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TRUNCATED QZ METHODS FOR LARGE SCALE GENERALIZED
EIGENVALUE PROBLEMS *

D. C. SORENSEN

Abstract. This paper presents three methods for the large scale generalized eigenvalue prxeblenBx\.
These methods are developed within a subspace projection framework as a truncation and modificatiQZ-of the
algorithm for dense problems, that is suitable for computing partial generalized Schur decompositions of the pair
(A, B). A generalized partial reduction to condensed form is developed by analogy with the Arnoldi process. Then
truncated forward and backwaf@Z iterations are introduced to derive generalizations of the Implicitly Restarted
Arnoldi Method and the Truncaté®Q method for the large scale generalized eigenvalue problem. These two meth-
ods require the accurate solution of linear systems at each step of the iteration. Relaxing these accuracy requirements
forces us to introduce non-Krylov projection spaces that lead most naturally to block variantQiteeations. A
two-block method is developed that incorporatespproximate Newton corrections at each iteration. An important
feature is the potential to utilizé matrix vector products for each access of the matrix pAifB). Preliminary
computational experience is presented to compare the three new methods.

Key words. Generalized eigenvalue problem, Krylov projection methods, Arnoldi method, Lanczos method,
QZmethod, block methods, preconditioning, implicit restarting.
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1. Introduction. This paper presents three methods for the large scale generalized
eigenvalue problem

(1.2) Ax = BxA\.

The methods are developed within a Krylov subspace projection framework as truncations
of the QZ-algorithm [13] for dense problems. These techniques provide natural extensions
of the Implicitly Restarted Arnoldi Method [20] and the TruncaiR@® Method [21] to the
generalized eigenvalue problem. Relaxing the accuracy level required for the solutions of
linear systems leads naturally to a non-Krylov block projection method. This block method
does not require accurate solution of shift-invert equations and makes efficient use of each
matrix access by performirigmatrix-vector products instead of one.

The first two methods require accurate solutions of linear systems at each step of the
iteration. However, these methods are developed within a projection a framework that can
accommodate inexact solves of the shift invert equations if the standard Krylov relations
are relaxed. Introducing inexact solves forces us to introduce non-Krylov projection spaces.
Once the Krylov property has been given up, it is natural to consider block variants@Zthe
iterations. Therefore, we have developed a two-block method that incorpbigipsoximate
Newton corrections at each iteration. An important feature is the potential to Wtilizatrix
vector products for each access of the matrix pAifB).

For some time, there has been considerable interest in improving eigenvalue methods
either by making better use of spectral transformation through multi-shift Rational Krylov
methods [16] or by utilizing some sort of preconditioned iterative solution of these shift-
invert equations at a relaxed accuracy level [11, 10, 14, 2, 19]. The ultimate goal is to achieve
the enhanced convergence properties of the spectral transformation without the cost of an
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accurate direct or iterative solution of the shift-invert equations. Generalization of the David-
son method [4] to a wider class of problems has received a lot of attention and the Jacobi-
Davidson method of Sleijpen and Van der Vorst [18] has emerged as an effective variant.
The methods developed here (in particular the backward form of truncated QZs) have a lot in
common with Ruhe’®RKSmethod. This truncated backward form also appears to be closely
related to the work of De Samblanx, Meerbergen and Bultheel on implicit applications of a
rational filter inRKS[17].

The paper begins in Sections 2 and 3 with the development of simultaneous projections
of the matricesA andB onto two subspaces to achieve a partial reduction to condensed form

AV, = W H; +F;, with W{F; =0,
BV, = W;Ry,

through a generalized Arnoldi process. H&&g,andW, are bothm x k orthogonal matrices,
H; is ak x k upper Hessenberg matrix ail, is upper triangular. With this reduction,
approximate generalized eigenvalues of the (AirB) are obtained from the projected pair
(Hy, Ry).

As with the standard Arnoldi process, storage and arithmetic costs are prohibitive for
largek. Thus, restarting schemes are essential and two possibilities are developed. In Section
4, forward and backward variants of the implicitly shifte iteration are developed for
dense generalized problems. These are analogous@RbaadRQiterations for the standard
problem. Truncated forms of these forward and backvi@Zditerations are developed in
Section 5. The forward form is analogous to implicit restarting [20] while the backward form
generalizes the truncat&l iteration [21]. These developments result in methods that are
effective in computing a fewk( selected eigenvalues and corresponding eigenvectors within
a fixed pre-determined storage requirement proportional t& and work proportional to
n-k*+ O(k?).

The generalized Arnoldi process requires the solution of a linear system at each step
regardless of how it is organized. Depending on certain choices, this amounts to applying a
mathematically equivalent standard Arnoldi process to one of the following matrix operators:

B 'A, AB!, or(A-0B)'B.

The backward variant of the truncat@d iteration makes the most economical use of storage
but tends to require more LU-factorizations than the forward variant. Very limited com-
putational experience with all three methods shall be presented in Section 7. No reliable
conclusions on comparative performance can be drawn from these limited tests.
Throughout this paper, capital and lower case Latin letters denote matrices and vectors
respectively, while lower case Greek letters denote scalarsj-iiheanonical basis vector is
denoted by;. The Euclidean norm is used exclusively and is denoteltt y The transpose
of a matrix A is denoted byA” and the conjugate transpose Ay . Upper Hessenberg
matrices will appear frequently and are usually denoted by the [Eitefhe notatiorlVI(:
,1:k)andM(1 : k,1 : k) denote the leading columns and the leadinky x & principal
submatrix ofM.

2. Subspace Projection.Certainly, projection methods are prominent for the iterative
solution of linear systems and for computing a few eigenvalues of a large matrix or matrix
pencil. In the case of the standard problam = x\, Krylov subspace projection results in
the Lanczos/Arnoldi class of methods. These may be viewed as systematic ways to extract
additional eigen-information from the sequence of vectors produced by a power iteration.
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In hope to obtain additional information through various linear combinations of the power
sequence, it is natural to formally consider #ieylov subspace

Kr(A,vi) = Span{vy, Avi, A?vy,..., AF v}

and to attempt to formulate the best possible approximations to eigenvectors from this sub-
space.

