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TRUNCATED QZ METHODS FOR LARGE SCALE GENERALIZED
EIGENVALUE PROBLEMS �

D. C. SORENSENy

Abstract. This paper presents three methods for the large scale generalized eigenvalue problemAx = Bx�.
These methods are developed within a subspace projection framework as a truncation and modification of theQZ-
algorithm for dense problems, that is suitable for computing partial generalized Schur decompositions of the pair
(A;B). A generalized partial reduction to condensed form is developed by analogy with the Arnoldi process. Then
truncated forward and backwardQZ iterations are introduced to derive generalizations of the Implicitly Restarted
Arnoldi Method and the TruncatedRQmethod for the large scale generalized eigenvalue problem. These two meth-
ods require the accurate solution of linear systems at each step of the iteration. Relaxing these accuracy requirements
forces us to introduce non-Krylov projection spaces that lead most naturally to block variants of theQZ iterations. A
two-block method is developed that incorporatesk approximate Newton corrections at each iteration. An important
feature is the potential to utilizek matrix vector products for each access of the matrix pair (A;B). Preliminary
computational experience is presented to compare the three new methods.

Key words. Generalized eigenvalue problem, Krylov projection methods, Arnoldi method, Lanczos method,
QZmethod, block methods, preconditioning, implicit restarting.
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1. Introduction. This paper presents three methods for the large scale generalized
eigenvalue problem

Ax = Bx�:(1.1)

The methods are developed within a Krylov subspace projection framework as truncations
of the QZ-algorithm [13] for dense problems. These techniques provide natural extensions
of the Implicitly Restarted Arnoldi Method [20] and the TruncatedRQ Method [21] to the
generalized eigenvalue problem. Relaxing the accuracy level required for the solutions of
linear systems leads naturally to a non-Krylov block projection method. This block method
does not require accurate solution of shift-invert equations and makes efficient use of each
matrix access by performingk matrix-vector products instead of one.

The first two methods require accurate solutions of linear systems at each step of the
iteration. However, these methods are developed within a projection a framework that can
accommodate inexact solves of the shift invert equations if the standard Krylov relations
are relaxed. Introducing inexact solves forces us to introduce non-Krylov projection spaces.
Once the Krylov property has been given up, it is natural to consider block variants of theQZ
iterations. Therefore, we have developed a two-block method that incorporatesk approximate
Newton corrections at each iteration. An important feature is the potential to utilizek matrix
vector products for each access of the matrix pair (A;B).

For some time, there has been considerable interest in improving eigenvalue methods
either by making better use of spectral transformation through multi-shift Rational Krylov
methods [16] or by utilizing some sort of preconditioned iterative solution of these shift-
invert equations at a relaxed accuracy level [11, 10, 14, 2, 19]. The ultimate goal is to achieve
the enhanced convergence properties of the spectral transformation without the cost of an
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accurate direct or iterative solution of the shift-invert equations. Generalization of the David-
son method [4] to a wider class of problems has received a lot of attention and the Jacobi-
Davidson method of Sleijpen and Van der Vorst [18] has emerged as an effective variant.
The methods developed here (in particular the backward form of truncated QZs) have a lot in
common with Ruhe’sRKSmethod. This truncated backward form also appears to be closely
related to the work of De Samblanx, Meerbergen and Bultheel on implicit applications of a
rational filter inRKS[17].

The paper begins in Sections 2 and 3 with the development of simultaneous projections
of the matricesA andB onto two subspaces to achieve a partial reduction to condensed form

AVk =WkHk +Fk ; with WT
kFk = 0;

BVk =WkRk;

through a generalized Arnoldi process. Here,Vk andWk are bothn�k orthogonal matrices,
Hk is a k � k upper Hessenberg matrix andRk is upper triangular. With this reduction,
approximate generalized eigenvalues of the pair(A;B) are obtained from the projected pair
(Hk;Rk).

As with the standard Arnoldi process, storage and arithmetic costs are prohibitive for
largek. Thus, restarting schemes are essential and two possibilities are developed. In Section
4, forward and backward variants of the implicitly shiftedQZ iteration are developed for
dense generalized problems. These are analogous to theQRandRQiterations for the standard
problem. Truncated forms of these forward and backwardQZ -iterations are developed in
Section 5. The forward form is analogous to implicit restarting [20] while the backward form
generalizes the truncatedRQ iteration [21]. These developments result in methods that are
effective in computing a few (k) selected eigenvalues and corresponding eigenvectors within
a fixed pre-determined storage requirement proportional ton � k and work proportional to
n � k2 +O(k3).

The generalized Arnoldi process requires the solution of a linear system at each step
regardless of how it is organized. Depending on certain choices, this amounts to applying a
mathematically equivalent standard Arnoldi process to one of the following matrix operators:

B�1A; AB�1; or (A� �B)�1B:

The backward variant of the truncatedQZ iteration makes the most economical use of storage
but tends to require more LU-factorizations than the forward variant. Very limited com-
putational experience with all three methods shall be presented in Section 7. No reliable
conclusions on comparative performance can be drawn from these limited tests.

Throughout this paper, capital and lower case Latin letters denote matrices and vectors
respectively, while lower case Greek letters denote scalars. Thej-th canonical basis vector is
denoted byej . The Euclidean norm is used exclusively and is denoted byk�k . The transpose
of a matrixA is denoted byAT and the conjugate transpose byAH . Upper Hessenberg
matrices will appear frequently and are usually denoted by the letterH. The notationM(:
; 1 : k) andM(1 : k; 1 : k) denote the leadingk columns and the leadingk � k principal
submatrix ofM.

2. Subspace Projection.Certainly, projection methods are prominent for the iterative
solution of linear systems and for computing a few eigenvalues of a large matrix or matrix
pencil. In the case of the standard problemAx = x�, Krylov subspace projection results in
the Lanczos/Arnoldi class of methods. These may be viewed as systematic ways to extract
additional eigen-information from the sequence of vectors produced by a power iteration.
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In hope to obtain additional information through various linear combinations of the power
sequence, it is natural to formally consider theKrylov subspace

Kk(A;v1) = Spanfv1;Av1;A2v1; : : : ;A
k�1v1g

and to attempt to formulate the best possible approximations to eigenvectors from this sub-
space.

