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FAST LEJA POINTS *

J. BAGLAMAT, D. CALVETTI, AND L. REICHEL®

Abstract. Leja points are used in several areas of scientific computing, including polynomial approximation
and eigenvalue computation. Their determination requires the maximization of a sequence of polynomials over a
compact set in the complex plane. These computations can be quite time consuming when the number of Leja points
to be determined is large. This paper introduces a new set of points, referred to as fast Leja points, that are simpler
and faster to compute. An interactive example that illustrates the computation and distribution of fast Leja points is
available at web site http://fetna.mcs.kent.edu/vol.7.1998/pp124-140.html.
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1. Introduction. Let K be a compact set in the complex plaBewith a connected
complement, and assume that the boundafi{ shtisfies some mild regularity conditions to
be specified below. Edrei [7] and Leja [12] studied the following recursively defined sequence
{2}5%, of points inK. Let z be a point such that

(1.2) w(zo)|z0| = meaﬂé(w(z)|z|, z0 € K,

and letforj =1,2,... , the points; satisfy

Jj—1 Jj—1
(1.2) w() [ 12— 2l = max w [ 12 —2al, 2 €K,
k=0 k=0

wherew(z) is a given real-valued positive function d&. We refer tow(z) as the weight
function. The points;; determined by (1.1)-(1.2) might not be unique. We will call any
sequence of pointz; } 32, that satisfies (1.1)-(1.2) a sequence of Leja pointsforEdrei

[7] and Leja [12] studied these points fofz) := 1 onK.

Leja points are used in several areas of scientific computing, e.g., for polynomial inter-
polation [14], in iterative methods for the solution of large linear systems of equations [4, 5]
and in eigenvalue computations [1, 2, 6].

The computation of Leja points requires the maximization of a sequence of products
over a compact séf, see (1.2), and these computations can be quite cumbersome when the
number of Leja points generated is large. It is the purpose of the present paper to introduce
a new set of points, referred to st Leja pointswhich are simpler and faster to compute
than Leja points.

The interest in Leja points stems from the fact that whgn, 22,..., are Leja points
for the setK, the polynomials

(1.3) pi(z):=[[(z-2), =12,
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can be evaluated fairly accurately fore K also when their degregis large; see [14] for
illustrations. Products of the form (1.3) arise, e.g., in the Newton formula for polynomial
interpolation [3, 14], in the Implicitly Restarted Lanczos and Arnoldi methods for the com-
putation of a few eigenvalues of a large matrix [1, 2, 6, 9, 10, 17], and in Richardson iteration
for the solution of linear systems of equations [4, 5]. In the applications to eigenvalue com-
putation and the solution of linear systems, each iteration increases the degree of polynomials
of the form (1.3) by one, and, in general, it is not known a priori how many iterations are
required until the desired eigenvalues, or the approximate solution, have been determined to
sufficient accuracy. Leja points are convenient to use in these applications, because the Leja
pointsz; are independent of the Leja points for j < k. Thus, the polynomiagb(2) is
divisible byp;(z) for1 < j <k.

Itis illuminating to compare polynomial interpolation at Leja points for an intefvdl]
and at zeros of Chebyshev polynomials for the same interval. Assume that the Newton form
of the interpolation polynomial is used. Polynomial interpolation of a smooth fungtiain
the zeros of the Chebyshev polynomial of the first kind of degriseknown to yield a near-
best polynomial approximant of degree at mbst 1 of f on[a,b]; see, e.g., de Boor [3,
Chapter 2] for a discussion and illustrative numerical examples. However, if we find that the
achieved accuracy is insufficient and therefore we would like to interpglatehe zeros of
the Chebyshev polynomial of degréet 1 instead, it would be difficult to take advantage
of the computations already carried out when determining the new interpolating polynomial.
The difficulty stems from the fact that the Chebyshev polynomials of dégaeek+1 do not
have common zeros. On the other hand, given the interpolating polynomial in Newton form
of degree at most — 1 that interpolateg at the firstt Leja points for{a, b], it is simple and
fast to update this polynomial to obtain the polynomial of degree at st interpolates
f atthe firstk + 1 Leja points fork.

When the weight function is given hy(z) := 1, the maximum principle for analytic
functions yields that the maxima in (1.1) and (1.2) are achieved fom the boundary of
K. This also holds for other weight functions of interest to us. It therefore suffices to only
maximize over the boundary @& in (1.1) and (1.2). We seek to reduce the computational
work further by replacing the boundary &f by a discrete point set. Throughout this paper
i:=+—1.