Approximate eigenpairs are constructed by imposing a Galerkin condition: A vector
x € Kx(A,vy) is called aRitz vector with correspondingRitz value 6 if the Galerkin
condition

(w,Ax —x0) =0, forall we K(A,vy)

is satisfied. It is well known that the Lanczos/Arnoldi iteration computes an orthonormal
basisV, for this Krylov subspace along with a small projected maklix = VI AV, of
orderk from which Ritz values and vectors may be obtaingd¥) is a Ritz pair if and only

if Hyy = yf andx = Vyy.

Several schemes have been developed to extend the Krylov subspace idea to the gener-
alized problem (1.1). These extensions are generally based upon a conversion of the general-
ized problem to a standard one. Perhaps the most successful variant [5] is to sigedtnal
transformation

(A —0oB) 'Bx = xv.

An eigenvectox of this transformed problem is also an eigenvector of the original problem
(1.1) with the corresponding eigenvalue givenby: o + % In applicationsB is often sym-
metric and positive (semi-)definite and then it is helpful to work withBhgemi-)inner prod-

uct in the Lanczos/Arnoldi process [5, 8, 12]. With this transformation, the Lanczos/Arnoldi
iteration converges very rapidly to eigenvalues near the gtbftcause they are transformed
to extremal well-separated eigenvalues and also because eigenvalues fardrerdamped
(mapped near zero).

To utilize this transformation in a Lanczos/Arnoldi process, the repeated opevation
Av isreplaced by repeated solutions of a shift invert equdtdon cB)w = Bv at each step
of the iteration. If a sparse-direct factorization of the shifted m&tAix— ¢B) is possible,
then this single factorization may be re-used at each step of the iteration. This approach is
certainly the method of choice, but may not be practical or even possible in many important
applications.

Although in some cases it may be effective to use a preconditioned iterative method to
solve the shift-invert equations, there are a number of pitfalls to this approach. Typically, the
shifted matrix is very ill-conditioned becausés chosen to be near an eigenvalue of interest.
Moreover, the shifted matrix is usually indefinite (or have indefinite symmetric part). These
two conditions typically cause problems in the iterative solution of linear systems. Further-
more, these difficulties are exacerbated by the fact that each linear system must be solved to
a considerably greater accuracy than the accuracy desired in the eigenvalue calculation. Oth-
erwise, each step of the Lanczos/Arnoldi process will essentially involve a different matrix
operator.

The underlying Krylov subspace projections associated with the Lanczos/Arnoldi pro-
cess has a number of important approximation properties related to convergence and accu-
racy. Unfortunately, if it is not possible to solve the shift-invert equations accurately then
these desirable properties are lost. However, it is possible to retain the projection idea in a
way that generalizes the Arnoldi process when the shift invert equations can be solved accu-
rately and yet can accommodate inaccurate solution of the shift-invert equations. To do this,
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we must consider more general subspaces. The development of this projection framework is
the primary topic of this paper. Itis inspired by the following well known result.

LEmMMA 2.1.1f A andB are complex matrices of order, then there are unitary matri-
cesV,W an upper Hessenberg matrF and an upper triangular matriR all of ordern
such that

2.1) AV = WH,
BV = WR.

This factorization can be computed in a finite numb@(,¢*)) of rational arithmetic and
square root operations.

Proof. See [7].0

For the standard problenB(= I) this lemma reduces to the statement tAamay be
put in condensed form by unitary similarity transformations. The Arnoldi process produces a
partial reduction ofA to condensed (Hessenberg) form

AV, =V H; + Fy,

with V'V, = I, andV]'F; = 0. This may be interpreted simply as a truncation of the full
reduction. It turns out thaf, = fi.e] is a rank one matrix and this property is intrinsically
tied to the factthafV; : j = 1,2,...,k} is a sequence of orthonormal bases for the nested
sequence of Krylov subspack§ (A, v;). The Hessenberg matrid;, = V7 AV, is the
orthogonal projection oA onto the subspadé, (A, v;) as represented in the ba3ig and

Fr = (I - V., VI)AV,.

If K = nthenF; = 0 and this provides a complete reduction’ofo condensed (Hessenberg)
form.
The generalization suggested by Lemma (2.1) is

(2.2) Fi = (I- W, W[)AV,,
BV, = W,R,.

whereWkTWk = V,CTV,c = I,. This projection makes the residuRl}, orthogonal to
Range(BV},), since the columns oW, form an orthonormal basis for that space. The
Arnoldi process for the standard problem systematically produces the colun\ig, &f =
1,2, ...,n at the cost of a matrix vector produgt« Av and an orthogonal decomposition
of this vector into a component in the existing Krylov space and one that is orthogonal to it.
The extension of this process to the generalized problem still requires the solution of a
linear system at each step. Nevertheless, it is interesting to develop this generalized Arnoldi
process, along with two restarting variants which will be developed in Sections 3,4,5. These
algorithms are significant by themselves, but they may also be viewed as laying the ground-
work for developing schemes that can relax the accuracy requirement on the shift-invert equa-
tions and yet retain the projection propertes in the framework of a truncated reduction to
condensed form.

3. Generalizing the Arnoldi reduction. The projection in equations (2.2) are well de-
fined for any matrixV, but it is not clear which choice d¥ ;. will provide good approx-
imations to eigenvalues. The success of the implicitly restarted Lanczos/Arnoldi processes
viewed as truncate@R iterations provides considerable motivation to develop a truncation
of theQZ iteration in this projection framework.
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The factorization in (2.1) provides an initial reduction of the pair B) to an equivalent
pair (H, R) in condensed form. This reduction precedes@zx&iteration just as reduction
to Hessenberg form precedes tBRiteration. In fact, the two reductions are identical when
B = 1. The Arnoldi process may be derived (iBr = I) simply by equating the leading
columns on both sides of (2.1). Therefore, this Arnoldi idea is easily generalized by doing
the same thing wheB is not the identity matrix. This is fairly straightforward, but a little
manipulation must be done to place this truncation within the projection framework of the
previous section.

