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HARMONIC RITZ AND LEHMANN BOUNDS *

CHRISTOPHER BEATTIE

Abstract. This article reviews a variety of results related to optimal bounds for matrix eigenvalues — some re-
sults presented here are well-known; others are less known; and a few are new. The focus rests especially on Ritz and
harmonic Ritz values, and right- and left-definite variants of Lehmann’s optimal bounds. Two new computationally
advantageous reformulations of left-definite Lehmann bounds are introduced, together with a discussion indicating
why they might be preferable to the cheaper right-definite bounds.
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1. Introduction. Eigenvalue estimates that are optimal in some sense have self-evident
appeal and leave estimators with a sense of virtue and economy. It is natural then that ongoing
searches for effective strategies for difficult tasks, such as estimating matrix eigenvalues that
are situated well into the interior of the spectrum, revisit from time to time methods that are
known to yield optimal bounds.

The overall thrust of this work is an elaboration of the obvious assertion that useful
information about the eigenvalues of a matrix can be obtained from some of its submatrices
— or what amounts to the same thing, from discerning the action of the matrix on vectors
in a given subspace. In practice, one has a variety of strategies to select from to generate
useful subspaces, and then one may select from among a variety of strategies to determine
eigenvalue information from this subspace. While these two processes often blur together,
it is useful to separate their effects. Our goal here then, is to consider only how various
approaches for extracting eigenvalue estimates compare for a given subspace, without regard
to the inherent qualities different subspaces may bring to the approximation process.

In §2, the simplest estimates available from a subspace, the Ritz values, are discussed
together with a well-known variant (“harmonic Ritz values”) and a new cousin (“dual har-
monic Ritz values”). Left- and right-definite variants of Lehmann’s bounds are reviewed
in §3 while §4 considers reformulations that may be computationally advantagébusd-
dresses the question of how right- and left-definite variants of Lehmann bounds compare with
one another whilg6 considers how they might compare with standard Ritz estimates. The
subspaces considered throughg#s5 are arbitrary; only in the last section do we assume
that the approximating subspace is a Krylov subspace.

2. Ritz and Related Values.Let K andM ben x n real symmetric positive definite
matrices and consider the eigenvalue problem

(2.1) Kx = AMx.

Label the eigenvalues from the edges toward the center (following [16]) as
AMZ S <A< A <A

with labeling inherited by the associated eigenvect®is:xs, ..., X_o, X_1.
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Solutions to (2.1) are evidently eigenvalue/eigenvector pairs of the ndiriXK, which
is non-symmetric on the face of it. Howevdi—'K is self-adjoint with respect to the both
the M-inner productx!Mx, and theK-inner productx!Kx. Denote byx™ the M-adjoint
of a vectorx, x™ = x'M, and byx* the K-adjoint, x* = x'K. “Self-adjointness” of
M~1K amounts to the assertion that for allandy, x™(M~'Ky) = (M~ !Kx)™y and
xK(M~1Ky) = (M~ !Kx)*y. Self-adjointness with respect to tM- andK-inner products
implies that the matrix representation 'K with respect to anyM-orthogonal orK-
orthogonal basis will beymmetric

For a given subspace of dimensionm < n, the Rayleigh-Ritz method proceeds by
selecting a basis fgP, say constituting the columns of a mati e R"*™, and then con-
sidering the (smaller) eigenvalue problem

(2.2) P'KPy = A P'MPy.
This will yield m eigenvalues (calleRitz valueglabeled similarly to{ \;} as
A <A <A< <A 3<A <A,

with corresponding eigenvectays, ys, ... y_2, y_1. VectorsinP given asu, = Pyy are
Ritz vectorassociated with the Ritz valuds,. Since{y1, y2, ..., y_2, y_1} are linearly
independent, the full set of Ritz vectors evidently forms a basi$farhich is furthermore
both K-orthogonal andM-orthogonal and may be presumed tolEnormalized without
loss of generalityufu; = uMu; = 0 fori # j, andul™u; = 1.

Harmonic Ritzvalues [17] result from applying the Rayleigh-Ritz method to the eigen-
value problem

(2.3) KM 'Kx = AKx,

which is equivalent to (2.1) — it has the same eigenvalues and eigenvectors. If we use the
same subspacd@, the harmonic Ritz values are then the eigenvalues ofithem problem

(2.4) P'KM 'KPy = A P’KPy,
yielding
M<A<A3< <A 3<A <A

Just as Ritz values are weighted means of the eigenvalues of the mMateix,y >7_, vi;A;

with v;; > 0 andZ?:1 ~i; = 1, harmonic Ritz values are harmonic means of the eigenvalues
of the matrix,

1 "1
TR IRChw
1 j=1 J

with 4;; > 0 and Z;”zl %i; = 1. The term *harmonic Ritz value” occasionally has been
used in a more general sense that incorporates a shift making it equivalent to a right-definite
Lehmann valueA"), introduced in the next section. For clarity, the narrower (shiftless)
definition is used here.

Quantities which will be introduced here (for lack of a better namejued harmonic
Ritzvalues result from applying the Rayleigh-Ritz method to the eigenvalue problem

(2.5) Mx = A\MK ™ 'Mx,
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which is also equivalent to (2.1), in the sense of having the same eigenvalues and eigenvec-
tors. If we use the same approximating subspacéhe dual harmonic Ritz values are the
eigenvalues of ther x m problem

(2.6) P'MPy — A P'MK~'MPy,

yielding

133

=

A <Ay <As<- <A g<A <A

Dual harmonic Ritz values are also harmonic means of the matrix eigenvalues, however with a
different weighting than for harmonic Ritz values. Notice that the dual harmonic Ritz problem
associated withP is equivalent to a harmonic Ritz problem associated Wth! MP, the
subspace that would result after a single step of inverse iteration.

Both harmonic Ritz and dual harmonic Ritz values were known as long as 50 years
ago and found to be useful in differential eigenvalue problems — Collatz [2] referred to the
harmonic Ritz problem (2.4) as Grammel’s equations (citing Grammel’s earlier work [8]) and
viewed the Rayleigh quotients for the Ritz problem (2.2), the harmonic Ritz problem (2.4),
and the dual harmonic Ritz problem (2.6), all as elements of an infinite monotone sequence
of “Schwarz quotients” that could be generated iteratively.

