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DOMAIN DECOMPOSITION ALGORITHMS FOR FIRST-ORDER SYSTEM
LEAST SQUARES METHODS*

LUCA F. PAVARINOT

Abstract. First-order system least squares methods have been recently proposed and analyzed for second order
elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard
finite element spaces which are not required to satisfy the inf-sup condition. In this paper, several domain decom-
position algorithms for these first-order least squares methods are studied. Some representative overlapping and
substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical
results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin dis-
cretizations are also valid for least squares methods. Therefore, domain decomposition algorithms provide parallel
and scalable preconditioners also for least squares discretizations.
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1. Introduction. Least squares methods have been proposed in recent years for second-
order elliptic problems, Stokes and Navier-Stokes equations; see Chang [12], Bochev and
Gunzburger [2], Pehlivanov, Carey, and Lazarov [18], Cai, Lazarov, Manteuffel, and Mc-
Cormick [7], Cai, Manteuffel, and McCormick [9], Bramble, Lazarov, and Pasciak [3],
Bramble and Pasciak [4], Carey, Pehlivanov, and Vassilevski [10], Cai, Manteuffel, and Mc-
Cormick [8], Bochev, Cai, Manteuffel, and McCormick [1], and the references therein.

Among the possible approaches, we follow here the one introduced in the very recent
works of Pehlivanov, Carey, and Lazarov [18] and Cai, Manteuffel, and McCormick [9].
The second-order elliptic problem is rewritten as a first-order system and a least squares
functional is introduced. The resulting discrete minimization problem is associated with a
bilinear form which is continuous and elliptic on an appropriate space. Therefore, the inf-
sup condition is avoided, and standard finite element spaces can be used. The resulting linear
system is symmetric, positive definite and has condition number of the same order as standard
Galerkin finite element stiffness matric&3(1/h%). An interesting alternative approach by
Bramble, Lazarov, and Pasciak [3] is based on replacing one oftkterms in the least
squares functional by a discref&=!-norm. We will not consider here such an alternative.

The goal of this paper is to extend to these least squares methods some of the classi-
cal domain decomposition algorithms which have been successfully employed for standard
Galerkin finite elements and to compare numerically the two approaches for simple model
problems. We show that optimal and quasi-optimal convergence bounds follow easily from
the standard Galerkin case. Numerical results confirm these bounds and show that domain
decomposition algorithms for standard Galerkin and least squares discretizations have com-
parable convergence rates. Therefore, domain decomposition provides highly parallel and
scalable solvers also for first-order system least squares discretizations. An overview of do-
main decomposition methods can be found in the book by Smith, Bjarstad and Gropp [19]
and in the review papers by Chan and Mathew [11], Dryja, Smith, and Widlund [13], Dryja
and Widlund [15], Le Tallec [16].
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2 Domain decomposition algorithms

This paper is organized as follows. In the next section, we briefly review the first-order
system least squares methodology and the main results from [9]. In Section 3, we introduce
and analyze our domain decomposition algorithms: overlapping additive Schwarz methods
(with coupled and uncoupled subspaces; see 3.1), overlapping multiplicative Schwarz meth-
ods (3.2), and an iterative substructuring method (3.3). In Section 4, we present numerical
results in the plane that confirm the theoretical bounds obtained, and we make a comparison
with results for standard Galerkin discretizations.

2. First-Order System Least Squares.We consider the following second-order elliptic
problem on a bounded domahc R? or R?

-V-(AVp)+Xp = f in Q,
(2.1) p = 0 onl'p,
n-AVp = 0 only.

Here A is a symmetric and uniformly positive definite matrix with entried.it? (), X is
a first-order linear differential operatdry, U I'y = 012, andn is the outward unit vector
normal tol" .

Defining the new flux variablea = —AVp, the system (2.1) can be rewritten as a first-
order system:

u+AVp = 0 in Q,

V-u+Xp = f in Q,
(2.2) p = 0 onl'p,
n-u = 0 onl'y.

This system can be extended to the equivalent system

u+AVp = 0 in Q,

V-u+Xp = f in Q,

VxAlu = 0 in Q,
(2.3) p = 0 onlp,
n-u = 0 only,
Y(A7tu) = 0 onl'p,

whereV x = curl (in two dimension&/ x u = 0 means32 — 44 = 0) andy,u =u x n
(in two dimensionsg,-u = u - 7).

