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DISCRETE WAVELET TRANSFORMS ACCELERATED SPARSE
PRECONDITIONERS FOR DENSE BOUNDARY ELEMENT SYSTEMS ∗

KE CHEN †

Abstract. We consider a construction of efficient preconditioners, using discrete and fast wavelet transforms,
for dense and unsymmetric linear systems that arise from boundary elements. The wavelet compression property
combined with operator splitting result in much improved preconditioners, in terms of both eigenspectra clustering
and inverse approximations, taking the form of band matrices with wrap-around boundaries. With our new non-
standard wavelet transform, the transformed matrix is permuted to band forms. It is shown that, to have band
matrices, one has to use a smaller number of wavelet levels. Numerical experiments using the iterative methods of
conjugate gradients based on the normal equations (CGN) and generalised minimal residuals (GMRES) are reported.
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1. Introduction. For the numerical solution of boundary value problems modelled by
partial differential equations, the usual choice of solution methods are between the finite ele-
ment method and the finite difference method. These methods are of domain type because the
entire domain must be discretized. An efficient alternative, the boundary type, is the boundary
element method (BEM) where only the boundary of the domain is needed for discretization.
Therefore the dimension of the problem is reduced by one. See [5, 6, 9] and the references
therein.

However, in contrast to domain type methods where sparse stiffness matrices are gener-
ated, the boundary element method produces a full coefficient matrix. Hence iterative solvers
are usually used; see [5, 12] and the references therein. As far as the generation of the co-
efficient matrix is concerned, the process is highly parallelizable. Recently we found that
parallel direct methods based on a flexible elimination technique appear to be quite efficient;
see [24, 13].

This paper considers the construction of efficient sparse preconditioners for the BEM
using fast wavelet transforms. We employ the preconditioned conjugate gradient type iterative
solvers. The preconditioners we propose are generally applicable and can be easily combined
with existing BEM software. Related work can be found in [4, 7, 8].

It should be remarked that there is other related and recent work treating the full bound-
ary element matrix. This work falls into two categories: (i) The panel clustering technique of
[21] and the multipole method of [20]. In this case, the objective is to calculate matrix-vector
multiplications in less thanO(n2) operations, wheren is the dimension of the coefficient
matrix. The idea is to view matrix-vector multiplications as an approximation to an integral
and seek alternative and faster ways to compute this integral by exploiting different expan-
sion properties of the integrand function in ‘near’ and ‘far’ fields. This method assumes that
a kernel function is smooth away from the collocation point and is thus not suitable for oscil-
latory kernels. (ii) The wavelet method as [7] and [17]. In this case the objective is to obtain a
nearly sparse coefficient matrix instead of a full matrix. In fact one only computes and stores
a sparse matrix. This can be achieved by replacing the usual piecewise polynomial basis by a
wavelet basis. The main difficulty with this method lies in constructing useful and applicable
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wavelets. Practically, to avoid the calculation (and storage) of small entries, the method is
somewhat problem dependent (e.g. on forms of kernels as with (i)).

As far as preconditioning is concerned, both categories of methods cannot employ more
general (efficient) preconditioners. In the first category, it is possible to use operator-splitting-
based preconditioners because all near field entries (band form) are available. In the second
category, apart from a diagonal scaling, it is not obvious what other preconditioners can be
implemented. Also because the compressed sparse matrix possesses an unusual ‘finger’-like
pattern, solving the associated linear system by direct sparse solvers can result in many fill-ins
and is therefore not practical. We believe our present work (on new non-standard wavelets)
offers a way to construct possible band preconditioners for iterative methods.

We concentrate on design of new preconditioners for the traditional BEM. The robust-
ness and strength of our algorithms comes from the fact that they can effectively deal not only
with singular BIE’s but also singular operator equations with perturbations of an oscillatory
nature where compressions-and-expansions-based methods cannot deal effectively. The work
presented here, both on permuting wavelet matrices into near band matrices and on acceler-
ating operator splitting type preconditioners, appear to be new. Some numerical experiments
illustrating the results will be shown.

To proceed, denote ann× n dense linear system by

Ax = b.(1.1)

HereA is usually unsymmetric from boundary elements using the collocation approach or
the Nystrom quadrature method. Our work may be extended to Galerkin methods, but such
methods are practically more expensive to implement and less often used. Refer to [5, 9, 11,
12] and the references therein.