Example 1.1 LetK := {z : |z| < r} for some constant > 0, and letw(z) := 1.
Then a sequence of Leja points can be constructed as followsg betan arbitrary point on
the boundary ofK. The next Leja point; is a point inK of largest distance te,. Thus,
z1 := zp exp(im). Note that the point; is uniquely determined. The Leja poitmaximizes
the product of the distancés — z; ||z — zo| for all z € K. This yieldsz, = zg exp(im/2)
or zo = zpexp(i3w/2). Note that either one of the two possible valuespfs acceptable.
Having determined-, we havez; := —z5. There are four possible choices fqr

Consider the binary representation of the nonnegative integers

o0
i=> 2% jre{0,1},
k=0
and define the points

(1.4) zj = zexplin »_jk27%),  j=1,2,....
k=0

It can be shown that the points (1.4) are Leja pointdorTable 1.1 shows the arguments for
zj/ 2o for a few values ofj.
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TABLE 1.1
Example 1.1: Arguments ef /zo for pointsz; defined by (1.4)

0 0

1 T

2 /2

3 3m/2

4 w/4

5 5m/4

6 3m/4

7 /4

It follows from symmetry considerations that the maximum of each product in (1.2) is
achieved at the midpoint of a boundary curve between two adjacent points (1.4). Moreover,
the points in every set df* Leja points{zj}iigl, k = 1,2,... , are equidistant on the
boundary ofK. O

Example 1.2LetK andw(z) be the same as in Example 1.1. In order to generate the Leja
points{zj}iigl, the setK can be replaced by the point &t := {zo exp(2mik/2¢), k =
0,1,...,2¢ — 1} for any integer > k. O

In recent applications to eigenvalue computations and the solution of linear systems of
equations discussed in [1, 2, 4], the Beis an intervala, b].

Example 1.3LetK := [a,b],0 < a < b < o0, w(z) := 1 andz := b. Thenz; :=a
andzsy := %(a + b). Formulas for Leja points; for j > 2 are more complicated. However,
we will see in Section 2 that Leja points fiét have the same limit distributed as zeros of
Chebyshev polynomials fd. O

Example 1.4 Let K andw(z) be the same as in Example 1.3, andi&f (a, b) consist
of m points inK. Introduce

€m i=max min |z —2'|,
z€K z'€eK (a,b)
and assume that increases rapidly enough in relation to the number of Leja paintsp
that

(1.5) €m = 0o(n™?), n — 00.
This condition is satisfied for instance, when

(1.6) K (a,b) := {a+(b_a)ri:11’j:1’2""’m}

andn = o(m'/?). Saff and Totik [16, Section V.1] show that if (1.5) holds, then the Leja
points{zj};.‘;o1 for K, (a,b) have the same limit distribution as— oo (andm — o) as
Leja points forK. O

In order to reduce the computational work required for the generation of Leja points for
an intervalla, b], we proposed in [1, 2, 4] to instead compute Leja points for discrete sets

a.7) K (a,b) ::{a+b+a_bcos <2j_17r>,j:1,2,...,m}

2 2 2m

consisting of zeros of thexth degree Chebyshev polynomial of the first kind for
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PROPOSITIONL.1. LetK := [a,b], 0 < a < b < oo andw(z) := 1. LetK,,(a,b)
be defined by (1.7). Let = n(m) be a nondecreasing function of, such that for all
m > 0,1 < n(m) < em for some constantin the open interva(0, 1). Then the Leja points
{zj};.‘;(} for K, (a, b) have the same limit distribution as— oo as Leja points foik.

Proof. The proposition follows from bounds by Ehlich and Zeller [8] for polynomials
on an interval bounded at Chebyshev points for this interval. These bounds show that the
inequality (1.14) in [16, p. 266] holds and the proposition can be shown by techniques dis-
cussed by Saff and Totik [16, Section V.0].

In some eigenvalue computations reported in [1], as well as in the iterative method for
linear systems of equations with a symmetric indefinite matrix described in [5], tH& set
consists of two intervalgs, b U [a’,b'] witha < b < 0 < o' < b'. We conjecture that an
analogue of Proposition 1.1 holds for this case. Here each interval is replaced by a discrete
subset consisting of zeros of Chebyshev polynomials of degriee the interval.

We note that use of the point sets (1.6) and (1.7) instead of i€ sefa, b] in (1.1)-(1.2)
simplifies the computations, because maximization problems over a continuum are replaced
by maximization problems over a finite point set. For fixed sets (1.6) or (1.7) with points
{wi}}*,, the firstn Leja points fork!, (a, b) or K,, (a,b) can be computed in roughmnn
arithmetic floating point operations by storing the products

j—1
(1.8) Il lwe =21, 1<k<m,
j=0

foreveryj = 1,2,...,n — 1. More details on operation counts are given in Section 3. Here,
we only note that this operation count may increase significantly eachrtinseincreased,
because an increasesim yields a new point sefwy,};*_, and therefore new products (1.8)
have to be evaluated.

This paper presents a progressive adaptive discretization of the boundaramd re-

places the maximization ové in (1.1)-(1.2) by maximization over discrete sets. Fast Leja
points are obtained by maximization over these discrete sets. The discretization is carried out
so that parts of the boundary with many fast Leja points are discretized by a fine mesh, while
those parts of the boundary with few fast Leja points are discretized by a coarse mesh. The
discretization is updated as new fast Leja points are computed. Advantages of this approach
include:

(i) Computer codes for the generation of fast Leja points are simple and the computation
of fast Leja points is rapid. The computationofast Leja points foiK requires only
roughlyén2 arithmetic floating point operations.

