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DOMAIN DECOMPOSITION ALGORITHMS FOR FIRST-ORDER SYSTEM
LEAST SQUARES METHODS�

LUCA F. PAVARINOy

Abstract. First-order system least squares methods have been recently proposed and analyzed for second order
elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard
finite element spaces which are not required to satisfy the inf-sup condition. In this paper, several domain decom-
position algorithms for these first-order least squares methods are studied. Some representative overlapping and
substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical
results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin dis-
cretizations are also valid for least squares methods. Therefore, domain decomposition algorithms provide parallel
and scalable preconditioners also for least squares discretizations.
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1. Introduction. Least squares methods have been proposed in recent years for second-
order elliptic problems, Stokes and Navier-Stokes equations; see Chang [12], Bochev and
Gunzburger [2], Pehlivanov, Carey, and Lazarov [18], Cai, Lazarov, Manteuffel, and Mc-
Cormick [7], Cai, Manteuffel, and McCormick [9], Bramble, Lazarov, and Pasciak [3],
Bramble and Pasciak [4], Carey, Pehlivanov, and Vassilevski [10], Cai, Manteuffel, and Mc-
Cormick [8], Bochev, Cai, Manteuffel, and McCormick [1], and the references therein.

Among the possible approaches, we follow here the one introduced in the very recent
works of Pehlivanov, Carey, and Lazarov [18] and Cai, Manteuffel, and McCormick [9].
The second-order elliptic problem is rewritten as a first-order system and a least squares
functional is introduced. The resulting discrete minimization problem is associated with a
bilinear form which is continuous and elliptic on an appropriate space. Therefore, the inf-
sup condition is avoided, and standard finite element spaces can be used. The resulting linear
system is symmetric, positive definite and has condition number of the same order as standard
Galerkin finite element stiffness matrices,O(1=h2). An interesting alternative approach by
Bramble, Lazarov, and Pasciak [3] is based on replacing one of theL2-terms in the least
squares functional by a discreteH�1-norm. We will not consider here such an alternative.

The goal of this paper is to extend to these least squares methods some of the classi-
cal domain decomposition algorithms which have been successfully employed for standard
Galerkin finite elements and to compare numerically the two approaches for simple model
problems. We show that optimal and quasi-optimal convergence bounds follow easily from
the standard Galerkin case. Numerical results confirm these bounds and show that domain
decomposition algorithms for standard Galerkin and least squares discretizations have com-
parable convergence rates. Therefore, domain decomposition provides highly parallel and
scalable solvers also for first-order system least squares discretizations. An overview of do-
main decomposition methods can be found in the book by Smith, Bjørstad and Gropp [19]
and in the review papers by Chan and Mathew [11], Dryja, Smith, and Widlund [13], Dryja
and Widlund [15], Le Tallec [16].
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2 Domain decomposition algorithms

This paper is organized as follows. In the next section, we briefly review the first-order
system least squares methodology and the main results from [9]. In Section 3, we introduce
and analyze our domain decomposition algorithms: overlapping additive Schwarz methods
(with coupled and uncoupled subspaces; see 3.1), overlapping multiplicative Schwarz meth-
ods (3.2), and an iterative substructuring method (3.3). In Section 4, we present numerical
results in the plane that confirm the theoretical bounds obtained, and we make a comparison
with results for standard Galerkin discretizations.

2. First-Order System Least Squares.We consider the following second-order elliptic
problem on a bounded domain
 � R2 orR3

8<
:

�r � (Arp) +Xp = f in 
;
p = 0 on�D;

n �Arp = 0 on�N :
(2.1)

HereA is a symmetric and uniformly positive definite matrix with entries inL1(
), X is
a first-order linear differential operator,�D [ �N = @
, andn is the outward unit vector
normal to�N .

