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FAST LEJA POINTS �

J. BAGLAMAy, D. CALVETTIz, AND L. REICHELx

Abstract. Leja points are used in several areas of scientific computing, including polynomial approximation
and eigenvalue computation. Their determination requires the maximization of a sequence of polynomials over a
compact set in the complex plane. These computations can be quite time consuming when the number of Leja points
to be determined is large. This paper introduces a new set of points, referred to as fast Leja points, that are simpler
and faster to compute. An interactive example that illustrates the computation and distribution of fast Leja points is
available at web site http://etna.mcs.kent.edu/vol.7.1998/pp124-140.html.
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1. Introduction. Let K be a compact set in the complex planeC with a connected
complement, and assume that the boundary ofK satisfies some mild regularity conditions to
be specified below. Edrei [7] and Leja [12] studied the following recursively defined sequence
fzjg1j=0 of points inK . Let z0 be a point such that

w(z0)jz0j = max
z2K

w(z)jzj; z0 2 K ;(1.1)

and let forj = 1; 2; : : : , the pointszj satisfy

w(zj)

j�1Y
k=0

jzj � zkj = max
z2K

w(z)

j�1Y
k=0

jz � zkj; zj 2 K ;(1.2)

wherew(z) is a given real-valued positive function onK . We refer tow(z) as the weight
function. The pointszj determined by (1.1)-(1.2) might not be unique. We will call any
sequence of pointsfzjg1j=0 that satisfies (1.1)-(1.2) a sequence of Leja points forK . Edrei
[7] and Leja [12] studied these points forw(z) := 1 onK .

Leja points are used in several areas of scientific computing, e.g., for polynomial inter-
polation [14], in iterative methods for the solution of large linear systems of equations [4, 5]
and in eigenvalue computations [1, 2, 6].

The computation of Leja points requires the maximization of a sequence of products
over a compact setK , see (1.2), and these computations can be quite cumbersome when the
number of Leja points generated is large. It is the purpose of the present paper to introduce
a new set of points, referred to asfast Leja points, which are simpler and faster to compute
than Leja points.

The interest in Leja points stems from the fact that whenz0; z1; z2; : : : ; are Leja points
for the setK , the polynomials

pj(z) :=

j�1Y
k=0

(z � zk); j = 1; 2; : : : ;(1.3)
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can be evaluated fairly accurately forz 2 K also when their degreej is large; see [14] for
illustrations. Products of the form (1.3) arise, e.g., in the Newton formula for polynomial
interpolation [3, 14], in the Implicitly Restarted Lanczos and Arnoldi methods for the com-
putation of a few eigenvalues of a large matrix [1, 2, 6, 9, 10, 17], and in Richardson iteration
for the solution of linear systems of equations [4, 5]. In the applications to eigenvalue com-
putation and the solution of linear systems, each iteration increases the degree of polynomials
of the form (1.3) by one, and, in general, it is not known a priori how many iterations are
required until the desired eigenvalues, or the approximate solution, have been determined to
sufficient accuracy. Leja points are convenient to use in these applications, because the Leja
pointszj are independent of the Leja pointszk for j < k. Thus, the polynomialpk(z) is
divisible bypj(z) for 1 � j � k.

It is illuminating to compare polynomial interpolation at Leja points for an interval[a; b]
and at zeros of Chebyshev polynomials for the same interval. Assume that the Newton form
of the interpolation polynomial is used. Polynomial interpolation of a smooth functionf at
the zeros of the Chebyshev polynomial of the first kind of degreek is known to yield a near-
best polynomial approximant of degree at mostk � 1 of f on [a; b]; see, e.g., de Boor [3,
Chapter 2] for a discussion and illustrative numerical examples. However, if we find that the
achieved accuracy is insufficient and therefore we would like to interpolatef at the zeros of
the Chebyshev polynomial of degreek + 1 instead, it would be difficult to take advantage
of the computations already carried out when determining the new interpolating polynomial.
The difficulty stems from the fact that the Chebyshev polynomials of degreek andk+1 do not
have common zeros. On the other hand, given the interpolating polynomial in Newton form
of degree at mostk � 1 that interpolatesf at the firstk Leja points for[a; b], it is simple and
fast to update this polynomial to obtain the polynomial of degree at mostk that interpolates
f at the firstk + 1 Leja points forK .

When the weight function is given byw(z) := 1, the maximum principle for analytic
functions yields that the maxima in (1.1) and (1.2) are achieved forz on the boundary of
K . This also holds for other weight functions of interest to us. It therefore suffices to only
maximize over the boundary ofK in (1.1) and (1.2). We seek to reduce the computational
work further by replacing the boundary ofK by a discrete point set. Throughout this paper
i :=

p
�1.

Example 1.1. Let K := fz : jzj � rg for some constantr > 0, and letw(z) := 1.
Then a sequence of Leja points can be constructed as follows. Letz0 be an arbitrary point on
the boundary ofK . The next Leja pointz1 is a point inK of largest distance toz0. Thus,
z1 := z0 exp(i�). Note that the pointz1 is uniquely determined. The Leja pointz2 maximizes
the product of the distancesjz � z1jjz � z0j for all z 2 K . This yieldsz2 = z0 exp(i�=2)
or z2 = z0 exp(i3�=2). Note that either one of the two possible values ofz2 is acceptable.
Having determinedz2, we havez3 := �z2. There are four possible choices forz4.