Approximate eigenpairs are constructed by imposing a Galerkin condition: A vector
x 2 Kk(A;v1) is called aRitz vector with correspondingRitz value � if the Galerkin
condition

hw;Ax � x�i = 0 ; for all w 2 Kk(A;v1)

is satisfied. It is well known that the Lanczos/Arnoldi iteration computes an orthonormal
basisVk for this Krylov subspace along with a small projected matrixHk = VH

k AVk of
orderk from which Ritz values and vectors may be obtained:(x; �) is a Ritz pair if and only
if Hky = y� andx = Vky.

Several schemes have been developed to extend the Krylov subspace idea to the gener-
alized problem (1.1). These extensions are generally based upon a conversion of the general-
ized problem to a standard one. Perhaps the most successful variant [5] is to use thespectral
transformation

(A� �B)�1Bx = x�:

An eigenvectorx of this transformed problem is also an eigenvector of the original problem
(1.1) with the corresponding eigenvalue given by� = �+ 1

�
. In applications,B is often sym-

metric and positive (semi-)definite and then it is helpful to work with theB (semi-)inner prod-
uct in the Lanczos/Arnoldi process [5, 8, 12]. With this transformation, the Lanczos/Arnoldi
iteration converges very rapidly to eigenvalues near the shift� because they are transformed
to extremal well-separated eigenvalues and also because eigenvalues far from� are damped
(mapped near zero).

To utilize this transformation in a Lanczos/Arnoldi process, the repeated operationw 
Av is replaced by repeated solutions of a shift invert equation(A��B)w = Bv at each step
of the iteration. If a sparse-direct factorization of the shifted matrix(A � �B) is possible,
then this single factorization may be re-used at each step of the iteration. This approach is
certainly the method of choice, but may not be practical or even possible in many important
applications.

Although in some cases it may be effective to use a preconditioned iterative method to
solve the shift-invert equations, there are a number of pitfalls to this approach. Typically, the
shifted matrix is very ill-conditioned because� is chosen to be near an eigenvalue of interest.
Moreover, the shifted matrix is usually indefinite (or have indefinite symmetric part). These
two conditions typically cause problems in the iterative solution of linear systems. Further-
more, these difficulties are exacerbated by the fact that each linear system must be solved to
a considerably greater accuracy than the accuracy desired in the eigenvalue calculation. Oth-
erwise, each step of the Lanczos/Arnoldi process will essentially involve a different matrix
operator.

The underlying Krylov subspace projections associated with the Lanczos/Arnoldi pro-
cess has a number of important approximation properties related to convergence and accu-
racy. Unfortunately, if it is not possible to solve the shift-invert equations accurately then
these desirable properties are lost. However, it is possible to retain the projection idea in a
way that generalizes the Arnoldi process when the shift invert equations can be solved accu-
rately and yet can accommodate inaccurate solution of the shift-invert equations. To do this,
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we must consider more general subspaces. The development of this projection framework is
the primary topic of this paper. It is inspired by the following well known result.

LEMMA 2.1. If A andB are complex matrices of ordern, then there are unitary matri-
cesV,W an upper Hessenberg matrixH and an upper triangular matrixR all of ordern
such that

AV =WH;(2.1)

BV =WR:

This factorization can be computed in a finite number (O(n3)) of rational arithmetic and
square root operations.

Proof. See [7].
For the standard problem (B = I) this lemma reduces to the statement thatA may be

put in condensed form by unitary similarity transformations. The Arnoldi process produces a
partial reduction ofA to condensed (Hessenberg) form

AVk = VkHk +Fk;

withVT
kVk = Ik andVT

k Fk = 0. This may be interpreted simply as a truncation of the full
reduction. It turns out thatFk = fke

T
k is a rank one matrix and this property is intrinsically

tied to the fact thatfVj : j = 1; 2; : : : ; kg is a sequence of orthonormal bases for the nested
sequence of Krylov subspacesKj(A;v1). The Hessenberg matrixHk = VT

kAVk is the
orthogonal projection ofA onto the subspaceKk(A;v1) as represented in the basisVk and

Fk = (I�VkV
T
k )AVk :

If k = n thenFk = 0 and this provides a complete reduction ofA to condensed (Hessenberg)
form.

The generalization suggested by Lemma (2.1) is

Fk = (I�WkW
T
k )AVk ;(2.2)

BVk =WkRk:

whereWT
kWk = VT

kVk = Ik. This projection makes the residualFk orthogonal to
Range(BVk), since the columns ofWk form an orthonormal basis for that space. The
Arnoldi process for the standard problem systematically produces the columns ofVk; k =
1; 2; :::; n at the cost of a matrix vector producty  Av and an orthogonal decomposition
of this vector into a component in the existing Krylov space and one that is orthogonal to it.

The extension of this process to the generalized problem still requires the solution of a
linear system at each step. Nevertheless, it is interesting to develop this generalized Arnoldi
process, along with two restarting variants which will be developed in Sections 3,4,5. These
algorithms are significant by themselves, but they may also be viewed as laying the ground-
work for developing schemes that can relax the accuracy requirement on the shift-invert equa-
tions and yet retain the projection propertes in the framework of a truncated reduction to
condensed form.

3. Generalizing the Arnoldi reduction. The projection in equations (2.2) are well de-
fined for any matrixVk, but it is not clear which choice ofVk will provide good approx-
imations to eigenvalues. The success of the implicitly restarted Lanczos/Arnoldi processes
viewed as truncatedQR iterations provides considerable motivation to develop a truncation
of theQZ iteration in this projection framework.
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The factorization in (2.1) provides an initial reduction of the pair (A;B) to an equivalent
pair (H;R) in condensed form. This reduction precedes theQZ iteration just as reduction
to Hessenberg form precedes theQR iteration. In fact, the two reductions are identical when
B = I. The Arnoldi process may be derived (forB = I) simply by equating the leadingk
columns on both sides of (2.1). Therefore, this Arnoldi idea is easily generalized by doing
the same thing whenB is not the identity matrix. This is fairly straightforward, but a little
manipulation must be done to place this truncation within the projection framework of the
previous section.

Truncating the relations (2.1) afterk-steps yields

AVk =WkHk + fke
T
k(3.1)

BVk =WkRk;

withVk;Wk representing the leadingk columns ofV;W ,Hk;Rk representing the leading
k�k principal submatrices ofH;R andfk = wk+1
k+1;k wherewk+1 is thek+1-st column
ofW and
k+1;k is thek-th subdiagonal element ofH.