Defining the new flux variableu = �Arp, the system (2.1) can be rewritten as a first-
order system:

8>><
>>:

u+Arp = 0 in 
;
r � u+Xp = f in 
;

p = 0 on�D;
n � u = 0 on�N :

(2.2)

This system can be extended to the equivalent system
8>>>>>><
>>>>>>:

u+Arp = 0 in 
;
r � u+Xp = f in 
;
r�A�1u = 0 in 
;

p = 0 on�D;
n � u = 0 on�N ;

� (A
�1u) = 0 on�D;

(2.3)

wherer� = curl (in two dimensionsr� u = 0 means@u2
@x

� @u1
@y

= 0) and�u = u� n
(in two dimensions�u = u � � ).

The following least squares functionals,G0 for the system (2.2) andG for the augmented
system (2.3), were studied in [7] ([18] for the caseX = 0) and [9] respectively:

G0(v; q; f) = kv+Arqk2L2(
) + kr � v +Xq � fk2L2(
);(2.4)

8(v; q) 2W0(div; 
)� V; and

G(v; q; f) = kv +Arqk2L2(
) + kr � v +Xq � fk2L2(
) + kr� (A�1v)k2L2(
);(2.5)

8(v; q) 2W� V:

More general functional with scaling parameters in front of each term are possible; see
Bochev and Gunzburger [2] and Carey, Pehlivanov and Vassilevski [10]. Here the functional
spaces are defined as

W0(div; 
) = fv 2 H(div; 
) : n � v = 0 on�Ng;
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W0(curlA; 
) = fv 2 H(curlA; 
) : � (A
�1v) = 0 on�Dg;

W =W0(div; 
) \W0(curlA; 
);

V = fq 2 H1(
) : q = 0 on�Dg:

The least squares minimization problems for (2.2) and (2.3) are respectively:
Find (u; p) 2W0(div; 
)� V such that

G0(u; p; f) = inf
(v;q)2W0(div;
)�V

G0(v; q; f);(2.6)

Find (u; p) 2W� V such that

G(u; p; f) = inf
(v;q)2W�V

G(v; q; f):(2.7)

Simple calculations show that the associated variational problems are respectively:
Find (u; p) 2W0(div; 
)� V such that

a0(u; p;v; q) = F (v; q) 8(v; q) 2W0(div; 
)� V ;(2.8)

Find (u; p) 2W� V such that

a(u; p;v; q) = F (v; q) 8(v; q) 2W� V:(2.9)

Here the bilinear forms are

a0(u; p;v; q) = (u+Arp;v +Arq)L2 + (r � u+Xp;r � v +Xq)L2 ;

a(u; p;v; q) = a0(u; p;v; q) + (r� (A�1u);r� (A�1v))L2 ;

and the right-hand side is

F (v; q) = (f;r � v +Xq)L2 :

In [7], it was proved thata0(v; q;v; q) is equivalent to (continuous and elliptic with
respect to) theH(div; 
)�H1(
)-norm onW0(div; 
)�V , under the assumption (denoted
by assumption A0) that a Poincar`e-Friedrichs inequality holds forp: there exists a constant
C depending only on
 and the uniform bounds onA such that

kpkL2(
) � CkA1=2rpkL2(
):

For the caseX = 0, this was proved in [18].
In [9], it was proved thata(v; q;v; q) is equivalent to the[H(div; 
) \H(curlA; 
)]�

H1(
) norm onW � V , under the same assumption A0. Moreover, under three additional
technical assumptions denoted by A1, A2, A3, it is proven in [9] thata(v; q;v; q) is
equivalent to theH1(
)d+1 norm onW � V (d = 2 or 3). These technical assumptions are
made in [9] in order to guarantee theH2�regularity of the solutions of the elliptic problems
considered. We reported them here for completeness and remark that convex polygons and
polyhedra satisfy these assumptions (see [9] for a more detailed discussion).
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ASSUMPTION A1: 
 is a bounded, open, connected domain inRd. Its boundary�
consists of a finite number of disjoint, simple, closed curves (surfaces)�i; i = 0; : : : ; L; �0
is the outer boundary which ford = 2 is piecewiseC1;1 with no reentrant corners and for
d = 3 isC1;1 or a convex polyhedron.