Truncating the relations (2.1) aftkrsteps yields

(3.1) AV, = W H;, + frel
BV, = W;Ry,

with Vi, W, representing the leadirigcolumns ofV, W , H;, R, representing the leading
k x k principal submatrices dfi, R andf, = wy.+17vx+1,1 Wherewy is thek+1-st column
of W and;.1 . is thek-th subdiagonal element &1.

To advance thig-step factorization one step, the relations

H h
(3.2) AlVy,v] = [Wy, w] [ 76% o } +fiiefyy
R, r
BV‘: - s )
[Vi, v] [WLW][O p]

must be obtained to give the new columns.; = v, w1 = w and to update the matrices
Hj andRyq ;.

Equating the leading columns on both sides implies = |/f;|| andw = f;,/v. The
directionv must satisfy

(3.3) Bv = W;r+wp and V{v = 0.

This implies that
0=[ViB™'W,, VIB™'w] [ ; ] :

Now, VIV, = I, andBV; = W;R;, givesVIB~'W, = R, ! and thus

(3.4) R,'r=-V[B 'wp.
Combining (3.2), (3.3) and (3.4) gives

(3.5) v=B 'W;r+ B lwp
= —Vlezlr +B lwp
= —VkVEB_lwp + B 'wp
=(I-V,V{)B lwp,

with p = 1/(||[(I-V, V{)B~lw]||) so thatV}'v = 0 and||v|| = 1. Now that the new has
been determined, it follows that

o=
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GENARN: Generalized Arnoldi Reduction
Input: [A, B, v, k] with ||v]| = 1.

BV, = W,Ry,, WIW, = I, W/'f;, =0,
H; upper Hessenberg aml, upper triangular.

1.V« [v];w=Bv; p=|w|; R = [p]; W1 = [W/p];
2.2+ Av; H) « [W{z]; fj «z— W H;;
3.forj=1,2,3,...,k

3Ly« |Ifl; w £/

H.

3.2.Wj+1 — [Wj,W]; Hj — |: ’YejT :|;

3.3.SolveBv = w;

3.4.z VJT{;; Vv v—Viz; p 1/|I¥|;

35. v« Vvpr <+ —R;zp;

3.6.Vj+1 — [Vj,V]; Rj-i-l — [ Roj ; j|,

37.2 + Av; h+ W],z

3.8.fj+1 «— Z— Wj+1h; Hj+1 — [Hj,h];
4. end

OUtpUt: [Vk, Wk, Hk, Rk, fk] such thatAVk =W.H; + fke{, V{Vk =1,

FIG. 3.1.Generalized Arnoldi Reduction

and
frr1 = Av— (Wi h+ wa).

This completes the update and leads to the the generalized Arnoldi pBES&FSRNshown

in Fig. 3.1.
Remark 1: The substitutio’V, = B~'W,R,, gives
(ABil)Wk = Wkﬂk + fke{
and
(B'A)Vy = V Hy + fref

whereH, = H;R;', H, = R} 'H;, andf, = fi/per, £ = B~'f,, are both Arnoldi

processes that are mathematically equivalent to Algorithm 3.1.

Remark 2: ReplacingA with B and replacindB with A — ¢B in this algorithm is math-
ematically equivalent to shift-invert Arnoldi method applied(#d — ¢B)~'B. With this

substitution, the second relation in the previous remark becomes

(A —oB)"'BV) = V,H + frel.

This generalized Arnoldi iteration does nothing more than produce a partial reduction
of the pair(A,B) to condensed forniHy, Ry). Just as with the standard Arnoldi process,
there is no active mechanism to search for desired eigenvalues. However, methods that are
analogous to implicit restarting [20] and truncafe® [21] are possible and these shall be

developed in the following section.
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4. Implicitly Shifted QZ-lterations. Forward and backward versions of implicitly
shifted QZ iterations are developed here as simple extensions of the @fhandRQ it-
erations. This leads naturally to truncated iterations that generalize the truncat@g and
RQiterations developed in ([20, 21]).

In the following discussion, assume that there is a complete reductioh,d@) to con-
densed form

AV = WH,
BV = WR.
Forward QZ lteration:

A forward QZ iteration may be developed from the following observations:
For a given shiffu, factor

(4.1) H-yR=172T
whereZ is unitary andT is upper triangular matrix. Now, factor
(4.2) ZiR =RTQ,

whereR.* is upper triangular an€) is unitary. As with theQRiteration, it is straightforward
to show thatZ is upper Hessenberg matrix in (4.1). Since HathndR* are upper triangular
matrices, the relation (4.2) implies th@" is also an upper Hessenberg matrix. It follows
that

(4.3) (A —uB)V = WZT,
BV = WZ(Z"R) = WZR Q.
Multiplying both sides of (4.3) on the right b’ and rearranging terms gives
AVt = WTHT,
BVt =W'R",
whereV*t = VQH | Wt = WZ andHt = ZHHQY = TQ¥ + uR* is an upper
Hessenberg matrix. This sequence of operations comprises a foQiastp. It may be ac-

complished implicitly wherQ andZ are represented as products of Givens’ transformations.
From (4.3) it follows that

A — uB)v; = WZTe, = BVH(RY)'Te; = Bv{r
( uB) 1
so that

(B_lA —pl)vy = va

wherer is the(1,1) element of the upper triangular matfR. ™)~ T. Thus, the new starting
vectorv; is the result of the application of a linear polynomial facofB—'A — uI) to the
old starting vectow .

Backward QZ Iteration:
A similar development leads to a backwa#d iteration:
For a given shiffu, factor

H- R =TZ
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FQZ: Forward Implicitly ShiftedQZ-iteration

Input: [V, W, H, R] with AV = WH, BV = WR,
H upper Hessenber®. upper triangular,
VEV = WHEW =1

Output: [V, W, H, R| such thaAV = WH, BV = WR,
H andR both upper triangular,
VAV =WHW =1.