Consider the binary representation of the nonnegative integers

j =

1X
k=0

jk2
k; jk 2 f0; 1g;

and define the points

zj := z0 exp(i�

1X
k=0

jk2
�k); j = 1; 2; : : : :(1.4)

It can be shown that the points (1.4) are Leja points forK . Table 1.1 shows the arguments for
zj=z0 for a few values ofj.
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TABLE 1.1
Example 1.1: Arguments ofzj=z0 for pointszj defined by (1.4)

j arg(zj=z0)

0 0
1 �
2 �=2
3 3�=2
4 �=4
5 5�=4
6 3�=4
7 7�=4

It follows from symmetry considerations that the maximum of each product in (1.2) is
achieved at the midpoint of a boundary curve between two adjacent points (1.4). Moreover,
the points in every set of2k Leja pointsfzjg2

k

�1
j=0 , k = 1; 2; : : : , are equidistant on the

boundary ofK . 2
Example 1.2. LetK andw(z) be the same as in Example 1.1. In order to generate the Leja

pointsfzjg2
k

�1
j=0 , the setK can be replaced by the point setK 2` := fz0 exp(2�ik=2`); k =

0; 1; : : : ; 2` � 1g for any integer̀ � k. 2
In recent applications to eigenvalue computations and the solution of linear systems of

equations discussed in [1, 2, 4], the setK is an interval[a; b].
Example 1.3. Let K := [a; b], 0 � a < b < 1, w(z) := 1 andz0 := b. Thenz1 := a

andz2 := 1
2
(a + b). Formulas for Leja pointszj for j > 2 are more complicated. However,

we will see in Section 2 that Leja points forK have the same limit distributed as zeros of
Chebyshev polynomials forK . 2

Example 1.4. Let K andw(z) be the same as in Example 1.3, and letK
0
m (a; b) consist

of m points inK . Introduce

�m := max
z2K

min
z02K0

m
(a;b)

jz � z0j;

and assume thatm increases rapidly enough in relation to the number of Leja points,n, so
that

�m = o(n�2); n!1:(1.5)

This condition is satisfied for instance, when

K
0
m (a; b) :=

�
a+ (b� a)

j � 1

m� 1
; j = 1; 2; : : : ;m

�
(1.6)

andn = o(m1=2). Saff and Totik [16, Section V.1] show that if (1.5) holds, then the Leja
pointsfzjgn�1j=0 for K 0m (a; b) have the same limit distribution asn ! 1 (andm ! 1) as
Leja points forK . 2

In order to reduce the computational work required for the generation of Leja points for
an interval[a; b], we proposed in [1, 2, 4] to instead compute Leja points for discrete sets

Km (a; b) :=

�
a+ b

2
+

a� b

2
cos

�
2j � 1

2m
�

�
; j = 1; 2; : : : ;m

�
(1.7)

consisting of zeros of themth degree Chebyshev polynomial of the first kind forK .
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PROPOSITION 1.1. Let K := [a; b], 0 � a < b < 1 andw(z) := 1. Let Km (a; b)
be defined by (1.7). Letn = n(m) be a nondecreasing function ofm, such that for all
m > 0, 1 � n(m) � cm for some constantc in the open interval(0; 1). Then the Leja points
fzjgn�1j=0 for Km (a; b) have the same limit distribution asn!1 as Leja points forK .

Proof. The proposition follows from bounds by Ehlich and Zeller [8] for polynomials
on an interval bounded at Chebyshev points for this interval. These bounds show that the
inequality (1.14) in [16, p. 266] holds and the proposition can be shown by techniques dis-
cussed by Saff and Totik [16, Section V.1].

In some eigenvalue computations reported in [1], as well as in the iterative method for
linear systems of equations with a symmetric indefinite matrix described in [5], the setK

consists of two intervals[a; b] [ [a0; b0] with a < b < 0 < a0 < b0. We conjecture that an
analogue of Proposition 1.1 holds for this case. Here each interval is replaced by a discrete
subset consisting of zeros of Chebyshev polynomials of degreem for the interval.

We note that use of the point sets (1.6) and (1.7) instead of the setK = [a; b] in (1.1)-(1.2)
simplifies the computations, because maximization problems over a continuum are replaced
by maximization problems over a finite point set. For fixed sets (1.6) or (1.7) with points
fwkgmk=1, the firstn Leja points forK 0m (a; b) or Km (a; b) can be computed in roughly2mn
arithmetic floating point operations by storing the products

j�1Y
j=0

jwk � zj j; 1 � k � m;(1.8)

for everyj = 1; 2; : : : ; n� 1. More details on operation counts are given in Section 3. Here,
we only note that this operation count may increase significantly each timem is increased,
because an increase inm yields a new point setfwkgmk=1 and therefore new products (1.8)
have to be evaluated.

This paper presents a progressive adaptive discretization of the boundary ofK and re-
places the maximization overK in (1.1)-(1.2) by maximization over discrete sets. Fast Leja
points are obtained by maximization over these discrete sets. The discretization is carried out
so that parts of the boundary with many fast Leja points are discretized by a fine mesh, while
those parts of the boundary with few fast Leja points are discretized by a coarse mesh. The
discretization is updated as new fast Leja points are computed. Advantages of this approach
include:

(i) Computer codes for the generation of fast Leja points are simple and the computation
of fast Leja points is rapid. The computation ofn fast Leja points forK requires only
roughly 1

2
n2 arithmetic floating point operations.

(ii) The setK may be modified during the computation of fast Leja points without in-
creasing the operation count. This is important in applications to eigenvalue compu-
tations and the solution of linear systems of equations; see below.

