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MULTIGRID METHOD FOR H(DIV) IN THREE DIMENSIONS ∗
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Abstract. We are concerned with the design and analysis of a multigrid algorithm forH(div; Ω)–elliptic
linear variational problems. The discretization is based onH(div; Ω)–conforming Raviart–Thomas elements. A
thorough examination of the relevant bilinear form reveals that a separate treatment of vector fields in the kernel of
the divergence operator and its complement is paramount. We exploit the representation of discrete solenoidal vector
fields ascurls of finite element functions in so-called N´edélec spaces. It turns out that a combined nodal multilevel
decomposition of both the Raviart–Thomas and N´edélec finite element spaces provides the foundation for a viable
multigrid method. Its Gauß–Seidel smoother involves an extra stage where solenoidal error components are tackled.
By means of elaborate duality techniques we can show the asymptotic optimality in the case of uniform refinement.
Numerical experiments confirm that the typical multigrid efficiency is actually achieved for model problems.
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1. Introduction. The Hilbert–spaceH(div; Ω) is the space of square integrable vector
fields with a square integrable divergence, defined on a domainΩ. The inner product is given
by the bilinear form

a(v, j) := (v, j)L2(Ω) + (div v,div j)L2(Ω) , v, j ∈H(div; Ω) .

In this paperΩ is supposed to be a bounded subset ofR
3 with polyhedral boundary∂Ω.

Moreover,Ω and∂Ω should be simply connected.
The significance of this space is due to the fact that it provides an appropriate description

for vector-valued quantities whose flux through surfaces is of physical relevance. Conse-
quently, the spaceH(div; Ω) looms large in many mathematical models, when they are cast
into variational form.

Suitable (Dirichlet–)boundary conditions can be imposed by prescribing the normal flux
〈v,n〉 of a vectorfieldv ∈H(div; Ω) on parts of the boundary. For the space with homoge-
neous boundary conditions throughout we adopt the notationH0(div; Ω). Yet the technical
difficulties arising from imposing boundary conditions have not been totally overcome. For
this reason we have to confine ourselves to free boundary values throughout this presentation.

In this paper the focus is on the variational problem: Forf ∈ H(div; Ω)′, seekj ∈
H(div; Ω) such that

a(j, q) = f(q) ∀q ∈H(div; Ω) .(1.1)

As a concise operator notation we adoptAj = f . This equation obviously has a unique
solution. The same applies to the discrete problemAhjh = fh that arises from restricting
(1.1) to a conforming finite element subspace ofH(div; Ω). The present paper studies an
algorithm that yields a fast iterative solver for the large linear system of equations the discrete
problem boils down to. This is not merely a mathematical challenge, but matches an urgent
demand for such a solver in several areas.

To begin with, variational problems posed overH(div; Ω) naturally occur in the context
of mixed methodsfor second order elliptic boundary value problems (see [10]). One option
is to tackle the resulting saddle point problem by means of a preconditioned minimal residual
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algorithm. As pointed out in [3],§7 and [23], Sect. 3.4, a step in a powerful preconditioning
scheme involves the approximate solution of (1.1).

Other ways to treat the mixed saddle point problems also zero in on variational problems
similar to (1.1). Among them the penalty method (see [20]) and augmented Lagrangian
techniques (see [36]) are prominent. In these cases we are generally faced with a bilinear
form like

ar(v, j) := (v, j)L2(Ω) + r · (div v,div j)L2(Ω)(1.2)

overH(div; Ω), wherer > 0 is a parameter which is usually chosen to be fairly large. This
raises the issue of how the convergence of the multigrid method is affected by increasing the
value ofr. Fortunately it turns out to be robust with respect to larger as was shown in [23].
However, for the sake of lucidity, the investigations in this paper will not take into accountr.

Furthermore, the variational problem (1.1) is also the key to efficient preconditioners
for first order system least squares(FOSLS) formulations of second order elliptic boundary
values problems. In [12] and [32] a close connection between theH(div; Ω)–norm and the
least squares functional has been established. These results revealed that a fast solver for
(1.1) can be extremely useful for the treatment of the FOSLS systems of equations. For a
more detailed discussion the reader is referred to§7 of [3].

Eventually, apart from second order problems, (1.1) emerges in the numerical treatment
of the incompressible Navier–Stokes equations, as well. The so-called sequential regulariza-
tion method (cf. [26]) requires the solution of a discrete equation of the form (1.1) in each
timestep.

Our ultimate goal is to devise an efficient multigrid method for this discrete problem. In
this context the notion of “efficient” implies two essential requirements:

1. A single step of the iteration should require a computational effort proportional to
the number of unknowns.

2. The rate of convergence must be well below 1 and must not deteriorate on very fine
finite element meshes

The first criterion is naturally met by a multigrid algorithm that relies on purely local
operations. To confirm that the second is satisfied is much harder; to this end we rely on the
modern algebraic theory of multilevel methods as outlined in [7, 21, 38]. Its essential message
is that we only need to specify a multilevel decomposition of the finite element space used
to approximateH(div; Ω). Then the multigrid algorithm can be recovered as a simple mul-
tiplicative Schwarz scheme based on this very decomposition. In addition, two fundamental
estimates can completely describe the stability of the decomposition with respect to the en-
ergy norm‖·‖A induced by the bilinear forma(·, ·) (which coincides with the natural norm
onH(div; Ω)). The constants occurring in these estimates provide rather comprehensive in-
formation on the convergence properties of the multigrid V–cycle iteration. The bulk of this
paper will be devoted to determining on what the size of these constants does not depend.

The importance ofH(div; Ω)–related problems has prompted vigorous research into
efficient multilevel schemes. An early attempt was the construction of a hierarchical basis in
the paper [11] by Cai, Goldstein, and Pasciak. In the 2D case, it has been shown by Hoppe
and Wohlmuth [25] that this scheme leads to a slightly suboptimal growthO(L2) of the
condition number of the preconditioned system, whereL is the total number of refinement
levels. Surprisingly enough, this behaviour carries over to three dimensions.

An alternative multilevel splitting of aH(div; Ω)–conforming finite element space was
proposed by Vassilevski and Wang in [37]. In two dimensions this approach actually achieves
uniformly bounded convergence rates independent of the number of levels involved, as has
been proved in [24]. Both domain decomposition methods and multigrid schemes for (1.1)
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have been introduced by Arnold, Falk, and Winther [3, 4]. In 2D they managed to show that
the convergence rates of their methods remain neatly bounded independently of the depth of
refinement.

Mixed saddle point problems have also been tackled directly with multilevel methods.
The schemes presented in [17, 18, 27] are based on the insight that the saddle point problem
can be converted into a symmetric, positive definite problem in the subspace of divergence-
free vectorfield. Theoretical optimality of the multilevel methods could be established in two
dimensions. The same could be shown in [13] for a domain decomposition method in three
dimensions which also employs the prior reduction to a solenoidal problem.

The method to be developed in the current paper owes much to the ideas of Vassilevski
and Wang [37] and Arnold, Falk, and Winther [3], as far as the central role ofHelmholtz de-
compositionsis concerned. The term Helmholtz decomposition designates anL2–orthogonal
splitting of a function space into the kernel of a differential operator (div or curl) and its
complement. Obviously the kernel of the divergence operator has a decisive impact on the
properties of the bilinear forma(·, ·). By using the Helmholtz decomposition ofH(div; Ω),
this can be taken into account.