1.for j =1,2,3,... until convergence,
1.1. Select a shiffy < p;;
1.2.Factor[Z, T| = gr(H — uR);
1.3.Factor[R*, Q] = r¢(Z”R);
14.H«+ ZPHQY ;R «+ RT;
15V « VQE ;W « WZ;
2.end;

FIG. 4.1.Forward Implicitly ShiftedQZ-iteration.

whereZ is unitary andT is upper triangular. Now, factor
RZ" = QRT,

whereR* is upper triangular an@) is unitary. As beforeZ andQ?*! are upper Hessenberg
matrices. It follows that

(A —uB)VZ? = WT,
BVZ? = WQR™.

Thus

AVt = WTHT,
BVt = WiR*,
whereV* = VZ# W+ = WQ are unitary matricesaid™ = QYHZY = TZ# + R+

is an upper Hessenberg matrix to complete the backw@rdstep.
This time, observe that

(A — uB)v] = WTe; = BVR !'Te; = Bvy7
so that

vi = (A —uB) 'Bv;7
= (BflA — uI)*lvlr

wherer is the (1,1) element oR~!T. Hence, the leading column of two successWe
matrices are in an inverse iteration relationship.
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BQZ: Backward Implicitly ShiftedQZ-iteration

Input: [V, W, H, R] with AV = WH, BV = WR,
H upper Hessenber®R upper triangular,
VEV =WHEW =1

Output: [V, W, H, R| such thatAV = WH, BV = WR,
H andR both upper triangular,
VIV =WifW =1.

1.for j =1,2,3,... until convergence,
1.1. Select a shifps < p;;
1.2.Factor[T, Z] = rq(H — uR);
1.3.Factor[Q, R*] = ¢gr(RZ*);
1.4.H « QFHZY; R « R,
15V « VZH ;W « WQ;
2.end;

FIG. 4.2.Backward Implicitly ShiftedZ-iteration.

5. Truncated Forward and Backward QZ-Iterations. With these versions of th@Z
iteration, one can develop generalizations of trunc@BéndRQiterations for the general-
ized Arnoldi process. The truncated forward iteration will correspond to implicit restarting
(truncatedQR) developed in [20] while the truncated backward iteration will correspond to
the truncatedRQiteration developed in [21]. These can be recovered from the methods de-
veloped here wheB = 1.

Assume now that there is a partiaktep reduction to condensed form

(5.1) AV, = W H;, + frel,
BV, = WiRy,
asin (3.1).
Truncated FQZ:
Select a shifix and apply one forwar@Z step to the projected paiH, Ry,) to obtain

k x k unitary upper Hessenberg matri€®§’ andZ,, and an upper triangular matri;, such
thatH; — uRy = Z;Ty. Completion of thd=QZ step will give

H:Q = Z,H}
R:Q} = Z«R{,
whereHjcr andR§ are ordelk upper Hessenberg and triangular matrices respectively. Then
(A — uB)Vy = W,LZ, T, + frel
and just as in the full iteration, equating the first column of both sides implies that
(A — uB)vi = W Z; Tre; = BV (R)) ' Trer = Bvir.
Thus,
(B A — pul)v, = v,
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wherer is the (1,1) element ofR;) ~' Tj.. Now,

(5.2) AV =WiH; + fief Q
BV, =W, R/

and sinceQX is upper an Hessenberg matrix, it follows that the last ro®¢f has the form
e} QHf = [oel_,,~]. Hence, the leading — 1 columns on both sides of (5.3) remain in a
generalized Arnoldi relation

AV;A = W;:AHZ_A + f.16—1535—1
BVkJr—l = WZ—1R:—1

wheref;,_; = W er3 + fro. Now, one additional generalized Arnoldi step may be per-
formed to return this to an implicitly restartéestep reduction.

Just as with the IRA iteration, this idea may be cast in the form of repeating the following
steps: (1) Extend to & + p step factorization, (2) Apply shifts with FQZ sweeps, (3)
Truncate the lagb-colums to return to & step factorization. This will define a generalized
implicitly restarted Arnoldi method.

Truncated BQZ:

To truncate the backward3Z iteration, it will be necessary to derive relationships exist-
ing in columnk + 1 on both sides of (2.2). The required theory for the standard problem has
been derived in [21] and this will generalize in a straightforward way to obtain a correspond-
ing truncated backward3Z equation. However, the details for completing a backw@zd
sweep once this equation has been solved are a bit more intricate thamMR@iteration.

Following the development of thERQiteration, given a shift, and the partiak-step re-
duction, the truncateBQZis initiated by constructing vectossandw of unit length that are
orthogonal to the columns &f;, andW |, respectively, wit{ A —uB)v € Range([Wy, w]).

Then, a relation of the form

(5.3) (A= pB)[Viv] = (Wi, w] | T2 pTE

is obtained to initiate a truncat&{)Z step. To develop this further, assume for the moment
thatv, w, h anda have been constructed to satisfy these relations. Let us postpone the con-
struction of these quantities and first show how to complete the trunB&QZdtep assuming
that (A — uB)v = W;h + wa. At this point, it is important to realize that the bordered
Hessenberg matrix in (5.3) is precisely the leading principal submatrix that would appear if
the full matrixH — R were partially factored into aRQfactorization from right to left us-
ing Givens’ transformations up to the+ 1 st column. The subsequent computations amount
to arranging the remaining relations in tN€ and R matrices that would be in place had
the firstn — k steps of 8BBQZ sweep been done. The idea is to anticipate this configuration
and then complete the sweep in the leadirmplumns without ever computing the remaining
n — k columns of theBQZrelations.

At this point, the relationships faB must be brought up to date. Equations must be
derived that will kee@B in a triangular relation with the two basis sets. We first construct a
vectorw™ such that

Bv =W;r+w'p with Wiw' =0
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using classical Gram-Schmidt with the orthogonality correction scheme proposed in [3] Once
this is done, we have

(5.4) BV = (Waw] [ 7).