ASSUMPTION A2: the boundary is divided into Dirichlet and Neumann parts:
� = �D [ �N such that�i � �D for i 2 D and �i � �N for i 2 N with
D [ N = f1; : : : ; Lg. For d = 2, �0 is divided into a finite number of connected
pieces:�0 = [Mi=1�0;i such that�0;i � �D for i 2 D0 and�0;i � �N for i 2 N0. For
d = 3, either�0 � �D or �0 � �N .

ASSUMPTION A3: The matrixA is C1;1 and ford = 2 nT
�
An+ � 0 at each corner

x 2 �0 that separate�D and�N , wheren� andn+ are the outward unit normal vectors to
�0 at x.

THEOREM 2.1. Let b(u; p;v; q) = (u;v)H1(
)d + (p; q)H1(
) be the bilinear form
associated with theH1(
)d+1 norm.

If the assumptions A0-A3 of [9] are verified, then there exist positive constants� and�
such that

�b(v; q;v; q) � a(v; q;v; q) 8(v; q) 2W� V;

and

a(u; p;v; q) � �b(u; p;u; p)1=2b(v; q;v; q)1=2;

8(u; p); (v; q) 2W� V .
Because of the equivalence ofa(�; �) andb(�; �), from now on we will concentrate on the

variational problem (2.9) associated with the augmented system (2.3).
We introduce a triangulation�h of 
 and associated finite element subspacesWh �

V h �W � V . We suppose that the domain
 is first triangulated by a coarse finite element
triangulation�H consisting ofN subdomains
i of diameterH . The fine triangulation�h is a
refinement of�H . For simplicity, we suppose that each subdomain is the image under an affine
map of a reference cube. In the general case of curved elements and non-constant matrixA,
the boundary condition� (A�1u) = 0 on�D cannot be satisfied on the whole boundary
�D. If this condition is enforced only at the nodes on�D, we obtain a nonconforming method
with Wh 6� W; see Pehlivanov and Carey [17] for a discussion of this approach. In this
paper, we confine ourselves to the conforming case, which is obtained for example by using
affine elements and a constant matrixA.

We then obtain a finite element discretization of (2.9):
Find (uh; ph) 2W

h � V h such that

a(uh; ph;vh; qh) = F (vh; qh) 8(vh; qh) 2W
h � V h:(2.10)

For simplicity, we consider continuous piecewise linear finite elements:

Wh = fv 2 C0(
)d : vkjT 2 P1(T ); 8T 2 �h;v 2Wg = W h
1 �W h

2 �W h
3 ;

V h = fq 2 C0(
) : qjK 2 P1(K); 8K 2 �h; q 2 V g;

and the subscripth for discrete functions will be dropped in the rest of the paper.
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Error estimates and results on the conditioning of the resulting stiffness matrix can be
found in [7] (in [18] for the caseX = 0).

By choosing a basis inWh andVh, the discrete problem (2.10) is turned into a linear
system of equationAx = b. We are going to solve such system iteratively by using domain
decomposition techniques.

3. Domain Decomposition Algorithms. We will introduce and analyze our domain
decomposition algorithms in the Schwarz framework, which has been very successful for
standard Galerkin finite elements; see [13], [14], [15], [11], [19]. We illustrate the main
ideas on algorithms which are representative of the main classes of domain decomposition
(additive, multiplicative, overlapping, iterative substructuring). The same analysis can be
applied to the many other algorithms which have been proposed and analyzed for the standard
scalar case.

We recall that the domain
 is the union ofN subdomains
i, affine images of a refer-
ence cube, which form a coarse finite element triangulation�H of 
. A fine triangulation�h
is obtained as a refinement of�H .

3.1. Overlapping Additive Schwarz Methods. Each subdomain
i is extended to a
larger subdomain
0i, consisting of all elements of�h within a distance� from 
i (0 < � <

H).
Each scalar component of our finite element spaceWh � V h is decomposed as in the

standard scalar case:

W h
1 =

NX
i=1

W h
1;i W h

2 =

NX
i=1

W h
2;i W h

3 =

NX
i=1

W h
3;i V h =

NX
i=1

V h
i ;

where

W h
k;i = fu 2W h

k : support(u) � 
0ig; k = 1; 2; 3;

V h
i = fu 2 V h : support(u) � 
0ig:

