BOUNDS FOR THE MINIMUM EIGENVALUE OF A SYMMETRIC TOEPLITZ MATRIX*

HEINRICH VOSS ${ }^{\dagger}$

Abstract

In a recent paper Melman [12] derived upper bounds for the smallest eigenvalue of a real symmetric Toeplitz matrix in terms of the smallest roots of rational and polynomial approximations of the secular equation $f(\lambda)=0$, the best of which being constructed by the $(1,2)$-Pade approximation of f. In this paper we prove that this bound is the smallest eigenvalue of the projection of the given eigenvalue problem onto a Krylov space of T_{n}^{-1} of dimension 3. This interpretation of the bound suggests enhanced bounds of increasing accuracy. They can be substantially improved further by exploiting symmetry properties of the principal eigenvector of T_{n}.

Key words. Toeplitz matrix, eigenvalue problem, symmetry.

AMS subject classifications. 65 F 15 .

[^0]
[^0]: *Received November 19, 1998. Accepted for publication May 12, 1999. Communicated by L. Reichel.
 \dagger Technical University Hamburg-Harburg, Section of Mathematics, D-21071 Hamburg, Federal Republic of Germany, voss @ tu-harburg.de

