different level of fill in of the coefficient matrices leads to more compu-
tationally intensive operations when A and D from Example 4.2 are manipulated. Indeed,
for n = 10, 000, the number of nonzero entries of A and D in Example 4.2 is approximately
50,000 while in Example 4.3 it is 20,000. Similar results are obtained for the other values of n
that we tested.

5. Conclusions. By taking inspiration from the rich literature about the algebraic Riccati
equation, in this paper we investigated some theoretical and computational aspects of the
nonsymmetric T-Riccati equation. Sufficient conditions for the existence and uniqueness of a
minimal nonnegative solution Xmin have been provided. We have thoroughly explored the
numerical computation of Xmin, and effective procedures for both small and large problem
dimensions have been proposed. The reliability of the derived schemes has been established
by showing their convergence to Xmin, whereas several numerical experiments illustrate their
efficiency in terms of both memory requirements and computational time.

In the large-scale setting, low-rank approximate solutions turned out to be accurate in
terms of the relative residual norm. This suggests that it may be possible to show that the
exact solution Xmin presents a fast decay in its singular values, and this will be the topic
of future works. The projection scheme adopted to solve the T-Sylvester equations arising
from the Newton-Kleinman iteration failed to converge in some cases so that the solution to
the T-Riccati equation could not be computed. A robust convergence theory for large-scale
T-Sylvester equations solvers is still lacking in the literature, and we think it may be a very
interesting research topic as also the numerical procedure for T-Riccati equations presented in
this paper can benefit from it.

The promising results encourage us to tackle more difficult problems with data coming
from real-life applications as the ones discussed in Section 1.
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