In eigenvalue computations, the setK should contain all or most of the undesired eigenvalues
of the matrix; see Section 4. However, often such a set is not explicitly known a priori.
In the algorithms described in [1, 2] setsK with this property are determined and updated
during the computation. Analogously, when solving systems of linear equations, the setK

should contain all or almost all eigenvalues of the matrix. The algorithms presented in [4,
5] determine such sets during the computation, and the setsK used during the iterations
are generally updated several times as new spectral information about the matrix becomes
available.

This paper is organized as follows. Section 2 reviews properties of Leja points. Fast
Leja points are introduced in Section 3, and computed examples that illustrate properties of
fast Leja points are presented in Section 4. Section 4 also displays timings that show that
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fast Leja points indeed can be generated much faster than Leja points. An appendix contains
MATLAB code for the generation of fast Leja points.

2. Some properties of Leja points.We review some properties of Leja points. These
properties can be conveniently described in terms of a Green function for the complement of
K . In particular, Example 2.2 shows that the limit distribution of Leja points on an interval is
the same as the limit distribution for zeros of Chebyshev polynomials for the interval.

Identify C with the real planeR2 . Throughout this paperx; y 2 R andz 2 C . If
z = x + iy, i :=

p
�1, thenz and(x; y) denote the same point. LetK � C be a compact

set, whose complement
 := (C [ f1g)nK is connected and possesses a Green function
G(x; y) with a logarithmic singularity at infinity. In particular, we assume thatK is such
that the boundary ofK , denoted by@K also is the boundary of
, denoted by@
. This
Green function is uniquely determined by the requirements i)�G(x; y) = 0 in 
nf1g, ii)
G(x; y) = 0 on@
, and iii)

1

2�

Z
@


@

@n
G(x; y)d� = 1;

where @

@n
denotes the normal derivative directed into
 andd� stands for the element of arc

length; see, e.g., [19, Chapter 4.1]. The non-negative constant� defined by

� := lim
jzj!1

jzj exp(�G(x; y)); z = x+ iy;

is called thecapacityof K . The capacity depends on the size ofK . If K has capacity� and
� is a positive constant, then the set�K := f�z : z 2 Kg has capacity��.

Leja [12] showed that Leja points forK are uniformly distributed with respect to the
density function

1

2�

@

@n
G(x; y); z = x+ iy 2 @
(2.1)

on the boundary ofK . Thus, each subarc of the boundary ofK contains the fraction
1
2�

R


@
@n

G(x; y)d� of the Leja pointsfzjgnj=0 for K asn!1.
Example 2.1. LetK be the set in Example 1.1. Then the Green function is given by

G(x; y) := ln jz
r
j; z = x+ iy;

and thereforeK has capacityr. Since @
@n

G(x; y) = 1=r on @K , Leja points are uniformly
distributed on@K . 2

Example 2.2. LetK = [a; b] be a real interval, c.f. Example 1.3. Then the Green function
is given by

G(x; y) := ln

���� 2

b� a
(z � b+ a

2
+ (z2 � z(b+ a) + ba)1=2)

���� ; z := x+ iy;

where the branch of the square root is chosen so thatj 2
b�a

(z� b+a
2

+(z2�z(b+a)+ba)1=2)j >
1 for z 2 
. The capacity ofK is 1

4
(b� a). Leja points forK are uniformly distributed with

respect to the density function

1

2�

@

@n
G(x; 0) =

2

�
(b� a)�1(b� x)�1=2(x� a)�1=2; a < x < b:
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It is well known that zeros of Chebyshev polynomials for[a; b] are uniformly distributed with
respect to this density function, too. Thus, Leja points and zeros of Chebyshev polynomials
have the same limit distribution.2

The following theorem shows some properties of Leja points that are easy to verify nu-
merically. Numerical examples in Section 4 indicate that fast Leja points share these proper-
ties.

THEOREM 2.1. Letfzjg1j=0 be a sequence of Leja points for the setK , i.e, thezj satisfy
(1.1)-(1.2). Assume that the weight function satisfiesb1 � w(z) � b2 for all z 2 K for some
constants0 < b1 � b2 <1. Let� denote the capacity forK . Then

n�1Y
j=0

jzn � zj j1=n � �

�
b1

b2

�1=n
(2.2)

and

lim
n!1

n�1Y
j=0

jzn � zj j1=n = �:(2.3)

Proof. The proof by Leja [12] for the case whenw(z) := 1 extends in a straightforward
manner to positive weight functionsw(z).

It follows from results of Leja [12] that when the pointsfzkgj�1k=0 in (1.3) are Leja points
for a setK with capacity�, thejth root of the magnitude of the products (1.3) converges to
� asj !1 for anyz in the interior ofK . This property is helpful for the accurate evaluation
of products (1.3) of large degree forz 2 K .

3. Fast Leja points. Examples 1.1 and 1.2 are suggestive for the definition of fast Leja
points. Assume for the moment that the boundary ofK is a Jordan curve or a Jordan arc,
and letz(t), 0 � t � L, be a continuous parametric representation of the boundary, such
thatz(t) 6= z(s) for 0 � t < s < L. Fast Leja points can now be defined recursively. Let
fz(tj)gk�1j=0 be a set of fast Leja points on the boundary ofK . If K is a Jordan arc, then we

require thatt0 = 0 andt1 = L. Let fz(sj)gl�1j=0 be a set of candidate points that interlace
the set of fast Leja points; between each pair of adjacent fast Leja points there is a candidate
point. Thus,l = k� 1 whenK is a Jordan arc, andl = k whenK is a Jordan curve. The next
fast Leja pointz(tk) is chosen among the candidate points, i.e.,tk 2 fsjgl�1j=0 satisfies

w(z(tk))

k�1Y
l=0

jz(tk)� z(tl)j = max
0�j<`

w(z(sj))

k�1Y
l=0

jz(sj)� z(tl)j:(3.1)

Having determinedz(tk), we remove this point from the set of candidate points and new can-
didate points (in general two) are introduced betweenz(tk) and the closest fast Leja points, so
that the new set of fast Leja pointsfz(tj)gkj=0 and the new set of candidate points interlace.
The next fast Leja point,z(tk+1), is now determined analogously.