The following least squares functionalg, for the system (2.2) an@ for the augmented
system (2.3), were studied in [7] ([18] for the caSe= 0) and [9] respectively:

(2.4) Go(v,q; f) =|lv+ AVQ||2L2(Q) +IV-v+Xq- f||2L2(Q),
Y(v,q) € Wo(div; ) x V, and
(2.55 (v, q; f) = IV + AVall72iq) + IV - v + Xq = fll72(0) + IV x (A7V)[[22(q),

V(v,q) € W x V.

More general functional with scaling parameters in front of each term are possible; see
Bochev and Gunzburger [2] and Carey, Pehlivanov and Vassilevski [10]. Here the functional
spaces are defined as

Wo(div; Q) = {v € H(div;Q) :n-v=00nTy},
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Wo(curld; Q) = {v € H(curl4;9Q) : v, (A™'v) =00onTp},
W = Wy (div; Q) N Wy (curl 4;Q),

V={¢qeH(Q):q=00nTp}.

The least squares minimization problems for (2.2) and (2.3) are respectively:
Find (u, p) € Wy(div; Q) x V such that

(2.6) Go(u,p; f) = Go(v,q; f);

inf
(v,q) EWo(div;Q) xV
Find (u,p) € W x V such that

(2.7) G(w,p;f) = inf  G(v,qf).

(v,q)EW XV

Simple calculations show that the associated variational problems are respectively:
Find (u, p) € Wy(div; ) x V such that

(2.8) ao(w,p;v,q) = F(v,q) V(v,q) € Wo(div; Q) x V;
Find (u,p) € W x V such that

(2.9 a(u,p;v,q) = F(v,q) V(v,q) e W xV.
Here the bilinear forms are

aO(U,p;vaq) = (u+Avp,V + AAVq)L2 + (v ) u+Xp,V v +Xq)L27

a(u,p; v,q) = ao(w,p; v,q) + (V x (A7), V x (A7'v)) 2,
and the right-hand side is
F(v,q) =(f,V v+ Xq)Le.

In [7], it was proved thaug(v, ¢; v, ¢) is equivalent to (continuous and elliptic with
respect to) thé&(div; Q) x H' (Q)-norm onW (div; Q) x V, under the assumption (denoted
by assumption AO) that a PoineaFriedrichs inequality holds fgr. there exists a constant
C depending only o2 and the uniform bounds a# such that

Il L2y < CIIAY2Vp|l12(a)-

For the caseX = 0, this was proved in [18].

In [9], it was proved that(v, ¢; v, ¢) is equivalent to théH (div; Q) N H(curl A; Q)] x
H(Q) norm onW x V, under the same assumption AO. Moreover, under three additional
technical assumptions denoted by Al, A2, A3, it is proven in [9] th@t,q;v,q) is
equivalent to theZ*(Q)?*! norm onW x V (d = 2 or 3). These technical assumptions are
made in [9] in order to guarantee tfiE —regularity of the solutions of the elliptic problems
considered. We reported them here for completeness and remark that convex polygons and
polyhedra satisfy these assumptions (see [9] for a more detailed discussion).
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AsSSUMPTIONAL:  is a bounded, open, connected domainff. Its boundaryl’
consists of a finite number of disjoint, simple, closed curves (surfdges$)=0,...,L; Ty
is the outer boundary which fat = 2 is piecewiseC!:! with no reentrant corners and for
d = 3 is C*! or a convex polyhedron.

ASSUMPTION A2: the boundary is divided into Dirichlet and Neumann parts:
I' = I'pUTIy such thatl;; C I'p fori € D andI; C I'y fori € N with
DUN = {1,...,L}. Ford = 2, Ty is divided into a finite number of connected
pieces:Ty = UM Ty, suchthatly; C I'p fori € Dy andTy; C I'y fori € Ny. For
d =3, eitherl’y CTporTy CI'y.

AsSUMPTIONAS: The matrix4 is C! and ford = 2 n” An, < 0 at each corner
x € I'y that separatd’p andI'n, wheren_ andn, are the outward unit normal vectors to
Iy atx.

THEOREM 2.1. Letb(u,p;v,q) = (u,V)g1() + (P,q) 1 (0) be the bilinear form
associated with thér (Q2)?*! norm.

If the assumptions A0-A3 of [9] are verified, then there exist positive constaarisl 5
such that

ab(v,q;v,q) < a(v,q;v,q) V(v,q) € WXV,
and
a(u,p;v,q) < Bb(u, p;u,p)/?b(v,q;v,q)"/?,

Y(u,p), (v,q) € W x V.