To advance thisk-step factorization one step, the relations

A[Vk ;v] = [Wk;w]

�
Hk h


eTk �

�
+ fk+1e

T
k+1(3.2)

B[Vk ;v] = [Wk;w]

�
Rk r

0 �

�
;

must be obtained to give the new columnsvk+1 = v;wk+1 = w and to update the matrices
Hk+1 andRk+1.

Equating the leadingk columns on both sides implies
 = kfkk andw = fk=
. The
directionv must satisfy

Bv =Wkr+w� and VT
k v = 0:(3.3)

This implies that

0 = [VT
kB

�1Wk;V
T
kB

�1w]

�
r

�

�
:

Now,VT
kVk = Ik andBVk =WkRk givesVT

kB
�1Wk = R�1

k and thus

R�1

k r = �VT
kB

�1w�:(3.4)

Combining (3.2), (3.3) and (3.4) gives

v = B�1Wkr+B
�1w�(3.5)

= �VkR
�1

k r+B�1w�

= �VkV
T
kB

�1w�+B�1w�

= (I�VkV
T
k )B

�1w�;

with � � 1=(k(I�VkV
T
k )B

�1wk) so thatVT
k v = 0 andkvk = 1. Now that the newv has

been determined, it follows that�
h

�

�
=

�
WT

kAv

wTAv

�
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GENARN: Generalized Arnoldi Reduction

Input : [A;B;v; k] with kvk = 1.
Output : [Vk;Wk;Hk;Rk; fk] such thatAVk =WkHk + fke

T
k ;V

T
kVk = Ik,

BVk =WkRk; W
T
kWk = Ik,WT

k fk = 0,
Hk upper Hessenberg andRk upper triangular.

1. V1  [v]; w = Bv; � = kwk;R1 = [�];W1 = [w=�];
2. z Av; H1  [WT

1 z]; f1  z�W1H1;
3. for j = 1; 2; 3; :::; k

3.1. 
  kfjk;w  fj=
;

3.2.Wj+1  [Wj ;w]; Hj  

�
Hj


eTj

�
;

3.3. SolveBv̂ = w;
3.4. z VT

j v̂; v̂  v̂ �Vjz; � 1=kv̂k;
3.5.v v̂�; r �Rjz�;

3.6.Vj+1  [Vj ;v]; Rj+1  

�
Rj r

0 �

�
;

3.7. z Av; h WT
j+1z;

3.8. fj+1  z�Wj+1h; Hj+1  [Hj ;h];
4. end

FIG. 3.1.Generalized Arnoldi Reduction

and

fk+1 = Av � (Wkh+w�):

This completes the update and leads to the the generalized Arnoldi processGENARNshown
in Fig. 3.1.

Remark 1: The substitutionVk = B�1WkRk gives

(AB�1)Wk =WkĤk + f̂ke
T
k

and

(B�1A)Vk = Vk
~Hk + ~fke

T
k

whereĤk = HkR
�1

k , ~Hk = R�1

k Hk and f̂k = fk=�kk, ~fk = B�1fk, are both Arnoldi
processes that are mathematically equivalent to Algorithm 3.1.

Remark 2: ReplacingA with B and replacingB with A � �B in this algorithm is math-
ematically equivalent to shift-invert Arnoldi method applied to(A � �B)�1B. With this
substitution, the second relation in the previous remark becomes

(A� �B)�1BVk = Vk
~Hk +~fke

T
k :

This generalized Arnoldi iteration does nothing more than produce a partial reduction
of the pair(A;B) to condensed form(Hk;Rk). Just as with the standard Arnoldi process,
there is no active mechanism to search for desired eigenvalues. However, methods that are
analogous to implicit restarting [20] and truncatedRQ [21] are possible and these shall be
developed in the following section.
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4. Implicitly Shifted QZ-Iterations. Forward and backward versions of implicitly
shiftedQZ iterations are developed here as simple extensions of the of theQR andRQ it-
erations. This leads naturally to truncatedQZ iterations that generalize the truncatedQRand
RQ iterations developed in ([20, 21]).

In the following discussion, assume that there is a complete reduction of(A;B) to con-
densed form

AV =WH;

BV =WR:

Forward QZ Iteration:
A forwardQZ iteration may be developed from the following observations:

For a given shift�, factor

H� �R = ZT(4.1)

whereZ is unitary andT is upper triangular matrix. Now, factor

ZHR = R+Q;(4.2)

whereR+ is upper triangular andQ is unitary. As with theQRiteration, it is straightforward
to show thatZ is upper Hessenberg matrix in (4.1). Since bothR andR+ are upper triangular
matrices, the relation (4.2) implies thatQH is also an upper Hessenberg matrix. It follows
that

(A� �B)V =WZT;(4.3)

BV =WZ(ZHR) =WZR+Q:

Multiplying both sides of (4.3) on the right byQH and rearranging terms gives

AV+ =W+H+;

BV+ =W+R+;

whereV+ = VQH , W+ = WZ andH+ = ZHHQH = TQH + �R+ is an upper
Hessenberg matrix. This sequence of operations comprises a forwardQZ step. It may be ac-
complished implicitly whenQ andZ are represented as products of Givens’ transformations.

From (4.3) it follows that

(A� �B)v1 =WZTe1 = BV+(R+)�1Te1 = Bv+
1
�

so that

(B�1A� �I)v1 = v+
1
�

where� is the(1,1) element of the upper triangular matrix(R+)�1T. Thus, the new starting
vectorv+1 is the result of the application of a linear polynomial factor(B�1A � �I) to the
old starting vectorv1.

Backward QZ Iteration:
A similar development leads to a backwardQZ iteration:

For a given shift�, factor

H� �R = TZ
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FQZ: Forward Implicitly ShiftedQZ-iteration

Input : [V;W;H;R] withAV =WH,BV =WR,
H upper Hessenberg,R upper triangular,
VHV =WHW = I.

Output : [V;W;H;R] such thatAV =WH,BV =WR,
H andR both upper triangular,
VHV =WHW = I.