As long asK and M are positive definite, all three of Ritz, harmonic Ritz, and dual
harmonic Ritz values provide “inner” bounds to the “outer” eigenvalues of the g&reAM
(that is, of the problem (2.1)). In comparing the three types of approximations using the
same subspack, harmonic Ritz values provide the best bounds of the three to the upper
eigenvalues of (2.1); dual harmonic Ritz values provide the best bounds of the three to the
lower eigenvalues. As an example, Figure 1 shows bounds obtained for a sequence of nested
Krylov subspaces taken f@?, with K = diag([1, 3, 5, ..., 99]), M = I, and a starting
vector of all ones (the example of [17]).

The following result spells this out and is a special case of what Collatz demonstrated as
“monotonicity of Schwartz quotients.” The pattern of proof follows Collatz [2].

THEOREM2.1. Suppos& andM are positive definite. Then

M < A < Ap <A for k=1, 2, ...
A_gS/N\_g<)\_g for =1, 2, ...

=
L
INA

Proof. The min-max characterization yields

. xTKx . xtKx
A = min max < min max ——
dimS=k xe8 x!Mx ~ dimS=k xS xtMx
SCP
. y'P!KPy A
= min max ————— = A
dim R=k yeR y'P'MPy ’
and likewise,
. xtKM~1Kx . KM~ 1Kx
A= min max———— < min max ————
dim S=k x€S xtKx (lifangS;k xES xtKx

. y'PIKM~'KPy
= min max
dim R=k yEaR y!PKPy

Il
=t
K
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FIG. 2.1.Comparison of bounds on upper and lower portions of the spectrum.

A similar argument shows;, < A,. By repeating the argument for the eigenvalue problem
—Kx = (—A)Mx, one finds—\,(—K, M) < —A_, (whereA(A, B) is used to denote
an eigenvalue of the pencA — AB). Notice that—)\,(—K, M) = A_,(K, M). Thus,
A, <Ay and[\,g < A_y.

For anyx € R", the Cauchy-Schwarz inequality implies

(x'Kx)? =(x'KM~/?2M'/?x)? < x* KM~ 'Kx x'Mx
and (x'Mx)? =(x*MK™/?2K'/?x)? < x'MK'Mx x'Kx.
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Thus,
x*Mx < xKx < x' KM~ 1Kx
xMK~-Mx — xtMx — xtKx
which then implies foreach=1, 2, ..., m
x'Mx

0< M\ <Arp= min max ————
b=k digg S=k x€S xtMK-1Mx

x'Kx

< min max = Ay
~ dim S=k xS xtMx
SCP
. KM 'Kx -
< min max— = Ay a

~ dim S=k x€8 xtKx
SCP

The situation is somewhat differentl is indefinite The Ritz estimates are still “inner”
bounds, thatis\, < A, andA_, < \_,. However, both harmonic Ritz and dual harmonic
Ritz values now provide “outer” bound{ver bounds) to negative eigenvalues of (2.1) and
no simple relationship is known that would predict which of the three bounds is best (essen-
tially owing to there being no simple analog of the Cauchy-Schwarz inequality for indefinite
inner products).

Despite the differences in behavior described above, Ritz, harmonic Ritz, and dual har-
monic Ritz values each providsptimal bounds — obviously each with respect to a slightly
different notion of optimality. For the Ritz problem, the matri®¥P andP*MP provide
a “sampling” of the full matrice¥& andM on the subspacf. Whatever spectral informa-
tion about the original eigenvalue problem (2.1) that we are able to deduce by examining the
Rayleigh-Ritz problem (2.2) we must draw the same conclusionalfanatrix pencils that
are “aliased” by the Rayleigh-Ritz sampling. Define the following set of suehn matrix
pairs:

A andB are positive definite
C(P)=«¢ (A, B) PI{(A-K)P=0
P(B-M)P=0

THEOREM2.2. For any choice of positive integers 7 with v + 7 = m and any choice
of matrix pairs(A, B) € C(P)

)\k(A,B)SAk for kJ:l, 2, ...,V
A_gg)\_g(A, B) for (=1,2,..., .

Furthermore, for each index pair, m, there exists a matrix paifA, B) € C(P) such that

)\k(A,B):Ak for k=1,2,..., v
A_g:)\_g(A, E) for {=1,2,..., .

So, no better bounds are possible with only the information available to the Rayleigh-Ritz
method as described by (2.2).

Proof. The first assertion is a restatement of Theorem 2.1 for the matrix p&ncihB.
To show optimality, define the matrix of Ritz vectors:

U=[u, ug, ..., Uy, Uy, ..., U_g, U_1].
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Ritz Values

p—0 p — oo

Left-definite Right-definite
Lehmann Bounds Lehmann bounds
p — oo \p —0
Dual Harmonic Harmonic
Ritz Values Ritz Values

FIG. 2.2.A taxonomy of eigenvalue estimates.

Notice thatU is an M-orthonormal basis fo?: U'MU = 1. Define also the diagonal
matrix of Ritz values

Ay

Ay

and fixA = (A, + A_.). Now, consider
A = MUDU'M + A(M - MUU'M) and B =M.
One may verify that all required conditions are satisfied, in particular
(A —AB)U = MU(D — A,

and for anyv € R™ with viMU = 0,

(A= AB)v=Mv(A—)). O

A similar construction can be used to show the (analogously defined) optimality of har-
monic Ritz values and dual harmonic Ritz values.

As we will see in following sections, Ritz values, harmonic Ritz values, and dual har-
monic Ritz values are limiting cases of parameterized families of bounds arising from “left-
definite” and “right-definite” Lehmann intervals.

3. Lehmann’s Optimal Intervals. Each of the Ritz-related methods discussed above
will have certain advantages in estimating the extreme eigenvalues of (2.1). None are par-
ticularly effective in estimating interior eigenvalues, however. Usual strategies for obtaining
accurate estimates to the eigenvalues of (2.1) lying close to a givenpadvelve a spectral
mapping that turns the spectrum “inside out” aropré- mapping interior eigenvalues in the
neighborhood of to extreme eigenvalues that are more accessible. “Shift and invert” strate-
gies typically use the spectral mapping— %_p A variant used especially for buckling
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problems (wheréVI may be singular) utilizes instead the spectral mapping A7 . As
we shall see, both of these spectral mappings play a fundamental role in the optlmal bounds
discovered by Lehmann ([11], [12], [13]). The derivation used here is in the spirit of that
given by Maehly in [14], and the associated methods are sometimes called Lehmann-Maehly
methods.