The principles guiding the design of the multigrid algorithm presented in this paper are
basically the same in any dimension. Yet the algorithmic details and the technical devices
employed in the proofs in three dimensions significantly differ from those used by the authors
mentioned above in the 2D case. Additional complications are due to the different nature
of “vector potential spaces”in 2D and 3D. Vector potentials provide a representation of
solenoidal vector fields. In 2D those can be obtained as rotated gradients ofH1–functions,
whereas inR3 the curl–operator and the Hilbert spaceH(curl; Ω) have to be used (see
[20], Ch. I). Clearly, thecurl operator is much more difficult to handle than the gradient.
This offers an explanation why rigorous results for the 3D case were long missing.

The plan of the paper is a follows: In the next section we provide a brief description
of the finite element spaces used in the construction of the multigrid algorithm. Those are
theH(div; Ω)–conforming Raviart–Thomas spaces andH(curl; Ω)–conforming Nédélec
spaces. We also summarize their relevant properties and discuss the close relationship be-
tween them.

In the third section the multilevel decomposition of the Raviart–Thomas spaces is spec-
ified. Prior to that, we try to give a sound motivation of the construction by scrutinising the
properties of the bilinear forma(·, ·). Finally we recall the basic estimates that guarantee an
optimal convergence of the multigrid iteration based on the decomposition.

The fourth section examines one of the crucial concept in the design and analysis of the
multigrid method, namelyHelmholtz–decompositions. In the discrete setting we are forced to
introduce different kinds of these decompositions and then have to establish several auxiliary
estimates linking them.

The fifth section is devoted to proving the central estimate related to the stability of the
decomposition with respect to the energy norm. We show uniform stability (w.r.t. the depth
of refinement) by means of duality techniques applied to bothH(div; Ω) andH(curl; Ω)–
conforming finite element spaces.

The sixth section provides the second estimate, a strengthened Cauchy–Schwarz inequal-
ity, for the multilevel decomposition. The proof is purely local and adapts techniques invented
for standardH1(Ω)–conforming problems.

In the next to last section we discuss the implementation of the scheme in a standard
multigrid fashion and explain a few algorithmic details.

In the last section we report on numerical experiments which bolster the claim that the
multigrid method developed in this paper actually provides a competitive iterative solver for
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discreteH(div; Ω)–elliptic variational problems.

2. Finite element spaces.Let Th := {Ti}i denote a quasiuniform simplicial or hexae-
dral triangulation ofΩ with meshwidthh := max{diamTi}. We demand that the elements
are uniformly shape–regular in the sense of[14]. Based on this mesh we introduce several
conforming finite element spaces:
Sd(Th) ⊂ H1(Ω) stands for the space of continuous finite element functions, piecewise

polynomial of degreed ∈ N. NDd(Th) ⊂ H(curl; Ω) designates the so-called N´edélec
finite element space of orderd ∈ N introduced in [29]. We writeRT d(Th) ⊂ H(div; Ω)
for the Raviart–Thomas finite element space of orderd ∈ N0 (see [10, 29, 33]). Finally,
the space of discontinuous functions, that are piecewise polynomial of degreed ∈ N0 , is
denoted byQd(Th) ⊂ L2(Ω). Supplemented by a subscript 0 the same notations cover the
spaces equipped with homogeneous boundary conditions (in the sense of an appropriate trace
operator). In addition,Qd,0(Th) contains only functions with zero mean value. We hope the
reader will not mind our policy to stick with somewhat bulky notations rather than run the
risk of ambiguity and confusion.

All finite element spaces are equipped with setsΞ(Xd, Th), X = S, ND, RT , Q,
of global degrees of freedom(d.o.f.) which ensure conformity. They can be defined in a
canonical fashion so that they remain invariant under the respective canonical transformations
of finite element functions. Consequently, all finite element spaces form affine families in the
sense of [14]. We refer to [29] for a comprehensive exposition. Besides, we impose a p–
hierarchical arrangement on the sets of degrees of freedom by requiring thatΞ(Xd−1, Th) is
contained inΞ(Xd, Th), and all functionals fromΞ(Xd, Th)/Ξ(Xd−1, Th) have to vanish on
Xd−1.

Based on the degrees of freedom, sets ofcanonical nodal basis functionscan be intro-
duced as bidual bases forΞ(Xd, Th). They are locally supported and form anL2–frame: We
can find generic constantsC,C > 0, independent of the meshwidthh and only depending on
d and the shape regularity ofTh, such that

C‖ξh‖
2
L2(Ω) ≤

∑
κ
κ(ξh)2‖ψκ‖

2
L2(Ω) ≤ C ‖ξh‖

2
L2(Ω) ∀ξh ∈NDd(Th)

C‖vh‖2L2(Ω) ≤
∑
κ
κ(vh)2‖jκ‖

2
L2(Ω) ≤ C ‖vh‖2L2(Ω) ∀vh ∈RT d(Th) ,

(2.1)

whereκ runs through all degrees of freedom of the respective finite element space and
ψκ stands for the canonical basis function ofNDd(Th) belonging to the d.o.f.κ ∈
Ξ(NDd, Th), jκ for the basis function inRT d(Th) associated withκ ∈ Ξ(RT d, Th).
Moreover, following a popular convention, a capitalC will be used as a generic constant. Its
value can vary between different occurrences, but we will always specify what it must not
depend on.

Now, given the degrees of freedom, for sufficiently smooth functions the nodal projec-
tions (nodal interpolation operators)ΠXdTh , X = S,ND,RT ,Q are well defined. The nodal
interpolation operators are exceptional in that they satisfy the followingcommuting diagram
property[10, 15, 19] (ford ∈ N0 )

C∞(Ω)
grad−−−−→ C∞(Ω) curl−−−−→ C∞(Ω) div−−−−→ C∞(Ω)yΠ

Sd+1
Th

yΠ
NDd+1
Th

yΠ
RT d
Th

yΠ
Qd
Th

Sd+1(Th)
grad−−−−→ NDd+1(Th) curl−−−−→ RT d(Th) div−−−−→ Qd(Th) ,
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which links nodal projectors and differential operators. The commuting diagram property
is the key to the proof of the followingrepresentation theorem, which shows that essential
algebraic properties of the function spaces are preserved in the discrete setting:

THEOREM 2.1 (Discrete potentials).The following sequences of vector spaces are exact
for anyd > 0:

{const.} −→ Sd(Th)
grad−→ NDd(Th) curl−→RT d−1(Th) div−→ Qd−1(Th) −→ {0}

{0} Id−→ Sd,0(Th)
grad−→ NDd,0(Th) curl−→RT d−1,0(Th) div−→ Qd−1,0(Th) −→ {0}

Proof. See [23], Theorem 2.36.
Another consequence of the commuting diagram property is that p–hierarchical surpluses

are preserved when the appropriate differential operator is applied. For N´edélec spaces this
reads:

curl
(
ΠNDd+1
Th −ΠNDdTh

)
NDd+1(Th) ⊂

(
ΠRT dTh −ΠRT d−1

Th

)
RT d(Th) .(2.2)

An inconvenient trait of the nodal projectors has to be stressed: Except in the case ofQk,
they cannot be extended to the respective continuous function spaces. A slightly enhanced
smoothness of the argument function is required, which drastically complicates the use of
these projectors. Nevertheless, we cannot dispense with them; no other projectors are known
that satisfy the commuting diagram property (compare Remark 3.1 in [19]).