(i) The setK may be modified during the computation of fast Leja points without in-
creasing the operation count. This is important in applications to eigenvalue compu-
tations and the solution of linear systems of equations; see below.

In eigenvalue computations, the &&should contain all or most of the undesired eigenvalues

of the matrix; see Section 4. However, often such a set is not explicitly known a priori.

In the algorithms described in [1, 2] sekswith this property are determined and updated
during the computation. Analogously, when solving systems of linear equations, the set
should contain all or almost all eigenvalues of the matrix. The algorithms presented in [4,
5] determine such sets during the computation, and thel§atsed during the iterations

are generally updated several times as new spectral information about the matrix becomes
available.

This paper is organized as follows. Section 2 reviews properties of Leja points. Fast

Leja points are introduced in Section 3, and computed examples that illustrate properties of
fast Leja points are presented in Section 4. Section 4 also displays timings that show that
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fast Leja points indeed can be generated much faster than Leja points. An appendix contains
MATLAB code for the generation of fast Leja points.

2. Some properties of Leja points.We review some properties of Leja points. These
properties can be conveniently described in terms of a Green function for the complement of
K. In particular, Example 2.2 shows that the limit distribution of Leja points on an interval is
the same as the limit distribution for zeros of Chebyshev polynomials for the interval.

Identify C with the real planeR?. Throughout this papet,y € R andz € C. If
z =z +1iy, i := /-1, thenz and(z,y) denote the same point. LE C C be a compact
set, whose complemefit := (C U {c0})\K is connected and possesses a Green function
G(z,y) with a logarithmic singularity at infinity. In particular, we assume tiais such
that the boundary oK, denoted byK also is the boundary d®, denoted byo(). This
Green function is uniquely determined by the requirementsG)z,y) = 0 in Q\{oo}, ii)
G(z,y) = 0 on0Q, and iii)

1 0

il - =1

Wherea% denotes the normal derivative directed ift@nddo stands for the element of arc
length; see, e.g., [19, Chapter 4.1]. The non-negative constdefined by

wi= llim |z|exp(=G(z,y)),  z=x+iy,
zZ|—00

is called thecapacityof K. The capacity depends on the sizékaf If K has capacity. and
«a is a positive constant, then the 8K := {az : z € K} has capacityix.

Leja [12] showed that Leja points fd£ are uniformly distributed with respect to the
density function
(2.1) 16)G( ) =x+iy € 0N

. 97 9n z,Y), zZ=x 4+

on the boundary oK. Thus, each subarg of the boundary ofK contains the fraction
5= |, 2G(x,y)do of the Leja points{z;}7_, for K asn — oo.

Example 2.1LetK be the set in Example 1.1. Then the Green function is given by

z .
G(l‘,y) ::1H|;|, z = +1y,

and thereforé has capacity. Since%G(m, y) = 1/r on 9K, Leja points are uniformly
distributed oroK . O

Example 2.2LetK = [a, b] be a real interval, c.f. Example 1.3. Then the Green function
is given by

2 (Z_b+a
b—a 2

G(r,y) :=1In + (22 = z(b+a) + ba)'/?)]|, z =z + 1y,
where the branch of the square root is chosen sd#fatz — 5% + (22 —z(b+a)+ba)/?)| >

1 for z € Q. The capacity oK is 1(b — a). Leja points forK are uniformly distributed with
respect to the density function

19 2 i N—1/2( N —1)2
271_ana(a:,O)—ﬂ_(b a)” (b—x) (x —a) ) a<z<b.
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It is well known that zeros of Chebyshev polynomials[iarb] are uniformly distributed with
respect to this density function, too. Thus, Leja points and zeros of Chebyshev polynomials
have the same limit distribution]

The following theorem shows some properties of Leja points that are easy to verify nu-
merically. Numerical examples in Section 4 indicate that fast Leja points share these proper-
ties.

THEOREM2.1.Let{z;}52, be a sequence of Leja points for the Bgti.e, thez; satisfy
(1.1)-(1.2). Assume that the weight function satidfies w(z) < b, for all z € K for some
constants) < b; < by < co. Letk denote the capacity fdK. Then

n—1 b1 1/n

2.2 2n — 2 |M > K (—)
22 IT e = > (3
and

n—1

; _ . |Y/n —

(2.3) nll)néo 1_[0 |2n — 2] K.

]:

Proof. The proof by Leja [12] for the case whar(z) := 1 extends in a straightforward
manner to positive weight functions(z). U _

It follows from results of Leja [12] that when the poir{tsk}{;é in (1.3) are Leja points
for a setK with capacityx, the jth root of the magnitude of the products (1.3) converges to
Kk asj — oo for anyz in the interior ofK. This property is helpful for the accurate evaluation
of products (1.3) of large degree forc K.