2. Sparse preconditioners.As is known, ifA arises from a discretization of integral
equations with compact operators, the eigenspectrum ofA affects the performance of the
iterative methods. For the conjugate gradients based on the normal equations, the eigenspec-
trum of bothA andA>A are clustered thus leading to fast convergence; this may not be true
for matrices form other applications such as from discretizing partial differential equations
directly.

For integral equations with non-compact operators, we proposed in [12] operator-
splitting-based matrix preconditioners, which have corresponding operator counterparts such
that the preconditioned matrix as well as the preconditioned operator and their normals have
clustered eigenvalues (as in the case of compact operators). Therefore iterative solvers such
as conjugate gradients applied to the normal equation (CGN) and to the generalized minimal
residuals method (GMRES) will be efficient for the preconditioned systems.

More precisely, for equation (1.1), we have considered the following splitting ofA, and
the associated preconditioned system

A = D + C, and (I +D−1C)x = D−1b,(2.1)

whereM−1 = D−1 is the preconditioner. HereD is a simple band matrix (with wrap-round
boundaries), For the case of bandµ = 3, the matrix is simply

D =


A1,1 A1,2 A1,n

A2,1 A2,2 A2,3

A3,2
...

...
...

... An−1,n

An,1 An,n−1 An,n

 .
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This kind of choice forM−1 is for regularization of a usually singular boundary integral
operator. Clearly with the above choice ofµ = 3 , M−1 will not approximateA−1 well. It
has been found that, to further improve the above preconditioner, increasing the band-widthµ
alone is not sufficient as the improvements are only marginal. In fact, improved results were
observed in [12] by reducingµ to 2.

Here we shall discuss a way of combining operator splitting with the discrete wavelet
transforms to derive a new and improved preconditioner. In terms of operator splitting, our
new preconditionerM−1 will be effectively the inverse of a nearly full matrix̃D. Therefore
M−1 will approximateA−1 better, iterative methods will work better, and more importantly
discrete wavelet transforms ensure a fast implementation.

3. The standard discrete wavelet transforms.We first consider the use of standard
discrete wavelet transforms (DWT’s), based on Daubechies’ compactly supported orthogonal
wavelets, for matrixA in (1.1). Refer to [7, 22, 25, 26, 29].

Recall that wavelets form a basis ofL2. That is, given a functionf , it can be written as
an infinite linear combination of the wavelets and the wavelet coefficients uniquely determine
the function although most coefficients may be small and nearly zero.

For a given vectors, from vector spaceRn, one may construct an infinite periodic se-
quence of periodn and use it as coefficients of a scaling functionfL(x) in some fixed sub-
spaceVL of L2 whereL is an integer. As these subspaces ofL2 form a multiresolution
analysis, for example orthogonal partition of subspaces

VL = Vr
⊕

Wr

⊕
Wr+1

⊕
· · ·
⊕

WL−1,(3.1)

then in the equivalent space (partition)fL(x) has a new representation whose coefficients
may be viewed as a new vectorw mapped froms by wavelets. This is the starting point of a
discrete wavelet transform. See [8, 29, 30].

The above transformW : s 7→ w (i.e. w = Ws) is implemented by the well known
pyramidal algorithm. To discuss it briefly and specify the matrix structure ofW , letm be the
order of compactly supported wavelets withm lowpass filter coefficientsc0, c1, · · · , cm−1

andm/2 vanishing moments. Assumen = 2L andr is an integer such that2r < m and
2r+1 ≥ m. Noter = 0 for m = 2 (Haar wavelets) andr = 1 for m = 4 (Daubechies order
4 wavelets); see [8, 26, 29]. Denote bys = s(L) a column vector ofA at the wavelet levelL.
Then the standard pyramidal algorithm transforms the vectors(L) to

w =
[
(s(r))> (f (r))> (f (r+1))> · · · (f (L−1))>

]>
in a level by level manner, that is,

s(L) →
↘

s(L−1) →
↘

f (L−1)

s(L−2) →
↘

f (L−2)

· · · →
↘

· · ·

s(ν) →
↘

f (ν)

· · · →
↘

· · ·

s(r)

f (r)

where the vectorss(ν) andf (ν) are of length2ν . Notice that the sum of these lengths is
n = 2L since

2L = 2r + 2r + 2r+1 + 2r+2 + · · ·+ 2L−1.