To cope with theNDd–projectors’ need for smooth arguments, we have to resort to
the following approximation property in fractional Sobolev spaces: From a variant of the
Bramble–Hilbert lemma ([16], Theorem 6.1) we get ford ≥ 2∥∥∥ξ −ΠNDdTh ξ

∥∥∥
L2(Ω)

≤ C hs‖ξ‖Hs(Ω) ∀ξ ∈Hs(Ω), 1 < s ≤ 2 ,(2.3)

with C > 0 only depending ons, d and the shape–regularity ofTh. For Raviart-Thomas
spaces we can settle for a simpler approximation property (see [10, 29]):∥∥∥v −ΠRT dTh v

∥∥∥
L2(Ω)

≤ C h |v|H1(Ω) ∀v ∈H1(Ω)(2.4)

Other important estimates can be obtained via the commuting diagram property (see [29])∥∥∥curl
(
ξ −ΠNDdTh ξ

)∥∥∥
L2(Ω)

≤ C h |curl ξ|H1(Ω) ∀ξ; curl ξ ∈H1(Ω)∥∥∥div
(
v −ΠRT dTh v

)∥∥∥
L2(Ω)

≤ C h |div v|H1(Ω) ∀v; div v ∈ H1(Ω)
(2.5)

with C > 0 independent ofh.
To steer clear of problems arising from irregularly shaped domains it turns out to be

convenient that the following discrete extension theorem holds (see [1]):
THEOREM 2.2 (Discrete extension theorem forRT 0). Let Ω̃ ⊂ R

3 be a large polyhe-
dron which containsΩ in its interior. Further,Ω̃ must allow us to extend the meshTh on Ω
to a triangulationT̃h of Ω̃ without a loss of shape regularity or quasiuniformity. Then there
are linear continuous extension operators mapping vector fields inRT d(Th) toRT d,0(T̃h),
whose norms do not depend on the meshwidthh.

Proof. See the proof of Thm. 2.46 in [23]



ETNA
Kent State University 
etna@mcs.kent.edu

138 Multigrid for H(div)

3. Multilevel decomposition. The performance of standard multilevel schemes for lin-
ear discrete variational problems crucially hinges on the “ellipticity” of the bilinear form.
Crudely speaking, ellipticity implies that the eigenvalue belonging to an eigenfunction of
the associated operator depends only on the “frequency” of the eigenfunction and becomes
greater with higher frequency.

Obviously the bilinear forma(·, ·) lacks outright ellipticity. If restricted to the kernel
N (div) of the divergence operator, it agrees with theL2-inner product. In other words, in
the subspaceN (div) no amplification of highly oscillatory functions occurs. Conversely, we
may expect a proper elliptic character ofa(·, ·) on theL2–orthogonal complementN (div)⊥,
where the(div ·,div ·)L2(Ω)–part prevails. By and large, it is precisely the two components
of the Helmholtz decomposition ofH(div; Ω) that require a different treatment, reflecting
the different character of the problem (1.1) on these components.

To elucidate this further, let us temporarily switch to the entire spaceR
3 . Straightforward

calculations in the frequency domain bear out the ellipticity onN (div)⊥:

a(v, j) = (v, j)L2(R3) + (∇v,∇j)L2(R3) ∀v, j ∈H(div;R3 ) ∩N (div)⊥.

This means that when restricted toN (div)⊥, the differential operatorgrad div associated
with A agrees with the Laplacian plus a zero order term. Putting it crudely, we have

A ≈ Id+ ∆ onN (div)⊥ .(3.1)

To deal with N (div) we make use of the representation theoremN (div) =
curlH(curl; Ω) (Thm. I.3.4 in [20]), which holds due to our special assumptions onΩ.
It furnishes a lifting to a second order operator in potential space. Thus we can formulate the
equivalence

a(·, ·)|N (div) ⇐⇒ (curl ·, curl ·)L2(Ω)

with the right hand side being restricted to a suitable subspace ofH(curl; Ω). Consequently
the bilinear form(ξ,η) 7→ (curl ξ, curlη)L2(Ω) becomes our next target. In contrast to
the 2D case, we confront a large nontrivial kernelN (curl). As before, we use a Helmholtz
decomposition to switch to theL2–orthogonal complementN (curl)⊥ and find that forΩ =
R

3

(curl ξ, curl η)L2(R3) = (∇ξ,∇η)L2(R3) for ξ,η ∈H(curl;R3 ) ∩N (curl)⊥ .

In a terse manner we can write

curl∗ ◦A ◦ curl = ∆ onN (curl)⊥ .(3.2)

This time we do not have to worry aboutN (curl), since no zero order term is present in
potential space. The gist of these considerations is that we can arrive at neat second order
elliptic problems by treating the two components of the Helmholtz decomposition separately.
It is well known how multilevel methods for such problems should look like (see [21, 30]):
they should be based on anodal multilevel decompositionof the finite element space encom-
passing all basis functions on several levels of refinement. This gives rise, for instance, to
the standard V–cycle for the Laplacian discretized inS1 (see [21]), which doubtlessly gives
superb efficiency.

Therefore, (3.1) and (3.2) suggest that we should give similar nodal multilevel decompo-
sitions of discrete spaces corresponding toN (div)⊥ andN (curl)⊥ a try. As the discussion
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in the next section will reveal, no convenient finite element bases are available for any rea-
sonable choice of these spaces. However, keep in mind that we are only interested in an
approximate inverse ofAh, which is provided by one sweep of the multigrid iteration. So it
is acceptable to put up with a splitting that only approximates the exact Helmholtz decompo-
sition. A hint is offered by the estimates

‖ψκ‖L2(Ω) ≤ C h‖curlψκ‖L2(Ω) ∀κ ∈ Ξ(ND1, Th)

‖jκ‖L2(Ω) ≤ C h‖div jκ‖L2(Ω) ∀κ ∈ Ξ(RT 0, Th) ,
(3.3)

which hold with constants independent ofh. They imply that the nodal basis functions in
either space come “close” to being orthogonal to the kernels of the differential operators.
Moreover, (3.3) indicates that the basis functions on fine grids actually have an oscillatory
character, giving evidence that a nodal multilevel decomposition makes sense.

To fix the setting, we assume that we have a nested sequence of quasiuniform triangu-
lationsTl, l = 0, . . . , L, of Ω, created by regular refinement of an initial meshT0 as, for
instance, described in [5] for simplicial meshes. Then the meshwidthshl, l = 0, . . . , L, can
be expected to decrease in geometric progression, usuallyhl = 2−lh0. Moreover, we will
treat only the lowest order caseRT 0 andND1 in the sequel. Nevertheless, we emphasise
that the approach can be extended to higher order finite elements in a straightforward fashion.

The concrete multilevel decomposition into mainly one-dimensional subspaces then
reads

RT 0(TL) =RT 0(T0) +
L∑
l=1

∑
κ∈Ξ(RT 0,Tl)

Span {jκ}+
L∑
l=1

∑
κ∈Ξ(ND1,Tl)

Span {curlψκ} .

(3.4)

In a multiplicative Schwarz framework, (3.4) immediately gives rise to a multigrid V–cycle.
The discussion of the details of the algorithm will be postponed to Sect. 6.

