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A COMPARISON OF MULTILEVEL ADAPTIVE METHODS
FOR HURRICANE TRACK PREDICTION ∗

SCOTT R. FULTON†

Abstract. Adaptive multilevel methods are described and tested for the problem of predicting the path of a
moving hurricane. The physical model consists of conservation of vorticity in a two-dimensional incompressible
fluid; the discrete model uses conservative second-order finite differences. The methods described are the Berger-
Oliger (BO) algorithm, with the Poisson problem for the streamfunction solved by standard multigrid techniques,
and a full approximation scheme multigrid (MG) algorithm which incorporates more complete interaction between
the computational grids. Numerical results are presented demonstrating the conservation properties, convergence,
accuracy, and efficiency of the methods. Adaptive mesh refinement produces speedup factors of 10–20 compared to
using uniform resolution. Differences between the performance of the BO and MG methods are slight.
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1. Introduction. Many interesting problems in computational fluid dynamics and other
fields have solutions with spatial scales which vary substantially from one part of the domain
to another. Solving such problems efficiently and accurately requires variable resolution. One
way to accomplish this is by superimposing several uniform grids of different mesh sizes and
extents, thus successively refining the mesh in the regions of interest. This approach can be
naturally combined with multigrid processing [4], providing both fast solvers and truncation
error estimates which can be used for self-adaptive mesh refinement. Implementation of
such methods for complex problems is nontrivial; much can be learned by applying them to
reasonably simple problems.

The model problem treated in this paper is that of predicting the track (path) of a moving
hurricane. One can think of a hurricane as a small-scale vortex embedded in a large-scale en-
vironmental flow, with an order of magnitude difference in the typical scales of (horizontal)
variation. In addition to being a natural candidate for adaptive mesh refinement, this prob-
lem can be modeled with simple dynamics (two-dimensional incompressible flow) and has a
simple measure of accuracy (location of the vortex center). It is also a problem of substantial
real-world importance.

In this paper we detail the performance of two methods for this problem, both of which
are based on superimposing uniform grids to achieve nonuniform resolution. Section 2 de-
scribes the continuous problem. Details of the numerical methods are given in§3, and§4
presents numerical results.

2. Continuous problem. While the true physical problem of hurricane motion is quite
complex (involving three-dimensional compressible flow, air-sea interaction, radiative ef-
fects, phase changes and precipitation), surprisingly reasonable results are obtained using
simple two-dimensional incompressible dynamical models. Indeed, some of the best predic-
tion models currently in use are of this type [5, 6, 9]. Here we will use a model based on
conservation of vorticity (§2.1). Additional conservation properties are given in§2.2.

2.1. Governing equations.We use Cartesian coordinates withx andy being east and
north, respectively, and consider two-dimensional incompressible flow with velocity compo-
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nentsu andv. The corresponding vorticityζ = ∂v/∂x− ∂u/∂y satisfies

∂ζ

∂t
+
∂(ζ, ψ)
∂(x, y)

+ β
∂ψ

∂x
= 0.(2.1)

Hereψ is the streamfunction satisfyingu = −∂ψ/∂y, v = ∂ψ/∂x; it is related toζ by the
Poisson problem

∆ψ = ζ.(2.2)

The parameterβ (the derivative of Coriolis parameter) measures the effect of the variation of
the Earth’s rotation with latitude; for simplicity, we treatβ as constant (theβ-plane approx-
imation). We seek to solve (2.1–2.2) on a rectangular domainΩ = [−Lx, Lx] × [−Ly, Ly],
with ψ specified on the boundary∂Ω andζ specified where there is inflow; with these condi-
tions the problem is well-posed [8].

2.2. Conservation properties.If we setβ = 0 and assume there is no flow through the
boundary, then from (2.1) the total vorticity

Z =
∫

Ω

ζ(2.3)

is conserved (independent of timet). Under the same conditions, the total enstrophy

E =
∫

Ω

1
2
ζ2(2.4)

and kinetic energy

K =
∫

Ω

1
2

(u2 + v2) =
∫

Ω

1
2
∇ψ · ∇ψ(2.5)

are also conserved. The conservation ofE andK implies that the mean wavenumber of the
flow is constant [1], so there is no net cascade of energy between large and small scales.