3. Fast Leja points. Examples 1.1 and 1.2 are suggestive for the definition of fast Leja
points. Assume for the moment that the boundarkat a Jordan curve or a Jordan arc,
and letz(¢), 0 < t < L, be a continuous parametric representation of the boundary, such
thatz(t) # z(s) for0 < ¢t < s < L. Fast Leja points can now be defined recursively. Let
{z(tj)};?;(} be a set of fast Leja points on the boundarykaf If K is a Jordan arc, then we
require that, = 0 andt; = L. Let {z(sj)}é.;}) be a set of candidate points that interlace
the set of fast Leja points; between each pair of adjacent fast Leja points there is a candidate
point. Thus] = k — 1 whenK is a Jordan arc, arld= k£ whenK is a Jordan curve. The next
fast Leja pointz(¢;) is chosen among the candidate points, ;€ {sj}’j;%) satisfies

k—1 k—1
3.1 w(z(te)) [T 12(t) — 2(t)] = Juax, w(z(s)) [T 12(s) = 2()].
1=0 = 1=0

Having determined (¢, ), we remove this point from the set of candidate points and new can-
didate points (in general two) are introduced betwsgp) and the closest fast Leja points, so
that the new set of fast Leja poin{s(tj)};?zo and the new set of candidate points interlace.
The next fast Leja point (tx+1), is now determined analogously.

Example 3.1LetK := {z : |z| < 1} and consider the parametric representati@n :=
exp(it),i = v/—1,0 < t < 2m, of the boundary curve. Let(z) := 1 and introduce

Then the fast Leja points(tg) andz(¢; ) interlace the candidate poini§sy) andz(s;). Both
candidate points yield the same value of the product on the right-hand side of (3.1). Therefore,
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the next fast Leja point(¢2), can be chosen to be eithefsg) or z(s1), say,ta = so. We
choose the two new candidate pointés») andz(ss3), to be on the unit circle, equidistantly
betweenz(¢,) and adjacent fast Leja points. Continuing to allocate fast Leja points and
candidate points in this manner, with new candidate points allocated at the midpoints between
adjacent fast Leja points, yields a sequence of fast Leja péirts) }5,. This sequence is
equivalent with the sequence of Leja poifits } 32, of Example 1.1 in the sense that

n n
I?eaﬂé(,l—[ |z — z(t;)] :rgle:auécn |z —zj], n=0,1,....

Jj=0 j=0

O

Example 3.2LetK := [a,b],0 < a < b < oo, and consider the parametric representa-
tion 2(t) :=t,a < t < b. Letw(z) := 1. Allocate candidate points equidistantly between
adjacent fast Leja points. Define

a+b

tg = b, t1 =a, Sp = 2 .

This corresponds to the fast Leja pointgy) := a andz(¢;) := b, and candidate point
z(s0) := aT“’ The next fast Leja point clearly igt2) with t5 := so. We reuses, to store a
parameter value for a new candidate point. Thus, the new candidate p@igtsandz(s;)
correspond to the parameter valugs= 3“7“’ ands; = %3” We can choosg; to be either
so or s1. This defines the fast Leja poinfts). MATLAB code for generating fast Leja points
for an interval in this manner is displayed in the Appendix.

Example 3.3 We illustrate the use of a parametric representation that is not arc length.
LetK := [-2, 2] and consider the parametric representati@i := 2 cos(t),0 < ¢t < 7. We
remark that zeros of Chebyshev polynomials of the first kindf@orrespond to equidistant
parameter values. Let(z) := 1. Allocate candidate points equidistantly with respect to the
parametet between adjacent fast Leja points. Thus, define

T
to := 0, ty =, Sp = —

This corresponds to the fast Leja poimg,) := 2 andz(¢;) := —2, and candidate point
z(so) := 0. The next fast Leja point clearly is(t2) with t> := so, and the new candidate
pointsz(so) andz(s1) correspond to the parameter valgs= = ands; = 7. Thenwe can
choose; to be eithersy or s;. This defines the fast Leja pointts). This point is different
from the fast Leja point(¢3) in Example 3.2.

We will see in Example 4.2 below, that the fast Leja points of the present example are
inferior to the fast Leja points of Example 3.2. This may depend on th@}| is not bounded
away from zero fof) < ¢t < . O.

This method of generating fast Leja points generalizes in a straightforward manner to sets
K with a boundary that consists of several components: allocate fast Leja points and candidate
points on every boundary curve and boundary arc using a parametric representation for each
curve or arc.

We turn to the operation count for generating fast Leja points on a real interval as de-

scribed in Example 3.2. Assume that the fast Leja pdiats; ) ;?:0, the interlacing candidate
points{z(s,)}¥—;, and the products

k—1
(3.2) miaor = ws) [ 12(s) =2t 0<j<k-3,

q=0
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are known. We evaluate the products
Tk = Tik-1|2(s5) —2(te)],  0<j<k-=3,

as well as

k

i = w(z(s) [] 12(s) =2, j=k-2k-1.
q=0

The next fast Leja pointis given by(¢+1) := z(s4), where the indey is determined by the
condition

3.3 Ty = MaX Tjf-
(3.3) 7,k 0< <k J.k

The pointz(s,) is removed from the set of candidate points, and wesjet= s;_; for

j =¢,q+1,...,k — 1. This yields the candidate poin{s(s;) f;& To this set we add
two new candidate points{sy) andz(sg+1), adjacent ta:(tx+1). We are now in a position

to determine the next point(tx+2) in the sequence of fast Leja points. The computations
can be simplified by working with linked lists of fast Leja points and candidate points. In the
MATLAB code in the Appendix such linked lists are simulated by using index arrays.