For each scalar component, a global coarse finite element space is associated with the coarse
triangulation�H :

W h
k;0 = WH

k = fu 2 W h
k : u is trilinear on each subdomain
ig; k = 1; 2; 3;

V h
0 = V H = fp 2 V h : p is trilinear on each subdomain
ig:

A first additive method is defined by the following decomposition of the discrete space,
which maintains the local and coarse coupling between the different scalar components:

Wh � V h =

NX
i=0

Wh
i � V h

i :

The local spaces are

Wh
i � V h

i = W h
1;i �W h

2;i �W h
3;i � V h

i i = 1; 2; � � � ; N;

and the coarse space is

Wh
0 � V h

0 =WH � V H = WH
1 �WH

2 �WH
3 � V H :
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We define the local projection operatorsPi :Wh � V h !Wh
i � V h

i by

a(Pi(u; p);v; q) = a(u; p;v; q) 8(v; q) 2Wh
i � V h

i ;

and the coarse projection operatorP0 :Wh � V h !Wh
0 � V h

0 by

a(P0(u; p);v; q) = a(u; p;v; q) 8(v; q) 2Wh
0 � V h

0 :

It is easy to see that the matrix form of the local projections isPi = RT
i A

�1
i RiA, where

Ri(ek) =

�
1 if ek 2 
0i
0 otherwise

are the restriction matrices selecting only the unknowns in
0i for each component and
Ai = RiAR

T
i are the stiffness matrices of local Dirichlet problems. Analogously,P0 =

RT
HA

�1
H RHA, whereRT

H is the standard piecewise linear interpolation matrix from the coarse
grid �H to the fine grid�h, for each component, andAH = RHAR

T
H is the coarse grid dis-

cretization of our problem (2.9). Let

Padd1 =

NX
i=0

Pi:

The original discrete problem is then equivalent to the preconditioned problem

Padd1(u; p) = gadd1;

whereg =
PN

i=0 Pi(u; p) ; see Chan and Mathew [11] or Smith, Bjørstad and Gropp [19].
In matrix form, this problem can be written asM�1Ax = M�1b, where the preconditioner is
M�1 =

PN
i=1 R

T
i A

�1
i Ri + RT

HA
�1
H RH . An optimal convergence bound for this algorithm

is given in Theorem 3.1.
A second additive method is obtained by dropping the coupling between the different

scalar components ofu andp. Uncoupled local spaces are now defined by

Wh
1;i = W h

1;i � f0g � f0g � f0g;

Wh
2;i = f0g �W h

2;i � f0g � f0g;

Wh
3;i = f0g � f0g �W h

3;i � f0g;

Vh
i = f0g � f0g � f0g � V h

i ;

and the coarse spaces by

WH
1 =Wh

1;0 = W h
1;0 � f0g � f0g � f0g;

WH
2 =Wh

2;0 = f0g �W h
2;0 � f0g � f0g;

WH
3 =Wh

3;0 = f0g � f0g �W h
3;0 � f0g;
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VH = Vh
0 = f0g � f0g � f0g � V h

0 :

We then have the following decomposition

Wh � V h =

NX
i=1

Wh
1;i +

NX
i=1

Wh
2;i +

NX
i=1

Wh
3;i +

NX
i=1

Vh
i +WH

1 +WH
2 +WH

3 +VH

=

3X
k=1

NX
i=0

Wh
k;i +

NX
i=0

Vh
i :

As before, we define projectionsPk;i :Wh�V h !Wh
k;i; k = 1; 2; 3; i = 0; 1; � � � ; N and

P4;i :W
h � V h ! Vh

i ; i = 0; 1; � � � ; N; and the additive operator

Padd2 =

3X
k=1

NX
i=0

Pk;i +

NX
i=0

P4;i:

We note that this algorithm can equivalently be defined by the same choice of subspaces as for
Padd1 but using the bilinear formb(�; �) (introduced in Theorem 2.1) instead ofa(�; �) in the
definition of the projections. In fact this uncoupled preconditioner corresponds to applying
four identical copies of a scalar preconditioner to each scalar component. An optimal bound
holds also for this algorithm.