1. for j = 1; 2; 3; ::: until convergence,
1.1. Select a shift� �j ;
1.2. Factor[Z;T] = qr(H� �R);
1.3. Factor[R+;Q] = rq(ZHR);
1.4.H ZHHQH ; R R+;
1.5.V VQH ; W WZ;

2. end;

FIG. 4.1.Forward Implicitly ShiftedQZ-iteration.

whereZ is unitary andT is upper triangular. Now, factor

RZH = QR+;

whereR+ is upper triangular andQ is unitary. As before,Z andQH are upper Hessenberg
matrices. It follows that

(A� �B)VZH =WT;

BVZH =WQR+:

Thus

AV+ =W+H+;

BV+ =W+R+;

whereV+ = VZH ,W+ =WQ are unitary matrices andH+ � QHHZH = TZH+�R+

is an upper Hessenberg matrix to complete the backwardsQZstep.
This time, observe that

(A� �B)v+1 =WTe1 = BVR�1Te1 = Bv1�

so that

v+1 = (A� �B)�1Bv1�

= (B�1A� �I)�1v1�

where� is the (1,1) element ofR�1T. Hence, the leading column of two successiveV
matrices are in an inverse iteration relationship.
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BQZ: Backward Implicitly ShiftedQZ-iteration

Input : [V;W;H;R] withAV =WH,BV =WR,
H upper Hessenberg,R upper triangular,
VHV =WHW = I.

Output : [V;W;H;R] such thatAV =WH,BV =WR,
H andR both upper triangular,
VHV =WHW = I.

1. for j = 1; 2; 3; ::: until convergence,
1.1. Select a shift� �j ;
1.2. Factor[T;Z] = rq(H� �R);
1.3. Factor[Q;R+] = qr(RZH );
1.4.H QHHZH ; R R+;
1.5.V  VZH ; W WQ;

2. end;

FIG. 4.2.Backward Implicitly ShiftedQZ-iteration.

5. Truncated Forward and Backward QZ-Iterations. With these versions of theQZ
iteration, one can develop generalizations of truncatedQRandRQ iterations for the general-
ized Arnoldi process. The truncated forward iteration will correspond to implicit restarting
(truncatedQR) developed in [20] while the truncated backward iteration will correspond to
the truncatedRQ iteration developed in [21]. These can be recovered from the methods de-
veloped here whenB = I.

Assume now that there is a partialk-step reduction to condensed form

AVk =WkHk + fke
T
k ;(5.1)

BVk =WkRk;

as in (3.1).

Truncated FQZ:
Select a shift� and apply one forwardQZ step to the projected pair(Hk;Rk) to obtain

k�k unitary upper Hessenberg matricesQH
k andZk and an upper triangular matrixTk such

thatHk � �Rk = ZkTk. Completion of theFQZstep will give

HkQ
H
k = ZkH

+

k

RkQ
H
k = ZkR

+

k ;

whereH+

k andR+

k are orderk upper Hessenberg and triangular matrices respectively. Then

(A� �B)Vk =WkZkTk + fke
T
k

and just as in the full iteration, equating the first column of both sides implies that

(A� �B)v1 =WkZkTke1 = BV+

k (R
+

k )
�1Tke1 = Bv+1 �:

Thus,

(B�1A� �I)v1 = v+1 �;
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where� is the (1,1) element of(R+

k )
�1Tk. Now,

AV+

k =W+

kH
+

k + fke
T
kQ

H
k(5.2)

BV+

k =W+

kR
+

k

and sinceQH
k is upper an Hessenberg matrix, it follows that the last row ofQH

k has the form
eTkQ

H
k = [�eTk�1; 
] . Hence, the leadingk � 1 columns on both sides of (5.3) remain in a

generalized Arnoldi relation

AV+

k�1 =W+

k�1H
+

k�1 + f̂k�1e
T
k�1

BV+

k�1 =W+

k�1R
+

k�1

wheref̂k�1 = W+

k ek� + fk�. Now, one additional generalized Arnoldi step may be per-
formed to return this to an implicitly restartedk-step reduction.

Just as with the IRA iteration, this idea may be cast in the form of repeating the following
steps: (1) Extend to ak + p step factorization, (2) Applyp shifts with FQZ sweeps, (3)
Truncate the lastp-colums to return to ak step factorization. This will define a generalized
implicitly restarted Arnoldi method.

Truncated BQZ:
To truncate the backwardsQZ iteration, it will be necessary to derive relationships exist-

ing in columnk + 1 on both sides of (2.2). The required theory for the standard problem has
been derived in [21] and this will generalize in a straightforward way to obtain a correspond-
ing truncated backwardsQZ equation. However, the details for completing a backwardQZ
sweep once this equation has been solved are a bit more intricate than in theTRQiteration.

Following the development of theTRQiteration, given a shift� and the partialk-step re-
duction, the truncatedBQZis initiated by constructing vectorsv andw of unit length that are
orthogonal to the columns ofVk andWk respectively, with(A��B)v 2 Range([Wk;w]).
Then, a relation of the form

(A� �B)[Vk;v] = [Wk;w]

�
Hk � �Rk h

�eTk �

�
:(5.3)

is obtained to initiate a truncatedBQZstep. To develop this further, assume for the moment
thatv; w; h and� have been constructed to satisfy these relations. Let us postpone the con-
struction of these quantities and first show how to complete the truncatedBQZstep assuming
that (A � �B)v = Wkh + w�. At this point, it is important to realize that the bordered
Hessenberg matrix in (5.3) is precisely the leading principal submatrix that would appear if
the full matrixH� �R were partially factored into anRQfactorization from right to left us-
ing Givens’ transformations up to thek+1 st column. The subsequent computations amount
to arranging the remaining relations in theW andR matrices that would be in place had
the firstn � k steps of aBQZsweep been done. The idea is to anticipate this configuration
and then complete the sweep in the leadingk columns without ever computing the remaining
n� k columns of theBQZrelations.