Fix a scalamp that is not an eigenvalue of (2.1) and define the indexsatisfy

(3.1) Ar—1 < p < A

Theright-definite Lehmann methddllows first from considering the spectral mapping
A — A%p and an associated eigenvalue problem equivalent to (2.1):

1
(3.2) M(K — pM) 'Mx = /\—Mx,
—p
which has eigenvalues distributed as
1 1 1 1
< <...<0<--- <
)\rfl —p )\r72 —p

< < <

Ary1—=p = Ar—p
Notice that eigenvalues of (2.1) flankingare mapped to extremal eigenvalues of (3.2).
Now use anm-dimensional subspac®, spanned by the columns of a mat8xto gener-
ate Rayleigh-Ritz estimates for the eigenvalues of (3.2):

(3.3) [S'TM(K — pM)~'MS]y = R [S'MS]y,

whereS € R"*™. Suppose (3.3) has negative eigenvalueB; < --- < R, < 0 and
m = m — v positive eigenvalued < R_, < --- < R_;. Regardless of the subspagehat
is chosen, the min-max principle (or Theorem 2.1) guarantees that, fokeach 2, ..., v
and¢=1, 2, ..., 7

1 1

—— <R and R, < —F .
)\r—k_p_ g e_)\r-&-é 1—pP

Rearrange and introduce

1 1
(3.4) AR~ < xp and Ay <pt+ — AR

Ry, R_,
fork=1,2,...,vandl =1, 2, ..., n. Notice that labeling oA (") is arranged relative to
p:

AT <A < AT < < AT < AT < AP
An equivalent statement combining (3.1) and (3.4) is

Each of the intervalﬁ/\(_?, p) and(p, AgR)] contain respectively at leastand/
eigenvaluesof (2.1)fak =1, 2, ...,vand¢=1, 2, ..., 7w

To avoid the need in (3.3) for solving linear systems having the indefinite coefficient
matrix (K —pM), change variablesin (3.3) &= (K—pM)~'MS — which thenimplicitly
determinesS via a choice ofP. (3.3) can then be rewritten as

(3.5) [P'(K — pM)Ply = R [P'(K — pM)M (K — pM)Ply,
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Whendim P = 1, (3.4) become$emple’s inequality

p'(K-pMM (K- pM)p _p'(KM 'K — pK)p
p'(K - pM)p p'(K — pM)p

Some additional notation will reduce the impending clutter of symbols. Introduce matri-
ces ofSchwarz constants

p+ < A1"—1-

H, @ [P'KM~'KP], H, Z [P'KP], and H, " [P'MP].

Then expanding out the various terms, (3.5) becomes

(3.6) [H; — pHsly = R [Hy — 2pH; + p°Haly
which may be rearranged to obtain

(3.7) [Ho — pHily = A [H, — pHaly.

Notice that (3.7) could be written in terms of thé-inner product as
(3.8) P" (M 'K)? — p(M'K)|Py = A P"[(M~'K) — pI|Py
or in terms of théK-inner product as
(3.9) PY[(M™'K) — pI]Py = A PXI — p(M~'K) !|Py.

Theleft-definite Lehmann methadn be obtained by considering the spectral mapping

A %_p and an associated eigenvalue problem — also equivalent to (2.1):

(3.10) K(K - pM) 'Kx = —Kx

which has eigenvalues distributed as

)\rfl < )\r72
A1"—1 —p o AT‘—Q —p

Ar Ar
< oo<0andl <--- < =<
)\r+1_p )\r_p

(3.11)

(as long as botliK andM are positive definite, no eigenvalue gets mapped into the interval
[0,1]). Again the eigenvalues of (2.1) flankingare mapped to extremal eigenvalues of
(3.10). Using ann-dimensional subspacg (spanned by the columns of a matfl®, one
may generate Rayleigh-Ritz estimates for the eigenvalues of (3.10):

(3.12) [T'K(K — pM) 'KT]y = L[T'KT]y,

whereT € R*>*"™,

If (3.12) hasv negative eigenvalues; < L, < --- < L, < 0 andwm = m — v positive
eigenvalues < L_, <--- < L_5 < L_4,thenregardless of the subspac¢hat is chosen,
the min-max principle (or again, Theorem 2.1) guarantees that

A Argo—
k < Lyg andL_g < et

3.13 S - _frtbml
(3.13) Ar—k—p Argo—1—p
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or equivalently that

3.14 AB P o andhgq <p— —L— W AD

(3.14) kS PTII L S Y 0
fork=1,2, ...,vandl = 1, 2, ..., x. Just as foA(®), the labeling ofA() is done
relative top:

A <A <A <A <A <Al
An equivalent statement combining (3.1) and (3.14) is

Each of the interval{sA(_L,g , p) and(p, AEL)] contain respectively at leaktand?
eigenvaluesof (2.1)fak =1, 2, ...,vand¢ =1, 2, ..., 7.

As before, in order to avoid solving systems with the indefinite coefficient mgkix-
pM), change variables in (3.12) #&= (K — pM) KT which thenimplicitly determines
7T via a choice ofP. (3.12) can then be rewritten as

(3.15) [P(K — pM)Ply = L [P'(K — pM)K " (K — pM)Ply.

Introduce

H; < [P'MK-'MP].

Then (3.15) becomes
(3.16) [H, — pH,]y = L[H; — 2pH; + p*Hjly
which may be rearranged to get

(3.17) [H, — pHoly = A [H, — pHyly.

Observe that both (3.6) and (3.16) are Hermitian definite pencils with the same left-hand
side. By the Sylvester Law of Inertia, they each have the same number of negative (and hence
positive) eigenvalues. If a shift @f = 0 is chosen in (3.7), the harmonic Ritz problem (2.4)
is obtained and\, = A§R) |[p=0. AS p — =00, (3.7) reduces to the Ritz problem (2.2).
Similarly, if a shift of p = 0 is chosen in (3.17), the Ritz problem (2.2) is obtained and
Ay = AéL) |p=0. As p — o0, (3.17) reduces to the dual harmonic Ritz problem (2.6).