THEOREM 3.1. There exists a positive constantC independent ofh;H and� such that

cond(P ) � C(1 +
H

�
);

whereP = Padd1 or P = Padd2 .
Proof. An upper bound on the spectrum ofP is standard, since each point of
 belongs

to a fixed number of extended subdomains independent ofN (for example, for� < H=2 each
point belongs to at most four (in 2D) or eight (in 3D) extended subdomains). A lower bound
is obtained by classical Schwarz analysis.

For P = Padd1, since we use exact projections, the lower bound is equivalent to the
following partition property (see Dryja and Widlund [15] or Chan and Mathew [11]):
There exists a constantC0 such that8(u; p) 2 Wh � V h; there exists a decomposition
(u; p) =

PN
i=0(ui; pi), with (ui; pi) 2Wh

i � V h
i such that

NX
i=0

a(ui; pi;ui; pi) � C2
0a(u; p;u; p):

By the equivalence of Theorem 2.1, this inequality is equivalent to

NX
i=0

j(ui; pi)j
2
(H1)d+1 � C2

0 j(u; p)j
2
(H1)d+1 ;

which is a direct consequence of the scalar result proven by Dryja and Widlund [15]:

NX
i=0

juki j
2
H1 � C2

0 ju
kj2H1 ;

NX
i=0

jpij
2
H1 � C2

0 jpj
2
H1 ;

with C2
0 = C(1 + H

�
).

ForP = Padd2, since the subspaces are the same but we use inexact projections defined
by b(�; �) instead ofa(�; �), we need only to show that there exists a constant! such that
a(u; p;u; p) � !b(u; p;u; p) 8(u; p) 2 Wh

i � V h
i ; i = 0; 1; � � � ; N (see Dryja and

Widlund [14]). This follows immediately from the equivalence ofa andb.
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3.2. Overlapping Multiplicative Schwarz Methods. By using the same coupled local
and coarse spaces as in the additive algorithmPadd1, we can define a multiplicative operator:

Pmult = I � (I � PN ) � � � (I � P1)(I � P0):

The multiplicative algorithm consists in solving the nonsymmetric system

Pmult(u; p) = gmult

by an iterative method such as GMRES.
We can also define a symmetrized multiplicative operator

Pmults = I � (I � P0) � � � (I � PN�1)(I � PN )(I � PN�1) � � � (I � P0)

and a symmetrized algorithm, consisting in solving the symmetric system

Pmults(u; p) = gmults

by an iterative method like CG. We have chosen to accelerate this multiplicative version by
GMRES or CG because this approach has been proven more efficient and robust than the clas-
sical multiplicative Schwarz algorithm; see Cai, Gropp and Keyes [6]. For the symmetrized
operator, we have the following optimal bound.

THEOREM 3.2. There exists a positive constantC independent ofh;H and� such that

cond(Pmults) � C(1 +
H

�
):

The proof is again based on the extension of the scalar result (see Chan and Mathew [11],
Smith, Bjørstad and Gropp [19] or the more specific reference Bramble, Pasciak, Wang and
Xu [5]) by using the equivalence of Theorem 2.1. Analogously, multiplicative versions of
Padd2 could be built using uncoupled local and coarse spaces.

3.3. An Iterative Substructuring Method. For a complete and detailed analysis of
this class of methods, we refer to Dryja, Smith and Widlund [13]. Here we only consider
a simple representative of this class, namely the analog of Algorithm 6.2 in [13], which is
vertex-based and has a standard coarse space. For simplicity, we only consider the uncoupled
additive version.

The standard first step of nonoverlapping methods is the elimination of the variables
interior to each subdomain (at least implicitly). We then work with the Schur complement
S = KBB �KT

IBK
�1
II KIB of the stiffness matrix

K =

�
KII KIB

KT
IB KBB

�
:

The reduced linear system withS involves only variables on the interface� = [@
i n �D.
When solving with a preconditioned iterative method, we only need the action ofS on a given
vector and there is no need to explicitly assembleS.