From Equations (5.3) and (5.4) we may derive

Hy —uRy; h ] R
AWV = (Wil | TR 0w e |
H, h+rp

_ +
=W W' ggeT a8+ o

] +z[Bef ,al,

wherew has been written a& = w6 + z with z7w+ = 0.
At this point, in the full factorization, the leading princig@+ 1) x (k+ 1) submatrices
of theH — uR andR matrices are of the form

Hk—,U,Rk h :|

(55) I:Ik+1 - ,uf{'k+l = |: ﬂaeg ab

and
e
To complete thd8QZ step, factor
(5.6) Hyy1 — 1Rig1 = Tp1 Zpgr
whereTy. is an upper triangular aril, ; is a unitary matrix. Now, factor
Qk+1R2_+1 = Rk+1Z£{+1,

whereQy.,1 is a unitary antngJr1 is an upper triangular matrix. As befo@y | andQﬁr1
are both upper Hessenberg matrices.

From Equations (5.5) and (5.6), we observe {i#at], a)Zf', , = (0, &) wheread is the
(k+1,k+1) elementofTy;.

It follows that

(A — uB)[Vi,V]Z{ = Wi, wH Ty +2(0,a)
B[Vi,VIZ{ ) = Wi, wh Qe R, |,
and then
(5.7) (A — uB) [V, VIZiL ) = Wi, wHQui1 Q7 Trr +2(0,d)
B[Vk, V]ZkH+1 = [Wk, W+]Qk+1R;€i_+1.
As in the full case, the relations
Qi T + pRY = QkH+1ﬂk+1ZkH+1

hold and imply thatFIZf+1 = Qfﬂﬂkﬂz,{f’“ is an upper Hessenberg matrix. Therefore,
deleting thek + 1-st column on both sides of (5.7) will give

AV =W/ H} +fe],
BV} = W/R/,
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whereV is the matrix consisting of the leadirigcolumns off V., v]Z;! ; andW is the
matrix consisting of the leading columns of{W,, w]Qy1. The matricesR;, andH}’
are the leading principal ordérsubmatrices oR;, ; andH;, ;, andf;’ is the last column
of [Wy, wF]Qp1 scaled by the(k + 1, k) element of L ;.

This time, observe that Equation (5.7) implies that

(A — uB)vi = W; Tie; = BV,R, 'Tre;
so that

vi = (A —uB) 'Bvir
=B A —pu)tvyiT

wherer is the (1,1) element d{,ngk. Hence, just as in the full case, the leading columns
of two succesiv&y’ matrices are in an inverse iteration relationship.

Now that the truncateBQZ step is understood, it is time to develop the trunc&8¥
equation needed to constructh anda in equation (5.3), so that

(A —uB)v = Wih+wa

with w = f,/||f|l, v/Vy = 0 and||v|]| = 1. Existence and uniqueness for the case
B = I was developedin [21] and easily generalizes to this setting. Of the various possibilities
developed there, the following seems most appropriated in this setting:

First, compute a solutiof to the equation

(5.8) (A — uB)V = Wit + fin
where(tH n)H is an arbitraryk + 1 vector. Then set

(5.9) v=(1-V,VE)vr

wherer = 1/[|(I- V,,VE)¥||. Now put

(5.10) h=W/(A-uB)v anda =w (A — uB)v.

The following lemma indicates why this will work.
LEMMA 5.1. AssumeA — uB is nonsingular and that there is a partial reduction of
(A, B) to condensed form as in (5.1).H;, — uR, is nonsingular, put

t = (Hk — ,U/Rk)S

and choose) # el's, wheres is anyk-vector. Otherwise, let # 0 be a left null vector so
that

0 =t"(Hy — pRy)

and choose) to be arbitrary. Letv be the unique solution to (5.8). Therst (I -V, Vv,
so the vectox can be constructed by projection and normalized as in (5.9). Moreover,

(A — uB)v = Wih + wa,

i.e. (A — uB)v € Range([Wy, w]).
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Proof. Supposet, n, andv are constructed as prescribed in the hypothesi€) #
(I -V, VH)¥, thenv = V,y must hold for some nonzerovectory. Now, this would

imply
(A —puB)v = (A —uB)Vy
= W (Hj, — uRy)y + fref y.

Substituting this on the left side of (5.8) and using orthogonality gives
(5.11) (Hy — pRy)y =t andel'y = 1.

If H;, — uRy is nonsingular, they = s and (5.11) would contradict the choicemfOther-
wise, the choice of as a null vector would lead to the following contradiction:

0 =t"(H), — uRy)y = t"t £ 0.

This showd) # (I— V, VE)v, so thatv can be constructed by projection and normalized as
in (5.9). It remains to shoWA — uB)v € Range([Wy, w]). However, this follows easily
from the relations

(5.12) (A — uB)v = (A — uB)v — (A — uB)V, V%
= Wit + fip — [Wi(Hy, — pRy) + frel [VEY,

This completes the proof. [

Since(A — uB) is nonsingular an@iW ,, w] is a unitary matrixy,h anda are uniguely
determined once andn have been specified. This justifies using (5.8) and (5.9) to compute
them. However, it is remarkable thath and« are unique, regardless of the choice @fnd
naslong ad # (I — V., VE)v. This result is a fairly straightforward modification of the
results in Section 2 of [21].

Typically, t = e;, is chosen because this corresponds to the standard Arnoldi process for
B =1, but many other interesting choices are possible.

Remark: We may choose to cast (5.8) in the form

(5.13) (I - XX)(A = uB)(I - ZZ™)v = Wit + fin,

whereX = W, Y andZ = VS with YZY = S#S = I;. HereY andS may be of
dimensiork x j foranyj = 1,2,---, k. Oncev is determined, (5.13) may be rearranged to
obtain a relation of the form

(A — uB)v = Wit + £,
since
(XX (A-uB)(I-ZZ")v € Range(W}) and (A—puB)(ZZ")v € Range([W},, w]).

Observe that there is no need to actually compugad. One may simply project and
normalize as in (5.9) to get and then obtaith and« as in (5.10).