However convincing the above heuristics, we have to provide a rigorous underpinning
for the claim that this decomposition is a sound basis for a fast multigrid method. We have
to show that (3.4) guarantees a sufficient decoupling of its components in terms of energy, no
matter how bigLmight be. According to modern multilevel theory [34, 38, 40], this property
can be gauged by means of two estimates: Formally writing{Vj}j for the set of subspaces in
(3.4), the first, which we chose to label astability estimate, can be stated as

inf{
∑
j

‖vj‖2A;
∑
j

vj = v, vj ∈ Vj} ≤ Cstab‖v‖2A ∀v ∈RT 0(TL) ,(3.5)

where‖·‖A stands for the “energy–norm” induced by the bilinear forma(·, ·).
The second is astrengthened Cauchy–Schwarz inequalityof the form

a(vj ,vk) ≤ Corth q
|k−j|‖vj‖A‖vk‖A ∀vj ∈ Vj , vk ∈ Vk ,(3.6)

where0 ≤ q < 1. It makes a statement about thequasi-orthogonalityof the subspaces. From
[38], Thm. 4.4, and [40], Thm. 5.1, we have

THEOREM 3.1. Provided that (3.5) and (3.6) hold, the convergence rateρA of the multi-
grid V–cycle in the energy norm‖·‖A is bounded above by

ρA ≤ 1− 1
Cstab(1 + ρE)2 with ρE := Corth

1 + q

1− q .

It is now our main objective to prove that the constants in (3.5) and (3.6) do not depend on
L, as should be expected from a decent multigrid method.
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4. Helmholtz decompositions.The considerations that led us to the multilevel decom-
position centred around Helmholtz decompositions of vector fields. They are indispensable
for theoretical investigations, but in the finite element setting their usefulness is tainted by the
elusive character of some components.

The natural discrete Helmholtz decomposition of a vector fieldvh ∈ RT d,0(Th) is
given by

vh = v+
h + v0

h ,(4.1)

where

v0
h ∈RT 0

d,0(Th) := {jh ∈RT d,0(Th) : div jh = 0}

and

v+
h ∈RT

+
d,0(Th) := {jh ∈RT d,0(Th) :

(
jh, q

0
h

)
L2(Ω)

= 0 ∀q0
h ∈RT 0

d,0(Th)} .

Analogously, we have forξh ∈NDd(Th):

ξh = ξ+
h + ξ0

h ,(4.2)

with

ξ0
h ∈ND0

d,0(Th) := {ηh ∈NDd,0(Th) : curlηh = 0}

and

ξ+
h ∈ND+

d,0(Th) := {ηh ∈NDd,0(Th) :
(
ηh,ν

0
h

)
L2(Ω)

= 0 ∀ν0
h ∈ND0

d,0(Th)} .

The spacesRT +
d,0(Th) andND+

d,0(Th) seem to be just the right environments for investi-
gations into the stability of the multilevel decomposition. At second glance, this hope turns
out to be premature, since these spaces are not nested, i.e.

RT +
d,0(Tj−1) 6⊂ RT +

d,0(Tj)
ND+

d,0(Tj−1) 6⊂ ND+
d,0(Tj) ,

nor are they contained in the corresponding continuous function spacesN (div)⊥ and
N (curl)⊥. In a sense, they display all awkward properties of nonconforming finite element
spaces. Many successful attempts have been made to tackle nonconforming schemes with
multigrid [9, 31]. What renders these techniques futile in this case is the lack of a localised
basis. After all, the “+-spaces” are not generic finite element spaces!

On the other hand we can regard the finite element functionsvh andξh as generic mem-
bers of the continuous function spaces. As such, they have alternative Helmholtz decomposi-
tions:

vh = v⊥h + v∗h(4.3)

wherev∗h ∈ N (div) andv⊥h ∈ N (div)⊥, and

ξh = ξ⊥h + ξ∗h(4.4)
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with ξ∗ ∈ N (curl) andξ⊥h ∈ N (curl)⊥. We writeRT ⊥d,0(Th) andND⊥d,0(Th) for the

finite dimensional spaces of all possiblev⊥h andξ⊥h , respectively. It is easy to see that now
all components of the Helmholtz decompositions are perfectly nested, in particular

RT ⊥d,0(Tj−1) ⊂ RT ⊥d,0(Tj)
ND⊥d,0(Tj−1) ⊂ ND⊥d,0(Tj) .

Yet, functions from theses spaces are no longer piecewise polynomial, but at least their images
under the differential operators are. To see this, note thatdiv v⊥h = div vh andcurl ξ⊥h =
curl ξh. This permits us to establish fundamental estimates in the next section. However,
since the multilevel decomposition (3.4) is ultimately set in the original finite element spaces,
we have to bridge the gap between both types of Helmholtz decompositions.

To this end we have to rely on the following regularity assumptions:

div j ∈ L2(Ω)
curl j = 0 in Ω
〈j,n〉 = 0 on∂Ω

⇒
{
j ∈H1(Ω)
‖j‖H1(Ω) ≤ C‖div j‖L2(Ω)

,(4.5)

and for some0 < ε ≤ 1

curl ξ ∈ Hε(Ω)
div ξ = 0 in Ω
ξ × n = 0 on∂Ω

⇒
{
ξ ∈ H1+ε(Ω)
‖ξ‖H1+ε(Ω) ≤ C‖curl ξ‖Hε(Ω)

.(4.6)

LEMMA 4.1. Provided that the regularity assumption (4.5) holds, we can estimate the
difference between the non-solenoidal components of both Helmholtz decompositions (4.1)
and (4.3) for Raviart–Thomas vector fields by∥∥v+

h − v⊥h
∥∥
L2(Ω)

≤ C h‖div vh‖L2(Ω)

withC > 0 independent ofvh ∈RT 0,0(Th) and the meshwidthh.
Proof. Thanks to the regularity assumption (4.5) we immediately havev⊥h ∈ H1(Ω).

Furthermore by (2.4) we get the approximation estimate∥∥∥v⊥h −ΠRT 0
Th v⊥h

∥∥∥
L2(Ω)

≤ Ch
∥∥v⊥j ∥∥H1(Ω)

≤ Ch
∥∥div v⊥h

∥∥
L2(Ω)

.

From the commuting diagram property of the nodal interpolation operator we conclude

div(v+
h − v⊥h ) = 0 ⇒ div

(
ΠRT 0
Th (v+

h − v⊥h )
)

= 0 .

This meanszh := ΠRT 0
Th (v+

h − v⊥h ) ∈RT 0
0,0(Th) so that by its definition,(

v+
h ,zh

)
L2(Ω)

= 0 and
(
v⊥h ,zh

)
L2(Ω)

= 0 .

This together with a straightforward application of the Cauchy–Schwarz inequality finishes
the proof:∥∥v+

h − v⊥h
∥∥2

L2(Ω)
=
(
v+
h − v⊥h , (v⊥h −ΠRT 0

Th v⊥h ) + (ΠRT 0
Th (v⊥h − v+

h )
)
L2(Ω)

≤
∥∥v+

h − v⊥h
∥∥
L2(Ω)

Ch‖div vh‖L2(Ω).
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LEMMA 4.2. Assuming (4.6), we get the following estimate for the components of the
Helmholtz decompositions (4.2) and (4.4) of a vector field in 2nd order Néd́elec space with
C > 0 independent of the meshwidthh:∥∥∥ξ+

h − ξ
⊥
h

∥∥∥
L2(Ω)

≤ Ch‖curl ξh‖L2(Ω) ∀ξh ∈ND2,0(Th).

Proof. The proof is similar to that of the previous lemma, slightly compounded by the
tighter smoothness requirements of the interpolation operators in N´edélec space.