Example 3.1. LetK := fz : jzj � 1g and consider the parametric representationz(t) :=
exp(it), i =

p
�1, 0 � t � 2�, of the boundary curve. Letw(z) := 1 and introduce

tj := j�; sj := tj +
�

2
; j = 0; 1:

Then the fast Leja pointsz(t0) andz(t1) interlace the candidate pointsz(s0) andz(s1). Both
candidate points yield the same value of the product on the right-hand side of (3.1). Therefore,
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the next fast Leja point,z(t2), can be chosen to be eitherz(s0) or z(s1), say,t2 = s0. We
choose the two new candidate points,z(s2) andz(s3), to be on the unit circle, equidistantly
betweenz(t2) and adjacent fast Leja points. Continuing to allocate fast Leja points and
candidate points in this manner, with new candidate points allocated at the midpoints between
adjacent fast Leja points, yields a sequence of fast Leja pointsfz(tj)g1j=0. This sequence is
equivalent with the sequence of Leja pointsfzjg1j=0 of Example 1.1 in the sense that

max
z2K

nY
j=0

jz � z(tj)j = max
z2K

nY
j=0

jz � zj j; n = 0; 1; : : : :

2

Example 3.2. Let K := [a; b], 0 � a < b < 1, and consider the parametric representa-
tion z(t) := t, a � t � b. Letw(z) := 1. Allocate candidate points equidistantly between
adjacent fast Leja points. Define

t0 := b; t1 := a; s0 :=
a+ b

2
:

This corresponds to the fast Leja pointsz(t0) := a andz(t1) := b, and candidate point
z(s0) :=

a+b
2

. The next fast Leja point clearly isz(t2) with t2 := s0. We reuses0 to store a
parameter value for a new candidate point. Thus, the new candidate pointsz(s0) andz(s1)
correspond to the parameter valuess0 =

3a+b
2

ands1 = a+3b
2

. We can chooset3 to be either
s0 or s1. This defines the fast Leja pointz(t3). MATLAB code for generating fast Leja points
for an interval in this manner is displayed in the Appendix.2

Example 3.3. We illustrate the use of a parametric representation that is not arc length.
LetK := [�2; 2] and consider the parametric representationz(t) := 2 cos(t), 0 � t � �. We
remark that zeros of Chebyshev polynomials of the first kind forK correspond to equidistant
parameter values. Letw(z) := 1. Allocate candidate points equidistantly with respect to the
parametert between adjacent fast Leja points. Thus, define

t0 := 0; t1 := �; s0 :=
�

2
:

This corresponds to the fast Leja pointsz(t0) := 2 andz(t1) := �2, and candidate point
z(s0) := 0. The next fast Leja point clearly isz(t2) with t2 := s0, and the new candidate
pointsz(s0) andz(s1) correspond to the parameter valuess0 =

�

4
ands1 = 3�

4
. Then we can

chooset3 to be eithers0 or s1. This defines the fast Leja pointz(t3). This point is different
from the fast Leja pointz(t3) in Example 3.2.

We will see in Example 4.2 below, that the fast Leja points of the present example are
inferior to the fast Leja points of Example 3.2. This may depend on thatjz0(t)j is not bounded
away from zero for0 � t � �. 2.

This method of generating fast Leja points generalizes in a straightforward manner to sets
K with a boundary that consists of several components: allocate fast Leja points and candidate
points on every boundary curve and boundary arc using a parametric representation for each
curve or arc.

We turn to the operation count for generating fast Leja points on a real interval as de-
scribed in Example 3.2. Assume that the fast Leja pointsfz(tj)gkj=0, the interlacing candidate

pointsfz(sj)gk�1j=0 , and the products

�j;k�1 := w(z(sj))

k�1Y
q=0

jz(sj)� z(tq)j; 0 � j � k � 3;(3.2)
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are known. We evaluate the products

�j;k := �j;k�1jz(sj)� z(tk)j; 0 � j � k � 3;

as well as

�j;k := w(z(sj))

kY
q=0

jz(sj)� z(tq)j; j = k � 2; k � 1:

The next fast Leja point is given byz(tk+1) := z(sq), where the indexq is determined by the
condition

�q;k = max
0�j<k

�j;k:(3.3)

The pointz(sq) is removed from the set of candidate points, and we letsj := sj�1 for
j = q; q + 1; : : : ; k � 1. This yields the candidate pointsfz(sj)gk�1j=0 . To this set we add
two new candidate points,z(sk) andz(sk+1), adjacent toz(tk+1). We are now in a position
to determine the next pointz(tk+2) in the sequence of fast Leja points. The computations
can be simplified by working with linked lists of fast Leja points and candidate points. In the
MATLAB code in the Appendix such linked lists are simulated by using index arrays.

The count of arithmetic floating point operations(+;�; �; =) for the computation of the
fast Leja pointz(tk+1) as outlined above is4k + O(1). Thus, the set of fast Leja points
fz(tj)gkj=0 can be computed in2k2 + O(k) arithmetic operations when the products (3.2)
are stored. This operation count ignores the evaluation of the absolute values.

