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MULTILEVEL SCHWARZ PRECONDITIONERS FOR SINGULARLY
PERTURBED SYMMETRIC REACTION-DIFFUSION SYSTEMS∗

JOSÉ PABLO LUCERO LORCA† AND GUIDO KANSCHAT‡

Abstract. We present robust and highly parallel multilevel non-overlapping Schwarz preconditioners to solve
an interior penalty discontinuous Galerkin finite element discretization of a system of steady-state, singularly
perturbed reaction-diffusion equations with a singular reaction operator using a GMRES solver. We provide proofs
of convergence for the two-level setting and the multigrid V-cycle as well as numerical results for a wide range of
regimes.
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1. Introduction. In this paper, we present an analysis and numerical experiments of
two-level Schwarz preconditioners and their multilevel versions for an interior penalty discon-
tinuous Galerkin finite element discretization of a system of reaction-diffusion equations not
requiring special mesh structures for resolving boundary layers. Our focus is on the singularly
perturbed case, where the reaction system has an inertial subspace. We use a massively parallel
smoother as in [10], and therefore we provide new convergence estimates for elliptic and
reaction-diffusion systems including quadrilateral and hexahedral meshes. The estimates are
robust with respect to the parameters of the system, and the experiments confirm the efficiency
of the method.

Reaction-diffusion systems arise in a variety of physical, chemical, and biological contexts.
Due to the conservation of mass, these systems are all characterized by an inertial subspace
(an inertial manifold in the nonlinear case) on which the system reduces to an almost reaction-
free diffusion equation. Nevertheless, the contributions orthogonal to this subspace are still
important in applications and often cannot be neglected. Thus, numerical methods have to
deal with long-ranged couplings in the inertial subspace as well as a short-ranged behavior in
its complement in an efficient way. One particular area where these models are widely used is
radiation transport, where the reaction-diffusion equation is an approximation of Boltzmann’s
linear transport equation that becomes relevant in the so-called diffusive regimes, which are
characterized by small mean-free paths compared to the size of the domain. In these regimes,
the transport equation is nearly singular, and its solution in the interior of the computational
domain is close to the solution of a reaction-diffusion equation [17].

We employ the interior penalty discontinuous Galerkin (IP-DG) method to discretize the
singularly perturbed reaction-diffusion system in the steady state. IP-DG methods [2, 3, 4,
18, 22] are particularly interesting to solve reaction-diffusion equations since oscillations at
boundary and interior layers (the Gibbs phenomenon) are much less notable than with standard
conforming finite elements for singularly perturbed problems [15]. Thus, they produce better
approximations if such layers are not resolved. Using this discretization, the reaction operator
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involves only volume integrals with no coupling between cells. Therefore, we expect that
IP-DG is particularly well suited for Schwarz methods since contributions of the reaction term
are included inside the local solvers.

We solve the discrete problem with a GMRES solver using multilevel preconditioners
with nonoverlapping Schwarz smoothers, effectively solving a full reaction-diffusion problem
in each cell; see [14]. Convergence estimates for such methods applied to pure diffusion
problems have been developed in [12]. There, it is assumed that the subdomains defining
the decomposition of the fine space are unions of coarse cells. It is more efficient though to
employ subdomains based on fine cells, and recently, an analysis that covers this case [10]
has been developed. However, its application does not extend to quadrilaterals and hexahedra
since the proof uses P1-nonconforming interpolant and enriching operators for simplices;
see [7]. We provide an extension for quadrilaterals and hexahedra without such restrictions.

Subspace correction methods for singularly perturbed reaction-diffusion equations have
been studied in [5, 16]. Both articles rely on strictly positive reaction terms and use Shishkin-
type meshes for the robust discretization of boundary layers. This technique is extended
to singularly perturbed reaction-diffusion systems in [20]. Also there, the authors assume
a strictly positive definite reaction system, thus being able to make the assumption of an
exponential boundary layer but excluding the presence of an inertial subspace.

As stated above, inertial subspaces can be important in applications. Since they do not
exhibit boundary layers, Shishkin-type meshes will not be adapted to all solution components.
We also do not want to necessarily have to resolve boundary layers, albeit not only the inertial
part may be of importance. Thus, we do not solve the limit problem and propose a method
which is robust in the sense that its iteration counts are uniformly bounded with respect to the
reaction parameters and the mesh size.

Our main results are the proof of the stable decomposition shown in Lemma 3.8 to obtain
convergence estimates for two-level preconditioners and the multigrid V-cycle preconditioner
estimate in Theorem 3.15. The paper is structured as follows: in Section 2 we introduce the
continuous problem and the IP-DG discretization. In Section 3 we develop two-level Schwarz
and multigrid preconditioners and prove convergence estimates. Finally, in Section 4 we
demonstrate the efficiency of the proposed methods by experimental results.

2. Model problem. We consider the following system ofG steady-state reaction-diffusion
equations with a singularly perturbed reaction term

−∇ · (ηg∇ug) +
1

ε

G∑
g′=1

σgg′ (ug − ug′) = Sg in Ω, with g = 1, . . . , G,(2.1)

where g is the group index identifying each reacting substance, ηg is the diffusion coefficient
for each group g, ε is a perturbation parameter defining the relative size of the reaction with
respect to the diffusion term, Ω is a convex polyhedral domain in Rd, with d = 2, 3, and Sg is
a known source. The equation is provided with the boundary conditions

ug = 0 on Γ, with g = 1, . . . , G,

where Γ is the boundary of Ω.
We assume ηg, σgg′ ∈ C∞(Ω) and σgg′ ≥ 0, for all g, g′ = 1, . . . , G, and that there

exists C > 0 such that ηg ≥ C in Ω. Furthermore, we assume that the reaction matrix is
symmetric and singular since

σgg = −
∑
g′ 6=g

σgg′ , ∀g = 1, . . . , G.
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We introduce the Hilbert spaces

V =
(
H1

0 (Ω)
)G
, H =

(
L2(Ω)

)G
,

where H1
0 (Ω) is the standard Sobolev space with zero boundary trace. They are provided with

inner products

(u, v)V =

G∑
g=1

(ηg∇ug,∇vg)L2(Ω) , (u, v)H =

G∑
g=1

(ug, vg)L2(Ω) ,

and norms

‖u‖2V = (u, u)V , ‖u‖2H = (u, v)H.