The left- and right-definite Lehmann bounds$’) andA (%), that are below the param-
eterp are roughly monotone increasing with respecptdsoerisch [4] discovered this for
satisfying (3.1) by working from the optimality of the Lehmann bounds (in essence, a larger
p < A, places more restrictions on the “aliasing” operators, thus improving the bounds below
p). As pis increased further, thein (3.1) changes and the labeling of>) andA (%) shifts.
Monotonicity might not hold for each subspace, however Goerisch [4] showed that in the
infinite dimensional setting, provided conditions for convergence hold, monotonicity can be
guaranteed asymptotically. This more complicated circumstangeldddging across\,. is
discussed in [19].

Notice that (3.17) could be obtained formally from the right-definite method expressed
in (3.9) by direct substitution of thiI-inner product for thd&-inner product.

(3.18) P"[(M'K) — pI|Py = A P™[I — p(M~'K) !|Py.
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Such a substitution also converts the harmonic Ritz problem into a Ritz problem and the
Ritz problem, then into a dual harmonic Ritz problem. This provides some impetus to call
the “left-definite Lehmann” method the “harmonic Lehmann” method, but Lehmann himself
referred to this method as “left-definite” and besides the correspondences are a bit backward
since (right-definite) Lehmann is to Ritz as “dual harmonic Ritz” is to “ harmonic Lehmann.”

4. Alternative Formulations. Kahan developed a formulation of Lehmann’s right-
definite method that is particularly well-suited to many computational settings for matrix
eigenvalue problems (cf. [16], Chap. 10). We review that development here and extend it
to Lehmann'’s left-definite method in Theorems 4.1 and 4.2. A different tack leads to a re-
formulation of right-definite Lehmann bounds as singular values of a related matrix. We will
discover that a similar reformulation of left-definite bounds leads to a generalized singular
value decomposition of a related pair of matrices.

For a givenm-dimensional subspacg, suppose the columns @, provide anM-
orthonormal basis foP: Ran(Q:1) = P (“ Ran” denotes the range space of a matrix) and
QrQ; = QiMQ; = I. DefineH from the “residual orthogonality” condition

(M~'KQ, - QH)'MQ; =0,

so thatH = Q{KQ; and observe (say, from the Gram-Schmidt process) that there is an
upper triangular matrixC and a matrixQ, with M-orthonormal columns, so that

Q:C =M 'KQ; - Q;H.

Pick Qs to fill out an M-orthonormal basis foR™ in conjunction withQ; andQ,. Then
with Q = [Q; Q2 Q3], we haveQ'MQ = I and

H C! 0 where
MKQ=Q| C Vi, Vi Hism x m
0 Vo Vg Viiisk x k.

While this shows hovH andC might be constructed (essentially one step of a block Lanczos
process), there may be other situations of interest VEiemd C are knownra priori. In any
case, we assume that the bottom right bidck2 submatrix,V, is either unknown or at least
unpleasant to deal with. With additional unitary massage/(C) = k could be assumed
(possibly resulting in a smallév), though it isn’t necessary in what follows. The situation
rank(C) = k < m < n is common. What follows is deus ex machindevelopment
of Kahan's formulation of Lehmann bounds that offers brevity but little of the insight and
revelation that one may find in the excellent discussion of ([16], Chapter 10).

Apply the right-definite Lehmann bounds from (3.5) usiBg= Q;. Then, (K —
pM)P = Q;(H — pI) + Q2C and the right-definite Lehmann problem (3.6) appears as

(4.1) (H-pl)y = R [(H—pI)> + C'Cl y.

The associated right-definite boundAi§®) = p + 1/R and we may manipulate (4.1) to get
an equivalent condition on():

(4.2) 0= [(H — p)(H — ABT) + ctc} y.

One may recognize that the coefficient matrix of (4.2) is a Schur complement afithe
k) x (m + k) matrix

Y (AR %S [ —(H—pI)éH—A(R)I) (it ]
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Hence, (4.2) has a non-trivial solution if and only{ A (%)) is singular. Suppose that neither
p nor A®) are eigenvalues d for the time being and define

L. def [ I 0
YT CH-p)THH AP T
L, def [ I 0
Tl cH-ABD T |

(R) dif [ —(H—p]:)_1 0

and D(AYY) = _ 0 (p— A |-
Then
H - ABT (o}
(R) (ROLELE —

ThusA(®) is an eigenvalue of then + k) x (m + k) matrix

(4.3)

H Ct
C pI+C(H-pI)~1Ct

if and only if eitherD(A(®)) is singular orY (A") is singular, which is to say, if and only

if either A% is a right-definite Lehmann bound satisfying (4.2)/8fY) = p (which will

occur with multiplicity k). A limiting argument can be mustered to handle the exceptional

cases where eithgror A(®) are eigenvalues dfl. In situations where either the smaller

eigenvalues of (2.1) are of interest|®|| is much smaller thafiH]||, finding the eigenvalues

of (4.3) is likely to yield substantially more accurate results£6f) then a direct attack on

(4.1). A similar formulation for left-definite Lehmann problems will be described below.
Consider the application of the left-definite problem (3.16) vith= Q;. Note that

KQ; = Q:H + Q2C implies that

K'Q =QH !-K'Q,CH!
so then
(4.4) QK 'Q =H'+H 'C'"WCH'
whereW = Q5K ~1Q, has been introduced. (3.16) becomes
(4.5) (H-ph)y =L [(H—pI)— pI— pH ' +H 'C'WCH))] y.

The associated left-definite boundA§™) = —pL /(1 — L) and we may manipulate (4.5) to
get an equivalent condition ak(X):

(4.6) 0= [(H ~pD(H - AD)H + pA(L)CtWC} y.

Equation (4.6) has a non-trivial solution if and only if the + k) x (m + k) matrix

- def [ —(H—pD(H - ADDH ADICE
Y(AD) = [ ( p )(pC ) Wi
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is singular. Suppose that neithenor A(X) are eigenvalues @, and define

FY M- D) 1H - AP TH!