The count of arithmetic floating point operatiofs, —, *, /) for the computation of the
fast Leja pointz(t;x+1) as outlined above igk + O(1). Thus, the set of fast Leja points
{z(tj)};?zo can be computed iak? + O(k) arithmetic operations when the products (3.2)
are stored. This operation count ignores the evaluation of the absolute values.

4. Numerical examples. Computed examples of this section indicate that fast Leja
points can be valuable for polynomial approximation by interpolation and for eigenvalue
computation. All numerical experiments were carried out on an HP 9000/735 work station
using double precision arithmetic, i.e., with approximately 16 significant digits.

Leja points

fast Leja points

1.03

1.03

1.025 1.025

1.02

1.02

1.015

1.015

1.01

1.01

1.005 1.005

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
n n

FiG. 4.1.Example 4.1: Graphs foH;L:_O1 |z, — 2;]'/™ asn increases.
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4.1. Polynomial interpolation. We present examples that illustrate the behavior of the
products in (2.2) and (2.3) in Theorem 2.1 and display approximation errors obtained by
polynomial interpolation at Chebyshev points, Leja points and fast Leja points. Polynomial
interpolation is an important application of fast Leja points. This application, moreover,
reveals how similar the distribution of fast Leja points is to the distribution of Chebyshev
points already for a fairly small number of points.

Example 4.1. LeK := [-2,2] andw(z) := 1. According to Example 2.ZK has
capacitys = 1. Let{z;}72, be a sequence of Leja points firand define the mapping

n—1

h(n) ::H|zn—zj|1/", n=12,....

Jj=0

By Theorem 2.1h(n) > 1 andlim,,,~ h(n) = 1. The graph on the left-hand side of Figure
4.1 displaysh(n). We remark that in computations for generating the graph, we replaced the
setK by the discrete sekK,, (—2,2) defined by (1.7) withn = 6000, and generated Leja
points for this set. An increase of the number of pointin the setk,,, (—2, 2) did not result

in a significantly different graph.

The graph on the right-hand side of Figure 4.1 displays the mapping when the
pointsz; := z(t;) are fast Leja points generated as described in Example 3.2. Comparing the
graphs of Figure 4.1 indicates that the mappifig) behaves in a similar way for Leja points
and fast Leja pointsa

150

100

50 — —

i

FIG. 4.2.Example 4.2: Graph afax, ¢ H;L;Ol |
as described in Example 3.3.

i i i i i i i i
50 100 150 200 250 300 350 400 450 500
n

z — zj| for 1 < n < 500, 2; fast Leja points generated

Example 4.2. We examine the produfﬁ;o1 |z —zl,n =1,2,... ,forz e K :=
[—2,2] andw(z) := 1. Figures 4.2-4.4 display the maximum value of these products on
K when the points;; are determined in three different ways. In Figure 4.2 the paints
are generated as described in Example 3.3. During the computation of tie inter-
val [0, 7] for the parametet is replaced by a set df000 equidistant points. We obtain
maxlSnSmo{maxzeK H;L:_Ol |Z — Z]|} = 528.

The pointsz; for Figure 4.3 are Leja points fd,, (—2,2) with m = 5000. The value
of m is chosen large enough so that the behavior of the products does not change wehen
increased. We therefore refer to the computed paiptss Leja points foiK. We note that
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150

100 — =

i i i i i i i i i
50 100 150 200 250 300 350 400 450 500
n

FiG. 4.3.Example 4.2: Graph ahax, g H;:()l |z — zj| for 1 < n < 500, z; Leja points forKsoo0 (—2, 2).

150

100 —

50 -

50 160 léO 260 2%0 360 3%0 460 4%0 500
FIG. 4.4.Example 4.2: Graph ofnax, ¢ H;’;Ol |z — zj| for 1 < n < 500, 2; fast Leja points generated
as described in Example 3.2.

the expressiomaxo< k<, {max.ex Hf;é |z — 2|} grows less rapidly witn for the Leja
points forK than for the points; used for Figure 4.2.

The points for Figure 4.4 are fast Leja points @rgenerated as described in Example
3.2. The expressiomaxo<<n{max.cx Hf;é |z —z;|} grows slower withn than for any of
the other sets of points in this example. Slow growth is advantageous when approximating
functions f on [-2, 2] by polynomials that interpolat¢ at the pointsz;; see Walsh [19,
Chapter 4], de Boor [3, Chapter 2] or [14] for discussidns.

The following two examples compute polynomials in Newton form that interpolate given
functions at Chebyshev, Leja and fast Leja points. The stability of the Newton form of the
interpolation polynomial when interpolating at Leja points has previously been demonstrated
in [14]. The examples below suggest that the stability properties and rate of convergence are
the same when interpolating at fast Leja points.
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Chebyshev & Leja points Chebyshev & fast Leja points
T T T T

—0.5

—0.5

o 100 200 300 o 100 200 300
n n

FiG. 4.5. Example 4.3:log;(max, k| f(z) — pn(z)|) for 1 < n < 300, where the polynomigp,, of
the form (4.1) interpolateg(z) := (1 + %)1/2 at Chebyshev points (4.3) (smooth curves in both graphs), at Leja
points forKKspo0 (—2, 2) (staircase curve on the left), and at fast Leja points (staircase curve on the right).