3. Multilevel adaptive methods.

3.1. Basic discretization.On a uniform grid with grid points(xi, yj) = (x0 + ih, y0 +
jh), i = 0, . . . ,M , j = 0, . . . , N , we can discretize (2.1–2.2) in space by second-order
centered finite differences as

dζi,j
dt
− Jhi,j(ζ, ψ) + β

(
ψi+1,j − ψi−1,j

2h

)
= 0,(3.1)

∆h
i,jψ = ζi,j .(3.2)

HereJhi,j is theArakawa Jacobian[1] as given in the Appendix and∆h is the usual five-point
approximation to the Laplacian. Equations (3.1–3.2) are applied at all interior points; at the
boundaries a modified version of (3.1) is applied, with a one-sided second-order difference in
theβ term and appropriate modifications ofJhi,j . The use of the Arakawa Jacobian ensures
conservation of discrete analogues of (2.3–2.5), as detailed in [1] and the Appendix.
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FIG. 3.1. Example of computational grids, with base gridG1 (32 × 32, h = 128 km), patchG2 (24 × 24,
h = 64 km), patchG3 (32 × 32, h = 32 km), and patchG4 (48 × 48, h = 16 km)

3.2. Grid structure. To construct a composite grid with nonuniform resolution we start
with a base gridG1 with mesh sizeh1 covering the full domainΩ, and superimpose a se-
quence of gridsGl, l = 2,. . . ,n with smaller mesh sizeshl covering successively smaller
regions (calledpatches). For simplicity we use the mesh ratiohl/hl+1 = 2 and require the
patches to be rectangular, aligned (fine-grid boundaries are coarse-grid lines), and strictly
nested (fine grid contained in the interior of the next coarser grid). This leads to the structure
shown in Fig. 3.1.

Solving (3.2) by a multigrid method on one of the computational gridsGl requires ad-
ditional coarse grids covering the same domain asGl. These we denote byG(m)

l , m = 1,

. . . , nl, and refer to them as thelocal coarse grids. They are indexed such thatGl = G
(1)
l ,

and their mesh sizesincreasewith m with mesh ratio 2, so thatG(m)
l ⊂ G(m−1)

l−1 whenl > 1
andm > 1 (if the boundaries are aligned). A one-dimensional depiction of the resulting grid
structure is shown in Fig 3.2.

3.3. Berger-Oliger method. Perhaps the simplest algorithm for solving a time-
dependent problem on the grid structure described above is that of Berger and Oliger [3].
With two computational grids (coarse and fine), one step of this algorithm consists of:

1. One step (length∆t) on the coarse grid,
2. Two steps (length∆t/2) on the fine grid, using boundary values interpolated from

the fine grid in space and time,
3. Transfer the fine-grid solution to the coarse grid where they overlap.
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FIG. 3.2.Example of local coarse grids (one-dimensional depiction)

Thus, this algorithm is applied separately on each computational grid and uses the fine-grid
solution where the grids overlap, with local time stepping (smaller time steps on the fine-grid
patch) for efficiency. The recursive generalization to more than two computational grids is
immediate.

In implementing this algorithm for the problem at hand, we use the space discretization
described above on each computational gridGl. We use the classical fourth-order Runge–
Kutta method in time, so that each time step on each grid involves four stages. Denoting the
discrete problem (3.1–3.2) on a single gridGl with mesh sizeh = hl as

dζh

dt
= Fh, ∆hψh = ζh,(3.3)

each stage of the Runge-Kutta method takes the form

ζh(t+ α∆t) = ζh(t) + α∆tF̄h(t), ∆hψh(t+ α∆t) = ζh(t+ α∆t)(3.4)

for someα (0 < α ≤ 1). The termF̄h(t) representsFh computed from the solutionψ, ζ
from the previous stage, or—in the last stage—a linear combination of the previous terms
F̄h. The newζh is computed at all points (interior and boundary), with the boundary values
replaced by specified values where there is inflow. The interpolation for fine-grid boundary
values is linear in space and time; the fine-to-coarse transfer at the end of the full time step
consists of injection forψ and full weighting forζ.