SupposeΦm(x) denotes the wavelet function. Then we expect the new vectorw to be nearly
sparse because the usual function moment conditions∫ ∞

−∞
Φm(x)xpdx = 0 for p = 0, 1, · · · ,m/2− 1
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are equivalent to vector moment conditions

m−1∑
k=0

(−1)kkpck = 0 for p = 0, 1, · · · ,m/2− 1.

Here the largerm is, the better is the compression inw is, but the compact support is larger
as well.

At a typical levelν, s(ν) andf (ν) are collections of scaling and wavelet coefficients
respectively. In matrix form,w expressed as

w = Pr+1Wr+1 · · ·PL−1WL−1PLWLs
(L) ≡ Ws(L),(3.2)

where

Pν =
(
P ν

Jν

)
n×n

with P ν a permutation matrix of size2ν = 2L− kν = n− kν , that is,P ν = I(1, 3, · · · , 2ν −
1, 2, 4, · · · , 2ν), and where

Wν =
(
W ν

Jν

)
n×n

with W ν an orthogonal (sparse) matrix of size2ν = 2L − kν = n− kν andJν is an identity
matrix of sizekν . HerekL = 0 andkµ = kµ+1 + 2µ for µ = L− 1, · · · , r + 1.
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FIG. 3.1.Ã after thresholding with TOL=10−4, LEV = 8 andn = 256

The one level transformation matrixW ν is a compact quasi-diagonal block matrix. For
example, with the Daubechies’ orderm = 4 wavelets withm/2 = 2 vanishing moments, it
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FIG. 3.2.ŴAŴ> = P (WAW>)P> with TOL=10−4, LEV = 8 andn = 256

is

W ν =



c0 c1 c2 c3
d0 d1 d2 d3

c0 c1 c2 c3
d0 d1 d2 d3

...
...

...
...

...
...

...
...

c0 c1 c2 c3
d0 d1 d2 d3

c2 c3 c0 c1
d2 d3 d0 d1


,

where the filtering coefficients{ci, di} are known to bec0 = (1 +
√

3)/(4
√

2), c1 = (3 +√
3)/(4

√
2), c2 = (3 −

√
3)/(4

√
2), c3 = (1 −

√
3)/(4

√
2) anddk = (−1)kcm−1−k as

usual.
Table 3.1 shows a typical example of applying a3-level pyramidal algorithm to a vector

s = a = s(4) of sizen = 2L = 24, where3 forms (1 for components,2 for vectors,3 for
matrices) of transform details are shown. Clearly local features ina are scattered inWa, that
is, the standard DWT is not centred. A full DWT step for matrixA, transforming column
and row vectors, respectively, will bẽA = WAW>. It is known thatÃ has a ‘finger’-like
sparsity pattern above some threshold. This is demonstrated in Fig.3.1 where one example
from [7, ex.1], whereA defined by

Aij =
{ 1

i−j , i 6= j,

0, i = j,
(3.3)

with n = 256 and with a threshold tolerance of10−4.
Let A be such a ‘finger’-like sparse matrix, truncated from̃A after some thresholding.

For such matrices, matrix-vector products can be formed very efficiently. That is to say, if
it is desirable to solveAu = z by some iterative methods without preconditioning, then as
far as certain applications are concerned we have obtained an efficient implementation. Here
u = Wx andz = Wb.
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TABLE 3.1
Standard DWT for a vectora of size16 (m = 4, L = 4, r = 1)

Form Lev 4 Lev 3 Lev 2
1 a1 × × × ×
2 a2 × 0 × 0
3 0 0 0 0 ×
4 0 0 0 0 ×
5 0 0 0 × ×
6 0 0 0 × 0
7 0 0 × × ×
8 1 0 0 0 × ×
9 0 0 × × ×
10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 × 0 0 0
16 0 × × × ×

2 s(4) W 4s
(4) s(3)

f (3)

W 3s
(3)

f (3)

s(2)

f (2)

f (3)

3 s(4) W4s
(4) P4W4s

(4) W3P4W4s
(4) P3W3P4W4s

(4)

However, approximately,A is spectrally equivalent to the original matrixA. Therefore,
as the original problem requires preconditioning, we need to preconditionAu = z. Indeed,
[28] reports that with GMRES, the number of iteration steps forÃu = z andAu = z are the
same.