In the Schwarz framework, working withS corresponds to working with the discrete
harmonic subspace~Wh � ~V h of the original spaceWh � V h. Local spaces are associated
with the geometric objects (facesFi, edgesEi and verticesvi) forming the interface�. Each
scalar space is decomposed as

~W h
k =

X
Fi

~W h
k;Fi

+
X
Ei

~W h
k;Ei

+
X
vi

~W h
k;vi

; k = 1; 2; 3;
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and

~V h =
X
Fi

~V h
Fi

+
X
Ei

~V h
Ei

+
X
vi

~V h
vi
:

Here, for example,~W h
k;Fi

= fu 2 ~W h : u = 0 on �h � Fi;hg, where�h andFi;h are
the set of nodes on� andFi respectively. The other spaces are defined analogously. As for
the overlapping case, we then embed these scalar spaces in our product space~Wh � ~V h: for
example, ~Wh

1;Fi
= ~W h

1;Fi
� f0g � f0g � f0g . As a coarse space, we consider the discrete

harmonic subspace of the same coarse space used forPadd2, i.e. ~WH
1 + ~WH

2 + ~WH
3 + ~VH .

We obtain the following decomposition

~Wh � ~V h =
3X

k=1

(
X
Fi

~Wh
k;Fi

+
X
Ei

~Wh
k;Ei

+
X
vi

~Wh
k;vi

+ ~WH
k )

+
X
Fi

~Vh
Fi

+
X
Ei

~Vh
Ei

+
X
vi

~Vh
vi

+ ~VH :

By defining as before projection operators into the subspaces, we form the additive operator

Pis =

4X
k=1

(
X
Fi

Pk;Fi +
X
Ei

Pk;Ei
+
X
vi

Pk;vi + Pk;0);

where again fork = 4 the projections are into the~Vh
i spaces.

THEOREM 3.3. There exists a positive constantC independent ofh andH such that

cond(Pis) � C(1 + log(H=h))2:

As before, the proof is based on the extension of the scalar result (see Dryja, Smith and
Widlund [13], Theorem 6.2) by using the equivalence of Theorem 2.1.

4. Numerical Results. In this section, we report the results of numerical experiments
which confirm the optimal convergence bounds obtained in the previous sections. We also
compare the same domain decomposition methods applied to least squares discretizations and
to standard Galerkin discretization of (2.1) with piecewise linear finite elements. We have
run numerical experiments for symmetric positive definite problems, for which the domain
decomposition theory is completely understood. More general nonsymmetric or indefinite
problems, for which the domain decomposition theory is still undergoing important develop-
ments, will be the subject of future studies.

All the results have been obtained with Matlab 4.2 running on Sun Sparcstations. The
model problem considered is the standard Poisson equation (A=I, X=0) on the unit square,
with p = 0 on �D = @
 and�u = 0 on @
 (i.e. u1 = 0 on fy = 0g andfy = 1g;
u2 = 0 on fx = 0g andfx = 1g). The right-hand sidef is chosen such that we have
p(x; y) = sin(�x)sin(�y) as exact solution. The region
 is decomposed into a regular grid
of N square subdomains, withN varying from2 � 2 to 8 � 8. The fine grid mesh sizeh
varies from1=32 to 1=128.

The Krylov method used for all the symmetric problems is PCG, while we use GMRES
for the nonsymmetric problem withPmult. The initial guess is always zero and the stopping
criterion iskrkk2=kr0k2 < 10�6, whererk is the residual at stepk.

The local and coarse problems involved in the application of the preconditioners are
always solved directly. For each method, we report the number of iterations and the Lanczos-
based estimates of the condition number and the extreme eigenvalues (except for the multi-
plicative algorithm, where we report the average convergence factor instead).
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TABLE 4.1
P
add1: Overlapping Additive Schwarz with fixed overlap size� = h.

N h�1 iter: cond(Padd1) �max �min

4 32 16 11.2172 4.0048 0.3570
9 48 19 12.1787 4.0068 0.3290
16 64 20 11.9775 4.0050 0.3343
25 80 20 11.1689 4.0052 0.3586
36 96 21 12.5450 4.0044 0.3192
49 112 20 11.9944 4.0050 0.3339
64 128 21 12.5500 4.0047 0.3191

TABLE 4.2
P
add1: Overlapping Additive Schwarz with fixed number of subdomainsN = 64.