Because of the equivalencedff, -) andb(-, -), from now on we will concentrate on the
variational problem (2.9) associated with the augmented system (2.3).

We introduce a triangulation, of 2 and associated finite element subspa¥é$ x
Vh c W x V. We suppose that the domdinis first triangulated by a coarse finite element
triangulationry consisting ofV subdomain$; of diameterH . The fine triangulationy, is a
refinement of . For simplicity, we suppose that each subdomain is the image under an affine
map of a reference cube. In the general case of curved elements and non-constant matrix
the boundary condition, (A='u) = 0 onT'p cannot be satisfied on the whole boundary
I'p. If this condition is enforced only at the nodeslon, we obtain a nonconforming method
with W" ¢ W; see Pehlivanov and Carey [17] for a discussion of this approach. In this
paper, we confine ourselves to the conforming case, which is obtained for example by using
affine elements and a constant matix

We then obtain a finite element discretization of (2.9):

Find (up, pr) € W x V" such that

(2.10) a(Wh, Ph; Vi, qn) = F(Va, an) V(Vh,qn) € W' x VI
For simplicity, we consider continuous piecewise linear finite elements:

Wt = {v e ') :vi|r € P(T), VT € 1,,v € W} = Wt x Wt x Wk,

Vh={qe Q) :q|lx € P(K), VK € 1,q €V},

and the subscript for discrete functions will be dropped in the rest of the paper.
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Error estimates and results on the conditioning of the resulting stiffness matrix can be
found in [7] (in [18] for the caseX = 0).

By choosing a basis iW" andV},, the discrete problem (2.10) is turned into a linear
system of equationlz = b. We are going to solve such system iteratively by using domain
decomposition techniques.

3. Domain Decomposition Algorithms. We will introduce and analyze our domain
decomposition algorithms in the Schwarz framework, which has been very successful for
standard Galerkin finite elements; see [13], [14], [15], [11], [19]. We illustrate the main
ideas on algorithms which are representative of the main classes of domain decomposition
(additive, multiplicative, overlapping, iterative substructuring). The same analysis can be
applied to the many other algorithms which have been proposed and analyzed for the standard
scalar case.

We recall that the domaift is the union of N subdomainsg;, affine images of a refer-
ence cube, which form a coarse finite element triangulatipnf Q2. A fine triangulationr;,
is obtained as a refinementaf.

3.1. Overlapping Additive Schwarz Methods. Each subdomaifi; is extended to a
larger subdomaif}, consisting of all elements of, within a distance) from Q; (0 < § <
H).

Each scalar component of our finite element spae x V" is decomposed as in the
standard scalar case:

N N N N
w=yowlhoo wh=yowlho wh=3wh o vi=3ovh
i=1 i=1 i=1 =1

where

Wi = {u €W/ :supportu) C Q}}, k=1,2,3,

Vil = {u € V" : supportu) c Q}}.

For each scalar component, a global coarse finite element space is associated with the coarse
triangulationrg:

Wi =W ={ue W} uistrilinear on each subdomai}, & =1,2,3,

Vi =VH = {pe V" pistrilinear on each subdomatiy}.
A first additive method is defined by the following decomposition of the discrete space,
which maintains the local and coarse coupling between the different scalar components:
N
Whx VE =3 "W} x V.
=0
The local spaces are
Wi V=W x W x Wi x VP i=1,2,--- N,
and the coarse space is

Wi x Vg = WH x VE =W x Wi x Wil x V.
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We define the local projection operatd?s: W" x V — Wh x VI by
a(P;(u,p);v,q) = a(u,p;v,q) Y(v,q) € W} x V],

and the coarse projection operafeyr: W x Vi — WE x Vi by
a(Py(u,p);v,q) = a(u,p;v,q) V(v,q) € Wg x V"

Itis easy to see that the matrix form of the local projectiongis- RT A; ' R; A, where

_ 1 if e, € Q;
Ri(er) = { 0 otherwise

are the restriction matrices selecting only the unknown§/jrfor each component and
A; = R;ARY are the stiffness matrices of local Dirichlet problems. AnalogouRly—
RL AL Ry A, whereRY, is the standard piecewise linear interpolation matrix from the coarse
grid 7 to the fine gridry,, for each component, andly = Ry ARZ is the coarse grid dis-
cretization of our problem (2.9). Let

N
Pagar = »_ Pi.
i—0

The original discrete problem is then equivalent to the preconditioned problem

Poaa1(w,p) = gadar,

whereg = Ef;o P;(u,p) ; see Chan and Mathew [11] or Smith, Bjgrstad and Gropp [19].
In matrix form, this problem can be written A6—1 Az = M —!b, where the preconditioner is
M~' =N RTAT'R; + RL AL Ryr. An optimal convergence bound for this algorithm
is given in Theorem 3.1.