0| g 1] 0L M T
i, def [ I ) 0 }
| CH- AW~ T |°
and D(A®) _(H_poI)_lﬂ_1 (P—A?L))/PI }
Then
. o . H - AT C!
47 LDAMLYAD)OL, = | GNP IS ] :

whereN; = W~! + CH~'C* andN, = C(H — pI)~!C*. ThusA(") is an eigenvalue of
an auxiliary(m+ k) x (m+ k) matrix pencil — not unlike the right-definite case. This matrix
pencil will be definitewhenN; — N, is positive-definite, which in turn can be guaranteed
when the(r — 1)st Ritz value is a sufficiently accurate approximatiorhta 1 :

THEOREM 4.1. Suppose is not an eigenvalue of (2.1). Each inter\{AI(_Li), p) and
(p, A§L)] contains respectively at leasaind j eigenvalues of (2.1), where

0<A® <i<A®) < AW < p AP < AP <
are the positive eigenvalues of the + k) x (m + k) matrix pencil

H C! [T 0
(4.8) {C Nl]_A 0o M, |’

1
where M; = ;(Nl —Ny)

N, =W !'4+CH'C! and
N, = C(H — pI)"'C".

p is an eigenvalue of (4.8) with multiplicity. If the Ritz value\,_; < p, thenM; is positive
definite and (4.8) is a Hermitian definite pencil.

Proof. The first assertion follows immediately from (4.7), since tiéf) is an eigen-
value of (4.8) if and only if eitheD(A (%)) is singular orY (A(%)) is singular. As before a
limiting argument handles the exceptional cases where gitbeA (") are eigenvalues .

For the second statement, note that ; < p implies from the way that was chosen
in (3.1) thatH — pI has precisely: — 1 negative eigenvalues. Note then ttf — N5 is
positive-definite if and only if the matrix
{ %(H - pDH 0 ]

(4.9) 0 N, - N,

has precisely — 1 negative eigenvalues. Define

i I 0
Y7 pCH'H—-pI) ! I |’

- [ I -C'W = pH™! 0
LQ_[O I ], andD_[ 0 Il
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and calculate with® = DL-,L;

1 -

- [ 2(H-pI)H 0 = p(I—pP'K~'P) 0
) b —

4.10) F . N, | F ; Wl

Suppose (4.9) had more than- 1 negative eigenvalues. Then (4.10) has more thanl
negative eigenvalues and therefire pP*K~'P has more than — 1 negative eigenvalues.
Equivalently, this means th@'K~!P hasr or more eigenvalueabovel/p. Since the
eigenvalues oP*K 1P provide inner bounds to the outer eigenvalue¥of!, this implies
in turn thatK —* must have- or more eigenvaluesbovel / p. But this contradicts the choice
of p made in (3.1)0

The calculation oW = Q4K ~!Q, involves the solution of linear systems each of the
formKx = b. If these systems are solved inexactly (one rarely has other options), reasonable
concerns arise about the integrity of the resulting bounds. Rigorous inclusion intervals can be
maintained if the approximate calculation ¥f can be made to have the effect of replacing
W with a matrixW > W (i.e., so thatW — W is positive definite). To see this, observe
that with the replacement 3V for W (4.5) becomes

(4.11) (H-pl)y = I [(H —pI) — p(I— p(H! + H*lctWCH*))} y.

The right-hand side of (4.5) has been replaced with a larger right-hand side in (4.11). The left
hand side remains the same, so (4.11) and (4.5) will have the same numbers of poksitive (
and negativei() eigenvalues. The min-max characterization then may be used to show that

Ly<Ly<0 for k=1,2, ..., v
O<[A/_3§L_g for £=1,2, ..., 7.

The inequalities of (3.13) remain valid if, replaced andL_, replaced. ;. Likewise if
we definel ;) = —pL+;/(1 — L+), the usual labeling is retained

and[\(_Lk) < A(_Lk) foreachk = 1, ..., v. The situation regarding the positively indexgd-)
that yield bounds aboveis slightly more complicated since it may occur that, < 1 <

L_, which would then imply thaf\ﬁL) <0.1In effect,[\éL) has “wrapped around” the point
at infinity, yielding only trivial bounds foh,..,—1. Nontrivial bounds are retained whenever

AM > 0, however.

Now, much the same development that yielded Theorem 4.1 may be followedA#ith
replacingW. This is summarized as

THEOREM 4.2. Suppose is not an eigenvalue of (2.1). Each inter\{él(_Li), p) and
(p, A;L)] contains respectively at leasaindj eigenvalues of (2.1), where
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are the positive eigenvalues of the + k) x (m + k) matrix pencil

H C! I 0
- ~AB A
(4.12) e ]2 o |

. 1 .
where M; = ;(Nl —Ny)

N; =W '+ CH'C,
N, = C(H - pI)"!C,

and W is any positive-definite matrix satisfyily > W = QLK 'Q.. Also,pis an
eigenvalue of (4.12) with multiplicity.

Goerisch ([4],[6],[7]) discovered this critical approximation step for the original left-
definite Lehmann formulation (3.16) and developed a very flexible framework for applying
the approach in a PDE setting. He called it {#&, b, T} method (referring to an auxiliary
vector spacet’, an auxiliary bilinear fornb, and an auxiliary linear operat@rthat he intro-
duces) but most others refer to this approach simply as the Lehmann-Goerisch method. To
give a simple example, suppose a lower boun&ts known: x||x||? < x'Kx, and sup-
pose we have obtained an approximate soluHlgrto the matrix equatio/Z = Q.. Let
R = Q; — KZ, be the associated residual matrix. Then one may verify that

W= QK 'Q: = REK 'R +ZiR + Q}Z,
1 .
<-R'R+ZR+QLZ, Y W.
K

Note thatW contains the nominal estimate §Y, QLK 1Qy” = QiZ,, together with
correction terms that can be made small by solli§ = Q, more accurately while ensuring
that in any casavV > W.

The foregoing development sought to reformulate the original Lehmann problems (and
Goerisch’s refinements) as bordered matrix eigenvalue problems since computational ap-
proaches to resolving such problems can take advantage of this structure more easily than
that of the original Lehmann problems. Modern computing methodology now includes ac-
curate and efficient approaches for calculating singular value decompositions of arbitrary
matrices. This emerging capacity has shifted the focus of many problem formulations toward
computational tasks involving the SVD or its generalizations and the calculation of Lehmann
bounds are appropriately considered among them.

To see first how this works for right-definite Lehmann bounds, supp@seot an eigen-
value of (2.1) and consider a right-definite bount® < p that satisfies (4.2). Define
p=(p+A)/2andes = (p — A®)/2, so that the intervdlA("), p) can be represented
as[p — o, u + o). Rewriting (4.2) in terms oft ando and simplifying yields

[(H— uI)? — 0?1+ C'Cly = 0.
That is,o is a singular value of thén + k) x m matrix
et
C .
This leaves unspecified the association between the singular value indices and the Lehmann

bound indices — an argument similar to the one outlined below for left-definite problems can
be followed or one may consult Lehmann'’s original article [13].