4. Numerical examples. Computed examples of this section indicate that fast Leja
points can be valuable for polynomial approximation by interpolation and for eigenvalue
computation. All numerical experiments were carried out on an HP 9000/735 work station
using double precision arithmetic, i.e., with approximately 16 significant digits.

1000 2000 3000 4000 5000
1

1.005

1.01

1.015

1.02

1.025

1.03
Leja points

n
1000 2000 3000 4000 5000

1

1.005

1.01

1.015

1.02

1.025

1.03
fast Leja points

n

FIG. 4.1.Example 4.1: Graphs for
Qn�1

j=0
jzn � zj j1=n asn increases.
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4.1. Polynomial interpolation. We present examples that illustrate the behavior of the
products in (2.2) and (2.3) in Theorem 2.1 and display approximation errors obtained by
polynomial interpolation at Chebyshev points, Leja points and fast Leja points. Polynomial
interpolation is an important application of fast Leja points. This application, moreover,
reveals how similar the distribution of fast Leja points is to the distribution of Chebyshev
points already for a fairly small number of points.

Example 4.1. LetK := [�2; 2] andw(z) := 1. According to Example 2.2,K has
capacity� = 1. Let fzjg1j=0 be a sequence of Leja points forK and define the mapping

h(n) :=

n�1Y
j=0

jzn � zj j1=n; n = 1; 2; : : : :

By Theorem 2.1,h(n) � 1 andlimn!1 h(n) = 1. The graph on the left-hand side of Figure
4.1 displaysh(n). We remark that in computations for generating the graph, we replaced the
setK by the discrete setKm (�2; 2) defined by (1.7) withm = 6000, and generated Leja
points for this set. An increase of the number of pointsm in the setKm (�2; 2) did not result
in a significantly different graph.

The graph on the right-hand side of Figure 4.1 displays the mappingh(n) when the
pointszj := z(tj) are fast Leja points generated as described in Example 3.2. Comparing the
graphs of Figure 4.1 indicates that the mappingh(n) behaves in a similar way for Leja points
and fast Leja points.2
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FIG. 4.2. Example 4.2: Graph ofmaxz2K

Qn�1

j=0
jz � zj j for 1 � n � 500, zj fast Leja points generated

as described in Example 3.3.

Example 4.2. We examine the products
Qn�1

j=0 jz � zj j, n = 1; 2; : : : , for z 2 K :=
[�2; 2] andw(z) := 1. Figures 4.2-4.4 display the maximum value of these products on
K when the pointszj are determined in three different ways. In Figure 4.2 the pointszj
are generated as described in Example 3.3. During the computation of thezj the inter-
val [0; �] for the parametert is replaced by a set of5000 equidistant points. We obtain
max1�n�500fmaxz2K

Qn�1

j=0 jz � zj jg = 528.
The pointszj for Figure 4.3 are Leja points forKm (�2; 2) with m = 5000. The value

of m is chosen large enough so that the behavior of the products does not change whenm is
increased. We therefore refer to the computed pointszj as Leja points forK . We note that
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FIG. 4.3.Example 4.2: Graph ofmaxz2K

Qn�1

j=0
jz � zj j for 1 � n � 500, zj Leja points forK 5000 (�2; 2).
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FIG. 4.4. Example 4.2: Graph ofmaxz2K

Qn�1

j=0
jz � zj j for 1 � n � 500, zj fast Leja points generated

as described in Example 3.2.

the expressionmax0�k<nfmaxz2K
Qk�1

j=0 jz � zj jg grows less rapidly withn for the Leja
points forK than for the pointszj used for Figure 4.2.

The points for Figure 4.4 are fast Leja points forK generated as described in Example
3.2. The expressionmax0�k<nfmaxz2K

Qk�1

j=0 jz�zj jg grows slower withn than for any of
the other sets of pointszj in this example. Slow growth is advantageous when approximating
functionsf on [�2; 2] by polynomials that interpolatef at the pointszj ; see Walsh [19,
Chapter 4], de Boor [3, Chapter 2] or [14] for discussions.2

The following two examples compute polynomials in Newton form that interpolate given
functions at Chebyshev, Leja and fast Leja points. The stability of the Newton form of the
interpolation polynomial when interpolating at Leja points has previously been demonstrated
in [14]. The examples below suggest that the stability properties and rate of convergence are
the same when interpolating at fast Leja points.
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FIG. 4.5. Example 4.3:log10(maxz2K jf(z) � pn(z)j) for 1 � n � 300, where the polynomialpn of
the form (4.1) interpolatesf(z) := (1 + z

2
)1=2 at Chebyshev points (4.3) (smooth curves in both graphs), at Leja

points forK 3000 (�2; 2) (staircase curve on the left), and at fast Leja points (staircase curve on the right).

Example 4.3. LetK := [�2; 2] andw(z) := 1. We consider polynomial approximation
of the functionf(z) := (1 + z

2
)1=2 onK by interpolating polynomialspn in Newton form

pn(z) := f [z0] +

nX
j=1

f [z0; z1; z2; :::; zj ]

j�1Y
k=0

(z � zk);(4.1)

where the divided differences are defined recursively by

f [zj ; zj+1; :::; zk] :=
f [zj+1; zj+2; :::; zk]� f [zj ; zj+1; :::; zk�1]

zk � zj
(4.2)

andf [zj ] := f(zj). It is convenient to use the Newton form of the interpolation polynomial,
because it easily can be updated when interpolation at additional points is required, e.g., when
new fast Leja points have been generated.