We start with the trivial observation thatcurl ξ⊥h = curl ξh is piecewise polynomial.
Now, recall the important fact that any piecewise polynomial functionf ∈ L2(Ω) belongs to
Hε(Ω) for all 0 ≤ ε < 1/2 and fulfils the inverse estimate

‖f‖Hε(Ω) ≤ C(ε)h−εl ‖f‖L2(Ω)(4.7)

with C(ε) independent off (cf. the appendix of [8]).
We conclude thatcurl ξ⊥h ∈ Hε(Ω) for someε ∈ ]0; 1/2[. According to (4.6), this

means thatξ⊥h ∈H1+ε(Ω) and∥∥∥ξ⊥h ∥∥∥
Hε+1(Ω)

≤ C(ε)
∥∥∥curl ξ⊥h

∥∥∥
Hε(Ω)

,

where we made tacit use ofdiv ξ⊥h = 0. This makes sure that the nodal interpolation operator
ΠND2
Th is well defined forξ⊥h .

The commuting diagram property again guarantees that the interpolantΠND2
Th (ξ+

h −ξ⊥h )
is curl-free. Sinceξ+

h andξ⊥h are bothL2–orthogonal toND0
2,0(Th) we get(

ξ+
h − ξ

⊥
h ,Π

ND2
Th (ξ+

h − ξ
⊥
h )
)
L2(Ω)

= 0 .

Using the approximation property (2.3) and the inverse estimate (4.7) we confirm∥∥∥ξ⊥h −ΠND2
Th ξ⊥h

∥∥∥
L2(Ω)

≤ Ch‖curl ξh‖L2(Ω) .

The final steps of the proof are almost the same as in the previous proof, so that we can skip
them here.

5. Proof of stability. In this section we are going to prove that inequality (3.5) holds for
the splitting (3.4), uniformly in the depthL of refinement. Owing to the discrete extension
theorem Thm. 2.2, it suffices to establish the stability of the multilevel decomposition for con-
vex domains only: SinceΩ is bounded we can find a convex domainΩ̃ such thatΩ, equipped
with the coarse meshT0, andΩ̃ satisfy the assumptions of Thm. 2.2.T̃0 denotes the extended
mesh oñΩ. Its regular refinement yields a nested sequence{T̃j}Lj=0 of triangulations which
match the original meshes onΩ.

Then Thm. 2.2 tells us that for anyvh ∈RT 0(TL) there is ãvh ∈RT 0,0(T̃L) defined
on all of Ω̃ such that‖ṽh‖A ≤ C‖vh‖A. The constantC > 0 depends only on the domains
Ω, Ω̃ and the shape regularity of̃T0.

Provided that the estimate (3.5) is true forΩ̃ with a constant independent ofL, we first
pick a certain splitting of̃vh that satisfies (3.5). Sheer plain restriction of the individual terms
of the decomposition toΩ will then provide a specimen of a decomposition ofvh for which
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(3.5) is fulfilled inRT 0(TL). The constantCstab remains the same. Thus the problem can
be reduced to the case of a convex domainΩ.

What accounts for the particular appeal of a convex domain is the availability of powerful
regularity results: Firstly, forf ∈ L2(Ω) with curl f = 0 in weak sense we have

−grad div j + j = f in Ω
curl j = 0 in Ω
〈j,n〉 = 0 on∂Ω

⇒

j ∈H1(Ω) ∧ div j ∈ H1(Ω)
‖j‖H1(Ω) ≤ C‖f‖L2(Ω)

‖div j‖H1(Ω) ≤ C‖f‖L2(Ω) .
(5.1)

Secondly, we have forf ∈ L2(Ω) anddiv f = 0 weakly

curl curlη = f in Ω
divη = 0 in Ω
η × n = 0 on∂Ω

⇒

η ∈H1(Ω) ∧ curlη ∈H1(Ω)
‖η‖H1(Ω) ≤ C‖f‖L2(Ω)

‖curl η‖H1(Ω) ≤ C‖f‖L2(Ω) .
(5.2)

In addition, we point out that the regularity assumptions (4.5) and (4.6) can be verified for a
convex domains as well [2, 35]. This is due to their close relationship with the regularity of
Dirichlet and Neumann problems for the Laplacian [2].

To begin with, we pick an arbitraryjL ∈ RT 0,0(TL). Our aim is to find a concrete
decomposition according to (3.4) that complies with (3.5) and permits us to fix aCstab for
all L. The construction is pursued in the spirit of the work of Arnold, Falk and Winther
[3] and involves ana(·, ·)-orthogonal splitting followed by a levelwise discrete Helmholtz
decomposition.

Writing Pl : H0(div; Ω) 7→RT 0,0(Tl), l = 0, . . . , L for thea(·, ·)-orthogonal projec-
tion onto the finite element spaces on different levels, and settingP−1 := 0, the first stage of
the decomposition reads

jL =
L∑
l=0

(Pl − Pl−1) jL =:
L∑
l=0

vl .(5.3)

The next stage involves discrete Helmholtz decompositions according to (4.1) on each level:

vl = v0
l + v+

l ,(5.4)

with div v0
l = 0 andv+

l ∈ RT
+
0,0(Tl). It is important to note thatv0

l andv+
l area(·, ·)-

orthogonal too. Now, the crucial step consists of showing that the vector fieldsv0
l andv+

l

can be chopped up into multiples of basis functions without a drastic increase in the overall
energy. This is only possible for oscillatory functions. The following two lemmata, whose
proof will be postponed a short while, validate this property for the components of the current
decomposition.

LEMMA 5.1. Using the notations from above we have∥∥v+
l

∥∥
L2(Ω)

≤ C hl‖vl‖A ,

withC > 0 independent ofjL andl.
LEMMA 5.2. There is a constantC > 0, independent ofjL and l, such that forv0

l we
can always find anηl ∈ND1,0(Tl) with curlηl = v0

l and

‖ηl‖L2(Ω) ≤ Chl‖curl ηl‖L2(Ω) .
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Based on these auxiliary estimates we are able to prove the main theorem
THEOREM 5.3. If we represent bothηl from Lemma 5.2 andv+

l as a sum of components
belonging to the one-dimensional subspaces that the splitting (3.4) is based on, i.e.,

ηl =
∑
κ
ηκ,l , ηκ,l ∈ Span {ψκ} , κ ∈ Ξ(ND1,0, Tl)

v+
l =

∑
κ
vκ,l , vκ,l ∈ Span {jκ} , κ ∈ Ξ(RT 0,0, Tl) ,

then we get, withC > 0 independent ofjL andL,

‖v0‖2A +
L∑
l=1

∑
κ

‖vκ,l‖2A +
L∑
l=1

∑
κ

∥∥curlηκ,l
∥∥2

A
≤ C‖jL‖

2
A .

Proof. Employing the inverse estimates (3.3) we immediately get

‖vκ,l‖2A = ‖vκ,l‖2L2(Ω) + ‖div vκ,l‖2L2(Ω) ≤ (1 + Ch−2
l )‖vκ,l‖2L2(Ω)∥∥curlηκ,l

∥∥2

A
=

∥∥curlηκ,l
∥∥2

L2(Ω)
≤ Ch−2

l

∥∥ηκ,l∥∥2

L2(Ω)
,

(5.5)

with constants independent of the functions and the levell.
Thanks to theL2–stability of the nodal bases (cf. (2.1)), we can estimate∑