Example 4.3. LeK := [-2,2] andw(z) := 1. We consider polynomial approximation
of the functionf(z) := (1 + 3)'/2 onK by interpolating polynomialg,, in Newton form

n j—1
(41) pn(z) = f[ZO] + Zf[z()7217227 7Z]] H(Z - Zk)a
j=1 k=0

where the divided differences are defined recursively by

(4.2) flzj, Zjg1s s 21) 1= e 22, o 26l = fl25 2415 oo 2]
Zk —Zj

andf(z;] := f(z;). Itis convenient to use the Newton form of the interpolation polynomial,
because it easily can be updated when interpolation at additional points is required, e.g., when
new fast Leja points have been generated.

This example compares the approximation error for sequences of interpolation polyno-
mials generated in three different ways. We first determine polynomyjiaisat interpolatef
at the scaled zeros of tfie + 1)st degree Chebyshev polynomial i The zeros are scaled
to make the endpoints @& interpolation points, i.e., we interpolate at the points

2 cos(ﬁfl—j_ll)w)

cos(5751y)

(4.3) Kn+1 ;:{ iOSjS“}-

We refer to the points in (4.3) as Chebyshev points. Thus, for each vatydhe polynomial
p, interpolatesf at Chebyshev points. The approximation error

(4.4) max |f(2) — pn(2)]

is close to the error achieved with the best polynomial approximant of degree at;sest
e.g., de Boor [3, Chapter 2]. The smooth curves in Figure 4.5 displayott@garithm of the
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error (4.4) for polynomials of degree between zero 3@ The rate of convergence is quite
slow due to the branch point gfatz = —2.

In order to be able to evaluate polynomials of high degree, we ordered the points in each
set]KnH like Leja points before using them in (4.1) and (4.2). This ordering is determined
by replacing the seK in (1.1) and (1.2) by the set (4.3), and it reduces the propagation of
round-off errors; see [14]. We remark that the interpolation polynomial has to be recomputed
for each point seKn+1, because the intersectiéf, N Knﬂ only contains few points.

The second sequence of interpolation polynomiglss obtained by using Leja points
for the discrete seKspp0 (—2,2) defined by (1.7) as interpolation points. The computed
interpolation points approximate Leja points #dr and we refer to the interpolation points as
Leja points. The staircase curve on the left-hand side of Figure 4.5 shows the approximation
error (4.4) obtained with these interpolation polynomials. The error is fairly close to the error
achieved when interpolating at Chebyshev points. Note that interpolation in Leja points can
give a smaller error than interpolation at Chebyshev points.

Finally, we interpolatef at fast Leja points folK generated as described in Example
3.2. The staircase curve on the right-hand side of Figure 4.5 displays the approximation error
(4.4). The approximation error achieved is close to the error obtained when interpolating
at Chebyshev points, however, the arithmetic work required for generating the sequence of
polynomials that interpolate at fast Leja points is much smadller.

o Cheby‘shev & Leja‘ points o Chebyshev & fast Lej? points
—2 L 4 —2oL 4
—al 4 —al 4
—6+ 4 —6 4
—gl 4 _gl 4
—10 - —10 4
125 50 R 100 150 ) 50 . 100 150

FIG. 4.6. Example 4.41ogq(max, ck | f(z) — pn(2)]) for 1 < n < 300, where the polynomia,, of the
form (4.1) interpolatesf(z) := (1 + 232%)~1 at Chebyshev points (4.3) (jagged curve in bothyis), at Leja
points forKKspo0 (—2, 2) (top curve on the left), and at fast Leja points (top curve on the right).

Example 4.4. Consider the approximation of the Runge fungtian := (1 + 222?)~"
on the intervalk := [—2, 2] by interpolating polynomialg,, given by (4.1). We interpolate
f at the same sequences of interpolation points as in Example 4.3. Figure 4.6 displays the
computed errorsnax.ck | f(z) — pn(2)| and is analogous to Figure 4.5. In particular, the
figure shows that interpolation at fast Leja points gives the same rate of convergence as inter-
polation at Chebyshev points as the degree of the polynomial increases. The convergence is
geometric, becausgis analytic in an open set containifig O

The fact that polynomial interpolation at fast Leja points in the Examples 4.3 and 4.4
gives about the same error as interpolation in Chebyshev points, suggests that fast Leja points
and Chebyshev points are distributed similarly already for a fairly small number of points.
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The distribution of fast Leja points is presently being investigated.