The weak form of problem (2.1) is: find u ∈ V such that

A (u, v) = (f, v)H,

where f ∈ H and the bilinear form is

A (u, v) =

G∑
g=1

∫
Ω

ηg∇ug · ∇vgdx+
1

ε

G∑
g=1

G∑
g′=1

∫
Ω

σgg′ (ug − ug′) vgdx

= (D∇u,∇v)H +
1

ε
(Σu, v)H = (u, v)V +

1

ε
(Σu, v)H .

The second line uses the vector notation

u = (u1, . . . , uG)ᵀ, v = (v1, . . . , vG)ᵀ,

D = diag(η1, . . . , ηG), Σ =
(

σ11 ... −σG1
... ... ...
−σ1G ... σGG

)
.

According to our assumptions, the reaction matrix Σ is a symmetric, weakly diagonally
dominant singular M-matrix1 with zero column and row sum. By the Perron-Frobenius
theorem, this implies that Σ is singular with rank less than G, and by the Geršgorin circle
theorem, all eigenvalues are nonnegative.

Physically, the properties of Σ ensure substance conservation and the absence of sinks
inside the domain. In a radiation transport context, this implies that the system can have no
particle absorption, and particles only disappear when they reach the boundary. The presence
of absorption would imply that all eigenvalues are positive and Σ would be invertible.

Under the assumptions on the parameters of equation (2.1), the bilinear form A (u, v) is
continuous and V-coercive, i.e., there exist constants γA , CA > 0 such that

A (u, u) ≥ γA ‖u‖2V , A (u, v) ≤ CA ‖u‖V‖v‖V .

Here we remark that even though γA is independent of ε, CA is not. From Lax-Milgram’s
theorem, the variational problem admits a unique solution in V .

1We use the term singular M-matrix, following the terminology in [13, p. 119], to denote a matrix that can be
expressed as A = sI −B, where all the elements in B are nonnegative, s is equal to the maximum of the moduli of
the eigenvalues of B, and I is an identity matrix.
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2.1. Discrete problem. We apply an IP-DG discretization to the bilinear form A (·, ·);
cf. [2]. Let Th be a subdivision of the domain Ω into quadrilaterals or hexahedra κ such
that each cell κ is described by a d-linear mapping Φκ from the reference cell κ̂ = [0, 1]d

onto itself. Conformity of the faces of the mesh cells is not required, but we assume local
quasi-uniformity and shape regularity in the sense that the Jacobians of Φκ and their inverses
are uniformly bounded.

Let Qp be the space of tensor product polynomials of degree up to p in each coordinate
direction. Then, define the mapped space Qp(κ) on the cell κ as the pull-back of functions
under Φκ. The vector-valued, discontinuous function space Vh is defined as

Vh =
{
v ∈ H

∣∣v|κ ∈ QGp (κ)
}
.

Let FIh be the set of all interior faces of the mesh and FBh the set of all boundary faces.
Let κ+, κ− ∈ Th be two mesh cells with a joint face F ∈ FIh, and let u+ and u− be the
traces of functions u on F from κ+ and κ−, respectively. On an interior face F , we define the
averaging operator as

{{u}} =
u+ + u−√

2
.

On the boundary, there is only a single value, and we set {{u}} = u.
We introduce the following definition of mesh integrals∫

Th

u dx =
∑
κ∈Th

∫
κ

u dx,

and integrals over FIh and FBh are defined accordingly. The interior penalty (IP) bilinear form
for the scalar Laplacian, as described in [2], reads

αh(u, v) =

∫
Th

∇u · ∇v dx−
∫
FI
h∪F

B
h

({{un}} · {{∇v}}+ {{∇u}} · {{vn}}) ds

+

∫
FI
h∪F

B
h

δIP

h
{{un}} · {{vn}} ds,

where h is the minimum cell diameter adjacent to the face, un = (u1n, u2n, . . . , uGn)
ᵀ,

and ∇u = (∇u1,∇u2, . . . ,∇uG)
ᵀ. We have replaced the jump operator used in [2] by the

equivalent expression:
√

2{{un}} = u+n+ + u−n−. Coercivity and continuity are proven
in [2] under the assumption that δIP is sufficiently large. We will assume in the following that
this holds true.

We then define the discrete bilinear form, including the diffusion coefficients, as follows:

ah(u, v) =

∫
Th

D∇u · ∇v dx+

∫
FI
h∪F

B
h

4
δIP

h
{{D(un)}} · {{vn}}ds

−
∫
FI
h∪F

B
h

2 ({{un}} · {{D∇v}}+ {{D∇u}} · {{vn}}) ds.
(2.2)

Under the assumptions made in the previous sections and for δIP sufficiently large, ah(u, v) is
coercive and continuous.
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Using (2.2), our IP-DG formulation for the singularly perturbed reaction diffusion problem
reads: Find u ∈ V such that

Ah(u, v) ≡ ah(u, v) +
1

ε

∫
Th

Σu · vdx =

∫
Th

S · vdx, ∀v ∈ Vh,(2.3)

where S is a right-hand side or source term. We observe that, given the non-negativeness
of Σ, the coercivity constant for our problem coincides with the Laplacian case while the
continuity constant is now dependent on ε. In order to obtain a robust solver, we precondition
the problem to be able to bound the spectral radius of the preconditioned system independently
of ε.

Finally, using a standard basis for the local finite element spaces on each cell and by
concatenating, we obtain the linear system

Au = f ,

where u and f are the coefficient vectors of the representation of u and f , respectively, in
terms of the chosen basis.

3. Preconditioners. In this section we provide details of our solver and the precondi-
tioner choice, as well as the technical tools needed for the numerical analysis of the precondi-
tioned system.