Solving the Poisson problem forψh in each stage is accomplished by a multigrid method.
The components of this method are standard: point Gauss-Seidel relaxation with red-black
ordering, full weighting of residuals, bilinear interpolation of corrections, and a full multigrid
(FMG) control algorithm with oneV (1, 1)-cycle per level and bicubic FMG interpolation.
Note that this method uses only the local coarse gridsG

(m)
l ; there is no interaction between

the computational gridsGl during the multigrid processing. Thus, the overall algorithm uses
multigrid processing only as a fast solver for the Poisson problem on each computational grid;
the interaction between grids in one time step is one way only (the coarse grid influences the
fine grid through boundary values). We refer to this algorithm as the Berger-Oliger (BO)
method.
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3.4. Multigrid method. Since the computational grids overlap each other, it is natural
to try to use them directly in the multigrid processing. For a time-dependent problem, this
is possible only when the fine- and coarse-grid solutions are at the same point in time (in
the Runge–Kutta method, at the end of the last stage only); then the problem is equivalent to
the steady-state problem treated by Bai and Brandt [2]. To solve the Poisson problem forψ
by their method, we use the multigrid method described above but using the computational
gridsGl instead of the local coarse gridsG(m)

l . In the case of more than two computational
grids, the coarse grids used in the multigrid solution forψ on gridGl areGl−1, Gl−2, . . . ,
Gk = G

(1)
k , G(2)

k , . . . ,G(nk)
k , wherek is the index of the coarsest computational grid at the

same point in time asGl. Note that the local coarse grids are still required (for local time
stepping), and that the BO method is recovered simply by always settingk = l. Since the
computational grids are not coextensive, the Full Approximation Scheme (FAS) is needed
here. To maintain the proper net vorticity on the coarse grid in the fine-grid region, a correc-
tion based on the relative truncation error is added to the coarse-grid values ofζ located on
the fine-grid boundary [2]. The interaction between grids in one time step is two-way: the
coarse grid sets the original boundary values on the fine grid, which then affects the solution
on the full coarse grid through FAS transfer and relaxation. For simplicity, we refer to this
method as the multigrid (MG) method.

3.5. Grid adaption. For the results presented here, the number and size of the com-
putational grids are fixed for a given run; however, the grids are allowed to move to track a
moving hurricane. This is accomplished by locating the center of the vortex (i.e., the point of
maximum vorticity) and moving the grids so they are approximately centered over the vortex
while remaining strictly nested. The grid sizes could also be adjusted as the solution evolves
(in the MG method) by using the relative truncation error to decide where to refine or coarsen
the grid [4]. Experiments with this self-adaptive version of the model will be reported in a
later paper.

4. Numerical results. Since no appropriate analytical solutions of the governing equa-
tions are available, we test the performance of the model by comparing results computed at
various resolutions with those from high-resolution reference runs. The following sections
detail the test problems and present numerical evidence for the convergence, conservation
properties, and accuracy and efficiency of the model, comparing the BO and MG methods.

4.1. Test problems.The initial condition in each model run consists of an axisymmetric
hurricane-like vortex embedded in a large-scale environmental flow. The initial vortex is as
given in [5], with tangential wind

V (r) = 2Vm

(
r

rm

)
exp[−a(r/rm)b]

1 + (r/rm)2
,(4.1)

corresponding to the initial vorticity

ζ(r) =
∂(rV )
r∂r

=
V

r

[
2

1 + (r/rm)2
− ab

(
r

rm

)b]
.(4.2)

Here,r = [(x − x0)2 + (y − y0)2]1/2 is the radial distance from the vortex center(x0, y0).
Note thatV has the approximate maximum valueVm nearr = rm (exact whena = 0);
the exponential factor is included to makeV vanish quickly for larger. We use the values
Vm = 30 ms−1, rm = 80 km, a = 10−6, andb = 6. The computational domain is a square
of side length2Lx = 2Ly = 4096 km, with the vortex initially centered atx0 = 768 km and
y0 = −768 km. The model is run fromt = 0 to t = 72 hr.
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Two different cases of environmental flow are considered: a quasi-circular flow on an
f -plane (i.e.,β = 0), given by

ψ̄(x, y) =
(
ū0L

π

)
cos
(πx
L

)
cos
(πy
L

)
,(4.3)

which has no flow through the boundaries, and a more realistic zonal (east-west) flow on a
β-plane (for latitude20◦N), given by

ψ̄(y) =
(
ū0L

2π

)
cos
(

2πy
L

)
.(4.4)

In each case,̄u0 measures the maximum wind speed associated with the flow andLmeasures
the scale of spatial variation; we use the valuesū0 = 10 ms−1 andL = 4096 km. The
solutions for the streamfunctionψ and vorticityζ are shown in Fig. 4.1 for the environmental
flow (4.3) and in Fig. 4.2 for the environmental flow (4.4).