Moreover, it is not an easy task to useA as a preconditioner because solving the linear
systemAu = z results in many fill-ins. We also note that such a ‘finger’-like matrix also
gives problems in designing approximate sparse inverses; see [10]. Below we consider a new
implementation of DWT’s avoiding the generation of such ‘finger’-like matrices.

4. A new non-standard DWT. To begin with, we re-consider how a DWT should ide-
ally deal with a local feature like that in the vectora shown in Table 3.1 before introducing
our proposed changes to the basic pyramidal algorithm. We first define a new one-level DWT
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TABLE 4.1
New DWT for a vectora of size16 (m = 4, L = 4, r = 1)

Form Lev 4 Lev 3 Lev 2
1 a1 × × × ×
2 a2 × × × ×
3 0 0 0 × ×
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 1 0 0 0 0 0
9 0 0 0 × ×
10 0 0 0 0 0
11 0 0 0 × ×
12 0 0 0 0 0
13 0 0 0 × ×
14 0 0 0 0 0
15 0 × × × ×
16 0 × × × ×

3 s(4) Ŵ4s
(4) Ŵ4s

(4) Ŵ3Ŵ4s
(4) Ŵ3Ŵ4s

(4)

matrix (similar toW ν in (3.2))

Ŵν =



c0 Ø c1 Ø c2 Ø · · · cm−1

Ø I Ø Ø Ø Ø · · · Ø
d0 Ø d1 Ø d2 Ø · · · dm−1

Ø Ø Ø I Ø Ø · · · Ø

c0 Ø
...

...

Ø I ...
...

...
...

...
... · · · · · · ...

...
...

...
c2 Ø · · · cm−1 c0 Ø c1 Ø
Ø Ø · · · Ø Ø I Ø Ø
d2 Ø · · · dm−1 d0 Ø d1 Ø
Ø Ø · · · Ø Ø Ø Ø I


n×n

.(4.1)

HereI is an identity matrix of size2(L−ν) − 1 andØ’s are block zero matrices. Forν = L,
bothI andØ are of size0 i.e. ŴL = WL = WL.

Further a new DWT (from (3.1)) for a vectors(L) ∈ Rn can be defined by

ŵ = Ŵs(L)

with

Ŵ = Ŵr+1Ŵr+2 · · · ŴL(4.2)

based on(L+ 1− r) levels. ForL = 4 andm = 4 (Daubechies’ wavelets forn = 2L = 16),
Table 4.1 shows details of a3-level transform usinĝW4 andŴ3. One may verify that, unlike
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Table 3.1, the very last column (ŵ) in Table 4.1 would possess a locally centered sparse
structure depending only on the number of wavelet levels and not on sizen.

For a matrixAn×n, the new DWT would give

Â = ŴAŴ>.

Now to relateÂ to Ã from a standard DWT, or rather̂W to W , we define a permutation
matrix

P = P>L P
>
L−1 · · ·P>r+2P

>
r+1,(4.3)

where matricesPk ’s come from (3.2). Firstly, by induction, we can prove the following

Ŵk =

(
L−k∏
`=1

Pk+`

)>
Wk

(
L−k∏
`=1

Pk+`

)
for k = r + 1, r + 2, · · · , L,

that is,

ŴL = WL,

ŴL−1 = P>LWL−1PL,

...

Ŵr+1 = P>L P
>
L−1 · · ·P>r+2Wr+1Pr+2 · · ·PL−1PL.

Secondly, we can verify that

PW =
(
P>L P

>
L−1 · · ·P>r+1

)
(Pr+1Wr+1 · · ·PLWL)

= Ŵr+1

(
P>L P

>
L−1 · · ·P>r+2

)
(Pr+2Wr+2 · · ·PLWL)

...

= Ŵr+1Ŵr+2 · · · ŴL−2P
>
LWL−1 (PLWL)

= Ŵr+1Ŵr+2 · · · ŴL

= Ŵ .

Consequently from̂W = PW , Â = PÃP>.
The practical implication of these relations is that the new DWT can be implemented in

a level by level manner, either directly usinĝWν ’s (via Ŵ ) or indirectly usingPν ’s (via P )
after a standard DWT, and we obtain the same result.