At this point, the relationships forB must be brought up to date. Equations must be
derived that will keepB in a triangular relation with the two basis sets. We first construct a
vectorw+ such that

Bv =Wkr+w
+� with WH

k w
+ = 0
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using classical Gram-Schmidt with the orthogonality correction scheme proposed in [3] Once
this is done, we have

B[Vk;v] = [Wk;w
+]

�
Rk r

0 �

�
:(5.4)

From Equations (5.3) and (5.4) we may derive

A[Vk ;v] = [Wk;w]

�
Hk � �Rk h

�eTk �

�
+ [Wk;w

+]

�
�Rk r�
0 ��

�

= [Wk;w
+]

�
Hk h+ r�
��eTk �� + ��

�
+ z[�eTk ; �];

wherew has been written asw = w+� + z with zHw+ = 0.
At this point, in the full factorization, the leading principal(k+1)� (k+1) submatrices

of theH� �R andR matrices are of the form

Ĥk+1 � �R̂k+1 =

�
Hk � �Rk h

��eTk ��

�
(5.5)

and

R̂k+1 =

�
Rk r

0 �

�
:

To complete theBQZ step, factor

Ĥk+1 � �R̂k+1 = Tk+1Zk+1(5.6)

whereTk+1 is an upper triangular andZk+1 is a unitary matrix. Now, factor

Qk+1R
+

k+1 = R̂k+1Z
H
k+1;

whereQk+1 is a unitary andR+

k+1 is an upper triangular matrix. As before,Zk+1 andQH
k+1

are both upper Hessenberg matrices.
From Equations (5.5) and (5.6), we observe that(�eTk ; �)Z

H
k+1 = (0; ~�) where~�� is the

(k + 1; k + 1) element ofTk+1:
It follows that

(A� �B)[Vk;v]Z
H
k+1 = [Wk;w

+]Tk+1 + z(0; ~�)

B[Vk;v]Z
H
k+1 = [Wk;w

+]Qk+1R
+

k+1;

and then

(A� �B)[Vk;v]Z
H
k+1 = [Wk;w

+]Qk+1Q
H
k+1Tk+1 + z(0; ~�)(5.7)

B[Vk;v]Z
H
k+1 = [Wk;w

+]Qk+1R
+

k+1:

As in the full case, the relations

QH
k+1Tk+1 + �R+

k+1 = QH
k+1Ĥk+1Z

H
k+1

hold and imply thatH+

k+1 � QH
k+1Ĥk+1Z

H
k+1 is an upper Hessenberg matrix. Therefore,

deleting thek + 1-st column on both sides of (5.7) will give

AV+

k =W+

kH
+

k + f+
k
eTk ;

BV+

k =W+

kR
+

k ;
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whereV+

k is the matrix consisting of the leadingk columns of[Vk;v]Z
H
k+1 andW+

k is the
matrix consisting of the leadingk columns of[Wk;w

+]Qk+1: The matricesR+

k andH+

k

are the leading principal orderk submatrices ofR+

k+1 andH+

k+1, andf+k is the last column
of [Wk;w

+]Qk+1 scaled by the(k + 1; k) element ofH+

k+1:
This time, observe that Equation (5.7) implies that

(A� �B)v+1 =WkTke1 = BVkR
�1

k Tke1

so that

v+1 = (A� �B)�1Bv1�

= (B�1A� �I)�1v1�

where� is the (1,1) element ofR�1

k Tk. Hence, just as in the full case, the leading columns
of two succesiveV matrices are in an inverse iteration relationship.

Now that the truncatedBQZstep is understood, it is time to develop the truncatedBQZ
equation needed to constructv;h and� in equation (5.3), so that

(A� �B)v =Wkh+w�

with w = fk=kfkk, vHVk = 0 and kvk = 1. Existence and uniqueness for the case
B = Iwas developed in [21] and easily generalizes to this setting. Of the various possibilities
developed there, the following seems most appropriated in this setting:
First, compute a solution̂v to the equation

(A� �B)v̂ =Wkt+ fk�(5.8)

where(tH ; �)H is an arbitraryk + 1 vector. Then set

v = (I�VkV
H
k )v̂�(5.9)

where� = 1=k(I�VkV
H
k )v̂k. Now put

h =WH
k (A� �B)v and � = wH(A� �B)v:(5.10)

The following lemma indicates why this will work.
LEMMA 5.1. AssumeA � �B is nonsingular and that there is a partial reduction of

(A;B) to condensed form as in (5.1). IfHk � �Rk is nonsingular, put

t = (Hk � �Rk)s

and choose� 6= eTk s, wheres is anyk-vector. Otherwise, lett 6= 0 be a left null vector so
that

0 = tH(Hk � �Rk)

and choose� to be arbitrary. Let̂v be the unique solution to (5.8). Then0 6= (I�VkV
H
k )v̂,

so the vectorv can be constructed by projection and normalized as in (5.9). Moreover,

(A� �B)v =Wkh+w�;

i.e. (A� �B)v 2 Range([Wk;w]).
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Proof. Supposet, �, and v̂ are constructed as prescribed in the hypothesis. If0 =
(I � VkV

H
k )v̂, thenv̂ = Vky must hold for some nonzerok-vectory. Now, this would

imply

(A� �B)v̂ = (A� �B)Vky

=Wk(Hk � �Rk)y + fke
T
k y:

Substituting this on the left side of (5.8) and using orthogonality gives

(Hk � �Rk)y = t and eTk y = �:(5.11)

If Hk � �Rk is nonsingular, theny = s and (5.11) would contradict the choice of�. Other-
wise, the choice oft as a null vector would lead to the following contradiction:

0 = tH(Hk � �Rk)y = tHt 6= 0:

This shows0 6= (I�VkV
H
k )v̂, so thatv can be constructed by projection and normalized as

in (5.9). It remains to show(A � �B)v 2 Range([Wk;w]). However, this follows easily
from the relations

(A� �B)v = (A� �B)v̂ � (A� �B)VkV
H
k v̂(5.12)

=Wkt+ fk� � [Wk(Hk � �Rk) + fke
T
k ]V

H
k v̂:

This completes the proof.
Since(A��B) is nonsingular and[Wk;w] is a unitary matrix,v,h and� are uniquely

determined oncet and� have been specified. This justifies using (5.8) and (5.9) to compute
them. However, it is remarkable thatv,h and� are unique, regardless of the choice oft and
� as long as0 6= (I � VkV

H
k )v̂. This result is a fairly straightforward modification of the

results in Section 2 of [21].
Typically, t = ek is chosen because this corresponds to the standard Arnoldi process for

B = I, but many other interesting choices are possible.
Remark: We may choose to cast (5.8) in the form

(I�XXH)(A� �B)(I� ZZH )v̂ =Wkt+ fk�;(5.13)

whereX � WkY andZ � VkS with YHY = SHS = Ij . HereY andS may be of
dimensionk � j for anyj = 1; 2; � � � ; k. Oncev̂ is determined, (5.13) may be rearranged to
obtain a relation of the form

(A� �B)v̂ =Wk t̂+ fk�̂;

since

(XXH )(A��B)(I�ZZH )v̂ 2 Range(Wk) and (A��B)(ZZH )v̂ 2 Range([Wk;w]):

Observe that there is no need to actually computet̂ and �̂. One may simply project and
normalize as in (5.9) to getv and then obtainh and� as in (5.10).