This remark may have computational significance in case we choose to compitke
an iterative method. In particular,fis a nearly converged Ritz value, then it may be a good
ideato takeX = Wy wherey” (H; — uRy) = 0, andZ = Vs where(H — uRy)s = 0.
This choice would tend to project out the near singularityAf— ;B) as suggested in [18]
along the directions of the converging eigenvectors. Another possibility is taXakeW
andZ = YV, as suggested in [21] to project out all of the current subspace. The latter
choice is computationally more expensive (per iteration in the linear solve) but may have
other advantages in the presence of clustered eigenvalues.
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TBQZ: Truncated Backwar@Z-iteration

Input: [A, B, v, k] with A, B matrices of orden
v ann-vector with||v|| = 1
k << n the desired number of eigenvalues.

Output: [V, W, H, R] such thatAV = WH, BV = WR,
H andR bothk x & upper triangular,
VHV = WEW =1,.

1.[V,W,H R, f] = genarn(A, B, v, k);
2.8 =|fll; w="£/5;
3.for j =1,2,3, ... until convergence,
3.1. u = selectshift(H, R); t = selectvector(, R);
3.2. Solve(A — uB)v = Wt for v;
33. h=VHYy: v« v —Vh; v=v/|V|;
34. f=Av; g=Bv; f+f—gyu;
35. h=WFHf;, o =wlf, §=wlg;
36. r=Wig, w=g— Wr;
37. p=|lwll; 6« 8/p; w=w/p;
H h+ry |, R r |,
38. H« 68el G+ pp } R« [ 0 p ]
3.9. [T,Z] = rq(H — uR);
3.10.[Q, R*] = qr(RZ");

3.11.H + Q7HZ";

312.V « [V,v]Q(:,1 : k) ; [W,w] «+ [W,w]Z;
313.0=H(k+1,k); H+« H(1:k1:k); R+« R(1:k,1:k);

4. end,

F1G. 5.1.Truncated Backwar@Z-iteration

6. Inexact Arnoldi Processes.In the previous two sections, algorithms have been de-
veloped to generalize the Arnoldi process and to derive truncated forms of the forward and
backwardQZz iterations. Unfortunately, these algorithms require the accurate solution of lin-
ear systems. However, the accuracy requirement for computing the diredtioough Steps
(3.3)-(3.4) may be relaxed. A projection algorithm is still obtained but the Krylov property
will be lost.

To relax the exact solution requirement indicated at Step(3.3), simply replace the compu-
tation ofy from By = w with y = itsol(B, M, w) whereM represents a preconditioner for
B anditsol represents a few steps of a preconditioned iterative method for the solution of the
linear systemBy = w. Formally, there is no accuracy requirement here and as little as one
step of the iterative method may be specified. However, the rank-one nature of the residual
F;. will be lost along with the Hessenberg form fir, when this accuracy is relaxed.

Of course, there are algorithmic consequences of relaxing the accuracy requirements.
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INXARN: Inexact Arnoldi Process

Input: (A, B, v, k) such that|v|| = 1.

Output: (Vk,Hk, Rk,Fk ) such thatAVk =W H; +F;, V{Vk =1,
BV, =W Ry, W{W, =1, WI{F;, =0
with H;, upper Hessenberg aml, upper triangular.

1LVi < (v);w=Bv;p=|[w|;Ri = (p); W1 = (W/p);
2.y Av, H; « (W,{W), f; « y — W1H1; F, = (fl),
3.forj=1,2,3,...,k—1

3.1y« [Ifjll; w « £5/7;

3.2.v = itsol(B,M, w);

33.2+ VIV, v« v -V,z

34.v « ||V

35.W < Bvir « W/w; W w—Wjr; p |[w];

36.W « W/p; Wi « (W, w); Rji « < IEJ ; );

3.7.y + Av;, h<«+ W;‘-Fﬂy; cl' = WTF]-;

38.H; + ( IC{T? );VJ-H «~ (Vj,v);

4. end

3.9. fj+1 —y— W]'+1h; Hj+1 — (H],h), Fj+1 «— [F] — WCT, fj+1];

FIG. 6.1.An Inexact Arnoldi Process.

The relations (3.5) are no longer valid. Therefore, the relatiorBlig= W, r + wp must be
forced explicitly once the direction has been determined. The resulting algorifhNKARN

is described in Fig. 6.1.

Generating Directions and the Newton Step:

Once the decision has been made to relax the Krylov property, a more general point
of view may be taken. The sequence of vectpvs} may just as well be generated by
some arbitrary process unrelated to the projections. Certainly, some relation to the shift-
invert equations is desirable and the remainder of this discussion will focus on properties
of the generated sequenge;} required for rapid convergence. With this end in mind, let

us consider an arbitrary sequence of generated vef(sro, ..., v;, ...} and assume that

these vectors are orthonormal in some convenient inner product.

Given this sequence, it is straightforward to obtain a derived sequence of orthogonal
vectors{w; } along with a sequence of projections that provide a partial reduction of the pair

(A, B) to condensed form at each step:
Vi« [Vj-1,vj];
BV]' = WjRj;
AV]' = WjHj +Fj;

with WI'W; = VI'V; = I;, W/F; = 0 as before through classical Gram Schmidt

J
othogonalization.
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How should the sequender;} be generated to achieve or to accelerate convergence
of the Ritz values (eigenvalues dfi§, R;) ) to selected eigenvalues of the pai,[B)?
Certainly, it would be helpful to develop a connection with Newton’s method and then perhaps
modify those choices to reduce computational cost while retaining reasonable convergence
properties. To this end, suppokly = Ryf andx = Vy with ||x|| = |ly|]] = 1. Let
A € o(A,B) be the closest eigenvalue foband letq be the corresponding eigenvector
normalized so that” q = 1 (hence||q|| > 1).