To illustrate the new DWT, we used it to compress the matrixA shown in Fig.3.1 and the
transformed matrix, which has an essentially band-like pattern, is shown in Fig.3.2. Clearly
such a pattern may be used more advantageously than a finger-like one (for example, in the
applications of [10]).

As far as preconditioning is concerned, to solve (1.1), we propose the following:
Algorithm 4.1.
1. Apply a DWT toAx = b to obtainÂu = z;
2. Select a suitable band formM of Â;
3. UseM−1 as a preconditioner to solvêAu = z iteratively.

Here the band size ofM determines the cost of a preconditioning step. If this size is too
small, the preconditioner may not be effective. If the size is so large (say nearlyn−1) that the
preconditioner approximateŝA−1 very accurately, then one may expect that 1 or 2 iterations
are sufficient for convergence but each iteration is too expensive. Therefore, we shall next
examine the possibility of constructing an effective preconditioner based on a relatively small
band.



ETNA
Kent State University 
etna@mcs.kent.edu

146 New wavelet sparse preconditioners

5. Band matrices under the new DWT. To discuss combining the new DWT with the
operator splitting ideas in next section, we first consider the process of transforming a band
matrix. LetLEV denote the actual number of wavelet levels used (1 ≤ LEV ≤ (L+1−r)).
Mainly we try to address this question: under what conditions does the new DWT transform
a band matrixA into another band matrix̂A (instead of a general sparse matrix)? Here,
by a band matrix, we mean a usual band matrix with wrap-round boundaries. The correct
condition turns out to be thatLEV should be chosen to be less than(L + 1 − r). This will
be stated more precisely in Theorem 5.3.

To motivate the problem, we show in Figs. 3 and 4 respectively the DWT of a diagonal
matrix usingLEV = 5. Here withm = 4 (sor = 1) andL = 8, a band structure in̂A is
achieved by not using the maximum levelLEV = L−r+1 = 8. For a given band matrixA,
to establish the exact band width for the transformed matrixÂ under the new DWT, we need
to view the one-step transformation matrix̂Wν as a band matrix. For ease of presentation, we
first introduce some definitions and a lemma before establishing the main theorem.

Definition 5.1 (Band(α, β, k)). A block band matrixAn×n, with wrap-round boundaries
and blocks of sizek×k, is called aBand(α, β, k) if its lower block band width isα and upper
block band widthβ (both including but not counting the main block diagonal).

Note that whenk = 1, we writeBand(α, β, 1) = Band(α, β).
Definition 5.2 (Band(α, β, k, τ)).

A Band(α, β, k) matrixAn×n is calledBand(α, β, k, τ) if eachk × k block has a total band
width of2∗k−1−2∗τ , that is, if there areτ bands of zeros at both ends of the anti-diagonal.

LEMMA 5.1. For non-negative integersα, β, γ, δ, k, τ , the following results hold:
1. Band(α, β)Band(γ, δ) = Band(α+ γ, β + δ);
2. Band(α, β, k)Band(γ, δ, k) = Band(α+ γ, β + δ, k);
3. Band(α, β, k) = Band((α+ 1)k − 1, (β + 1)k − 1);
4. Band(α, β, k, τ) = Band((α+ 1)k − 1− τ, (β + 1)k − 1− τ).

LEMMA 5.2. With Daubechies’ orderm wavelets, the one-step transformation ma-
trix Ŵν , for n = 2L, is Band(0, (m/2 − 1), 2(L−ν+1), 2(L−ν) − 1) and is therefore
Band(2(L−ν+1) − 2(L−ν), 2(L−ν)m− 2(L−ν)).

Proof. Note that the band information of̂Wν does not actually involveL or n, and the
apparent involvement ofL is due to indexν. It suffices to considerν = L. ThenŴL is
consisted of2×2 blocks withm/2 blocks on each row. That is, it is aBand(0,m/2−1, 2, 0)
matrix. Then use Lemma 5.1 to complete the proof.