A second additive method is obtained by dropping the coupling between the different
scalar components af andp. Uncoupled local spaces are now defined by

W{Lz = Wlhz x {0} x {0} x {0},
Wgz = {0} x W2hz x {0} x {0},

Wgz = {0} x {0} x W?sz x {0},

Vi = {0} x {0} x {0} x V1,
and the coarse spaces by

Wi =W, =Wy x {0} x {0} x {0},
ng = Wg,o = {0} x th,o x {0} x {0},

Wi =W ={0} x {0} x W, x {0},
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VH = vl ={0} x {0} x {0} x V.
We then have the following decomposition

N N N
hx vh = ZW A WE Y WE L+ VI W+ W+ Wi+ v

i=1 i=1 i=1

3 N N

=> > Wi+ > VI

=1 i=0 =0

As before, we define projectiod ; : W" x V" — W k=1,2,3,i=0,1,---,N and
Py WhxVh 5V i=0,1,---, N, and the additive operator

Podaz = ZZPk2+ZP4z

k=1 i=0

We note that this algorithm can equivalently be deflned by the same choice of subspaces as for
P, 441 but using the bilinear form(-, -) (introduced in Theorem 2.1) instead aff, -) in the
definition of the projections. In fact this uncoupled preconditioner corresponds to applying
four identical copies of a scalar preconditioner to each scalar component. An optimal bound
holds also for this algorithm.

THEOREM 3.1. There exists a positive constaritindependent of, H andé such that

cond(P) < C(1 + %),

whereP = P,qq1 Or P = P4 .

Proof. An upper bound on the spectrum Bfis standard, since each point@fbelongs
to a fixed number of extended subdomains independekit@r example, fov < H/2 each
point belongs to at most four (in 2D) or eight (in 3D) extended subdomains). A lower bound
is obtained by classical Schwarz analysis.

For P = P,441, Since we use exact projections, the lower bound is equivalent to the
following partition property (see Dryja and Widlund [15] or Chan and Mathew [11]):

There exists a constait, such thatv(u,p) € W" x V" there exists a decomposition
(u,p) = XN (s, pi), with (u;, p;) € W x V}» such that
N
Z a(ui,pi; ui,pi) S Cga(uap; u,p).
=0
By the equivalence of Theorem 2.1, this inequality is equivalent to
N
Z |(uiapi)|%H1)d+1 < Cg|(uap)|%H1)d+la
i=0
which is a direct consequence of the scalar result proven by Dryja and Widlund [15]:
N N
Z |u§|%11 < C(ﬂukﬁlla Z |pi|ill < Cg|p|iﬂv
j—= i=0
with C3 = C(1 + ).

For P = P,442, Since the subspaces are the same but we use inexact projections defined
by b(-,-) instead ofa(-,-), we need only to show that there exists a constastich that
a(u,p;u,p) < wb(u,p;u,p) VY(u,p) € Wh x VA i =0,1,---,N (see Dryja and
Widlund [14]). This follows immediately from the equivalenceacéndb. O
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3.2. Overlapping Multiplicative Schwarz Methods. By using the same coupled local
and coarse spaces as in the additive algorithgy;, we can define a multiplicative operator:

Pmult :I_(I_PN)(I_P1)(I—P0)
The multiplicative algorithm consists in solving the nonsymmetric system

Pmult (u,p) = Bmult

by an iterative method such as GMRES.
We can also define a symmetrized multiplicative operator

Pouts=IT—(I—-PFy)---(I—Pnx_1)I—Pn)I—Pn_1) - (I—-P)
and a symmetrized algorithm, consisting in solving the symmetric system

-Pmults (u,p) = Bmults

by an iterative method like CG. We have chosen to accelerate this multiplicative version by
GMRES or CG because this approach has been proven more efficient and robust than the clas-
sical multiplicative Schwarz algorithm; see Cai, Gropp and Keyes [6]. For the symmetrized
operator, we have the following optimal bound.