4.2. Conservation.To test the conservation properties of the model we use the environ-
mental flow (4.3). Without adaptive mesh refinement, the discrete analogues of total vorticity,
enstrophy, and kinetic energy are conserved exactly (in the limit as∆t → 0) as explained in
the Appendix. With adaptive mesh refinement, deviations from conservation are small, as
shown in Fig. 4.3. Small jumps are evident in kinetic energy with the MG method; these
occur at times when the grids are moved. With the BO method, the initialization does not
include interaction between grids, so the initial kinetic energy is not particularly accurate.
Including a singleV -cycle of the FAS multigrid method (as in MG) when initializing the BO
method removes this problem.

4.3. Convergence.The model has second-order accuracy in space; to verify this nu-
merically and quantify the effects of the local refinement, we compare the hurricane track
computed with various combinations of mesh sizes and patch sizes to that of a high-resolution
reference run (512 × 512 grid, h = 8 km). We measure the accuracy by the mean forecast
“error”, defined as the time mean of thel2 distance between the location of the vortex center
(xc, yc) (approximated using quadratic interpolation using five points surrounding the vortic-
ity maximum on the finest grid) and that obtained in the reference run. Trapezoidal quadrature
is used in time with step size1 hour.

Figure 4.4 shows this error as a function of the finest mesh size for a variety of model
runs. Each point on the graph corresponds to a single model run; the label gives the corre-
sponding base mesh size (in km) and the sizes of the patches used (if any). Patches A, B, C,
D, and E have side length 1/2, 3/8, 1/4, 3/16, and 1/8 of the domain length, respectively. For
the uniform-resolution runs, the error decreases at the rateO(h2) as it should. With adaptive
refinement, the error is larger; large patches produce little degradation, while smaller patches
produce larger errors, as should be expected.

4.4. Accuracy and efficiency.The price paid for adaptive mesh refinement is some
degradation in accuracy, as shown above. However, the benefit is increased speed. To evaluate
this tradeoff, Fig. 4.5 shows the errors for the same model runs as in Fig. 4.4 (plus some
others) as a function of the execution time for the model run (tot = 72 hours). In all cases,
the runs with adaptive mesh refinement show improvement over the uniform-resolution runs.
For approximately the same level of error, adaptive refinement saves factors of up to about 20
in execution time.
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FIG. 4.1. Streamfunctionψ (left) and vorticityζ (right) for the vortex (4.1) in the environmental flow (4.3).
The squares surrounding the vortex show the extent of the patches used in the numerical solution (MG method).
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FIG. 4.2. Streamfunctionψ (left) and vorticityζ (right) for the vortex (4.1) in the environmental flow (4.4).
The squares surrounding the vortex show the extent of the patches used in the numerical solution (MG method).
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FIG. 4.3. Normalized vorticity, enstrophy, and kinetic energy in the adaptive model, for the MG method (left
panel) and BO method (right panel).

FIG. 4.4.Accuracy vs. mesh size for various model runs (MG method). Points are labeled with the base mesh
sizeh1 (in km) and patch sizes (if any).

4.5. Comparison of BO and MG methods.Since the MG method incorporates more
complete interaction between computational grids, it might be expected that it produces bet-
ter results. Figure 4.6 compares the two methods for some of the runs which were shown
in Fig. 4.5. Overall, differences between the two methods are slight, with neither method
consistently better. Further experimentation suggests that with many (e.g., three) patches, the
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FIG. 4.5.Accuracy vs. efficiency for various model runs (MG method). Points are labeled as in Fig. 4.4.

MG method usually produces slightly smaller errors, but the effect is small.

5. Concluding remarks. The adaptive methods described here work well: they solve
the hurricane track problem accurately with speedups of 10–20 compared to using uniform
resolution. Differences in performance between the BO and MG methods are small. This
can be explained by comparing the interaction between grids in the two methods. The MG
method includes mutual interaction between coarse and fine grids at each time step. In the BO
method, the coarse grid first influences the fine grid through the boundary values, and then
the fine grid affects the coarse grid when the fine-grid solution is transferred to the coarse grid
at the end of each time step. The difference between the methods amounts to a delay of one
time step; the results shown here suggest that the net effect of that difference is minimal, at
least for this problem.

One aspect of the methods apparent from the numerical results is that choosing the op-
timum grids for a problem—even one as simple as that treated here—is not an easy task.
Apparently similar combinations of patch sizes may lead to substantially different increases
in efficiency (or degradation of accuracy). Thus, self-adaptive mesh refinement, where the
patch sizes (and numbers) are adjusted dynamically based on the evolving solution, could
have important practical advantages. Such a self-adaptive version of this model is currently
being investigated.