IMy thanks to Professor Beresford Parlett for impressing this point upon me.
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FIG. 4.1.Connecting the singular value index and the Lehmann bound index.

Recall thato > 0 is a generalized singular value [18] of the péy, T) if o2 is an
eigenvalue of the Hermitian definite pen8flS — AT*T.

THEOREM4.3. LetH andW > W be decomposed &/ = L;L! andH = L,L}.
Suppose: is a fixed real scalar such that the assignmenp et . in Theorem 4.2 leads to
v > 0, i.e., to nontrivial bounds in the intervéd, ). If

O0<o1<0 92<0.3<...

denote the increasingly ordered generalized singular values of

(4.13) ({ ié?cii_‘fl) } ’ [ L§(§L5t D

then each of the intervalg(1 — o_;), p(1+0—_;)) contains at least eigenvalues of (2.1).

Proof. Supposes > p is not an eigenvalue of (2.1) and consider an associated left-
definite boundA (") (5) < p that satisfies both (4.6) and = (5 + AX))/2. Since each
A (p) is (essentially) monotone increasingitsee below), this can always be done. Define
o = (p—AP))/2u; so that the intervdA (%), 5) can be represented Rg1 — o), (1 +0)).
Rewriting (4.6) in terms of: anda, pre- and post-multiplying the coefficient matrix by *
andL,?, respectively, and then simplifying yields

1 . .
[F(H —uI)? + Ly 'C'WCL;y ! — 0?(1 + Ly 'C'WCL; ]z = 0

forz = Liy. Thatis,o is a generalized singular value of (4.1B)(1 — o), u(1+o0))isa
Lehmann interval, and so contains at least one eigenvalue of (2.1).
The proof thafu(1l — o_;), u(1 + o_;)) contains at leasteigenvalues of (2.1) is only

outlined here and rests essentially on showing that the picture in Figure 4.1 represents the
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general situation. Consider the Lehmann-Goerisch boM_ﬂé A(_LQ), ... as functions of

= u(1 + o) and observe from (4.6) that(") +£ p for all values ofp. Hence theA(%)-
curves in Figure 4.1 never cross the lime= (1 + o). Although theA (")-curves might not
be monotone increasing inin a strict sense, it is straightforward to show that they may never
decrease more rapidly than with a slope-df, so in particular each (“)-curve intersects the
line (1 — o) exactly once. Thus ip = (1 + o_3), for example, theleﬂLfs) (p), p) =
(1 —o_3), u(1+o_3)) contains at least 3 eigenvalues of (201).

Although this hasn't been done here, it is plausible that the technical assumptjon on
could be disposed of if Lehmann bouratsovep were to be considered as well in the proof
(requiring monotonicity with respect {@of Lehmann bounds aboyeas well).

5. A Left-Right Comparison. For the general eigenvalue problem (2.1), application of
either right- or left-definite Lehmann bounds involve solving linear systems having aither
(for right-definite problems) oK (for left-definite problems) as a coefficient matrix. If one
system is very much simpler than the other (e.gMifis diagonal) one may feel compelled
to choose the simpler path. But is there a difference in accuracy ? Goerisch and coworkers in
Braunschweig and Clausthal (see for example, [5] and [6]) have observed that for many ap-
plications in PDE settings, left-definite Lehmann bounds often were superior to right-definite
bounds — even if an extra level of approximation is included as described in Theorem 4.2.
Along similar lines, Knyazev [10] has produced error estimates for Lehmann methods that
suggest left-definite bounds might be better than right-definite bounds asymptotically.

We explore this issue here. Define

Jo Y Hy - pH,, 3, Y H, - pH,, and Jo & H, - pH..

The matrix pencils associated with (3.6) and (3.16) may be written as

(5.1) Ji = R(Jo — pJy)
and
(5.2) Ji = L(J1 — pJ2)

for right-definite and left-definite problems, respectively.
The following lemma and theorem incorporate some unpublished results of Gderisch

LEMMA 5.1. LetG = [ Jo

I 3 } € R?mx2m G has no more tham — 1 negative
1 2
eigenvalues.

Proof. Suppose thatG hasr or more negative eigenvalues. Then there isran
dimensional subspacg of R?™ such thatz'Gz < 0 for all z € Z with z # 0. Define
the linear mapping” : Z — R" hy

m m
T(Z) = Z Zlel + Z Zi+7rsz1l-
i=1 =1
Elementary manipulations verify that fare Z with z # 0,
(5.3) 2'Gz =T(2)'M 'T(z) — pT(2)'K 'T(z) < 0.

2Friedrich Goerisch died suddenly in 1995 after a brief iliness. The loss of his passion and insight is still deeply
felt among his colleagues and friends.
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In particular, this means th&t(z) = 0 implies thatz = 0, sonull(T) = 0 andrank(T) =
dimZ =r.
SinceK is positive-definitar’ K—'u > 0 for all u € R" so (5.3) implies

oM lu/u'K lu < p

forallu € Ran(T) withu # 0.
Now X is an eigenvalue of (2.1) if and only if it is also an eigenvalueMif 'v =
MK~ 'v, so by the min-max principle

) , u'Mlu < u'M~lu -
= min maxX ———— max —_—

" dimP=r ueP wtK-lu — ueRan(T) W!K~1u P
which contradicts\,_; < p < A,. Thus,dim Z < r. O

THEOREM 5.2. If the harmonic Ritz valué\,_; from (2.4) satisfies\,_; < p then
left-definite Lehmann bounds will be uniformly better than right-definite Lehmann bounds:

(5.4) A <AB <\ fork=1,...,r—1,
(5.5) Ao <A <A fore=1, ..., m—r+1.

Proof. To show that (5.4) and (5.5) are true,i it is sufficient to show tha 1 + pRj
fork=1,2,...,r—1andthatl + pR_, < L_,for¢=1,2,...,m—r+1. From (5.1),
one finds that + pRy andl + pR_, are eigenvalues of

(5.6) Jo— 1+ pR)(Jo — pJ1).

SinceA,_; < A,_; < p, bothJ, andJ; haver — 1 negative eigenvalues. This implies that
both (5.1) and (5.2) have — 1 negative eigenvalues. Premultiplication of (5.6)me]51
yields an equivalent matrix pencil:

Ji — (14 pR)(Jy — pJ 1351 T0).