This remark may have computational significance in case we choose to computev̂ with
an iterative method. In particular, if� is a nearly converged Ritz value, then it may be a good
idea to takeX =Wky whereyH(Hk��Rk) = 0, andZ = Vkswhere(Hk��Rk)s = 0.
This choice would tend to project out the near singularity of(A � �B) as suggested in [18]
along the directions of the converging eigenvectors. Another possibility is to takeX = Wk

andZ = Vk as suggested in [21] to project out all of the current subspace. The latter
choice is computationally more expensive (per iteration in the linear solve) but may have
other advantages in the presence of clustered eigenvalues.



ETNA
Kent State University 
etna@mcs.kent.edu

154 D. C. SORENSEN

TBQZ : Truncated BackwardQZ-iteration

Input : [A;B;v; k] with A;B matrices of ordern
v ann-vector withkvk = 1
k << n the desired number of eigenvalues.

Output : [V;W;H;R] such thatAV =WH,BV =WR,
H andR bothk � k upper triangular,
VHV =WHW = Ik.

1. [V;W;H;R; f ] = genarn(A;B;v; k);
2. � = kfk; w = f=�;
3. for j = 1; 2; 3; ::: until convergence,

3.1. � = selectshift(H;R); t = selectvector(H;R);
3.2. Solve(A� �B)v̂ =Wt for v̂;
3.3. h = VH v̂; v̂ v̂ �Vh; v = v̂=kv̂k;
3.4. f = Av; g = Bv; f  f � g�;
3.5. h =WH f ; � = wH f ; � = wHg;
3.6. r =WHg; w = g�Wr;
3.7. � = kwk; �  �=�; w = w=�;

3.8. H 

�
H h+ r�

��eTk ��+ ��

�
; R 

�
R r

0 �

�
;

3.9. [T;Z] = rq(H� �R);
3.10. [Q;R+] = qr(RZH );

3.11.Ĥ QHHZH ;

3.12.V [V;v]Q(:; 1 : k) ; [W;w] [W;w]Z;
3.13.� = H(k + 1; k); H H(1 : k; 1 : k); R R(1 : k; 1 : k);

4. end;

FIG. 5.1.Truncated BackwardQZ-iteration

6. Inexact Arnoldi Processes.In the previous two sections, algorithms have been de-
veloped to generalize the Arnoldi process and to derive truncated forms of the forward and
backwardQZ iterations. Unfortunately, these algorithms require the accurate solution of lin-
ear systems. However, the accuracy requirement for computing the directionv through Steps
(3.3)-(3.4) may be relaxed. A projection algorithm is still obtained but the Krylov property
will be lost.

To relax the exact solution requirement indicated at Step(3.3), simply replace the compu-
tation ofy fromBy = w with y = itsol(B;M;w) whereM represents a preconditioner for
B anditsol represents a few steps of a preconditioned iterative method for the solution of the
linear systemBy = w. Formally, there is no accuracy requirement here and as little as one
step of the iterative method may be specified. However, the rank-one nature of the residual
Fk will be lost along with the Hessenberg form forHk when this accuracy is relaxed.

Of course, there are algorithmic consequences of relaxing the accuracy requirements.
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INXARN: Inexact Arnoldi Process

Input : (A;B;v; k) such thatkvk = 1.
Output : (Vk;Hk;Rk;Fk ) such thatAVk =WkHk +Fk ,VT

kVk = Ik,
BVk =WkRk; W

T
kWk = Ik,WT

kFk = 0
withHk upper Hessenberg andRk upper triangular.

1. V1  (v); w = Bv; � = kwk; R1 = (�); W1 = (w=�);
2. y Av; H1  (WT

1 w); f1  y �W1H1; F1 = (f1);
3. for j = 1; 2; 3; :::; k � 1

3.1.
  kfjk;w  fj=
;
3.2. v̂ = itsol(B;M;w);
3.3. z VT

j v̂; v̂  v̂ �Vjz;
3.4.v  v̂=kv̂k;
3.5. ŵ  Bv; r WT

j ŵ; ŵ ŵ �Wjr; � kŵk;

3.6.w  ŵ=�; Wj+1  (Wj ;w); R̂j+1  

�
R̂j r

0 �

�
;

3.7.y  Av; h WT
j+1y; cT = wTFj ;

3.8.Hj  

�
Hj

cT

�
; Vj+1  (Vj ;v);

3.9. fj+1  y �Wj+1h; Hj+1  (Hj ;h); Fj+1  [Fj �wc
T ; fj+1];

4. end

FIG. 6.1.An Inexact Arnoldi Process.

The relations (3.5) are no longer valid. Therefore, the relationshipBv =Wkr+w� must be
forced explicitly once the directionv has been determined. The resulting algorithmINXARN
is described in Fig. 6.1.

Generating Directions and the Newton Step:
Once the decision has been made to relax the Krylov property, a more general point

of view may be taken. The sequence of vectorsfvjg may just as well be generated by
some arbitrary process unrelated to the projections. Certainly, some relation to the shift-
invert equations is desirable and the remainder of this discussion will focus on properties
of the generated sequencefvjg required for rapid convergence. With this end in mind, let
us consider an arbitrary sequence of generated vectorsfv1;v2; : : : ;vj ; : : :g and assume that
these vectors are orthonormal in some convenient inner product.

Given this sequence, it is straightforward to obtain a derived sequence of orthogonal
vectorsfwjg along with a sequence of projections that provide a partial reduction of the pair
(A;B) to condensed form at each step:

Vj  [Vj�1;vj ];

BVj = WjRj ;

AVj = WjHj +Fj ;

with WT
j Wj = VT

j Vj = Ij ; WT
j Fj = 0 as before through classical Gram Schmidt

othogonalization.
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How should the sequencefvjg be generated to achieve or to accelerate convergence
of the Ritz values (eigenvalues of (Hj ;Rj) ) to selected eigenvalues of the pair (A;B)?
Certainly, it would be helpful to develop a connection with Newton’s method and then perhaps
modify those choices to reduce computational cost while retaining reasonable convergence
properties. To this end, supposeHy = Ry� andx = Vy with kxk = kyk = 1. Let
� 2 �(A;B) be the closest eigenvalue to� and letq be the corresponding eigenvector
normalized so thatxHq = 1 (hencekqk � 1 ).