With these assumptions, let us represent

q=x+1z, A=0+9,

with x”z = 0 and derive the standard second order approximation from the rel&tios
Bqg\. Substituting, combining and rearranging terms gives

(6.1) (A—-6B)z = —(A —6B)x + Bxd + Bzd

At this point, several alternatives are available to approximate the correction vecfoo
possibilities shall be examined here. The first of these gives the correction developed in
[18, 6]. Sincex = Vy, it follows that

—(A —-6B)x + Bxd = —W(H - fR)y — Fy + WRyd
= —Fy + WRyé.

Now, if both sides of equation (6.1) are multiplied on the leftloy WW# the resulting
equation is

(6.2) (I-WWH)(A - 6B)(I - xx")z = —Fy + (I - WW#)BzJ,

since0 = WHF and0 = xz. From this, it also follows that equation (6.2) is consistent
and there is a unique minimum norm solutisnHence the directior obtained by finding
the minimum norm solution to

(I-WWH)(A -6B)(I - xx)v = -Fy

will assure that the second order correction is a member of the updated spaces
Range(V) andSw = Range(W) whenv is adjoined and the correspondiwgs obtained.

An alternative to the solution just developed is to treat equation (6.1) in a straightforward
way assuming that the matrik — B is nonsingular. Then

(6.3) z=-x+ (A -6B) 'Bxé + (A - §B) 'Bzd.
Now, using the fact® = xz and0 = (I — xx")x gives
z=(1-xx"T)(A-6B)"'Bxs + (I - xx)(A - 6B)"'Bzs,

when both sides of equation (6.3) are multiplied on the left by the proje¢lionxx?).
Now, the second order correction will be included in the updated spaces in the new direction
v obtained by finding the solutiohto

(A — 6B)z = Bx,
and then projecting and normalizing to get

z=(I-xx")z andv = z/||z||.
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Note the advantage here of adjoining the directico the existing space. We do not need
to explicitly computed in (6.3) as would be needed in an explicit Newton method. This
projection process assures that the Newton correction is in the updated subspace so that the
new Ritz vector and Ritz value will be at least as good as those obtained through an explicit
Newton step.

The methods of Davidson [4], Olsen et. al, [15], Sleijpen and Van der Vorst [18] and
those introduced and discussed by Knyazev [10] can all be placed within this Newton-like
framework.

Blocked Formulation: Futher consideration of the previous development would suggest that
a block formulation is more appropriate than a single vector approach when the Krylov prop-
erty is no longer enforced. To develop this, we assume a partial decomposition of the form

(6.4) AV, = W H;, + F;, with WIF, =0,
BV, = W Ry,

whereV,, W1, F; aren x k matrices andd,;, Ry, arek x k matrices. We then construct
then x k matrix V, as follows:

V =(1-VV{)p(A,B)F,
[V2, T] = qr(V),

(i.e.,V,oT = V with V, orthogonal an@ upper triangular matrices). Obtain additional basis
vectorsW, via

BV, = W R» + WyRyy with WHW, =0, WIW, =1,.

Then computdl;», Hy;, Ha, Fi™ andF, such that

AV, = W H;; + WyHy, + F},
AV, = W Hs + WyHs + Fs.

Finally, apply theQZ method (say) to the paiI, R) to obtain unitary matrice€), Z, an
upper-triangulaFl+ and an upper triangular mat®* such that

HQ = ZH™,
RQ = ZR ',

whereH = (H;;) andR = (R;;) , i = 1,2;j = 1,2, with the best approximations to
the desired eigenvalues appearing as eigenvalu@s df block of the paifH*, R ™). Now,
update

V1 «— [Vl,VZ]Q(C,]. : k‘), Wl «— [Wl,WZ]Z(:, 1: k‘),
H11 «— H+(1 : k‘,l : k), R11 «— R+(1 : k‘,l : k‘),
F1 «— [FT,FQ]Q(:, 1: k)
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In this developmentp(A, B) represents a matrix polynomial iA andB generated by a
(preconditioned) iterative method designed to solve

(A —6B)V = F,.

Infact,G = p(A, B)F; could easily represent a much more general object with each column
of G representing a separate iterative solution of the form

g] ~ (A_QJB)_IFIYJa .]: 17277k

This could be made very efficient in terms of data movement per matrix-vector product. Each
separate column would need two operations of the féxgy and Bg;. For example, a
Richardson’s iteration could take the form

G=FY;
forj=1,2,---
G + GI' - AG - BGO;
end
whereT = diag(m1,72,-..,7%) With reciprocal Richardson parameteys and ®@ =
diag(61,02,...,60;) andY = [yi1,y2,..,¥k] the current Ritz approximations to desired

eigenvalues and vectors, iHY = RYO®.
We may express the above discussion formally as the algoBth&QZ shown in Figure
6.2.

7. Computational Results and ConclusionsWe shall present some very preliminary
computational results to give some indication of the relative performance of three methods:
TFQZ TBQZ BLKQZ The purpose of these results is mainly to indicate that the methods
have been programmed and will solve a difficult problem. There are many implementation
details to consider and a number of parameter choices to be made. A thorough computational
study including comparison with other methods is certainly called for.

Our results will consist of a comparison of the three methods on a single problem.
The problem we consider is a symmetric generalized problem from the Harwell-Boeing
collection. The matrices are stiffness and mass matrices were obtained through the Matrix
Market from

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstrucl/

to form a generalized eigenvalue problénx = Bx\. The matrixA is BCSSTK12 and the
matrix B is BCSSTM12 from the BCSSTRUCL1 set. BCSSTK12 and BCSSTM12 represent
the consistent mass formulation for an ore car model. The consistent mass formulation leads
to a non-diagonal mass matrix. All computations were done in Matlab Version 5.1.0.421 on
a Sun SparcStation 20 Model 61 with 64 megabytes of RAM.

For these matrices; = 1473 and A has17857 nonzero entries. The smallest four
generalized eigenvalues are

3.469305448042201e+03
3.670875662014555e+03
5.538220410502827e+03
6.410197662646212e+03

and the largest generalized eigenvalue is on the order of 6.55e+08.
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BLKQZ: Block InexactQZ Process

Input: (A, B, V,k)suchthaVv, = I,
Output: (Vl, H11, Rll) such thatAV1 =W;H;;, V,{Vl =1I;.