Consider

co|J0 N]_ I 0][Jo 0 I J;'
I I | | Tt 0 Jo— 33,0, 0 I '

By the lemma and the Sylvester law of inertlg ®J —J1J51J1 can have no more than-1
negative eigenvalues. Sindg has exactly — 1 eigenvalues by hypothesi$; — JnglJl
must be positive semi-definite and

0 <x'(Jy — pJa)x < x'(Jy — pJ1Jg ' I1)x
for all nontrivialx. Hence, fork =1, 2, ..., r —1,

xtJix

1+ pRr = min max
Pk dim S=k x€S Xt(Jl —leJalJl)X

) xtJ1x
> min max ————— = Ly,
dim S=k xS Xt(Jl — ,OJQ)X
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andforc=1,2, ..., m—1r+1,

—xtJix

—(14 pR_y) = min max
(14 pE—) dimS=¢ xeS xt(J; — leJalJl)x

—xtJix

> min max ———— = —L_y.
T dimS=¢ xS xt(J1 — pJa2)x ¢

Since there will be subspaces of dimension up to1 for whichx!J;x < 0 and subspaces
of dimension up ton — r + 1 for whichx?J;x > 0, we may restrict ourselves tofor which
the numerators in the above expressions are strictly negative with no loss of gerérality.

6. A Ritz-Lehmann Comparison. One may hope that the role spectral mapping played
in the derivation of both left- and right-definite variants of Lehmann’s method might lead
to significant improvements beyond the straightforward application of the Rayleigh-Ritz
method. Indeed, spectral mapping has been used for some time with Lanczos methods (e.g.,
[3]) with sometimes spectacular effect and so encouraged, some have considered the use of
right-definite Lehmann bounds using Krylov subspaces generated in the course of an ordi-
nary Lanczos process (e.g., [15] and [17]). By and large, results along these lines have been
disappointing when compared with what “shift-and-invert” methods offer (albeit at a much
higher price). One may instead seek to compare the expected outcomes of Lehmann methods
with those of Rayleigh-Ritz methods. Observe that each method makes optimal use of the
information required in the sense that no better bounds are possible with the infomation used,
S0 in a certain manner of speaking we are really comparing the utility of various types of
information in extracting eigenvalue information.

Zimmerman [19] proved that the error in left-definite Lehmann bounds is no worse than
proportional to the error in Ritz bounds and may be smaller. Thus, left-definite Lehmann
bounds carry the potential of greater accuracy than Ritz bounds. We probably shouldn't ex-
pect them to be much better, though. In [10], Knyazev states that eigenvector approximations
provided by either the right- or left-definite variants of Lehmann’s method will asymptoti-
cally approach the corresponding Ritz vectors as they close upon the true eigenvectors. Thus,
Lehmann methods appear to recover invariant subspace information with about the same ef-
ficiency as Rayleigh-Ritz methods.

It is important to note that Lehmann methods provide eigenvadumdsthat often are
difficult to obtain in other ways. For example, Behnke [1] combined right-definite Lehmann
methods with interval techniques in order to deduce guaranteed bounds to matrix eigenvalue
problems and his approach appears to be competitive with the best known interval algorithms
for this problem.

For the remainder of this section, we will consider the application of a left-definite
Lehmann method within a Lanczos process for resolving a large-scale matrix eigenvalue
problem. Since left-definite Lehmann methods are known to be superior to right-definite
Lehmann methods (at least to the extent claimed in Section 5), one may seek to improve
upon the results of Morgan [15] by using left-definite Lehmann-Goerisch bounds as formu-
lated in Theorem 4.2.

Specifically, letM = Iin (2.1) and lefT be a tridiagonal matrix that is similar I§ — so
thatK = QTQ! for somen x n unitary matrixQ. For any indext < ¢ < n, let T, denote
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the/th principal submatrix off":

a3
B ar [o

T, B2 a3

Be—1

Be—1 o

and definéV via a partitioning ofT as

T — T,  freeel
Beere) A\
Let Q; denote a matrix containing the filstolumns ofQ: Q; = [q1, ... q¢].

The Lanczos algorithm builds up the matricBsand Q one column at a time starting
with the vectorq;. Only information on the action dK on selected vectors iR" is used.
Different choices foky; produce distinct outcomes far, if all goes well. Extracting useful
information when not all goes well is fundamental to modern approaches — a discussion may
be found in [16].

At the /th step, the basic Lanczos recursion appears as

KQ/; = Q/T/ + Beqes 1€}

In exact arithmetic, the firgtsteps yields a matri€, that satisfieQ;Q, = I and

RGTL(Q[) = Spar{QM ACIh ey Af_lql} - K[(Aa q1)7

a Krylov subspace of ordér The application of Theorem 4.2 is straightforward:

THEOREMG6.1. LetM = I and suppose is not an eigenvalue of (2.1). Each interval
[A(_Li), p) and (p, A§L)] contains respectively at leasand j eigenvalues of the matriK,
where

0< A o< AB) < AW < p Al <A <

are the positive eigenvalues of the tridiagonal matrix pencil

(6.1) T, Brex } _A@ [ I 0
' Orel, wil + el T ey 0 (pwrt1)™" = BRors1(p)

wherewy 1 is any number that satisfies

Wht1 = qurlK_l‘Jk-‘rl
and dx11(p) = €, T (Tk — p) ey

Note thatp is a simple eigenvalue of (6.1)
We apply this directly to the numerical example considered in [17] and in Section 1.
Figure 2 shows the convergence history both for Ritz bounds and for left-definite Lehmann

bounds, for the seventh through tenth eigenvalues of the matrix. We also apply a shift and
invert Lanczos method using the spectral transformation: % A few features are

apparent. The first is that the Lehmann bounds aren’t nearly as good as the shift and invert
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FiG. 6.1. Convergence of Ritz and Lehmann bounds using Krylov subspaces vs. Shift & invert Lanczos with
same starting vector.

bounds to which they are closely related. Paige, Parlett, and van der Vorst [17] observed
this disappointing behaviour for right-definite Lehmann methods (in their context, harmonic
Ritz on a shifted matrix) — the left-definite Lehmann method does not fare much better.
Knyazev’s observations [10] relating convergence of Lehmann eigenvectors to Ritz vectors
suggest that spectral information for interior matrix eigenvalues will not be picked up any
more rapidly with Lehmann methods than for Ritz methods. This is in stark contrast with
shift and invert strategies which will produce approximate eigenvectors that are rapidly drawn
into invariant subspaces associated with eigenvalues clgse to

The second observation is that, nonetheless, the Lehmann bounds do appear to approach
the exact eigenvalues at a rate comparable to that of the Ritz bounds — consistent with the
results of Zimmerman discussed above. Furthermore, one can see that the Lehmann bounds
appear to pass through a series of stagnation points en route to their limit, and the farther they
lie from p, the more abrupt the transition between stagnation points. These stagnation points
appear to be close to the exact matrix eigenvalues.