This example compares the approximation error for sequences of interpolation polyno-
mials generated in three different ways. We first determine polynomialspn that interpolatef
at the scaled zeros of the(n+1)st degree Chebyshev polynomial forK . The zeros are scaled
to make the endpoints ofK interpolation points, i.e., we interpolate at the points

K̂n+1 :=

(
2 cos( 2j+1

2(n+1)
�)

cos( �
2(n+1)

)
: 0 � j � n

)
:(4.3)

We refer to the points in (4.3) as Chebyshev points. Thus, for each value ofn, the polynomial
pn interpolatesf at Chebyshev points. The approximation error

max
z2K

jf(z)� pn(z)j(4.4)

is close to the error achieved with the best polynomial approximant of degree at mostn; see,
e.g., de Boor [3, Chapter 2]. The smooth curves in Figure 4.5 display the10-logarithm of the
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error (4.4) for polynomials of degree between zero and300. The rate of convergence is quite
slow due to the branch point off atz = �2.

In order to be able to evaluate polynomials of high degree, we ordered the points in each
setK̂n+1 like Leja points before using them in (4.1) and (4.2). This ordering is determined
by replacing the setK in (1.1) and (1.2) by the set (4.3), and it reduces the propagation of
round-off errors; see [14]. We remark that the interpolation polynomial has to be recomputed
for each point set̂Kn+1 , because the intersection̂Kn \ K̂n+1 only contains few points.

The second sequence of interpolation polynomialspn is obtained by using Leja points
for the discrete setK 3000 (�2; 2) defined by (1.7) as interpolation points. The computed
interpolation points approximate Leja points forK , and we refer to the interpolation points as
Leja points. The staircase curve on the left-hand side of Figure 4.5 shows the approximation
error (4.4) obtained with these interpolation polynomials. The error is fairly close to the error
achieved when interpolating at Chebyshev points. Note that interpolation in Leja points can
give a smaller error than interpolation at Chebyshev points.

Finally, we interpolatef at fast Leja points forK generated as described in Example
3.2. The staircase curve on the right-hand side of Figure 4.5 displays the approximation error
(4.4). The approximation error achieved is close to the error obtained when interpolating
at Chebyshev points, however, the arithmetic work required for generating the sequence of
polynomials that interpolate at fast Leja points is much smaller.2
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FIG. 4.6. Example 4.4:log10(maxz2K jf(z) � pn(z)j) for 1 � n � 300, where the polynomialpn of the
form (4.1) interpolatesf(z) := (1 + 25

4
z2)�1 at Chebyshev points (4.3) (jagged curve in both graphs), at Leja

points forK 3000 (�2; 2) (top curve on the left), and at fast Leja points (top curve on the right).

Example 4.4. Consider the approximation of the Runge functionf(z) := (1 + 25
4
z2)�1

on the intervalK := [�2; 2] by interpolating polynomialspn given by (4.1). We interpolate
f at the same sequences of interpolation points as in Example 4.3. Figure 4.6 displays the
computed errorsmaxz2K jf(z) � pn(z)j and is analogous to Figure 4.5. In particular, the
figure shows that interpolation at fast Leja points gives the same rate of convergence as inter-
polation at Chebyshev points as the degree of the polynomial increases. The convergence is
geometric, becausef is analytic in an open set containingK . 2

The fact that polynomial interpolation at fast Leja points in the Examples 4.3 and 4.4
gives about the same error as interpolation in Chebyshev points, suggests that fast Leja points
and Chebyshev points are distributed similarly already for a fairly small number of points.



ETNA
Kent State University 
etna@mcs.kent.edu

136 Fast Leja points

The distribution of fast Leja points is presently being investigated.

4.2. Eigenvalue computation.The determination of a few, sayk, eigenvalues and as-
sociated eigenvectors of a large sparse symmetric matrixA 2 R

n�n , n� k, is an important
computational problem that arises in many applications. The difficulties associated with de-
termining eigenvalues has spurred considerable research; see, e.g., Saad [15] for a survey
and references. Recently, Sorensen [17] proposed the Implicitly Restarted Arnoldi (IRA)
method for the computation of a few eigenvalues of a large sparse nonsymmetric matrix, and
the closely related Implicitly Restarted Lanczos (IRL) method for the computation of a few
eigenvalues of a large sparse symmetric matrix. Improvements and analyses of these meth-
ods have been presented by Lehoucq and Sorensen [9, 10]. ARPACK by Lehoucq et al. [11]
implements these methods.

The IRA and IRL methods can be regarded as curtailed QR algorithms for the nonsym-
metric and symmetric eigenvalue problems, respectively. Similarly as in the QR algorithms,
the choice of shifts is important for the performance of the IRA and IRL methods. The IRA
method generates a sequence of small Hessenberg matrices, whose spectral factorizations are
computed. In the IRL method, the Hessenberg matrices generated are real and symmetric.
Lehoucq and Sorensen [9, 10, 17] propose to use some of the computed eigenvalues as shifts.
This approach has recently been analyzed by Morgan [13]; see also Calvetti et al. [6] and
Stathopoulos et al. [18] for related discussions.