THEOREM 3.2. There exists a positive constatiindependent of, H andé such that

H
cond(Ppuis) < C(1+ F)

The proof is again based on the extension of the scalar result (see Chan and Mathew [11],
Smith, Bjgrstad and Gropp [19] or the more specific reference Bramble, Pasciak, Wang and
Xu [5]) by using the equivalence of Theorem 2.1. Analogously, multiplicative versions of
P, 442 could be built using uncoupled local and coarse spaces.

3.3. An lterative Substructuring Method. For a complete and detailed analysis of
this class of methods, we refer to Dryja, Smith and Widlund [13]. Here we only consider
a simple representative of this class, namely the analog of Algorithm 6.2 in [13], which is
vertex-based and has a standard coarse space. For simplicity, we only consider the uncoupled
additive version.

The standard first step of nonoverlapping methods is the elimination of the variables
interior to each subdomain (at least implicitly). We then work with the Schur complement
S = Kpp — Kl K, ;' K of the stiffness matrix

K= K;r Kip
Kig Kpp )’

The reduced linear system withinvolves only variables on the interfate= U9Q); \ I'p.
When solving with a preconditioned iterative method, we only need the acti®oof given
vector and there is no need to explicitly assenthle

In the Schwarz framework, working with corresponds to working with the discrete
harmonic subspac®&" x V" of the original spac@" x V", Local spaces are associated
with the geometric objects (facé$, edges; and vertices;) forming the interfacé’. Each
scalar space is decomposed as

Wl? :ZWI?,FZ' _+_2:VT/I?,EZ +ZW]£L,W7 k= 172,37

F; FE; Vi
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and
VE=NVEAY Ve 4 VR
Fi Ei Vi

Here, for exampIeW,ZFi = {u € Wh:u=0 on ) — F; n}, wherel',, and F; , are

the set of nodes oh and F; respectively. The other spaces are defined analogously. As for
the overlapping case, we then embed these scalar spaces in our produdMpacg”: for
example,VVfFi = VT/{LF x {0} x {0} x {0} . As a coarse space, we consider the discrete
harmonic subspace of the same coarse space us&fgr, i.e. WH + W + WH 4 VH

We obtain the following decomposition

3

W V=33 Wip +> Wip +> Wi, + W)
k=1 F; B v

F; E; vi

By defining as before projection operators into the subspaces, we form the additive operator

4
P, = Z(Z Py r + ZPkE + Z Py v; + Pro),
k=1 Vi

F; E;

where again fok = 4 the projections are into th@? spaces.
THEOREM 3.3. There exists a positive constaiitindependent of and H such that

cond(P;s) < C(1 + log(H/h))>.

As before, the proof is based on the extension of the scalar result (see Dryja, Smith and
Widlund [13], Theorem 6.2) by using the equivalence of Theorem 2.1.

4. Numerical Results. In this section, we report the results of numerical experiments
which confirm the optimal convergence bounds obtained in the previous sections. We also
compare the same domain decomposition methods applied to least squares discretizations and
to standard Galerkin discretization of (2.1) with piecewise linear finite elements. We have
run numerical experiments for symmetric positive definite problems, for which the domain
decomposition theory is completely understood. More general nonsymmetric or indefinite
problems, for which the domain decomposition theory is still undergoing important develop-
ments, will be the subject of future studies.

All the results have been obtained with Matlab 4.2 running on Sun Sparcstations. The
model problem considered is the standard Poisson equation (A=I, X=0) on the unit square,
withp = 0onl'p = 0Q andy,u = 0on9Q (i.e. u; = 0on{y = 0} and{y = 1};
uz = 0on{z = 0} and{z = 1}). The right-hand sid¢ is chosen such that we have
p(z,y) = sin(wz)sin(ry) as exact solution. The regidhis decomposed into a regular grid
of N square subdomains, witN' varying from2 x 2 to 8 x 8. The fine grid mesh sizé
varies froml/32to 1/128.

The Krylov method used for all the symmetric problems is PCG, while we use GMRES
for the nonsymmetric problem witR,,,.,;;. The initial guess is always zero and the stopping
criterion is||r||2/||rol]2 < 107, wherer,, is the residual at step.