The following simple Bauer-Fike style perturbation result lends some insight to this be-
haviour.

THEOREM6.2. LetA(X) be any left-definite Lehmann bound and denote wijtthe Ritz
values from (2.2). Then

. (|Ai—p Ay — A
62) win (B2 (5 ) A < wiore

Proof. If either (H — pI) or (H — A(X)I) is singular then (6.2) holds trivially. Suppose
then thatH — pI) and(H — A(“)T) are nonsingular. Rearrange the expression (4.6) to get

y = —pAPH - pI) ' (H - AP 'H'C'WCy.
Take norms on each side and simplify:
(6.3) 1< pAP|(H - pD) ™ (H - APDH | [W][[|C|>
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Then notice that

1 1 1
DY H - ADD-IHL =
|(H—pI) " '(H - AT TH Y max (|Ai — p|) (|Ai — A(L)|) A;

=1/ min(|A; — p| [A; = AP|Ay),

which may be combined with (6.3) to get (6.2).

Notice that the right hand side of (6.2) has a magnitude related to the size of the Ritz
residualKQ; — Q,H and is independent of which Lehmann bouri®) is chosen. Suppose
the right hand side of (6.2) is moderately small and choose a Lehmann Béahdf A ()
is not close tg then any Ritz valué\; that is close to\(“) will not be close tq either. Thus
anyA(L) chosen far fromp is constrained by (6.2) to be nearer to at leastnthen it would
be wereA (") chosen closer tp. A qualitative interpretation that one might take from this is
that Lehmann bounds&(™) far from p tend to occur in the neighborhood of Ritz values
Furthermore, Lehmann bound$™ far from p that are also situated toward the edges of the
spectrum will tend to aggregate in the neighborhood of exact eigenvalues since the attracting
Ritz values themselves will be approximating extreme eigenvalues fairly well.

REFERENCES

[1] H. BEHNKE, Inclusion of Eigenvalues of General Eigenvalue Problems for Matri€esnputing, 6 (Suppl.)
(1988), pp. 69-78.
[2] CoLLaTZ, L. Eigenwertprobleme und ihre numerische Behand|@telsea, NY, 1948.
[3] T. ERICSSONANDA. RUHE, The spectral transformation Lanczos method for the numerical solution of large
sparse generalized symmetric eigenvalue probjévath. Comp., 35 (1980), pp. 1251-1268.
[4] F. GoeRriscH Eigenwertschranken und komplermaet ExtremalprinzipienHabilitationsschrift, Technische
Universigt — Clausthal, 1986.
[5] F. GoERISCH ANDJ. ALBRECHT, Eine einheitliche Herleitung von Einschliessuraggen ir Eigenwerte in
Numerical Treatment of Eigenvalue Problems, J. Albrecht, L. Collatz, and W. Velte, eds., International
Series of Numerical Mathematics, Vol. 69, Biddser, Basel, 1983.
[6] F. GoeERiscH ANDH. HAUNHORST, Eigenwertschrankeruf Eigenwertaufgaben mit partiellen Differential-
gleichungenZ. Angew. Math. Mech., 65 (1985), pp. 129-135.
[7] F.GOERISCHANDS. ZIMMERMAN, On Trefftz's method and its application to eigenvalue problénAngew.
Math. Mech., 66 (1986), pp. T304-T306.
[8] R. GRAMMEL, Ein neues Verfahren zurmsung technischer Eigenwertproblenireg.-Arch. 10 (1939), pp. 35—
46.
[9] R.G. GRIMES, J. G. LEwis AND H. D. SIMON, (1994),A shifted block Lanczos algorithm for solving sparse
symmetric generalized eigenproblerS$AM J. Matrix Anal. Appl., 15(1) (1994), pp. 228-272.
[10] A. V. KNYAZEV, Convergence rate estimates for iterative methods for mesh symmetric eigenvalue problem
Soviet J. Numer. Anal. Math. Modelling, 2(5) (1987), pp. 371-396.
[11] N. J. LEHMANN, Berechnung von Eigenwertschranken bei linearen Problemenh. Math. (Basel), 2
(1949/50), pp. 139-147.
[12] N. J. LEHMANN, Beitrdge zur numerischendsung linearer Eigenwertproblem&. Angew. Math. Mech. |,
29 (1949/50), pp. 341-356; II, 30 (1949/50), pp. 1-16.
[13] N.J. LEHMANN, Optimale EigenwerteinschlieBungedumer. Math., 5 (1963), pp. 246-272.
[14] H. J. MAEHLY, Ein neues Variationsverfahren zur gérerten Berechnung der Eigenwerte hermitescher Op-
eratoren Helv. Phys. Acta, 25 (1952), pp. 547-568.
[15] R. MoRGAN,Computing interior eigenvalues of large matricesinear Algebra Appl., 154-156 (1991),
pp. 289-309.
[16] B. PARLETT, The Symmetric Eigenvalue ProbleRrentice-Hall, Englewood Cliffs, 1980.



ETNA

Kent State University
etna@mcs.kent.edu

Harmonic Rita and Lehmann Bounds 39

[17] C. C. RIGE, B. N. PARLETT AND H. A. VAN DER VORST, Approximate solutions and eigenvalue bounds
from Krylov subspaceNumer. Linear Algebra Appl., 2(2) (1995).

[18] C. F.vaN LoOAN, Generalizing the singular value decompositi®AM J. Numer. Anal., 13 (1976), pp. 76—
83.

[19] S. ZIMMERMANN, (1994),Comparison of Errors in Upper and Lower Bounds to Eigenvalues of Self-Adjoint
Eigenvalue Problemd&Numer. Funct. Anal. Optim., 15 (7-8) (1994), pp. 943-960.