With these assumptions, let us represent

q = x+ z; � = � + �;

with xHz = 0 and derive the standard second order approximation from the relationAq =
Bq�. Substituting, combining and rearranging terms gives

(A� �B)z = �(A� �B)x +Bx� +Bz�(6.1)

At this point, several alternatives are available to approximate the correction vectorz. Two
possibilities shall be examined here. The first of these gives the correction developed in
[18, 6]. Sincex = Vy, it follows that

�(A� �B)x +Bx� = �W(H� �R)y �Fy +WRy�

= �Fy+WRy�:

Now, if both sides of equation (6.1) are multiplied on the left byI �WWH the resulting
equation is

(I�WWH)(A� �B)(I� xxH )z = �Fy + (I�WWH)Bz�;(6.2)

since0 = WHF and0 = xHz. From this, it also follows that equation (6.2) is consistent
and there is a unique minimum norm solutionz. Hence the directionv obtained by finding
the minimum norm solution to

(I�WWH)(A� �B)(I � xxH )v = �Fy

will assure that the second order correction is a member of the updated spacesSV �
Range(V) andSW � Range(W) whenv is adjoined and the correspondingw is obtained.

An alternative to the solution just developed is to treat equation (6.1) in a straightforward
way assuming that the matrixA� �B is nonsingular. Then

z = �x+ (A� �B)�1Bx� + (A� �B)�1Bz�:(6.3)

Now, using the facts0 = xHz and0 = (I� xxH)x gives

z = (I� xxH )(A� �B)�1Bx� + (I� xxH)(A� �B)�1Bz�;

when both sides of equation (6.3) are multiplied on the left by the projection(I � xxH ).
Now, the second order correction will be included in the updated spaces in the new direction
v obtained by finding the solution̂z to

(A� �B)ẑ = Bx;

and then projecting and normalizing to get

z = (I� xxH )ẑ and v = z=kzk:
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Note the advantage here of adjoining the directionz to the existing space. We do not need
to explicitly compute� in (6.3) as would be needed in an explicit Newton method. This
projection process assures that the Newton correction is in the updated subspace so that the
new Ritz vector and Ritz value will be at least as good as those obtained through an explicit
Newton step.

The methods of Davidson [4], Olsen et. al, [15], Sleijpen and Van der Vorst [18] and
those introduced and discussed by Knyazev [10] can all be placed within this Newton-like
framework.

Blocked Formulation: Futher consideration of the previous development would suggest that
a block formulation is more appropriate than a single vector approach when the Krylov prop-
erty is no longer enforced. To develop this, we assume a partial decomposition of the form

AV1 =W1H11 +F1; with WH
1 F1 = 0;(6.4)

BV1 =W1R11;

whereV1;W1;F1 aren � k matrices andH11;R11 arek � k matrices. We then construct
then� k matrixV2 as follows:

V = (I�V1V
H
1 )p(A;B)F1;

[V2;T] = qr(V);

(i.e.,V2T = V withV2 orthogonal andT upper triangular matrices). Obtain additional basis
vectorsW2 via

BV2 =W1R12 +W2R22 with WH
1 W2 = 0; WH

2 W2 = Ik:

Then computeH12,H21,H22, F
+

1 andF2 such that

AV1 =W1H11 +W2H21 +F
+

1 ;

AV2 =W1H12 +W2H22 +F2:

Finally, apply theQZ method (say) to the pair(H;R) to obtain unitary matricesQ, Z, an
upper-triangularH+ and an upper triangular matrixR+ such that

HQ = ZH+;

RQ = ZR+;

whereH = (Hij) andR = (Rij) , i = 1; 2; j = 1; 2, with the best approximations to
the desired eigenvalues appearing as eigenvalues of(1; 1) block of the pair(H+;R+): Now,
update

V1  [V1;V2]Q(:; 1 : k); W1  [W1;W2]Z(:; 1 : k);

H11  H+(1 : k; 1 : k); R11  R+(1 : k; 1 : k);

F1  [F+
1
;F2]Q(:; 1 : k):
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In this development,p(A;B) represents a matrix polynomial inA andB generated by a
(preconditioned) iterative method designed to solve

(A� �B)V̂ = F1:

In fact,G � p(A;B)F1 could easily represent a much more general object with each column
ofG representing a separate iterative solution of the form

gj � (A� �jB)�1F1yj ; j = 1; 2; � � � ; k:

This could be made very efficient in terms of data movement per matrix-vector product. Each
separate column would need two operations of the formAgj andBgj . For example, a
Richardson’s iteration could take the form

G = F1Y;
for j = 1; 2; � � �
G G��AG�BG�;

end
where � � diag(
1; 
2; :::; 
k) with reciprocal Richardson parameters
j and � �
diag(�1; �2; :::; �k) andY � [y1;y2; :::;yk] the current Ritz approximations to desired
eigenvalues and vectors, i.e.HY = RY�:

We may express the above discussion formally as the algorithmBLKQZshown in Figure
6.2.

7. Computational Results and Conclusions.We shall present some very preliminary
computational results to give some indication of the relative performance of three methods:
TFQZ, TBQZ, BLKQZ. The purpose of these results is mainly to indicate that the methods
have been programmed and will solve a difficult problem. There are many implementation
details to consider and a number of parameter choices to be made. A thorough computational
study including comparison with other methods is certainly called for.

Our results will consist of a comparison of the three methods on a single problem.
The problem we consider is a symmetric generalized problem from the Harwell–Boeing
collection. The matrices are stiffness and mass matrices were obtained through the Matrix
Market from

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc1/

to form a generalized eigenvalue problemAx = Bx�. The matrixA is BCSSTK12 and the
matrixB is BCSSTM12 from the BCSSTRUC1 set. BCSSTK12 and BCSSTM12 represent
the consistent mass formulation for an ore car model. The consistent mass formulation leads
to a non-diagonal mass matrix. All computations were done in Matlab Version 5.1.0.421 on
a Sun SparcStation 20 Model 61 with 64 megabytes of RAM.