κ
‖vκ,l‖2L2(Ω) ≤ C

∥∥v+
l

∥∥2

L2(Ω)∑
κ

∥∥ηκ,l∥∥2

L2(Ω)
≤ C‖ηl‖

2
L2(Ω) .

(5.6)

Combining (5.5) and (5.6) and exploiting theL2–orthogonality of (5.4) and thea(·, ·)-
orthogonality of (5.3) we can finish the proof:

‖v0‖2A +
L∑
l=1

∑
κ

‖vκ,l‖2A +
L∑
l=1

∑
κ

∥∥curlηκ,l
∥∥2

A
≤

≤ ‖v0‖2A +
L∑
l=1

{
(1 + Ch−2

l )
∥∥v+

l

∥∥2

L2(Ω)
+ Ch−2

l ‖ηl‖
2
L2(Ω)

}
≤

≤ ‖v0‖2A + C
L∑
l=1

{∥∥v+
l

∥∥2

A
+
∥∥v0

l

∥∥2

A

}
≤ C‖jL‖

2
A.

The final step could be accomplished by virtue of Lemmata (5.1) and (5.2).
The proofs of Lemmata 5.1 and 5.2 make heavy use of duality techniques. They adapt

ideas that were first employed in multilevel theory for problems inH1 (see e.g. [41]).
Proof. (Of Lemma 5.1) Since duality techniques are mainly suited to nested sequences of

spaces, we first focus on the continuous Helmholtz decomposition (4.3) ofvl. Then determine
z ∈ N (div)⊥ as the unique solution of

a(z, q) =
(
v⊥l , q

)
L2(Ω)

∀q ∈ N (div)⊥ .

Now, we can conclude from regularity assumption (5.1) that

z ∈H1(Ω) and ‖z‖H1(Ω) ≤ C
∥∥v⊥j ∥∥L2(Ω)

and ‖div z‖H1(Ω) ≤ C
∥∥v⊥l ∥∥L2(Ω)

.



ETNA
Kent State University 
etna@mcs.kent.edu

R. Hiptmair 145

Now, recall thatz isa(·, ·)–orthogonal to any divergence free vectorfield. Because ofdiv(vl−
v⊥l ) = 0 this leads to

a(z,v⊥l ) = a(z,vl) = a(z − ql−1,vl) ∀ql−1 ∈RT 0,0(Tl−1) ,

where we also made use of thea(·, ·)–orthogonality ofvl and any finite element function on
a coarser mesh which is implied by (5.3). Moreover, the smoothness ofz permits us to apply
the canonical projection operators onto the finite element spaces. So we arrive at∥∥v⊥l ∥∥L2(Ω)

= a(z,v⊥l ) ≤ ‖vl‖A ·
∥∥∥z −ΠRT 0

Tl−1
z
∥∥∥
A
.

We employ the approximation estimates (2.3) and (2.5) to get∥∥∥z −ΠRT 0
Tl−1

z
∥∥∥
L2(Ω)

≤ Chl−1 ‖z‖H1(Ω) ≤ Chl
∥∥v⊥l ∥∥L2(Ω)∥∥∥div(z −ΠRT 0

Tl−1
z)
∥∥∥
L2(Ω)

≤ Chl−1 ‖div z‖H1(Ω) ≤ Chl
∥∥v⊥l ∥∥L2(Ω)

,

from which we infer ∥∥v⊥l ∥∥L2(Ω)
≤ Chl‖vl‖A .

An application of Lemma 4.1 completes the proof.
Proof. (Of Lemma 5.2) The idea much resembles that of the previous proof. Yet in order

to use Lemma 4.2 we have to switch to higher order finite element spaces intermittently. In
the beginning we exploit thea(·, ·)–orthogonality of (5.3):

a(v0
l , q

0
l−1) = a(vl, q0

l−1) = 0 ∀q0
l−1 ∈RT 0

0,0(Tl−1)(5.7)

Then we pick the uniqueζ⊥l ∈ND⊥2,0(Tl) with curl ζ⊥l = v0
l and getω ∈ N (curl)⊥ from

the variational equation

(curlω, curl ξ)L2(Ω) =
(
ζ⊥l , ξ

)
L2(Ω)

∀ξ ∈ N (curl)⊥ .

Under the regularity assumption (5.2) we have

ω ∈H1(Ω) and curlω ∈H1(Ω) and ‖curlω‖H1(Ω) ≤ C
∥∥∥ζ⊥l ∥∥∥

L2(Ω)
.

Next, we conclude from the commuting diagram property thatcurl ΠND1
Tl−1

ω ∈
RT 0

0,0(Tl−1). Then, using the approximation estimate (2.5) and taking into account (5.7)
we get ∥∥∥ζ⊥l ∥∥∥

L2(Ω)
=

(
curlω, curl ζ⊥l

)
L2(Ω)

≤
∥∥∥curl ζ⊥l

∥∥∥
L2(Ω)

·
∥∥∥curl(ω −ΠND1

Tl−1
ω)
∥∥∥
L2(Ω)

≤ Chl−1

∥∥∥curl ζ⊥l
∥∥∥
L2(Ω)

‖curlω‖H1(Ω)

≤ Chl

∥∥∥ζ⊥l ∥∥∥
L2(Ω)

∥∥∥curl ζ⊥l
∥∥∥
L2(Ω)

If ζ+
l ∈ND+

2,0(Tl) is characterised bycurl ζ+
l = v0

l , then Lemma 4.2 provides us with the
estimate ∥∥ζ+

l

∥∥
L2(Ω)

≤ Chl
∥∥curl ζ+

l

∥∥
L2(Ω)

.
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Still, we have to return to the lowest order spaces. To this end we carry out a p–hierarchical
splitting ofζ+

l

ζ+
l = ηl + ζ̂l ,

whereηl ∈ ND1,0(Tl) and ζ̂l stands for the p–hierarchical surplus inND2,0(Tl). As
curl ζ+

l belongs to the lowest order Raviart–Thomas space and the p–hierarchical splitting
constitutes a direct sum, we learn from (2.2) thatcurl ζ̂l = 0. Additionally, theL2–stability
(2.1) of the nodal bases of N´edélec spaces ensures

‖ηl‖L2(Ω) ≤ C
∥∥ζ+

l

∥∥
L2(Ω)

.

In sum,ηl is the function in lowest order potential space with the desired properties.

6. Quasi-orthogonality. To establish the strengthened Cauchy–Schwarz inequality
(3.6) we resort to tricks that have been conceived e.g. in [6, 38, 39] for the standardH1–
conforming case. For applications of these techniques in the 2D case, which is hardly differ-
ent from 3D, we refer to [4, 24].

To begin with, we put the basis functions of the finite element spaces into a small num-
ber of classes, such that the supports of two basis functions in the same class do not overlap.
RT 0–degrees of freedom are attached to faces, whereasND1–degrees of freedom are as-
sociated with edges (c.f. [29]). Hence, we may as well start with partitioning the faces/edges
of the meshesTl into disjoint setsFi[l] andEi[l]. A finite numberNF andNE, respectively,
of sets will do on any level of refinement due to the uniform shape regularity of the meshes.
We introduce the notationsDil, i = 1, . . . , NF andU il, i = 1, . . . , NE, for the subspaces
ofRT 0(Tl) andND1(Tl), respectively, spanned by the basis functions in class numberi.
Note that the basis functions in one class are mutually orthogonal. This is the reason why
we might well replace the one-dimensional subspaces in (3.4) by theDil andU il without the
slightest impact onCstab andCorth.