� h�1 iter: cond(Padd1) �max �min

h 128 21 12.5500 4.0047 0.3191
2h 128 17 7.1316 4.0307 0.5651
3h 128 16 5.5769 4.0765 0.7309
4h 128 15 4.9540 4.1396 0.8356
5h 128 15 4.6460 4.2170 0.9076
6h 128 15 4.5125 4.3054 0.9541
7h 128 16 4.5859 4.4018 0.9598

4.1. Overlapping additive methods.We have first studied the coupled methodPadd1
with fixed minimal overlap size� = h. The mesh sizeh is decreased while the number of
subdomainsN is increased proportionally, so that the subdomain sizeH=h = 16 is kept con-
stant (H = 1=

p
N ). The results are reported in Table 4.1 and clearly show a constant bound

for the condition numbercond(Padd1) = �max=�min, for problem sizes from3007(N = 4)
to 48895(N = 64).

In Table 4.2, we fix the mesh size(h = 1=128) and the decomposition(N = 64),
and we vary the overlap size� from h to 7h. As in the scalar case, the condition number
cond(Padd1) improves as� increases, because of�min being closer to unity. For large over-
lap, the improvement becomes negligible or negative, because of to the growth of�max.

The same sets of results for the uncoupled methodPadd2 are reported in Table 4.3 and
Table 4.4, respectively. Again, the tables clearly show a constant bound on the condition num-
bercond(Padd2), which improves as the overlap increases. For this simple model problem,
the uncoupled method is only slightly worse than the coupled one, in terms of iteration count
(some condition number are almost the same or even better forPadd2). We point out that
althoughA = I , eliminating diffusive coupling between the flux components, there is still
coupling between the flux variables andp, so the strong performance ofPadd2 is encouraging.

4.2. Overlapping multiplicative methods. In Table 4.5, we compare the multiplica-
tive methodPmult accelerated with GMRES and the symmetrized multiplicative method
Pmults accelerated with CG. We consider the two methods with minimal overlap and con-
stant subdomain size. SincePmult is nonsymmetric, we report the average convergence factor
� = (ri=r0)

1=i instead of the condition number. For both methods, the number of iterations
is clearly bounded by a constant. Even if the symmetrized version is approximately twice
as expensive as the standard one, the number of iterations is almost the same for the two
methods. Therefore, the symmetrized version is less efficient on this simple problem.
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TABLE 4.3
P
add2 : Overlapping Additive Schwarz with fixed overlap size� = h.

N h�1 iter: cond(Padd2) �max �min

4 32 17 10.3521 4.0050 0.3868
9 48 20 12.6290 4.0051 0.3171
16 64 20 11.9811 4.0051 0.3342
25 80 21 11.3821 4.0052 0.3518
36 96 21 12.5458 4.0043 0.3191
49 112 20 11.9997 4.0052 0.3337
64 128 21 12.5261 4.0047 0.3197

TABLE 4.4
P
add2 : Overlapping Additive Schwarz with fixed number of subdomainsN = 64.

� h�1 iter: cond(Padd2) �max �min

h 128 21 12.5261 4.0047 0.3197
2h 128 17 7.1206 4.0315 0.5661
3h 128 16 5.5513 4.0777 0.7345
4h 128 16 5.3850 4.1442 0.7695
5h 128 16 5.4545 4.2233 0.7742
6h 128 16 5.5306 4.3158 0.7803
7h 128 16 5.6176 4.4297 0.7885

4.3. Iterative substructuring. Table 4.6 shows the results for the iterative substructur-
ing methodsPis with fixed subdomain sizeH=h = 16. The condition numbers and iteration
counts have a less smooth behavior compared to overlapping methods, but they still show a
constant bound. The smaller dimension of the reduced Schur complement being solved here
accounts for the smaller condition numbers and iteration counts.