4.2. Eigenvalue computation.The determination of a few, sady eigenvalues and as-
sociated eigenvectors of a large sparse symmetric matdxR™*"™, n > k, is an important
computational problem that arises in many applications. The difficulties associated with de-
termining eigenvalues has spurred considerable research; see, e.g., Saad [15] for a survey
and references. Recently, Sorensen [17] proposed the Implicitly Restarted Arnoldi (IRA)
method for the computation of a few eigenvalues of a large sparse nonsymmetric matrix, and
the closely related Implicitly Restarted Lanczos (IRL) method for the computation of a few
eigenvalues of a large sparse symmetric matrix. Improvements and analyses of these meth-
ods have been presented by Lehoucq and Sorensen [9, 10]. ARPACK by Lehoucq et al. [11]
implements these methods.

The IRA and IRL methods can be regarded as curtailed QR algorithms for the nonsym-
metric and symmetric eigenvalue problems, respectively. Similarly as in the QR algorithms,
the choice of shifts is important for the performance of the IRA and IRL methods. The IRA
method generates a sequence of small Hessenberg matrices, whose spectral factorizations are
computed. In the IRL method, the Hessenberg matrices generated are real and symmetric.
Lehoucq and Sorensen [9, 10, 17] propose to use some of the computed eigenvalues as shifts.
This approach has recently been analyzed by Morgan [13]; see also Calvetti et al. [6] and
Stathopoulos et al. [18] for related discussions.

The convergence of the IRA and IRL methods can be studied by considering certain
polynomial approximation problems. Specifically, one would like to determine an acceler-
ating polynomial that is of large magnitude in areas of the complex plane that contain the
k eigenvalues of interest and small elsewhere. For instance, when computibigina|-
est eigenvalues of a large symmetric matrix, we would like the polynomial to be large in an
interval that contains thedeeigenvalues, and small on an interval that contains the remain-
ing eigenvalues. The eigenvalues of the sequence of the small symmetric tridiagonal matrices
generated by the IRL method help us determine a sequence of interyald, j = 1,2,
that do not contain any of the desiredmallest eigenvalues of the matrix, but many of the

undesired ones. We describe in [1, 2] how a polynorpEéﬂ that is small on the interval

[a;,b;] can be determined by letting it have Leja pon{mé] }aZ1 for a setK,, (a;,b;) as
zeros. Thus,

qg—1
(4.5) pP(2) =i [[ (= = 27,
k=0

wherec; is a scaling factor of no significance for the convergence. When allocating the Leja

points{z,(j = o, the presence of the pointg_ l{zk }z o for previous interval§a,., b,],
1 < r < j, is taken into account; see [1, 2] for details. The accelerating effect of all the
polynomials is described by the product polynomial

(4-6) p]q H p(r)

Details on how Leja points can be applied to compute a few extreme or nonextreme eigenval-
ues can be found in [1, 2]. The poinet,%“ are analogous to the shifts in the QR algorithm.
We therefore refer to the,(f) as Leja shifts in the context of eigenvalue computations.

Leja shifts are compared to Chebyshev shifts in [2, Example 5.2]. The latter are defined

as follows. Foreach = 1,2... the Chebyshev shiﬁ&ér)}j;é are the zeros of the Cheby-
shev polynomial of the first kind of degreefor the intervalla,.,b,]. Chebyshev shifts are
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found to yield slower convergence than Leja shifts. This depends on that Chebyshev shifts
for the interval[a,, b,] are distributed independently of already allocated Chebyshev shifts
for the intervals[as, bs] for s < r. The allocation of fast Leja points fdu,., b.], on the
other hand, takes the distribution of previously allocated fast Leja points into account; see [2]
for further discussion. An interactive example that demonstrates this is available at web site
http://etna.mcs.kent.edu/xxx.

We propose the use of fast Leja points for the sequence of intéayalg], j = 1,2,. ..,
to define the accelerating polynomials (4.5) and (4.6). The examples below compare Leja
points for the set¥,, (a;, b;) with m = 1000 or m = 3000 with fast Leja points for the inter-
vals|a;,b;]. The number of matrix-vector product evaluations with the matricese com-
pared. We also tabulate the CPU time required for computing Leja poinis far (a;, b;)
andKsooo (a5, b;), and fast Leja points fofa;, b;]. We remark that when computing Leja
points for setk,, (a;, b;), the polynomial has to be evaluated at each one ofithmints
of Ky, (a;, b;) for every change of intervdk;, b;]. This evaluation can be expensive when
the polynomial is of high degree. The degree equals the number of evaluations of matrix-
vector products with the matrit. Fast Leja points makes these evaluations unnecessary, and
this contributes to making fast Leja points faster to determine than Leja points for the sets

K (@, b;)-

TABLE 4.1
Example 4.5:A = diag(1,2,3,...,2500)