Remark 5.1. Clearly Band(α, β, k) = Band(α, β, k, 0). However, for block matrices,
it is often necessary to keep them as blocks until a final step in order to obtain improved
results. For example, with Lemma 5.1.2- 5.1.3,Band(1, 1, 2)Band(1, 1, 2) = Band(2, 2, 2) =
Band(5, 5), but with Lemma 5.1.3,

Band(1, 1, 2)Band(1, 1, 2) = Band(3, 3)Band(3, 3) = Band(6, 6).

Similarly as blocks,Band(3, 2, 4)Band(1, 1, 4) = Band(4, 3, 4) = Band(19, 15) but as bands,

Band(3, 2, 4)Band(1, 1, 4) = Band(15, 11)Band(7, 7) = Band(22, 18)

— an over-estimate! This suggests that if the band matrixA is Band(α, β, 2), then Theorem
5.3 below can be further improved.

THEOREM 5.3. Assume thatAn×n is a Band(α, β) matrix. Then the new DWT of`
levels, based on Daubechies’ orderm wavelets, transformsA into Â which is at most a
Band(λ1, λ2) matrix with

λ1 − α = λ2 − β = m(2(`−1) − 1).
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Proof. For the new DWT with̀ levels, the transform iŝA = ŴAŴ>

Ŵ = ŴL−`+2ŴL−`+3 · · · ŴL.

From Lemma 5.2, the total lower and upper band widths ofŴ will be respectively

low =
L∑

ν=L−(`−2)

(
2L−ν+1 − 2L−ν

)
and up =

L∑
ν=L−(`−2)

(m− 1)2L−ν.

Therefore the over estimate for the lower band width ofÂ will be

λ1 = α+ low + up = α+
L∑

ν=L−(`−2)

2L−ν = α+m(2(`−1) − 1).

Similarly we get the result forλ2 and the proof is complete.
Note that as indicated before, parametersλ1, λ2 do not depend on the problem sizen.

Whenα = β for A, λ1 = λ2 for Â. For a diagonal matrixA with distinct diagonal entries,
for instance, aBand(0, 0) matrix, withm = 4, LEV = ` = 5, andn = 256, the standard
DWT gives a ‘finger’-like pattern inÃ as shown in Fig.5.1 while the new DWT gives a
Band(46, 46) matrix in Â as shown in Fig.5.2. Here Theorem 5.3 gives over estimatesλ1 =
λ2 = 4(2(5−1) − 1) = 60, aBand(60, 60) matrix.
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FIG. 5.1.WAW> for a diagonal matrixA (LEV = 5 andn = 256)

6. Applications to preconditioning a linear system.Consider the transformed linear
systemÂy = b̂ after a new DWT applied toAx = b, whereÂ = ŴAŴ>, x = Ŵ>y and
b̂ = Ŵb. We hope to select an efficient preconditionerM−1 to matrix Â based on operator
(matrix) splitting, that is,M = D̂ andÂ = D̂ + Ĉ.

The main issue to bear in mind is the following: any partitionD̂ of Â corresponds to a
partitionD of matrixA (via an inverse DWT process). The latter partition, directly related
to operators, must include all singularities; this will ensure a good eigenvalue distribution
for the preconditioned matrix and its normal ([12]). Such a selection idea seems difficult to
realize. Therefore we consider the reverse process.
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FIG. 5.2.P (WAW>)P> for a diagonal matrixA (LEV = 5 andn = 256)

The strategy that we take is to start with a preliminary partitionA = D+C and consider
the linear relationships ofA,D,C under a DWT, where we may assume as in§2.1D is a
Band(α, α) for some integerα (sayα = 1 for a tridiagonal matrix). First, apply the new
DWT with a smaller number̀ = LEV ≤ (L+ 1− r) − 2 = L− r − 1) of wavelet levels,
to give

Ây = (D̂ + Ĉ)y = b̂,(6.1)

whereD̂ = ŴDŴ>, Ĉ = ŴCŴ> and b̂ = Ŵb. Now D̂ is also a band matrix (with
wrap-around boundaries) and more specifically it is at mostBand(λ, λ) matrix with λ as
predicted according to Theorem 5.3. LetB denote theBand(λ, λ) part of matrixÂ, and we
can identify the composition ofB in terms ofD̂, Ĉ. SpecificallyB = D̂ + Cd, whereD̂ is
enclosed inB andCd is the band part of matrix̂C that falls into the sparsity pattern ofB.
Secondly, partition matrix̂C = Cd +Cf viaB. That is,Cf contains the remaining elements
of Ĉ. Finally, withB = D̂ + Cd, we effectively partition the coefficient matrix of (6.1) by
(D̂ + Ĉ) = (Df + Cf ) = B + Cf , with Df = B = D̂ + Cd. ThusM−1 = D−1

f will be
used as a preconditioner. Using inverse transforms, one can see that using the sparse matrix
M = Df is spectrally equivalent to using a full matrix to precondition matrixA. So the use
of DWT is a way to achieve this purpose efficiently.