We separately deal with solenoidal and non-solenoidal vector fields in the finer mesh.
The first results concerns a local estimate in the divergence free case:

LEMMA 6.1. Pick an arbitrary triangleT̃ ∈ Tm (m ∈ {0, . . . , L− 1}) and aL ≥ k >
m. For anyξik ∈ U ik , (1 ≤ i ≤ NF) andzm ∈ RT 0(Tm) there holds

a|T̃ (curl ξik,zm) ≤ C
√
hk
hm

∥∥curl ξik
∥∥
L2(T̃ )

‖zm‖L2(T̃ ).

Proof. Consider the basis representation

ξik =
∑
e

κe(ξik)ψe ,

where the sum covers all edges inEi[l] that lie in the closure of̃T . The the degrees of freedom
and nodal basis functions are tagged with the associated edge. The classical idea from [6] is
to isolate an internal part ofξik and a boundary part:

ξik =
∑

e⊂∂T,e∈Ei[l]

κe(ξik)ψe +
∑

e⊂T,e∈Ei[l]

κe(ξik)ψe =: ξik,bd + ξik,int.(6.1)
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This approach is motivated by an interesting feature of theRT 0 flux ansatz: We have
curl(a+ βx) = 0. This permits us to drop the internal part ofξik, because of∫

T̃

〈
curl ξik,int,zm

〉
dx =

∫
T̃

〈
ξik,int, curl zm

〉
dx

︸ ︷︷ ︸
=0, as curl zm=0

−
∫
∂T̃

〈
zm, ξik,int × n

〉
dx

︸ ︷︷ ︸
=0, as�ik,int×n=0 on∂T̃

= 0 .(6.2)

How we benefit from this is illustrated by∫
T̃

〈
curl ξik,zm

〉
dx =

∫
T̃

〈
curl ξik,bd,zm

〉
dx =

∫
Γ

〈
curl ξik,bd,zm

〉
dx ,

where

Γ :=
⋃
{suppψe; e ⊂ ∂T}

is a sort of narrow fringe along the boundary ofT̃ . In summary, integration can be confined
to a small part of̃T . As a preliminary result we have by the Cauchy–Schwarz inequality∫

T̃

〈
curl ξki,bd,z

m
〉
dx ≤

∥∥∥curl ξki,bd
∥∥∥
L2(Γ)

‖zm‖L2(Γ) .(6.3)

The first factor can be easily bounded, thanks to the orthogonality ofcurl ξik,int and
curl ξik,bd (Remember that the supports of these functions are disjoint by construction):∥∥curl ξik,bd

∥∥
L2(Γ)

≤
∥∥curl ξik

∥∥
L2(T̃ )

.

A bound for the second factor in (6.3) is determined making use of the fact that the area
of Γ is only a fraction of|T̃ |, if k andm differ widely. More precisely, we have the bound

|Γ| ≤ 2 · hk
hm
|T̃ | .

zm is linear overT̃ in each component. Tedious but elementary computations (cf. [24]) then
show

‖zm‖L2(Γ) ≤ C
√
hk
hm
‖zm‖L2(eT ) .

Plugging this into (6.3) completes the proof.
Next we establish a local precursor of the strengthened Cauchy–Schwarz inequality for

components with nonzero divergence:
LEMMA 6.2. Let T̃ be an arbitrary element ofTm (m ∈ {0, . . . , L− 1}) andL ≥ k >

m. Then we have for anyzm ∈RT 0(Tm) andqk ∈ Dik, i = 1, . . . , NRT that

a|T̃ (qk,zm) ≤ C
{
hk‖div qk‖L2(T̃ )‖zm‖L2(T̃ ) +

√
hk
hm
‖div qk‖L2(T̃ )‖div zm‖L2(T̃ )

}

with both constants independent ofzm, qk, i, andk.
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Proof. The first part of the proof is rather similar to the proof of the previous lemma.
Again we can dismiss an interior part ofqk and restrict integration to a tiny zone along∂T̃ .
The outcome accounts for the second term in the estimate. We will skip the details.

To take care of theL2–inner product we initially rely on the Cauchy–Schwarz inequality

(qk,zm)L2(T̃ ) ≤
∥∥qk∥∥

L2(T̃ )
· ‖zm‖L2(T̃ ) .(6.4)

The meshTk, restricted toT̃ , forms a valid triangulation of̃T . It is evident that the same
inequalities that apply to a single basis function also hold forqk, as in particular in (3.3),
which furnishes the estimate∥∥qk∥∥

L2(T̃ )
≤ Chk

∥∥div qk
∥∥
L2(T̃ )

.(6.5)

Now, we obtain the assertion from merely joining the estimates (6.4) and (6.5).
We point out that the strengthened Cauchy–Schwarz inequality in the form (3.6) refers

to the lumped subspacesDil andU il rather than the spans of individual basis functions. For
both types of lumped subspaces on levell we introduce the tokenYil :

THEOREM 6.3 (Strengthened Cauchy–Schwarz inequality).For the decomposition (3.4)
there holds a strengthened Cauchy–Schwarz inequality of the form

a(yik,y
j
m) ≤ C min

{√
hm
hk

,

√
hk
hm

}
,
∥∥yik∥∥A ∥∥yjm∥∥A,

for all yik ∈ Yik,yjm ∈ Yjm, j, i suitable indices. The positive constantC does neither
depend onyik,y

j
m nor on the numberL of refinement levels.

Proof. The proof boils down to applying the Lemmata 6.1 and 6.2 on elements of the
coarser mesh and then getting to a global result by means of an ordinary Cauchy–Schwarz
inequality. For details the reader is referred to [24].

7. Algorithm. Let us take a closer look at the actual implementation of the scheme to
convince ourselves that one cycle of the iteration really comes as cheaply as contended earlier.
It is by now obvious that the multiplicative Schwarz method, based upon (3.4) and used as
linear iteration, can be cast in the form of a multigrid V–cycle. This has been a revolutionary
insight and a thorough discussion can be found in [21, 34, 38]. The principal idea is to avoid
visiting the finest grid after each correction in the direction of a coarse grid function. Instead
the exchange of information between different levels of refinement is effected by evaluating
transfer operators (restriction, prolongation) only once for each level. In Fig. 7.1 the general
recursive structure of the algorithm is depicted, to convey that it can be implemented in a
perfect multigrid fashion. Symbols with small arrows on top designate coefficient vectors
with respect to the canonical bases of the finite element spaces.

The operatorsP ll−1 : RT 0(Tl−1) 7→ RT 0(Tl) andRl−1
l : RT 0(Tl) 7→ RT 0(Tl−1)

designate the canonical intergrid transfers, prolongation and restriction, in the Raviart–
Thomas spaces, induced by the natural embedding of these spaces (see [22]). They are
transposes of each other and lend themselves to a purely local evaluation.