It is known that the convergence of the preconditioned conjugate gradient method for
symmetric real operators depends on the condition number of the preconditioned matrix only.
Thus, if we find a preconditioner such that this condition number is independent of h and of
the parameters of the equation, then the number of iterations required for convergence to a
certain error is independent of them as well. We will estimate the condition number of the
additive Schwarz method by estimating the smallest and largest eigenvalues cad and Cad as

cad = inf
v 6=0

Ah(Padv, v)

‖v‖2Ah

and Cad = sup
v 6=0

Ah(Padv, v)

‖v‖2Ah

.

For the rest of the preconditioners, we will estimate the norm of the error propagation operator
of a preconditioned Richardson iteration.

3.1. Schwarz preconditioners. We choose Schwarz preconditioners, for which there is a
well-known framework and theory for symmetric positive definite problems; see [8, 12, 19, 21].
The following sections provide the definitions needed to prove the convergence estimates in
an abstract formulation.

Let Vj , for j = 0, 1, 2, . . . , J , be Hilbert spaces with corresponding norms ‖ · ‖Vj
, where

V0 is used to denote the so-called coarse space in a domain decomposition context. For
j = 0, 1, 2, . . . , J , let

Rᵀ
j : Vj → Vh

denote prolongation operators for which there holds

Rᵀ
jVj ⊂ V and V =

J∑
j=0

Rᵀ
jVj , for j = 0, 1, 2, . . . , J.

Here Rᵀ
jVj is the range of the linear operator Rᵀ

j . Associated with each local space Vj ,
for j = 1, 2, . . . , J , we introduce the local discrete bilinear forms Aj(·, ·), defined on
Vj × Vj , as the restriction of the global discrete bilinear form Ah(·, ·) to Vj × Vj , with
‖vj‖2Aj

= Aj(vj , vj).
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For the coarse space V0, we use the rediscretization of the problem on the coarse mesh,
namely a bilinear formA0(·, ·) with a penalty parameter inversely proportional to the diameter
of the coarse cells H , instead of the inherited coarse space obtained by the restriction to
V0 × V0. For any fixed v ∈ V0, we define a projection-like operator P̃0v ∈ V0 by

A0(P̃0v, w0) :=Ah(v,Rᵀ
0w0), ∀w0 ∈ V0,

and the composite operator as P0 := Rᵀ
0P̃0.

The convergence analysis of our method follows the standard framework for subspace
correction methods (see for instance [19, 21]), which is based on three main assumptions:

ASSUMPTION 3.1 (Stable decomposition). The spaces {Vj} are said to provide a stable
decomposition if there exists a constant CV such that each v ∈ Vh admits a decomposition

v =

J∑
j=0

Rᵀ
j vj ,

with vj ∈ Vj , such that

J∑
j=0

‖vj‖2Aj
≤CV ‖v‖2Ah

,

where ‖v‖2Ah
= Ah(v, v) and ‖v‖2Aj

defined accordingly.
If v ∈ range (I − P0), then v ∈ Vh admits a stable decomposition without including the

coarse space as follows (see [21, p. 49]):

J∑
j=1

‖vj‖2Aj
≤CV ‖v‖2Ah

.

ASSUMPTION 3.2 (Strengthened Cauchy-Schwarz inequality). There exist constants
θj ∈ [0, 1], for i, j = 0, 1, 2, . . . , J , such that

Ah(Rᵀ
i vi,R

ᵀ
j vj) ≤θijAh(Rᵀ

i vi,R
ᵀ
i vi)

1
2Ah(Rᵀ

j vj ,R
ᵀ
j vj)

1
2 , ∀vi ∈ Vi, vj ∈ Vj .

We denote the spectral radius of Θ = {θij} by ρ(Θ).
ASSUMPTION 3.3 (Local stability). There exists ω ∈ [1, 2) such that

Ah(Rᵀ
j vj ,R

ᵀ
j vj) ≤ ωAj(vj , vj), ∀vj ∈ Vj .

We now introduce a set of projection-like operators P̃j : Vh → Vj , for j = 0, 1, 2, . . . , J .
These projection-like operators will serve as the building blocks for the construction of
Schwarz methods. For any fixed v ∈ Vh, define P̃jv ∈ Vj by

Aj(P̃jv, wj) :=Ah(v,Rᵀ
jwj), ∀wj ∈ Vj .

We note that the well-posedness of the global problem ensures that P̃j is well defined for
j = 0, 1, 2, . . . , J . To map the elements of Vj into the global discrete space Vh, we employ
the prolongation operator Rᵀ

j and define the composite operator

Pj := Rᵀ
j ◦ P̃j , for j = 0, 1, 2, . . . , J.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

MULTILEVEL SCHWARZ REACTION-DIFFUSION 95

Trivially, we have Pj : Vh → Vh, for j = 0, 1, 2, . . . , J . After these preparations, we can
write the operator Ah preconditioned with the additive Schwarz method as

Pad :=P0 + P1 + P2 + · · ·+ PJ .

To facilitate the comprehension of the method with respect to its implementation, we write the
additive operator in a more explicit form. We use the operator notation for the bilinear forms
Ah and Aj to obtain the following expression for the local projections:

AjP̃jv :=RjAhv, ∀v ∈ Vh.

Thus,

P̃j =A−1
j R

ᵀ
jAh, and Pj = Rᵀ

jA
−1
j RjAh.

Finally, our additive Schwarz preconditioned system reads

Pad = Rᵀ
0A
−1
0 R0Ah +

J∑
j=1

Rᵀ
jA
−1
j RjAh.

While the additive version applies all subspace corrections at once and adds them at the
end, the multiplicative version applies them successively. It can be defined easily by the error
propagation operator

Emu = (I − PN ) ◦ (I − PN−1) ◦ · · · ◦ (I − P0) ,

where I denotes the identity operator on V . Using Emu, we define the multiplicative Schwarz
preconditioner as

Pmu = I − Emu,

where I denotes the identity operator on Vh.
Finally, we consider the symmetric hybrid version, which is additive with respect to the

subdomain spaces, but applies the coarse grid correction in a multiplicative way:

Phy = I −

(
I −

N∑
i=1

Pi

)
(I − P0)

(
I −

N∑
i=1

Pi

)
.