BVl = W1R117 Wflwl = Ik)
with Hy; upper upper triangular arid;; upper triangular.

1. W; =BVy; [Wy, Ry = qgr(Why);

2.F, « AV, ;H;; « (W,{Fl), F, «F,—W;H;;
3.forj=1,2,3,...,k—1

3.1. Vy = itsol(A,B,M,F,Y,);

3.2. S« V{IV2, Vz — Vz -V;S;

3.3. [VQ, S] = QT(VQ);

3.4. V:VQ — BVQ, Ris « W’1TW2, R
35. Wy « Wy — W Ryy; [Ws, Ra] = ¢r(Ws);
3.6. Hy; WfFl, F, « F, — W2H21;

3.7. F5 < AVy, Hi» + W{{Fz,

3.8. Fy « Fy — W Hyy; Hy = WEF,y; Fy «+ Fy — WoHy,;

H11 H12 Rll R12
39. H + ; R« ;
( Hs Hoso > ’ < 0 Ra )

3.10.[Q, Z,H,R] = gziter(H, R, sort');

3.11.V; [VI,VQ]Q[:, 1: k‘], Wi [Wl,Wg]Z[:, 1: k],
3.12F1 — [Fl,FQ]Q[i, 1: k‘],

313.H;; « H(1:k,1:k); Riy « R(1:k,1:k);

4. end

FIG. 6.2.A Block InexactQZ Process

For ak-step factorization, the work and storage required®@Z is

e Storage2n(k + 1) plus storage foA,B,L, U
e Initial work:

1 sparse LU-factorization,
k + 1 LU-solves,
4n(k + 1)? flops for orthogonalization.

e Work per iteration:

1 LU-solve,

1 matvec with(A, B),

4n(k + 1)? flops for orthogonalization,

sparse LU-factorization if there is a shift change.

For our run,k = 9 and the iteration was halted after four Ritz values had converged.

Here, we list estimates of the computational and storage costs of the three routines and
indicate the performance of each of them on this test problem. The term “matvec” stands
for a matrix-vector product and the term “LU-solve” stands for solving the two successive
triangular linear systems first with and then withU as coefficient matrices.

The
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TABLE 7.1
Eigenvalues calculated by TBQZ.

Eigenvalues ErroN,,in  Errori\ ez
3.469305448324274e+03 2.8e-11 4.3e-16
3.670875661790737e+03 2.27e-11 3.4e-16
5.538220406841684e+03 3.7e-10 5.5e-16
6.410197672779293e+03 1.0e-09 1.5e-14

TABLE 7.2

Eigenvalues calculated by TFQZ.

Eigenvalues ErroN,,;n,  Errori\,az
3.469305447658971e+03  3.8e-11 5.8e-1
3.670875661610020e+03  4.le-11 6.le-1
5.538220410338460e+03 1.6e-11 2.5e-1
6.410197662356884e+03 2.9e-11 4.4e-1

D O O O

code took 14 iterations and 7 matrix factorizations. The eigenvalues compul&}¥&are
shown in Table (7.1).

TFQZ:
For anm step factorization that retainskastep factorization after each implicit restart,
the work and storage required is
e Storage2nm plus storage foA, B, L, U
e Initial work:
1 sparse LU-factorization,
m LU-solves,
4nm? flops for orthogonalization.
e Work per iteration:
m — k LU-solves,
m — k matvecs with(A4, B),
4nm? flops for orthogonalization,

For our runk = 4 andm = 12 with tol = 1.0e — 09. The code took two iterations and 20
LU-solves. The eigenvalues computedtiyQZare shown in Table (7.2).

BLKQZ:
The work and storage required with blocksizes
e Storagedn(2k) plus storage foA,B,L, U
e Initial work:
1 incomplete sparse LU-factorization,
1 block ILU-solve,
4n(2k)? flops.
o Work per iteration:
1 block ILU-solve,
1 block matvec with A4, B),
30n(2k)? flops,
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TABLE 7.3
Eigenvalues calculated by BLKQZ.

Eigenvalues ErroN,,in Error/\,az
3.469305447907588e+03 1.4e-11 2.0e-16
3.670875661903084e+03 l.le-11 1.7e-16
5.538220410459639e+03 4.4e-12 6.6e-17
6.410197662585929e+03 6.1le-12 9.2e-17

For our run,k = 4. The code took 43 matrix accesses, 43 block matvecs (A,B) and 443
individual matrix-vector products. The eigenvalues computeBIbgQZ are shown in Table
(7.3).

In each routine, we used a reference shifoof= 3.4e+3 and in the call ttfqz we
passedA — oB in place of B andB in place ofA in the calling sequence. This is mathe-
matically equivalent to using implicit restarting with the shift-invert operétor— B) 'B
and the convergence results confirm that. FoBhEQZ method we used a block variant of
BICGSTAB that we constructed from the single vector code in the templates collection [1]
and with an incomplete LU preconditioner from Matlab. We were able to arrange the code so
that each column of the right hand side represented a residual of the form

rj = (A — u;B)x;

but used the same preconditioner for the whole block. Typically, not all of the column equa-
tions converged and our cut off was 10 iterations. As the results show, this was sufficient for
convergence.

With these results, it is difficult to choose between the methods. H&®@Z seems to
be the winner but that is in absence of any architecture considerations and without specific
comparison between ILU and complete LU costs. We did not report flop counts or timings
because the implementations are fairly crude at this point in time. These results only indicate
that the three methods are indeed implementable and that they work on a challenging problem.

The real value of th&BQZ may lie in its applicability to rational interpolation with
respect to constructing reduced order models of state space control systems as explored in [9].
More investigation and testing needs to be done with respect to shift selection and selecting
the right hand side of the BQZ equations. The preconditi®ig€QZis very promising with
respect to parallel performance but is far from robust at this time.

Acknowledgement. The author would like to thank R. B. Lehoucq and C. Yang for
several discussions and comments. He would also like to thank the anonymous referee for
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