Shifts CPU time for| # matrix-vector
shifts products

# Lanczos vectors &

fast Leja points 0.20 sec. 510

Leja points for set&gqo (a, b) 12.29 sec. 551

Leja points for set&sooo (a, b) 37.23 sec. 553
# Lanczos vectors 0

fast Leja points 0.27 sec. 540

Leja points for set&; oo (a, b) 5.07 sec. 526

Leja points for set&sooo (a, b) 13.7 sec. 507
# Lanczos vectors

fast Leja points 0.17 sec. 508

Leja points for set&gqo (a, b) 3.05 sec. 510

Leja points for set&soqo (a, b) 8.58 sec. 497

Example 4.5. We wish to compute the three smallest eigenvalues of the matrix
(4.7) A = diag(1,2,3,...,2500),

by Algorithm 4.1 in [1] with fast Leja points as shifts. We set the tolerance of the algorithm
to 1-10~%. Table 4.1 reports the number of matrix-vector products required and the CPU
time necessary to compute the fast Leja points. For comparison, we also used Leja points
for setsK,, (a;, b;) as shifts, form = 1000 andm = 3000. Table 4.1 shows the number
of matrix-vector product evaluations to be about the same for the different choices of shifts,
however, the computation of fast Leja points is much faster than the determination of Leja
points for the set&,, (a;,b;). O

Example 4.6. This example differs from Example 4.5 only in the choice of matrix

Thus, we letd = diag(ai,as,...,a100) have entriesy; := % and compute the three
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TABLE 4.2 R

Example 4.6:A = diag(a1,az, . ..,a100) With entriesa; = &=, 1 < i < 100

Shifts CPU time for | # matrix-vector
shifts products

# Lanczos vectors &

fast Leja points 0.09 sec. 369

Leja points for set&; oo (a, b) 5.74 sec. 340

Leja points for set&sooo (a, b) 21.25 sec. 374
# Lanczos vectors F0

fast Leja points 0.15 sec. 378

Leja points for set&gqo (a, b) 2.69 sec. 368

Leja points for set&soqo (a, b) 6.93 sec. 344

smallest eigenvalues by Algorithm 4.1 of [1] with the tolerance set ta0—3. Table 4.2
reports the number of matrix-vector products required and the CPU time for the computation
of the shifts.O

Example 4.7. Letd = diag(al,a2,. . ,a500) with azj = \/} andagj_l = - j,
1 < j < 250. We want to compute the smallest positive and largest negative eigenvalues
of A, as well as corresponding eigenvectors, by Algorithm 4.2 described in [1]. Since the
desired eigenvalues are in the middle of the spectrum, the accelerating polynomials have to

be small on a sequence of pairs of interjals b;]U[a’;, b], such thab; < 0 < a’;. We store

eight Lanczos vectors and set the tolerance in the algorithin &) —3. The computation
of the desired eigenpairs with fast Leja points as shifts requi9édnatrix-vector products
with the matrixA. When, instead, we used Leja points for sequences oksg§s (a;, b;) U

Kaooo (a}, b’;) as shifts 218 matrix-vector product evaluations are required.

5. Conclusion. Fast Leja points are introduced, and shown to have desirable properties
for polynomial approximation and eigenvalue computation. The ease of their computation
makes them attractive to use in these applications.
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6. Appendix. We present a MATLAB code for the generation of fast Leja points for an
interval[a, b] as described in Example 3.2. The notation used in the MATLAB code is similar
to that of Example 3.2.

%%9%%%% %% %% %% % %% % %% %% %% %% % %% % %% %% %% % %% % %% %% %% % %% %% %% % %% %% %% % %% % %

% Variables: %
% a right endpoint of the interval [a,b], presently set to -2 %

% b left endpoint of the interval [a,b], presently set to 2 %

% nflp  number of fast Leja points to be computed, presently set %

% to 500 %
% zt(j) fast Leja point %

% zs(j) candidate points %

% index pointers for candidate points %

% index(k,1) -> pointer to the fast Leja point to the left %

% of zs(k) %
% index(k,2) -> pointer to the fast Leja point to the right %

% of zs(k) %
% zprod product |z-zt(k)] over k. The product is evaluated for %

% all candidate points z=zs(j) in the array zs. %

%%%6%%%%%6%% %% % %% %% %% %% %% %% %% %% %6 % %% %% % %% %% %% %% %% %% %% %% %% %% %% % %% % %
a =-2; b =2; nflp = 500;
if abs(a) > abs(b), zt = [a,b]; else zt = [b,a]; end
zt(3) = (ath)/2;
zs(1) = (zt(2)+zt(3))/2; zs(2) = (zt(3)+zt(1))/2;
zprod(1) = prod(zs(1)-zt); zprod(2) = prod(zs(2)-zt);
index(1,1) = 2; index(1,2) = 3; index(2,1) = 3; index(2,2) = 1;
for i = 4:nflp
[maxval,maxi] = max(abs(zprod));
zt(i) = zs(maxi);
index(i-1,1) = i; index(i-1,2) = index(maxi,2); index(maxi,2) = i
zs(maxi) = (zt(index(maxi,1))+zt(index(maxi,2)))/2;
zs(i-1) = (zt(index(i-1,1))+zt(index(i-1,2)))/2;
zprod(maxi) = prod(zs(maxi)-zt(1:i-1));
zprod(i-1) = prod(zs(i-1)-zt(1:i-1));
zprod = zprod.*(zs-zt(i));
end

The determination of the candidate pointgj) is accomplished by using an arraydez, where
index(k, 1) points to the fast Leja point after the candidate paistk), andindex(k,2) points to
the fast Leja point before the candidate poinfk). The use of the arrayndex makes it possible to
determine new candidate points without explicitly ordering the fast Leja points.