In the following, we prove convergence estimates for the operators Pad, Phy, and Pmu. For Pad,
we estimate the condition number, for Pmu we bound the error operator of a preconditioned
Richardson iteration, and for Phy we defer the proof to Section 3.3, where we study multigrid
preconditioners, of which Phy is a special case. We use the general abstract convergence theory
of Schwarz methods given in [21, §2]. We quote the convergence results below.

THEOREM 3.4. Let the Assumptions 3.1, 3.2, and 3.3 hold. Then the following bounds
hold for the additive Schwarz preconditioned system:

cad ≥
1

CV
, Cad ≤ ω(ρ(Θ) + 1),

where cad and Cad are the smallest and largest eigenvalues of the preconditioned system,
respectively.
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Proof. See [21, §2.3].
THEOREM 3.5. Let the Assumptions 3.1, 3.2, and 3.3 hold. Then the following bounds

hold for the hybrid Schwarz preconditioned system:

|Ah ([I − Phy] v, v)| ≤ cMGAh(v, v), ∀v ∈ Vh,

where cMG is a constant independent of h and ε.
Proof. We defer this proof to Section 3.3 as it is a special case of a multigrid preconditioner,

and as such its convergence estimate is given in Theorem 3.15.
The multiplicative operator is not symmetric, and we will consider a simple Richardson

iteration applied to the corresponding preconditioned system and provide an upper bound for
the norm of the error propagation operator.

THEOREM 3.6. Let the Assumptions 3.1, 3.2, and 3.3 hold. Then the following bounds
hold for the multiplicative Schwarz preconditioned system:

‖Emu‖ ≤ 1− 2− ω
(2 max{1, ω2}ρ2(Θ) + 1)CV

≤ 1.

Proof. See [21, §2.3].

3.2. Application to the discrete problem. In this section we define the Schwarz method
for the discrete problem in equation (2.3) and verify that Assumptions 3.1, 3.2, and 3.3 apply.

After enumerating the cells κj ∈ Th, for j = 1, . . . , J , we choose the local spaces
Vj = V (κj) = QGp (κj), together with the coarse space V0 defined on TH . We remark
that we are using a nonoverlapping subdivision in order to define the direct decomposition
Vh =

⊕J
j=1R

ᵀ
jVj , where Rᵀ

j : Vj → Vh is the simple injection. Similarly, for v ∈ Vh,
Rjv(x) = v(x) if x ∈ κj and zero otherwise. In the following, we list three standard results
from [12] that we need for our proof.

For any v ∈ VD =
∏
K∈TH

V(K), there holds the trace inequality (see [12, Lemma 3.1]),

‖v‖2H(∂D) ≤ c
[

1

H
‖v‖2H(D) +H‖v‖2V(D)

]
.(3.1)

Suppose D is a convex domain. For any v ∈ VD, let u = 1
meas(D)

∫
D
vdx be the average

value of v over D. Then we have a Poincaré inequality as follows (see [12, Lemma 3.2]):

‖v − v‖H(D) ≤ c diam(D)‖u‖V(D) on D.

In particular, if D ∈ TH , then

‖v − v‖H(D) ≤ cH‖u‖V(D) on D.(3.2)

Let v, w ∈ Vh, and let vj , wj ∈ Vj , j = 1, . . . , J , be given (uniquely) by v =
∑J
j=1 vj ,

w =
∑J
j=1 wj . Then the following identity holds (see [12, Lemma 3.3]):

ah(v, w) =

J∑
j=1

aj(vj , wj) + I(v, w),(3.3)

where I(·, ·) : Vh × Vh → R comprises all terms located outside the block-diagonal of the
bilinear from ah(v, w), connecting different subdomains.

We then obtain the following interface estimate for cell-wise subdomains:
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LEMMA 3.7. There exists a constant c such that

|I(v, v)| ≤ c

[
1

h2

∑
K∈Th

‖v‖2H(K) + ah(v, v)

]
.

Proof. We extend the result of [12, Lemma 4.3]. The following estimate from [12,
Equation (4.20)] holds when using cell-wise subdomains:

|I(v, v)| ≤ c

ah(v, v) +
1

h

∑
F∈(FI

h∪F
B
h )

‖v‖2H(F )

 ,

where ‖ · ‖F is the L2-inner product on the faces of the cell K of the fine mesh.

Using the trace inequality ‖v‖2H(F ) = c
[

1
h‖v‖

2
H(K) + h‖∇v‖2H(K)

]
from [12, Equa-

tion (3.9)], we obtain

|I(v, v)| ≤ c

(
ah(v, v) +

1

h

∑
K∈Th

[
1

h
‖v‖2H(K) + h‖∇v‖2H(K)

])
.

The result follows by observing that
∑
K∈Th

‖∇v‖2H(K) ≤ c ah(v, v).
Finally, we concentrate on a stable decomposition. The convergence theory from [12]

requires that the subdomains used for the Schwarz method are at least the same size as the
cells in the coarse mesh. Recently, an extension has been published in [10] to include the case
of cell-wise subdomains, however, the proof uses P1-nonconforming interpolant and enriching
operators for simplices [7].

We achieve a stable decomposition by a close examination of the proof in [12], which
holds for simplices, quadrilaterals, and hexahedra. In particular, it does not require auxiliary
spaces with continuity assumptions like for Crouzeix-Raviart elements.