4.4. Comparison with the standard Galerkin formulation. In this subsection, we
provide a comparison of the least squares results with the standard Galerkin formulation of
the same model problem, using piecewise linear finite elements for the original variablep.
More complete results for domain decomposition methods for standard Galerkin formulations
of elliptic problems in the plane can be found in Cai, Gropp and Keyes [6]. We start with
the overlapping additive Schwarz methodPadd, which corresponds toPadd1 or Padd2 (there
is only one version in the scalar case). Tables 4.7 and 4.8 report the results which should
be compared with the least squares results of Tables 4.1 and 4.2. Besides the well-known
optimality of the method, we remark that for this simple model problem, the least squares
condition numbers are almost the same as (and the iterations count only slightly worse than)
the corresponding results for standard Galerkin, in spite of the much larger size of the least
squares system (roughly three times larger in the plane). This fact is very encouraging for
the least squares approach with these domain decomposition preconditioners, since a much
larger system with both the original and the flux variables can be solved in almost the same
number of iterations.

The situation is analogous for multiplicative methods. The results for both the nonsym-
metric and symmetrized multiplicative version reported in Table 4.9 are almost the same as
the results in Table 4.5. Again, the much larger least squares system requires the same number
of iterations as (or just one more than) the standard Galerkin system.

On the other hand, for the substructuring methodPis, the results reported in Table 4.10



ETNA
Kent State University 
etna@mcs.kent.edu

12 Domain decomposition algorithms

TABLE 4.5
P
mult

andP
mults

: Overlapping Multiplicative Schwarz with fixed overlap size� = h.

multiplicative (GMRES) symmetrized multiplicative (CG)
N h�1 iter: � = (ri=r0)

1=i iter: cond(Pmults) �max �min

4 32 8 0.1847 7 1.8576 0.9994 0.5379
9 48 7 0.1433 6 1.7398 0.9999 0.5749
16 64 6 0.1233 6 1.7600 0.9999 0.5681
25 80 6 0.1102 6 1.6810 0.9999 0.5948
36 96 6 0.1021 6 1.6940 0.9999 0.5902
49 112 6 0.0952 6 1.6661 0.9999 0.6001
64 128 5 0.0849 6 1.7308 0.9999 0.6079

TABLE 4.6
Pis: Iterative Substructuring .

N h�1 iter: cond(Pis) �max �min

4 32 9 3.4035 1.5691 0.4610
9 48 17 7.8812 1.8497 0.2347
16 64 18 7.8543 1.7962 0.2287
25 80 18 8.5822 1.8864 0.2198
36 96 19 9.4115 1.8511 0.1966
49 112 18 8.6646 1.8939 0.2185
64 128 19 9.6532 1.8617 0.1928

show a considerable difference between the two discretizations. The condition numbers and
iteration counts of the standard Galerkin system are about one half the corresponding ones
for the least squares system.

Even if more results for more realistic problems are needed in order to better compare
domain decomposition methods for the two discretizations, this initial comparison seems to
indicate that overlapping methods are very efficient for least squares discretizations, particu-
larly in their multiplicative form.



ETNA
Kent State University 
etna@mcs.kent.edu

L. F. Pavarino 13

TABLE 4.7
Standard Galerkin: Overlapping Additive Schwarz with fixed overlap size� = h.

N h�1 iter: cond(Padd) �max �min

4 32 11 9.9403 4.0048 0.4029
9 48 15 12.6274 4.0025 0.3170
16 64 16 12.1403 4.0051 0.3299
25 80 18 12.8580 4.0038 0.3114
36 96 18 12.6448 4.0051 0.3167
49 112 18 12.7554 4.0044 0.3139
64 128 17 12.6752 4.0044 0.3159

TABLE 4.8
Standard Galerkin: Overlapping Additive Schwarz with fixed number of subdomainsN = 64.

� h�1 iter: cond(Padd) �max �min

h 128 17 12.6752 4.0044 0.3159
2h 128 15 7.4472 4.0301 0.5412
3h 128 13 5.8085 4.0757 0.7017
4h 128 13 5.1185 4.1408 0.8090
5h 128 13 4.8248 4.2320 0.8771
6h 128 13 4.7267 4.3393 0.9180
7h 128 13 4.7085 4.4452 0.9441
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