The local and coarse problems involved in the application of the preconditioners are
always solved directly. For each method, we report the number of iterations and the Lanczos-
based estimates of the condition number and the extreme eigenvalues (except for the multi-
plicative algorithm, where we report the average convergence factor instead).
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TABLE 4.1
P, 441 Overlapping Additive Schwarz with fixed overlap size h.

N ht|iter. cond(Puga1) Amaz Amin

4 32 16 11.2172 4.0048 0.357
9 48 19 12.1787 4.0068 0.329
16 64 20 11.9775 4.0050 0.334
25 80 20 11.1689 4.0052 0.358
36 96 21 12.5450 4.0044 0.319
49 112 20 11.9944 4.0050 0.333
64 128| 21 12.5500 4.0047 0.319

R ONO WOO

TABLE 4.2
P,qq1: Overlapping Additive Schwarz with fixed number of subdomains 64.

d h7t |iter. cond(Pua1)  Amaz Amin

h 128 | 21 12.5500 4.0047 0.3191
2h 128 | 17 7.1316 4.0307 0.5651
3h 128 | 16 5.5769 4.0765 0.7309
4h 128 | 15 4.9540 4.1396 0.835p
5h 128 | 15 4.6460 4.2170 0.907p
6h 128 | 15 45125 4.3054 0.9541
7h 128 | 16 4.5859 4.4018 0.9598

4.1. Overlapping additive methods. We have first studied the coupled methBg; 41
with fixed minimal overlap sizé = h. The mesh sizé is decreased while the number of
subdomainsV is increased proportionally, so that the subdomain Hizk = 16 is kept con-
stant @ = 1/+/N). The results are reported in Table 4.1 and clearly show a constant bound
for the condition numbefond(P,441) = Amaz/Amin, fOr problem sizes from3007(N = 4)
t0 48895(N = 64).

In Table 4.2, we fix the mesh sizé = 1/128) and the decompositiolV = 64),
and we vary the overlap sizefrom h to 7h. As in the scalar case, the condition number
cond(P,441) IMproves a9 increases, because bf,;,, being closer to unity. For large over-
lap, the improvement becomes negligible or negative, because of to the graolth.of

The same sets of results for the uncoupled methgg- are reported in Table 4.3 and
Table 4.4, respectively. Again, the tables clearly show a constant bound on the condition num-
bercond(P,442), Which improves as the overlap increases. For this simple model problem,
the uncoupled method is only slightly worse than the coupled one, in terms of iteration count
(some condition number are almost the same or even bettdt,fgs). We point out that
althoughA = I, eliminating diffusive coupling between the flux components, there is still
coupling between the flux variables ando the strong performanceBf ;42 is encouraging.

4.2. Overlapping multiplicative methods. In Table 4.5, we compare the multiplica-
tive methodP,,.;; accelerated with GMRES and the symmetrized multiplicative method
P,,.i+s accelerated with CG. We consider the two methods with minimal overlap and con-
stant subdomain size. Sinég,,,;; is nonsymmetric, we report the average convergence factor
p = (ri/ro)"/* instead of the condition number. For both methods, the number of iterations
is clearly bounded by a constant. Even if the symmetrized version is approximately twice
as expensive as the standard one, the number of iterations is almost the same for the two
methods. Therefore, the symmetrized version is less efficient on this simple problem.
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TABLE 4.3
P, 442 : Overlapping Additive Schwarz with fixed overlap size h.

N ht |iter. cond(Piga2) Amas Amin

4 32 17 10.3521 4.0050 0.386
9 48 20 12.6290 4.0051 0.317
16 64 20 11.9811 4.0051 0.334
25 80 21 11.3821 4.0052 0.351
36 96 21 12.5458 4.0043 0.319
49 112 20 11.9997 4.0052 0.333
64 128 21 12.5261 4.0047 0.319

SIS I =N S =ee

TABLE 4.4
P, 442 : Overlapping Additive Schwarz with fixed number of subdomains 64.

§ h7! [ iter. cond(Puga2) Amaz Amin
h 128 | 21 12.5261 4.0047 0.3197
2h 128 | 17 7.1206 4.0315 0.5661
3h 128 16 5.5513 4.0777 0.734p
4h 128 | 16 5.3850 41442 0.769b5
5h 128 | 16 5.4545 4.2233 0.774p
6h 128 | 16 5.5306 4.3158 0.7808
7h 128 | 16 5.6176 4.4297 0.788p

4.3. lterative substructuring. Table 4.6 shows the results for the iterative substructur-
ing methodsP;; with fixed subdomain sizél/h = 16. The condition numbers and iteration
counts have a less smooth behavior compared to overlapping methods, but they still show a
constant bound. The smaller dimension of the reduced Schur complement being solved here
accounts for the smaller condition numbers and iteration counts.