LEMMA 3.8. Every v ∈ Vh admits a decomposition of the form v =
∑J
j=0R

ᵀ
jVj ,

vj ∈ Vj , j = 0, . . . , J , which satisfies the bound

J∑
i=0

aj (vj , vj) ≤ CV,∆a (v, v) ,

with CV,∆ = O
(
H2

h2

)
, where h and H denote the cell diameters used in the fine and coarse

meshes, respectively.
Proof. Let v0 ∈ V0 be the piecewise constant average of v on the coarse mesh TH , and

let w = v −Rᵀ
0v0. We decompose w into nonoverlapping cell-wise subdomains as

w =

J∑
j=1

vj ,

where v1, . . . , vJ are uniquely determined. From equation (3.3) we have

ah(w,w) =

J∑
j=1

aj(vj , vj) + I(w,w),
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or equivalently,

ah(v −Rᵀ
0v0, v −Rᵀ

0v0) =

J∑
j=1

aj(vj , vj) + I(v −Rᵀ
0v0, v −Rᵀ

0v0).

Reordering and estimating the interface term by its absolute value, we obtain

J∑
j=1

aj(vj , vj) ≤ ah(v −Rᵀ
0v0, v −Rᵀ

0v0) + |I(v −Rᵀ
0v0, v −Rᵀ

0v0)| .

Using Lemma 3.7 we have

J∑
j=1

aj(vj , vj) ≤c

(
a (v −Rᵀ

0v0, v −Rᵀ
0v0) +

1

h2

∑
K∈Th

‖v −Rᵀ
0v0‖2H(K)

)

≤c

((
ah(v, v)1/2 + a (Rᵀ

0v0,Rᵀ
0v0)

1/2
)2

+
1

h2

∑
D∈TH

‖v −Rᵀ
0v0‖2H(D)

)
,

where we used Minkowsky’s inequality and regrouped the L2-inner products. We expand the
first term and use equation (3.2) to obtain

J∑
j=1

aj(vj , vj) ≤c
(
ah(v, v) + 2ah(v, v)1/2ah(Rᵀ

0v0,Rᵀ
0v0)1/2

+ah(Rᵀ
0v0,Rᵀ

0v0) +
H2

h2
‖v‖2V

)
≤c
(

2ah(v, v) + 2ah(Rᵀ
0v0,Rᵀ

0v0) +
H2

h2
ah(v, v)

)
,

where we used Young’s inequality and the coercivity of ah(·, ·). Finally, including the coarse
space, we achieve

J∑
j=0

aj(vj , vj) ≤c
(
a0(v0, v0) + ah(Rᵀ

0v0,Rᵀ
0v0) +

H2

h2
ah(v, v)

)
.

It remains to bound ah(Rᵀ
0v0,Rᵀ

0v0) in a such way that the estimate is independent of
the usage of cell-wise or larger subdomains and that a constant O(Hh ) is achieved, as we show
below. Since v0 is piecewise constant on TH and hence also on Th,

ah(Rᵀ
0v0,Rᵀ

0v0) =δIP

∑
F∈FI

h

1

h
‖Rᵀ

0v
+
0 −R

ᵀ
0v
−
0 ‖2H(F ) + δIP

∑
F∈FB

h

1

h
‖Rᵀ

0v
+
0 ‖2H(F ),(3.4)

where we observe that

a0(v0, v0) =
h

H
ah(Rᵀ

0v0,Rᵀ
0v0).(3.5)
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Adding and subtracting v in equation (3.4) gives

ah(Rᵀ
0v0,Rᵀ

0v0) ≤ cδIP

( ∑
F∈FI

h

1

h
‖(v −Rᵀ

0v0)+ − (v −Rᵀ
0v0)−‖2H(F )

+
∑
F∈FB

h

1

h
‖(v −Rᵀ

0v0)+‖2H(F )

+
∑
F∈FI

h

1

h
‖v+ − v−‖2H(F ) +

∑
F∈FB

h

1

h
‖v+‖2H(F )

)
.

The last two terms are obviously bounded by ah(v, v). Also, since u0 is piecewise constant on
each D ∈ TH ,

‖(v −Rᵀ
0v0)+ − (v −Rᵀ

0v0)−‖H(F ) = ‖v+ − v−‖H(F )

whenever F is in the interior of some D ∈ TH . Thus,

∑
F∈FI

h

1

h
‖(v −Rᵀ

0v0)+ − (v −Rᵀ
0v0)−‖2H(F ) +

∑
F∈FB

h

1

h
‖(v −Rᵀ

0v0)+‖2H(F )

=
∑
D∈TH

( ∑
F⊂D

‖v+ − v−‖H(F )

+
∑
F∈∂D

1

h
‖(v −Rᵀ

0v0)+ − (v −Rᵀ
0v0)−‖2H(F )

+
∑

F⊂∂D∈FB
h

1

h
‖(v −Rᵀ

0v0)+‖2H(F )

)

≤ cah(v, v) + c
∑
D∈TH

1

h
‖v −Rᵀ

0v0‖2H(∂D).

Now using the trace inequality in equation (3.1), we obtain

∑
D∈TH

1

h
‖v −Rᵀ

0v0‖2H(∂D) ≤ c
∑
D∈TH

1

h

[
1

H
‖v −Rᵀ

0v0‖2H(D) +H‖v −Rᵀ
0v0‖2V(D)

]
.

Also note that ‖v −Rᵀ
0v0‖2V(D) = ‖v‖2V(D). Hence, applying the approximation result from

equation (3.2) to ‖v − v0‖H(D), we find

ah(Rᵀ
0v0,Rᵀ

0v0) ≤ cH
h
ah(v, v).

Therefore, using this result for equation (3.5), we see that a0(v0, v0) ≤ cah(v, v), and hence,
the result is achieved.

LEMMA 3.9 (Stable decomposition). The spaces Vj provide a stable decomposition of V
with respect to the bilinear form Ah(·, ·) in the sense of Assumption 3.1.
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Proof. Let CV,∆ be the stable decomposition constant for the Laplacian, as deduced in
Lemma 3.8. We then have

J∑
i=0

Aj (vj , vj) =

J∑
i=0

{
aj (vj , vj) +

1

ε
(Σvj , vi)H

}

=

J∑
i=0

aj (vj , vj) +
1

ε
(Σv, v)H

≤ CV,∆a (v, v) +
1

ε
(Σv, v)H

≤ max {CV,∆, 1}Ah (v, v) .