It should be remarked that, in implementations, the wavelet transform is applied toA,
not toD andC separately. The above discussion is mainly to identify the band structureB

(see Fig.5.2) and to explain the exact inclusion ofŴDŴ> (orD) in matrixM . Thus a new
algorithm can be stated as follows:

Algorithm 6.1.
1. Decide on an operator splittingA = D + C withD a band matrix;
2. Apply the new DWT toAx = b to obtainÂy = b̂;
3. Determine a band-widthµ from Theorem 5.3 (to findB that encloseŝD);
4. Select the preconditioner as the inverse of a band-widthµ matrix ofÂ and use it to

solveÂy = b̂ iteratively.
Here the band sizeµ = λ1 + λ2 + 1 (total band width) is known in advance, oncem

(wavelet order) and̀ (wavelet levels) have been selected, and generally small, with respect
to problem sizen. For example ifD is Band(1, 1) (tridiagonal), withm = 6 and` = 3, the
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total band width forB will be µ = 2 ∗ 6 ∗ (23−1 − 1) + 1 = 37.
Note that Algorithm2 includes Algorithm1 as a special case ifλ is chosen as a fixed

integer in the second step.
Remark 6.1. Recall that wavelets compress well for smooth (or for smooth parts of)

functions and operators. Here matrixC, after cutting off the non-smooth partsD of A, is
smooth except on the bands near the cuts (artificially created). So most nonzeros inĈ will be
centered around these cuts andCd will be significant.

7. Numerical results. To test the preconditioner, as proposed in Algorithm2, we have
solved the following two examples.

Example 1 - Singular BIE for Helmholtz equation. The exterior Helmholtz equation
(see [1])

(∇2 + k2)φ(p) = 0

is of importance in acoustic scattering problems. The interior boundaryΓ is the ellipse
(x/0.5)2 + (y/2)2 = 1. For Neumann’s boundary conditions, a unique BIE formulation
due to Burton and Miller is the following:

(−1
2
I +Mk + iηNk)φ = [Lk + iη(

1
2
I +MT

k )]
∂φ

∂n
.

HereLk andMk are the usual single and double layer potential operators respectively,

(Lkφ)(p) =
∫

Γ

Gk(p, q)φ(q)dS, (Mkφ)(p) =
∫

Γ

∂Gk

∂nq
φ(q)dS.

TheoperatorMT
k is the adjoint ofMk andNk is the hypersingular operator. Recall that

the 2D Green function isGk(p, q) = i
4H

(1)
0 (k|p − q|) whereH(1)

0 is the Hankel function.
Refer to [1, 2, 3]. Here we have tested the case of wavenumberk = 10 andη = 1 using the
collocation method.

Example 2 - Cauchy SIE. Singular integral equations (SIE) of Cauchy type are impor-
tant in fracture mechanics. Consider a Cauchy SIE{

1
π

∫ 1

−1
w(t)φ(t)
t−x dt+

∫ 1

−1
(t2−x2)2

t2+x2 w(t)φ(t)dt = f(x), x ∈ (−1, 1),
1
π

∫ 1

−1w(t)φ(t)dt = 0,
(7.1)

with the exact solutionφ(x) = x|x|, wherew(t) = (1− t2)−1/2; see [14, 15, 18, 23] for full
details. Here

f(x) =
2
π

(
(1 + x2ω log

∣∣∣∣ (1− x)ω + 1
(x− 1)ω + 1

∣∣∣∣) with ω =
1√

1− x2
.

We choose this example because the integral equation resembles a singular BIE in the
sense that the operator has a singular principal part and a smooth part.