The only special thing about the method is the design of the smootherSl(·, ·), whose
steps are described in Fig. 7.2. It might be dubbed a “hybrid” Gauß–Seidel smoother, since
smoothing sweeps both in the Raviart–Thomas space and the N´edélec space of vector poten-
tials are carried out. In Fig. 7.2,Cl stands for the linear operator (i.e., a matrix) related to the
bilinear form(ξl,ηl) 7→ (curl ξl, curlηl)L2(Ω) inND1(Tl). The Gauß–Seidel relaxation
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Initial guess:~vL, right hand side~sL
MGVC(int k, ~vl ∈RT 0(Tl), ~sl ∈RT 0(Tl))
{

if ( l==0) ~v0 ← A−1
0 ~s0

else
{
~vl ← Sl(~vl,~sl) [Presmoothing]
~qk−1 ← 0
MGVC(l− 1, ~ql−1, Rl−1

l (~sl −Al~vl))
~vl ← ~vl + P ll−1~ql−1

~vl ← Sl(~vl,~sl) [Postsmoothing]
}

}

FIG. 7.1.Recursive implementation of multigrid V(1,1)–cycle for discrete problem (1.1).

Sl( ~vl ∈RT 0(Tl), ~sl ∈RT 0(Tl))
{

Gauß-Seidel sweep on Al~vl = ~sl
~rl ← ~sl −Al~vl
~ρl ← T ∗l ~rl
~ξl ← 0
Gauß-Seidel sweep on Cl~ξl = ~ρl
return ~vl + Tl~ξl
}

FIG. 7.2.Evaluation of the hybrid smootherSl(vl, sl).

of any linear system is invariably supposed to be based on the canonical bases of the finite
element spaces.

The significance of the smoother warrants a discussion in greater detail: The evaluation
of Sl(~vl,~sl) boils down to a multiplicative Schwarz method based on the decomposition

RT 0(Tl) =
∑

κ′∈Ξ(RT 0,Tl)
Span {jκ′}+

∑
κ∈Ξ(ND1,Tl)

Span {curlψκ} .(7.1)

This is just the part of (3.4) associated with levell. The targeted matrixAl is the stiffness
matrix belonging to the bilinear forma(·, ·) and the nodal basis{jκ}, κ ∈ Ξ(RT 0, Tl).
Thus we end up with a straightforward Gauß–Seidel sweep as the part of the multiplicative
Schwarz algorithm related to the first sum in (7.1).

As for the second part of (7.1), a local correctionγl ∈ Span {ψκ}, κ ∈ Ξ(ND1, Tl), in
potential space of the intermediate solutionvl is obtained from

a(curlγl, curlψκ) = (s−Alvl, curlψκ)L2(Ω) .

Actually, this is a scalar equation, whose right hand side is calculated by evaluating the resid-
ual, which is a linear form onRT 0(Tl), for the argument vectorcurlψκ. If the residual
corresponds to the coefficient vector~r := (rκ′) with respect to the canonical dual basis of
RT 0(Tl)′, then we get

(s−Alvl, curlψκ)L2(Ω) =
∑

κ′∈Ξ(RT 0,Tl)
ωκ′ · rκ′ .(7.2)
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The weightsωκ′ agree with the coefficients ofcurlψκ in the basis ofRT 0(Tl). Due to the
local nature of the basis functions in N´edélec space, only a fewωκ′ are different from zero,
namely, those belonging to faces contained in the support ofψκ. Moreover, Stokes’ theorem
reveals that the non–vanishing weights are either+1 or−1, depending on the orientation of
the faces. Thus (7.2) can be implemented by summing up the weighted nodal values located
at faces adjacent to the edgeκ is associated with. This takes a fixed number of operations for
each edge.

For the sake of efficiency it makes sense to rearrange the steps in which the computation
of the correction in potential space is carried out; the residual can be formed first, then it
should be transferred into the dual space ofND1(Tl) all at once: this amounts to the collec-
tive execution of the summing–up operation outlined above and can be characterised as the
transpose of the transfer operatorTl : ND1(Tl) 7→ RT 0(Tl) induced by the embedding
curlND1(Tl) ⊂RT 0(Tl).

The bottom line is that everything about this algorithm is about as inexpensive as with
any other smart multigrid method.

We wish to emphasise that the algorithm can be easily extended to an adaptive setting.
In the sense of “local multigrid” (see [28]) only those degrees of freedom should be relaxed
belonging to a basis function that does not occur on any coarser level. This rule applies to
both parts of the hybrid smoother. Then optimal computational complexity can be maintained
despite local refinement.

8. Numerical experiments. Now we have to address the second criterion for efficiency,
the rate of convergence. We have provided a rigorous proof that it does not get infinitely poor
on very fine meshes. Yet the estimates are riddled with ominous constants, whose actual size
is not known, but which have a strong influence on the rate of convergence (c.f. Thm. 3.1).
Only numerical experiments can provide some clues.

The first experimentwas carried out on a cubeΩ :=]0; 1[3 with assumed homoge-
neous Dirichlet boundary conditions imposed on all of∂Ω. The coarsest gridT0 comprised
eight equal cubes, which were successively regularly refined to createT1, . . . , TL. Based on
T0, . . . , TL, a multigrid V(1,1)–cycle as outlined in the previous section was applied to the
discretized problem (1.1) withf = 0. A random initial guess was provided and the rate
of convergence has been determined from the reduction of the error in the final three of ten
multigrid iteration sweeps.

In this first experiment we investigated the dependence of the convergence rate of the
depth of refinement and the choice of the parameterr for the more general bilinear form
(1.2). The results are recorded in Tab. 8.1. We observe the uniform boundedness of the
convergence rates as predicted by the theory and, in addition, the robustness of the method
with respect to the choice of the parameterr.

L 2 3 4 5 6

r = 0 0.09 0.09 0.09 0.09 0.1
r = 0.01 0.11 0.12 0.15 0.16 0.16
r = 0.05 0.13 0.15 0.16 0.16 0.16
r = 0.25 0.16 0.16 0.16 0.16 0.16
r = 1.25 0.17 0.17 0.17 0.17 0.16
r = 6.25 0.17 0.17 0.17 0.17 0.17

TABLE 8.1
Convergence rates for multigrid V(1,1)–cycle obtained in numerical experiment 1.

The second experiment relied on almost the same setting as the first, except for the do-
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main, which was a three dimensional “L-shaped” domain in this case:Ω :=]0; 1[3/[0; 1
2 ]3.

This is a domain for which the regularity assumptions of Sect. 4 and 5 are definitely not
fulfilled.

The outcome of the second experiment is documented in Tab. 8.2. Despite the lack of
regularity the multigrid convergence is hardly affected. This suggests that regularity can be
dispensed with, ultimately.

L 2 3 4 5 6

r = 1 0.16 0.16 0.17 0.17 0.18
TABLE 8.2

Multigrid convergence rates for experiment 2.

Thethird experimentdealt with the setting mainly treated in this paper, namely the case
of free boundary values. Again, we resort toΩ :=]0; 1[3. All the other circumstances agree
with those of experiment 1.

The results are given in Tab. 8.3. As expected, the convergence of the multigrid cycle
hardly slows down as the mesh is more and more refined.

L 2 3 4 5 6

r = 1 0.14 0.17 0.18 0.19 0.19
TABLE 8.3

Multigrid convergence rates forΩ :=]0; 1[3, free boundary values.

9. Conclusion. We have presented a new multigrid method to tackleH(div; Ω)–elliptic
problems discretized by means of Raviart–Thomas elements. Under several restrictive as-
sumptions, free boundary values on the entire boundary and uniform refinement. we proved
the asymptotic optimality of the method. The restrictions are mainly to blame on technical
obstacles encountered in the proof; the algorithm is well suited to cope with local refinement
and Dirichlet boundary conditions imposed on parts of∂Ω. In our opinion it has a consid-
erable potential that still awaits to be harnessed for the various applications addressed in the
introduction.
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