It follows that the Vj-decomposition for our reaction-diffusion problem is energy stable

with CV = CV,∆ = O
(
H2

h2

)
, where H and h are the largest and smallest cell diameters,

respectively.
LEMMA 3.10. There exists a strengthened Cauchy-Schwarz inequality in the sense of

Assumption 3.2.
Proof. (See [12, §4.2].) Verifying this inequality involves deriving a bound for the spectral

radius ρ(Θ) of the J × J matrix Θ = [θij ]
J
j=0. That such a value exists is a consequence of

the Cauchy-Schwarz inequality. The important point, however, is to establish a small bound
for ρ. To do so, we observe that ah(Rᵀ

i vi,R
ᵀ
j vj) = 0 if the supports of vi and vj do not share

a face fij . For the remaining cases, we take θij = 1. It follows at once from Gershgorin’s
circle theorem that

ρ(Θ) ≤ max
m

card {k|fmk 6= 0 almost everywhere}+ 1, fmk ∈ FIh ∪ FBh ,

i.e., the spectral radius ρ(Θ) is bounded by 1 plus the maximum number of adjacent subdo-
mains that a given subdomain can have. In practice, this number is 4 in 2D and 6 in 3D. Even
for “unusual" subdomain partitions, this number is not expected to be large.

LEMMA 3.11 (Local Stability). There holds that

Ah(Rᵀ
j vj ,R

ᵀ
j vj) ≤ ωAj(vj , vj), ∀vj ∈ Vj ,

where ω = αHh for α < 1.
Proof. In the case of exact local solvers ω = 1, as in our case, the coarse bilinear form

uses a penalty parameter depending on the cell diameter of the coarse mesh. Inspecting the
bilinear form (2.2), we observe that for our coarse space bilinear form, it holds that

Ah(Rᵀ
0v0,Rᵀ

0v0) ≤ H

h
A0(v0, v0),

and hence, our local stability constant would be ω = H
h . However, this would violate

Assumption 3.3. To remedy this, we scale the bilinear forms with a relaxation parameter α
in order to accomplish the required upper bound. We can always introduce such a relaxation
parameter, but we are not free to scale the local bilinear forms arbitrarily in order to decrease
CV from Lemma 3.9; a small value of ω means that the corrections of the error are small.
In such a case, CV will necessarily be large; see [19, p. 155] and [21, p. 41]. Finally, we
remark that this is only required for our proofs, but in practice such a relaxation parameter is
not necessary.
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3.3. Multigrid V-cycle preconditioner. The preconditioners developed in the previous
section are easily implemented as smoothers for multigrid preconditioners. In this section we
provide convergence estimates for the multigrid V -cycle.

Let {T}`=0,...,L be a hierarchy of meshes of quadrilateral and hexahedral cells in two and
three dimensions, respectively. In view of multilevel methods, the index ` refers to the mesh
level defined as follows: let a coarse mesh T0 be given. Then, the mesh hierarchy is defined
recursively such that the cells of T`+1 are obtained by splitting each cell of T` into 2d children
by connecting the edge and face midpoints (refinement). These meshes are nested in the sense
that every cell of T` is equal to the union of its four (respectively eight) children. We define
the mesh size h` as the maximum of the diameters of the cells of T`. Due to this refinement
process, we have h` ≈ 2−1h`−1.

From the nestedness of mesh cells, the finite element spaces associated with these meshes
are nested as well:

V0 ⊂ V1 ⊂ · · · ⊂ VL.

We introduce the L2-projections Q`−1 and the embedding operators Qᵀ
`−1

Q`−1 : V` → V`−1,

Qᵀ
`−1 : V`−1 → V`,

such that

(Q`−1v`, w`−1)H =
(
v`,Qᵀ

`−1w`−1

)
H , ∀v`−1 ∈ V`−1, w`−1 ∈ V`−1.

Let A`(·, ·) be the bilinear form defined in equation (2.3) on the mesh T`. We define the
operator A` : V` −→ V` such that A`(u`, v`) = (A`u`, v`)H. For the rest of the paper, we
will redefine the operators P used in the 2-level analysis as follows: P`−1 is what is used to
be the coarse grid solver P0, while P`,j represent the projections onto the subdomain spaces
Vj = V`,j on the mesh level `. It holds that A`−1P`−1 = Q`−1A`.

Let B` be a smoother defined as the preconditioning operator for the preconditioned
systems presented in Section 3.1 without including the coarse space, i.e.,

B`,ad =

N∑̀
i=1

P`,iA−1
` =

N∑̀
i=1

Rᵀ
`,iA

−1
`,iR`,i and B`,mu =

(
I −

1∏
i=N`

P`,i

)
A−1
` .

We define the multigrid preconditionerML by induction. LetM0 = A−1
0 . For 1 ≤ ` ≤ L,

we define the actionM`g ofM` on a vector g ∈ V` in terms ofM`−1 as follows:
1. Let x0 = 0.
2. Define xi, for i = 1, . . . ,m, by m pre-smoothing steps

xi = xi−1 + B` (g −A`xi−1) .

3. Define y0 by a coarse grid correction

y0 = xm +Qᵀ
`−1M`−1Q`−1 (g −A`xm) .

4. Define yi, for i = 1, . . . ,m, by the m post-smoothing steps

yi = yi−1 + B` (g −A`xi−1) .

5. LetM`g = ym.
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Our analysis of the multigrid algorithm follows [11] since we have noninherited forms.
There, convergence is proven in an abstract framework under the following three assumptions:

ASSUMPTION 3.12 (Stability). There is a constant CQ > 0 such that for all levels
` = 2, . . . , L and all v` ∈ V`,

A`
([
I` −Qᵀ

`−1P`−1

]
v`,
[
I` −Qᵀ

`−1P`−1

]
v`
)
≤ CQA`(v`, v`).