4.4, Comparison with the standard Galerkin formulation. In this subsection, we
provide a comparison of the least squares results with the standard Galerkin formulation of
the same model problem, using piecewise linear finite elements for the original variable
More complete results for domain decomposition methods for standard Galerkin formulations
of elliptic problems in the plane can be found in Cai, Gropp and Keyes [6]. We start with
the overlapping additive Schwarz methBg;;, which corresponds t&, 441 or P,44> (there
is only one version in the scalar case). Tables 4.7 and 4.8 report the results which should
be compared with the least squares results of Tables 4.1 and 4.2. Besides the well-known
optimality of the method, we remark that for this simple model problem, the least squares
condition numbers are almost the same as (and the iterations count only slightly worse than)
the corresponding results for standard Galerkin, in spite of the much larger size of the least
squares system (roughly three times larger in the plane). This fact is very encouraging for
the least squares approach with these domain decomposition preconditioners, since a much
larger system with both the original and the flux variables can be solved in almost the same
number of iterations.

The situation is analogous for multiplicative methods. The results for both the nonsym-
metric and symmetrized multiplicative version reported in Table 4.9 are almost the same as
the results in Table 4.5. Again, the much larger least squares system requires the same number
of iterations as (or just one more than) the standard Galerkin system.

On the other hand, for the substructuring mettiggd the results reported in Table 4.10
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TABLE 4.5
Ppyuie and Py, Overlapping Multiplicative Schwarz with fixed overlap size- h.

multiplicative (GMRES) symmetrized multiplicative (CG)

N bt |iter. p=(ri/ro)/" | iter. cond(Puuts) Amas Amin

4 32 8 0.1847 7 1.8576 0.9994 0.5379
9 48 7 0.1433 6 1.7398 0.9999 0.5749
16 64 6 0.1233 6 1.7600 0.9999 0.5681
25 80 6 0.1102 6 1.6810 0.9999 0.5948
36 96 6 0.1021 6 1.6940 0.9999 0.5902
49 112 6 0.0952 6 1.6661 0.9999 0.6001
64 128 5 0.0849 6 1.7308 0.9999 0.6079

TABLE 4.6

P;s: Iterative Substructuring .

N ht |iter. cond(Pis) Amaz Amin

4 32 9 3.4035 1.5691 0.461
9 48 17 7.8812 1.8497 0.234
16 64 18 7.8543 1.7962 0.228
25 80 18 8.5822 1.8864 0.219
36 96 19 9.4115 1.8511 0.196
49 112 18 8.6646 1.8939 0.218
64 128| 19 9.6532 1.8617 0.192

O OTOo 00 NNO

show a considerable difference between the two discretizations. The condition numbers and
iteration counts of the standard Galerkin system are about one half the corresponding ones
for the least squares system.

Even if more results for more realistic problems are needed in order to better compare
domain decomposition methods for the two discretizations, this initial comparison seems to
indicate that overlapping methods are very efficient for least squares discretizations, particu-
larly in their multiplicative form.
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TABLE 4.7
Standard Galerkin: Overlapping Additive Schwarz with fixed overlap&izeh.

N ht |iter. cond(Pugd) Amaz Amin

4 32 11 9.9403 4.0048 0.402
9 48 15 12.6274 4.0025 0.317
16 64 16 12.1403 4.0051 0.329
25 80 18 12.8580 4.0038 0.311
36 96 18 12.6448 4.0051 0.316
49 112 18 12.7554 4.0044 0.313
64 128| 17 12.6752 4.0044 0.315

OO NPh, OO

TABLE 4.8
Standard Galerkin: Overlapping Additive Schwarz with fixed number of subdorivainss4.

§ h7t |iter. cond(Puad) Amaz Amin

h 128 | 17 12.6752 4.0044 0.315
2h 128 | 15 7.4472 4.0301 0.541
3h 128 | 13 5.8085 4.0757 0.701
4h 128 | 13 5.1185 4.1408 0.809
5h 128 | 13 4.8248 4.2320 0.877
6h 128 | 13 4.7267 4.3393 0.918
7h 128 | 13 4.7085 4.4452 0.944
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TABLE 4.9
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