The convergence of the IRA and IRL methods can be studied by considering certain
polynomial approximation problems. Specifically, one would like to determine an acceler-
ating polynomial that is of large magnitude in areas of the complex plane that contain the
k eigenvalues of interest and small elsewhere. For instance, when computing thek small-
est eigenvalues of a large symmetric matrix, we would like the polynomial to be large in an
interval that contains thesek eigenvalues, and small on an interval that contains the remain-
ing eigenvalues. The eigenvalues of the sequence of the small symmetric tridiagonal matrices
generated by the IRL method help us determine a sequence of intervals[aj ; bj ], j = 1; 2; : : : ,
that do not contain any of the desiredk smallest eigenvalues of the matrix, but many of the
undesired ones. We describe in [1, 2] how a polynomialp

(j)
q that is small on the interval

[aj ; bj ] can be determined by letting it have Leja pointsfz(j)
k
gq�1
k=0 for a setKm (aj ; bj) as

zeros. Thus,

p(j)q (z) := cj

q�1Y
k=0

(z � z
(j)

k
);(4.5)

wherecj is a scaling factor of no significance for the convergence. When allocating the Leja

pointsfz(j)
k
gq�1
k=0, the presence of the points[j�1r=1fz

(r)

k
gq�1
k=0 for previous intervals[ar; br],

1 � r < j, is taken into account; see [1, 2] for details. The accelerating effect of all the
polynomials is described by the product polynomial

pjq(z) :=

jY
r=1

p(r)q (z):(4.6)

Details on how Leja points can be applied to compute a few extreme or nonextreme eigenval-
ues can be found in [1, 2]. The pointsz(j)

k
are analogous to the shifts in the QR algorithm.

We therefore refer to thez(j)
k

as Leja shifts in the context of eigenvalue computations.
Leja shifts are compared to Chebyshev shifts in [2, Example 5.2]. The latter are defined

as follows. For eachr = 1; 2 : : : the Chebyshev shiftsfz(r)
k
gq�1j=0 are the zeros of the Cheby-

shev polynomial of the first kind of degreeq for the interval[ar; br]. Chebyshev shifts are
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found to yield slower convergence than Leja shifts. This depends on that Chebyshev shifts
for the interval[ar; br] are distributed independently of already allocated Chebyshev shifts
for the intervals[as; bs] for s < r. The allocation of fast Leja points for[ar; br], on the
other hand, takes the distribution of previously allocated fast Leja points into account; see [2]
for further discussion. An interactive example that demonstrates this is available at web site
http://etna.mcs.kent.edu/xxx.

We propose the use of fast Leja points for the sequence of intervals[aj ; bj ], j = 1; 2; : : : ,
to define the accelerating polynomials (4.5) and (4.6). The examples below compare Leja
points for the setsKm (aj ; bj) with m = 1000 orm = 3000with fast Leja points for the inter-
vals [aj ; bj ]. The number of matrix-vector product evaluations with the matricesA are com-
pared. We also tabulate the CPU time required for computing Leja points forK 1000 (aj ; bj)
andK 3000 (aj ; bj), and fast Leja points for[aj ; bj ]. We remark that when computing Leja
points for setsKm (aj ; bj), the polynomial has to be evaluated at each one of them points
of Km (aj ; bj) for every change of interval[aj ; bj ]. This evaluation can be expensive when
the polynomial is of high degree. The degree equals the number of evaluations of matrix-
vector products with the matrixA. Fast Leja points makes these evaluations unnecessary, and
this contributes to making fast Leja points faster to determine than Leja points for the sets
Km (aj ; bj).

TABLE 4.1
Example 4.5:A = diag(1; 2; 3; : : : ; 2500)

Shifts CPU time for # matrix-vector
shifts products

# Lanczos vectors =5
fast Leja points 0:20 sec. 510

Leja points for setsK 1000 (a; b) 12:29 sec. 551
Leja points for setsK 3000 (a; b) 37:23 sec. 553

# Lanczos vectors =10
fast Leja points 0:27 sec. 540

Leja points for setsK 1000 (a; b) 5:07 sec. 526
Leja points for setsK 3000 (a; b) 13:7 sec. 507

# Lanczos vectors =15
fast Leja points 0:17 sec. 508

Leja points for setsK 1000 (a; b) 3:05 sec. 510
Leja points for setsK 3000 (a; b) 8:58 sec. 497

Example 4.5. We wish to compute the three smallest eigenvalues of the matrix

A = diag(1; 2; 3; : : : ; 2500);(4.7)

by Algorithm 4.1 in [1] with fast Leja points as shifts. We set the tolerance of the algorithm
to 1 � 10�4. Table 4.1 reports the number of matrix-vector products required and the CPU
time necessary to compute the fast Leja points. For comparison, we also used Leja points
for setsKm (aj ; bj) as shifts, form = 1000 andm = 3000. Table 4.1 shows the number
of matrix-vector product evaluations to be about the same for the different choices of shifts,
however, the computation of fast Leja points is much faster than the determination of Leja
points for the setsKm (aj ; bj). 2

Example 4.6. This example differs from Example 4.5 only in the choice of matrixA.
Thus, we letA = diag(a1; a2; : : : ; a100) have entriesaj := j

2

100
and compute the three
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TABLE 4.2
Example 4.6:A = diag(a1; a2; : : : ; a100) with entriesai =

i2

100
, 1 � i � 100

Shifts CPU time for # matrix-vector
shifts products

# Lanczos vectors =5
fast Leja points 0:09 sec. 369

Leja points for setsK 1000 (a; b) 5:74 sec. 340
Leja points for setsK 3000 (a; b) 21:25 sec. 374

# Lanczos vectors =10
fast Leja points 0:15 sec. 378

Leja points for setsK 1000 (a; b) 2:69 sec. 368
Leja points for setsK 3000 (a; b) 6:93 sec. 344

smallest eigenvalues by Algorithm 4.1 of [1] with the tolerance set to1 � 10�3. Table 4.2
reports the number of matrix-vector products required and the CPU time for the computation
of the shifts.2