ASSUMPTION 3.13 (Regularity-approximation property). There is a constant C1 > 0,
such that for all levels ` = 2, . . . , L and all v` ∈ V`,

A`
([
I` −Qᵀ

`−1P`−1

]
v`, v`

)
≤ C1

‖A`v`‖2L2

Λ`
,

where Λ` is the maximum eigenvalue of A`.
ASSUMPTION 3.14 (Smoothing property). There is a constant CR > 0 such that for all

levels ` = 2, . . . , L and all v` ∈ V`,

‖v`‖2L2

Λ`
≤ CR(Rv`, v`),

where R = (I − K2
` )A

−1
` and K` = I − B`A`.

From [11] we obtain the estimate for the error propagation operator defined as I −M`A`.
THEOREM 3.15. Let Assumptions 3.12, 3.13, and 3.14 hold. Furthermore, assume

m > 2C1CR. Then, for all ` ≥ 0, there holds

|A` ([I −M`A`] v`, v`)| ≤ cMGA`(v`, v`), ∀v` ∈ V`,

with

cMG =
C1CR

m+ C1CR

for the two-level method, i.e., Phy, and

cMG =
C1CR

m− C1CR

for L > 2.
We refer to [11] for the proof in an abstract setting; we show below that the assumptions

apply to our method. Assumption 3.13 is proven in [1, Theorem 9] and Assumption 3.14 in
[6, Theorem 5.1]. To prove Assumption 3.12, we use Lemma 3.11 as follows:

A` (Qᵀ
`P`−1v`,Qᵀ

`P`−1v`) ≤ 2A`−1 (P`−1v`,P`−1v`)

A` (Qᵀ
`P`−1v`,Qᵀ

`P`−1v`) ≤ 2A` (v`,Qᵀ
`P`−1v`)

A` (Qᵀ
`P`−1v`,Qᵀ

`P`−1v`)− 2A` (v`,Qᵀ
`P`−1v`) +A` (v`, v`) ≤ A` (v`, v`) ,

and we deduce that

A`
([
I − Qᵀ

`−1P`−1

]
v`,
[
I − Qᵀ

`−1P`−1

]
v`
)
≤ A` (v`, v`) .

Hence, Assumption 3.12 holds with CQ = 1.
We note that the preceding theorem requires m > 1 for L > 2, but as we will see in the

next section, m = 1 suffices for our setting. For completeness, we provide the results for
m > 1 as well.
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4. Numerical experiments. Noting that some of the smoothers and preconditioners that
we use are not symmetric, we apply a GMRES solver for all our calculations.

All our experiments are performed on a unit square Ω = (0, 1) × (0, 1) with Dirichlet
boundary conditions. As our work is centered on the behavior of the system with respect to the
reaction-term, we set all diffusion coefficients to one. Each mesh T` consists of 2` × 2` cells
such that each cell is a square with side length h` = 2−`. We use bilinear elements and δ0 = 2
and h`/h`−1 = 1/2 for all our experiments. When using multigrid V-cycles, the coarsest
mesh consists of a single cell.

4.1. Poisson’s equation. As a baseline for further experiments, we present the results
for Poisson’s equation using different preconditioners; see Table 4.1. We observe that all
preconditioners achieve a flat iteration count, albeit with a different number of iterations at the
very fine levels. The two-level additive Schwarz method, for instance, requires almost double
the number of iterations than the multigrid method with additive Schwarz preconditioners.

TABLE 4.1
GMRES iterations for a DG discretization of Poisson’s equation using tensor product polynomials of degree

1 and a unit source to reduce the residual by 10−8 for Σ = 0. Here, U denotes an unpreconditioned solver, 2AS,
2HS, 2MS are two-level additive, hybrid, and multiplicative Schwarz solvers, respectively, and MGAS, MGMS are
multigrid solver with additive and multiplicative Schwarz smoothers, respectively.

levels U 2AS 2HS 2MS MGAS MGMS
2 3 3 3 4 3 4
3 10 10 6 6 6 6
4 22 18 9 7 10 7
5 43 24 11 7 12 8
6 85 26 11 7 13 8
7 > 100 25 11 7 14 8
8 > 100 25 11 7 14 8

4.2. Two groups. In case of a two group problem, because of the conservation condition
of a zero column sum and symmetry, all reaction matrices are multiples of

Σ =
1

ε

[
1 −1
−1 1

]
.

We display the iteration results in Table 4.2.
We observe that the iteration count flattens for all considered methods, with numbers very

similar to the pure Laplacian problem, which indicates that the reaction operator does not
affect the results presented in the previous section. The fact that the results do not improve is
explained by the reaction operator having a non-trivial kernel, where we effectively solve for
the Laplacian.

4.3. Multigroup. We devise a reaction matrix with a contrast between the coefficients
in different groups that is inversely proportional to various powers of ε as follows:

Σ =



Σ1,1 −1 −ε−1 −ε−2 −ε−3 . . .
−1 Σ2,2 −1 −1 −1 . . .
−ε−1 −1 Σ3,3 −ε−1 −ε−2 . . .
−ε−2 −1 −ε−1 Σ4,4 −ε−1 . . .
−ε−3 −1 −ε−2 −ε−1 Σ5,5 . . .

...
...

...
...

...
. . .


,
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TABLE 4.2
GMRES iterations using a source (1, 0) or (0, 1) to reduce the residual by 10−8. Here "max" is the maximum

number of iterations for different ε.

MGAS MGMS 2AS 2HS 2MS

levels
ε

1.0 10−1 10−2 10−3 10−4 max max max max

2 5 5 4 4 4 4 6 5 4
3 8 8 6 6 6 6 14 8 6
4 10 10 10 10 10 7 22 10 7
5 12 12 12 12 12 8 25 11 7
6 13 13 13 13 13 8 25 11 7
7 14 14 14 14 14 8 25 11 7
8 14 14 14 14 14 8 25 11 7
9 14 14 14 14 14 8 25 11 7

where

Σg,g = −
∑
g′ 6=g

Σg,g′ = 1 + ε−1 + ε−2 + ε−3 + . . .