Acknowledgments. The helpful comments and advice of Mark DeMaria are gratefully
acknowledged. Mark Loftis coded the original (non-adaptive) version of the model.

Appendix. The Arakawa Jacobian. The discretization of the Jacobian given by
Arakawa [1] is

Jhi,j(ζ, ψ) = − 1
12h2

[
+ (ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1) (ζi+1,j + ζi,j)

− (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1) (ζi,j + ζi−1,j)
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FIG. 4.6.Accuracy vs. efficiency for various model runs, using both the MG method (circles) and BO method
(squares). Points are labeled as in Fig. 4.4.

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1) (ζi,j+1 + ζi,j)
− (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j) (ζi,j + ζi,j−1)
+ (ψi+1,j − ψi,j+1) (ζi+1,j+1 + ζi,j)
− (ψi,j−1 − ψi−1,j) (ζi,j + ζi−1,j−1)
+ (ψi,j+1 − ψi−1,j) (ζi−1,j+1 + ζi,j)

− (ψi+1,j − ψi,j−1) (ζi,j + ζi+1,j−1)
]
.(A.1)

The form given in [1] for the corresponding discretization at the boundary assumes no flow
through the boundary, and thus must be modified for the problem treated here. One way to
do so is to simply replace centered differences by one-sided differences at the boundary; this
leads to

1
2
Jhi,N (ζ, ψ) = − 1

12h2

[
+ (ψi,N−1 + ψi+1,N−1 − 2ψi,N) (ζi+1,N + ζi,N )

− (ψi−1,N−1 + ψi,N−1 − 2ψi,N) (ζi,N + ζi−1,N )
− (ψi+1,N−1 + ψi+1,N − ψi−1,N−1 − ψi−1,N ) (ζi,N + ζi,N−1)
− (ψi,N−1 − ψi−1,N ) (ζi,N + ζi−1,N−1)
− (ψi+1,N − ψi,N−1) (ζi,N + ζi+1,N−1)

+ 4 (ψi+1,N − ψi−1,N ) ζi,N
]
.(A.2)

at the north boundary and

1
4
JhM,N (ζ, ψ) = − 1

12h2

[
− (ψM−1,N−1 + ψM,N−1 − 2ψM,N) (ζM,N + ζM−1,N )

− (2ψM,N − ψM−1,N−1 − ψM−1,N ) (ζM,N + ζM,N−1)
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− (ψM,N−1 − ψM−1,N ) (ζM,N + ζM−1,N−1)

+ 4 (ψM,N−1 − ψM,N ) ζM,N − 4 (ψM−1,N − ψM,N ) ζM,N
]
.(A.3)

at the northeast corner, with analogous discretizations at the other sides and corners.
Substituting (A.1–A.3) into (3.1), multiplying byh2 and summing over the grid leads to

d

dt

M∑
i=0

′′
N∑
j=0

′′ζi,jh
2 =−

N∑
j=0

′′ [(uζ)M,j − (uζ)0,j ]h

−
M∑
i=0

′′ [(vζ)i,N − (vζ)i,0]h,(A.4)

where the double primes indicate the first and last terms of the sum are scaled by the factor
1
2 . Here we have assumed thatβ = 0, and the discretization of the boundary fluxes matches
(A.2), e.g.,

(vζ)i,N =
1

12h

[
(ψi,N − ψi−1,N ) (ζi,N + ζi−1,N )

+ 4 (ψi+1,N − ψi−1,N ) ζi,N
+ (ψi+1,N − ψi,N ) (ζi,N + ζi+1,N ) .(A.5)

Thus, if there is no flow through the boundary, the discrete model conserves the discrete total
vorticity

M∑
i=0

′′
N∑
j=0

′′ζi,jh
2.(A.6)

Likewise, under the same conditions the discrete total enstrophy

M∑
i=0

′′
N∑
j=0

′′ 1
2
ζ2
i,jh

2(A.7)

and discrete kinetic energy

1
4

M∑
i=0

N∑
j=0

[ (
ψi−1,j − ψi−1,j−1

h

)2

+
(
ψi,j − ψi,j−1

h

)2

+
(
ψi,j−1 − ψi−1,j−1

h

)2

+
(
ψi,j − ψi−1,j

h

)2 ]
h2(A.8)

are also conserved [1].
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