Example 4.7. LetA = diag(a1; a2; : : : ; a500) with a2j :=
p
j anda2j�1 := �pj,

1 � j � 250. We want to compute the smallest positive and largest negative eigenvalues
of A, as well as corresponding eigenvectors, by Algorithm 4.2 described in [1]. Since the
desired eigenvalues are in the middle of the spectrum, the accelerating polynomials have to
be small on a sequence of pairs of intervals[aj ; bj ][ [a0j ; b0j ], such thatbj < 0 < a0j . We store
eight Lanczos vectors and set the tolerance in the algorithm to1 � 10�3. The computation
of the desired eigenpairs with fast Leja points as shifts required190 matrix-vector products
with the matrixA. When, instead, we used Leja points for sequences of setsK 4000 (aj ; bj) [
K 4000 (a

0
j ; b

0
j) as shifts,218 matrix-vector product evaluations are required.

5. Conclusion. Fast Leja points are introduced, and shown to have desirable properties
for polynomial approximation and eigenvalue computation. The ease of their computation
makes them attractive to use in these applications.
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[7] A. Edrei,Sur les déterminants r´ecurrents et les singularit´es d’une fonction donn´ee par son developpement de

Taylor, Compositio Math., 7 (1939), pp. 20–88.
[8] H. Ehlich and K. Zeller,Schwankung von polynomen zwischen gitterpunkten, Math. Z., 86 (1964), pp. 41–44.
[9] R. B. Lehoucq,Analysis and implementation of an implicitly restarted Arnoldi iteration, Ph.D. Thesis, Rice

University, Houston, 1995.
[10] R. B. Lehoucq and D. C. Sorensen,Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM

J. Matrix Anal. Appl., 17 (1996), pp. 789–821.



ETNA
Kent State University 
etna@mcs.kent.edu

J. Baglama, D. Calvetti, and L. Reichel 139

[11] R. B. Lehoucq, D. C. Sorensen and C. Yang,ARPACK Users’ Guide: Solution of Large Scale Eigenvalue
Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.

[12] F. Leja,Sur certaines suits li´ees aux ensemble plan et leur application `a la representation conforme, Ann.
Polon. Math., 4 (1957), pp. 8–13.

[13] R. B. Morgan,On restarting the Arnoldi method for large nonsymmetric eigenvalue problems, Math. Comp.,
65 (1996), pp. 1213–1230.

[14] L. Reichel,Newton interpolation at Leja points, BIT, 30 (1990), pp. 332–346.
[15] Y. Saad,Numerical Methods for Large Eigenvalue Problems, Halstead Press, New York, 1992.
[16] E. B. Saff and V. Totik,Logarithmic Potentials with Extremal Fields, Springer, Berlin, 1997.
[17] D. C. Sorensen,Implicit application of polynomial filters in ak-step Arnoldi method, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 357–385.
[18] A. Stathopoulos, Y. Saad and K. Wu,Dynamic thick restarting of the Davidson and the implicitly restarted

Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 246–265.
[19] J. L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain, 5th ed., Amer.

Math. Soc., Providence, RI, 1969.



ETNA
Kent State University 
etna@mcs.kent.edu

140 Fast Leja points

6. Appendix. We present a MATLAB code for the generation of fast Leja points for an
interval[a; b] as described in Example 3.2. The notation used in the MATLAB code is similar
to that of Example 3.2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Variables: %
% a right endpoint of the interval [a,b], presently set to -2 %
% b left endpoint of the interval [a,b], presently set to 2 %
% nflp number of fast Leja points to be computed, presently set %
% to 500 %
% zt(j) fast Leja point %
% zs(j) candidate points %
% index pointers for candidate points %
% index(k,1) -> pointer to the fast Leja point to the left %
% of zs(k) %
% index(k,2) -> pointer to the fast Leja point to the right %
% of zs(k) %
% zprod product |z-zt(k)| over k. The product is evaluated for %
% all candidate points z=zs(j) in the array zs. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a = -2; b = 2; nflp = 500;
if abs(a) > abs(b), zt = [a,b]; else zt = [b,a]; end
zt(3) = (a+b)/2;
zs(1) = (zt(2)+zt(3))/2; zs(2) = (zt(3)+zt(1))/2;
zprod(1) = prod(zs(1)-zt); zprod(2) = prod(zs(2)-zt);
index(1,1) = 2; index(1,2) = 3; index(2,1) = 3; index(2,2) = 1;
for i = 4:nflp

[maxval,maxi] = max(abs(zprod));
zt(i) = zs(maxi);
index(i-1,1) = i; index(i-1,2) = index(maxi,2); index(maxi,2) = i;
zs(maxi) = (zt(index(maxi,1))+zt(index(maxi,2)))/2;
zs(i-1) = (zt(index(i-1,1))+zt(index(i-1,2)))/2;
zprod(maxi) = prod(zs(maxi)-zt(1:i-1));
zprod(i-1) = prod(zs(i-1)-zt(1:i-1));
zprod = zprod.*(zs-zt(i));

end

The determination of the candidate pointszs(j) is accomplished by using an arrayindex, where
index(k; 1) points to the fast Leja point after the candidate pointzs(k), andindex(k; 2) points to
the fast Leja point before the candidate pointzs(k). The use of the arrayindex makes it possible to
determine new candidate points without explicitly ordering the fast Leja points.