We remark that the elements in the diagonal are such that the matrix has zero column sum. We
use the top left 5× 5-block of this matrix as the reaction matrix in the following tests.

The results are presented in Table 4.3; the numerical tests were performed for the sources
(1, 0, 1, 0, 1), (0, 1, 0, 1, 0), (0, 1, 1, 1, 0), and (1, 0, 0, 0, 1), and we report the maximum iter-
ation count encountered. In this experiment, the columns are shown only up to ε = 0.01 to
avoid floating point underflow problems. Note, that this involves values of ε−3 = 10−6. It can
be observed, that the iteration count flattens as in the other cases, and the performance of the
method is unaffected by the increase in the number of groups or their different scaling.

TABLE 4.3
GMRES iterations to reduce the residual by 10−8 for a 5-groups calculation, where "max" is the maximum

number of iterations over the values of ε in the left columns.

MGAS MGMS 2AS 2HS 2MS

levels
ε

1.0 0.1 0.01 max max max max

2 5 5 4 4 9 5 4
3 8 7 6 6 15 8 6
4 10 10 10 7 22 10 7
5 12 12 12 8 25 11 7
6 13 13 13 8 26 11 7
7 14 14 14 8 25 11 7
8 14 14 14 8 25 11 7
9 14 14 14 8 25 11 7

We also display the results for the use of more than one pre- and postsmoothing steps in
Table 4.4. We observe an improvement in the iteration count, always flattening, that becomes
less significant as the number of smoothing iterations increases, which suggests that there is a
sweet spot to be found with regards to the computational cost.
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TABLE 4.4
GMRES iterations to reduce the residual by 10−8 for a 5-groups calculation, with different number of smoothings

per level, where "max" is the maximum number of iterations for different ε.

2 smoothings 4 smoothings 8 smoothings

levels
ε

1.0 0.1 0.01 1.0 0.1 0.01 1.0 0.1 0.01

2 4 3 3 3 2 2 2 2 2
3 5 5 5 4 4 4 3 3 3
4 7 7 7 5 5 5 4 4 4
5 8 8 8 6 6 6 5 5 5
6 9 9 9 7 7 7 6 6 6
7 9 9 9 7 7 7 7 7 7
8 9 9 9 7 7 7 6 7 7
9 9 9 9 6 7 7 6 7 7

4.4. Space dependent reaction matrix. We modify the matrix used in the previous
section by scaling it with the following function depending only on the space variables:

fi(x, y) =

{
(x, y) ∈ Ωi sin2(2πx) sin2(2πy),

(x, y) /∈ Ωi 0.

Here Ωi, with i = 0, 1, 2, 3, are the four quadrants of the square domain. Note that these
results in reaction- and diffusion-dominated regions and inertial subspaces in the group space
depending on the spatial coordinates,

Σ =



Σ1,1 −f0 −ε−1f1 −ε−2f2 −ε−3f3 . . .
−f0 Σ2,2 −f0 −f0 −f0 . . .
−ε−1f1 −f0 Σ3,3 −ε−1f1 −ε−2f2 . . .
−ε−2f2 −f0 −ε−1f1 Σ4,4 −ε−1f1 . . .
−ε−3f3 −f0 −ε−2f2 −ε−1f1 Σ5,5 . . .

...
...

...
...

...
. . .


.

The results are shown in Table 4.5 for different source terms as in the previous section. In
this case, the columns are given only up to ε = 0.01 to avoid floating point underflow. We see
that once again we achieve a flat iteration count, with a slightly larger absolute value for the
finest meshes. The reaction term does not affect the convergence of the method even when the
reaction coefficients vary in space as well as between the groups.

5. Conclusions. We have introduced a domain decomposition smoother based on the
solution of the complete reaction-diffusion system on each cell of the mesh in the fashion of
additive or multiplicative nonoverlapping Schwarz methods. We prove that these smoothers
produce two-level and multilevel preconditioners that perform robustly with respect to the mesh
size and the parameters of the equation. Our numerical experiments confirm the robustness
and show that the obtained iteration counts are indeed low and thus that the methods are very
efficient.
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TABLE 4.5
GMRES iterations to reduce the residual by 10−8 for a 5-groups calculation, where "max" is the maximum

number of iterations for different ε.

MGAS MGMS 2AS 2HS 2MS

levels
ε

1.0 0.1 0.01 max max max max

2 6 7 6 4 19 7 4
3 9 10 9 6 22 10 6
4 11 12 12 7 25 11 7
5 13 13 13 8 27 12 8
6 13 14 14 8 28 12 8
7 14 14 15 8 28 13 8
8 14 15 15 9 27 12 8
9 14 15 15 9 27 12 8

10 15 15 15 9 27 12 8
11 15 15 15 9 27 12 8
12 15 15 15 9 27 12 8

REFERENCES

[1] P. F. ANTONIETTI AND G. PENNESI, V-cycle multigrid algorithms for discontinuous Galerkin methods on
non-nested polytopic meshes, J. Sci. Comput., 78 (2019), pp. 625–652.

[2] D. N. ARNOLD, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal.,
19 (1982), pp. 742–760.

[3] D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. MARINI, Unified analysis of discontinuous Galerkin
methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), pp. 1749–1779.

[4] G. A. BAKER, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 137
(1977), pp. 45–59.

[5] I. BOGLAEV, On a domain decomposition algorithm for a singularly perturbed reaction-diffusion problem,
J. Comput. Appl. Math., 98 (1998), pp. 213–232.

[6] J. H. BRAMBLE, Multigrid Methods, Longman, Harlow, 1993.
[7] S. BRENNER, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., 41 (2003),

pp. 306–324.
[8] S. C. BRENNER AND L. R. SCOTT, The Mathematical Theory of Finite Element Methods, Springer, New

York, 2002.
[9] R. DAUTRAY AND J.-L. LIONS, Mathematical Analysis and Numerical Methods for Science and Technology.

Volume 2. Functional and Variational Methods, Springer, Berlin, 1985.
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