Tables 7.1-7.5 show the number of iteration steps required to reduce the residual error to
be of the same magnitude as the discretization error; (see [27] for an earlier use of this kind
of stopping criteria). This error refers to the root mean square (RMS) error of the computed
solution against the exact solution at all nodal points. The symbol ‘*’ indicates a very slow
(or no) convergence. Recall thatm denotes the order of Daubechies’ wavelets,` denotes the
number of wavelet levels used,M−1 is the preconditioner, andλ refers to aBand(λ, λ) matrix
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TABLE 7.1
Example 1: Convergence steps of CGN (Daubechies’m = 4)

Size LEV DiagonalD = D1 TridiagonalD = D2 Case
N ` Bandλ Steps M = D Bandλ Steps M = D M = I

64 2 4 14 17 5 14 15 19
3 12 13 13 13

128 2 4 17 32 5 16 18 41
3 12 16 13 16
4 28 14 29 14

256 2 4 22 72 5 22 24 91
3 12 19 13 19
4 28 17 29 17
5 60 19 61 19

512 2 4 27 162 5 26 42 199
3 12 20 13 20
4 28 20 29 20
5 60 19 61 19

1024 2 4 29 332 5 29 88 420
3 12 25 13 25
4 28 21 29 21
5 60 21 61 21

for selectingM . The value ofλ is calculated according to Theorem 5.3. As a DWT takes
O(N ) operations and a band solver takes about O(Nλ2) operations, the one-off setting up of
the preconditioner should not take more than one (full) matrix vector multiplication and this
impliesλ ≈

√
N . For Table 7.2, the “̀= LEV = 5” case is expensive (included here only

for a comparison) and̀= LEV = 3 or 4 are more suitable. Therefore each preconditioning
step takes about O(N ) operations if DWT level̀ is fixed (say3) and so CPU times for each
case are proportional to the number of iterations.

The results clearly demonstrate that for dense linear systems arising from singular BIE’s,
preconditioning is necessary and all preconditioners give faster convergence than the unpre-
conditioned case ofM = I. The performance of the CGN and GMRES are similar. Further,
simple operator splitting preconditioners are effective (with a speed up of a factor up to5) but
their performance are much improved after our DWT acceleration (with a further speed up of
factor up to4). In particular, as our theory predicted, the choice of band sizeλ is sufficient as
it is based on an over estimate. This can be observed more clearly in Tables 7.2 and 7.4 with
m = 8.

8. Conclusions. Simple sparse preconditioners (diagonal, bi-diagonal, tri-diagonal)
based on operator splitting can be useful for solving dense boundary element systems iter-
atively. The discrete wavelet transforms can be utilized independently to design alternative
sparse preconditioners based on approximate inverse approximation.

We have proposed to combine both ideas to generate new and more efficient precondi-
tioners. To implement this idea, one has to solve the transformed preconditioning equation
with a ‘finger’-like matrix. Here matrix permutations are proposed to convert ‘finger’-like
matrices into band ones so that the preconditioning step can be efficiently carried out. To this
end, we have presented a new DWT that can be implemented directly.

Thus the combination of a DWT with an operator splitting gives rise to a more effective
preconditioner, without much increase of the computational work. Numerical results have
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TABLE 7.2
Example 1: Convergence steps of CGN (Daubechies’m = 8)

Size LEV DiagonalD = D1 TridiagonalD = D2 Case
N ` Bandλ Steps M = D Bandλ Steps M = D M = I

64 2 8 13 17 9 13 15 19
3 24 10 25 10

128 2 8 15 32 9 15 18 41
3 24 15 25 15
4 56 9 57 9

256 2 8 18 72 9 18 24 91
3 24 17 25 17
4 56 15 57 15
5 120 10 121 10

512 2 8 23 162 9 23 42 199
3 24 19 25 19
4 56 18 57 18
5 120 21 121 21

1024 2 8 29 332 9 29 88 420
3 24 22 25 22
4 56 20 57 20
5 120 19 121 19

also confirmed this conclusion.
For boundary integral problems with fixed singularities [19], induced by geometric sin-

gularities, the method proposed here would still work since such fixed singularities occur
along the diagonal. For dense matrix problems from other applications (for example, image
processing), singularities in the matrix may not be along the diagonal and it may not always
be possible to permute to a block form as above. This problem is beyond the scope of the
present paper but more research work is needed.

9. Acknowledgement.The author wishes to thank the anonymous referee for making
helpful comments.
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