For these matrices,n = 1473 andA has17857 nonzero entries. The smallest four
generalized eigenvalues are

3.469305448042201e+03
3.670875662014555e+03
5.538220410502827e+03
6.410197662646212e+03

and the largest generalized eigenvalue is on the order of 6.55e+08.
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BLKQZ: Block InexactQZProcess

Input : (A;B;V1; k) such thatVH
1 V1 = Ik,

Output : (V1;H11;R11) such thatAV1 =W1H11 ,VT
1V1 = Ik.

BV1 =W1R11; W
H
1 W1 = Ik;

withH11 upper upper triangular andR11 upper triangular.

1. Ŵ1 = BV1; [W1;R11] = qr(Ŵ1);
2. F1  AV1; H11  (WT

1 F1); F1  F1 �W1H1;
3. for j = 1; 2; 3; :::; k � 1

3.1. V̂2 = itsol(A;B;M;F1;Y1);
3.2. S VH

1 V̂2; V̂2  V̂2 �V1S;
3.3. [V2;S] = qr(V2);
3.4. Ŵ2  BV2;R12  WT

1W2;
3.5. Ŵ2  Ŵ2 �W1R12; [W2;R22] = qr(Ŵ2);
3.6. H21  WH

2 F1; F1  F1 �W2H21;
3.7. F2  AV2;H12  WH

1 F2;
3.8. F2  F2 �W1H12; H22 =WH

2 F2; F2  F2 �W2H22;

3.9. H 

�
H11 H12

H21 H22

�
; R 

�
R11 R12

0 R22

�
;

3.10. [Q;Z;H;R] = qziter(H;R;0 sort0);
3.11.V1  [V1;V2]Q[:; 1 : k]; W1  [W1;W2]Z[:; 1 : k];
3.12.F1  [F1;F2]Q[:; 1 : k];
3.13.H11  H(1 : k; 1 : k); R11  R(1 : k; 1 : k);

4. end

FIG. 6.2.A Block InexactQZ Process

Here, we list estimates of the computational and storage costs of the three routines and
indicate the performance of each of them on this test problem. The term “matvec” stands
for a matrix-vector product and the term “LU-solve” stands for solving the two successive
triangular linear systems first withL and then withU as coefficient matrices.

TBQZ:
For ak-step factorization, the work and storage required forTBQZ is
� Storage:2n(k + 1) plus storage forA;B;L;U
� Initial work:

1 sparse LU-factorization,
k + 1 LU-solves,
4n(k + 1)2 flops for orthogonalization.

� Work per iteration:
1 LU-solve,
1 matvec with(A;B);
4n(k + 1)2 flops for orthogonalization,
sparse LU-factorization if there is a shift change.

For our run,k = 9 and the iteration was halted after four Ritz values had converged. The



ETNA
Kent State University 
etna@mcs.kent.edu

160 D. C. SORENSEN

TABLE 7.1
Eigenvalues calculated by TBQZ.

Eigenvalues Error/�min Error/�max

3.469305448324274e+03 2.8e-11 4.3e-16

3.670875661790737e+03 2.27e-11 3.4e-16

5.538220406841684e+03 3.7e-10 5.5e-15

6.410197672779293e+03 1.0e-09 1.5e-14

TABLE 7.2
Eigenvalues calculated by TFQZ.

Eigenvalues Error/�min Error/�max

3.469305447658971e+03 3.8e-11 5.8e-16

3.670875661610020e+03 4.1e-11 6.1e-16

5.538220410338460e+03 1.6e-11 2.5e-16

6.410197662356884e+03 2.9e-11 4.4e-16

code took 14 iterations and 7 matrix factorizations. The eigenvalues computed byTBQZare
shown in Table (7.1).

TFQZ:
For anm step factorization that retains ak step factorization after each implicit restart,

the work and storage required is
� Storage:2nm plus storage forA;B;L;U
� Initial work:

1 sparse LU-factorization,
m LU-solves,
4nm2 flops for orthogonalization.

� Work per iteration:
m� k LU-solves,
m� k matvecs with(A;B);
4nm2 flops for orthogonalization,

For our run,k = 4 andm = 12 with tol = 1:0e� 09. The code took two iterations and 20
LU-solves. The eigenvalues computed byTFQZare shown in Table (7.2).

BLKQZ:
The work and storage required with blocksizek is
� Storage:4n(2k) plus storage forA;B;L;U
� Initial work:

1 incomplete sparse LU-factorization,
1 block ILU-solve,
4n(2k)2 flops.

� Work per iteration:
1 block ILU-solve,
1 block matvec with(A;B);
30n(2k)2 flops,
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TABLE 7.3
Eigenvalues calculated by BLKQZ.

Eigenvalues Error/�min Error/�max

3.469305447907588e+03 1.4e-11 2.0e-16

3.670875661903084e+03 1.1e-11 1.7e-16

5.538220410459639e+03 4.4e-12 6.6e-17

6.410197662585929e+03 6.1e-12 9.2e-17

For our run,k = 4. The code took 43 matrix accesses, 43 block matvecs (A,B) and 443
individual matrix-vector products. The eigenvalues computed byBLKQZare shown in Table
(7.3).

In each routine, we used a reference shift of� = 3.4e+3 and in the call totfqz we
passedA � �B in place ofB andB in place ofA in the calling sequence. This is mathe-
matically equivalent to using implicit restarting with the shift-invert operator(A � B)�1B
and the convergence results confirm that. For theBLKQZmethod we used a block variant of
BICGSTAB that we constructed from the single vector code in the templates collection [1]
and with an incomplete LU preconditioner from Matlab. We were able to arrange the code so
that each column of the right hand side represented a residual of the form

rj = (A� �jB)xj

but used the same preconditioner for the whole block. Typically, not all of the column equa-
tions converged and our cut off was 10 iterations. As the results show, this was sufficient for
convergence.

With these results, it is difficult to choose between the methods. Here,TFQZseems to
be the winner but that is in absence of any architecture considerations and without specific
comparison between ILU and complete LU costs. We did not report flop counts or timings
because the implementations are fairly crude at this point in time. These results only indicate
that the three methods are indeed implementable and that they work on a challenging problem.

The real value of theTBQZ may lie in its applicability to rational interpolation with
respect to constructing reduced order models of state space control systems as explored in [9].
More investigation and testing needs to be done with respect to shift selection and selecting
the right hand side of the BQZ equations. The preconditionedBLKQZis very promising with
respect to parallel performance but is far from robust at this time.
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