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WHITNEY ELEMENTS ON PYRAMIDS ∗

V. GRADINARU AND R. HIPTMAIR †

Abstract. Conforming finite elements inH(div; Ω) andH(curl; Ω) can be regarded as discrete differential
forms (Whitney–forms). The construction of such forms is based on an interpolation idea, which boils down to
a simple extension of the differential form to the interior of elements. This flexible approach can accommodate
elements of more complicated shapes than merely tetrahedra and bricks. The pyramid serves as an example for
the successful application of the construction: New Whitney forms are derived for it and they display all desirable
properties of conforming finite elements.
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1. Introduction. The true meaning of differential operators likediv andcurl is only re-
vealed when they are looked at from the perspective of differential forms. In many cases, the
calculus of differential forms is a very natural and powerful tool to express the partial differ-
ential equations arising from mathematical modeling of physical phenomena. This holds true,
in particular, in electromagnetism and thermodynamics [3, 13, 32]. For the sake of numerical
simulation the model equations have to be cast in a discrete form in which the interesting
quantities are determined by only a finite number of degrees of freedom.

Hence, it highly desirable to have discrete differential forms at one’s disposal that inherit
essential properties of their continuous counterparts. Provided that discrete differential forms
are available, the first order equations of the physical model can be directly mapped to systems
of equations. Disguised as a finite volume scheme this is the gist of the Finite Integration
Technique in electromagnetism [24, 34, 35].

When the Galerkin approach for the discretization of the weak form of the model equa-
tions is chosen, which underlies the finite element method [10, 11], it has been realized that
discrete differential forms supply excellent choices for finite element approximation spaces
[8]. They immediately supply conforming finite elements, for instance, inH(div; Ω) and
H(curl; Ω). In particular in the field of computational electromagnetism this insight has
boosted the popularity of so-called edge elements [1, 6, 23, 25, 31, 33]. They are representa-
tives of discrete 1-forms and the natural discrete space of electric and magnetic fields.

Discrete differential forms are built upon triangulations of the domain of interest. By
a triangulation we mean a partition ofΩ into closed non-overlapping convex polyhedrons
(elements) such that every vertex is a vertex of all adjacent elements [15]. For simplicial
triangulations Whitney had introduced discrete differential forms in 1957 [36]. Inside each
element they are linear polynomials, but a generalization to higher polynomial degrees is
possible [20, 21, 30]. Independently, several authors [26, 27, 29] devised vector valued finite
elements that can be regarded as special cases of discrete differential forms. In a sense, the
perspective of differential forms brings about valuable unification.

We will adopt the term “Whitney-forms” for all discrete differential forms of lowest de-
gree. Their generic feature is a special choice of degrees of freedom. Generally speaking,
discretel-forms,l ∈ N, are fixed by the values of their integrals overl-faces of the elements.
Consequently, in the case of1-forms in three dimensions (edge elements), the degrees of free-
dom are provided by path integrals along the edges of the mesh. Correspondingly, the fluxes
through faces of elements uniquely describe a discrete Whitney-2-form. Up to now, Whitney
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forms have been constructed for various shapes of elements, for simplices, hypercubes and
prisms [18, 22, 26].

The big advantage of finite element schemes is their enormous flexibility in terms of
meshes facilitating the resolution of complex geometries and local mesh refinement. In prin-
ciple, tetrahedral meshes can handle all situations. However, on behalf of efficient implemen-
tation, often a combination of both tetrahedral and hexahedral elements should be preferred
[5]. Then, if so-called hanging nodes destroying the integrity of the mesh, are to be avoided,
the mesh has to be padded with pyramids [4].

This paper pursues a systematic approach to construct Whitney forms by means of a gen-
eralized concept of interpolation. Great attention will be payed to finding a whole sequence
of discrete differential forms of order 1 through 3 so that the central exact sequence property
of differential forms [14] is preserved on the discrete level.

The plan of the paper is as follows: In the next section we briefly discuss differential
forms and desirable properties of their discrete counterparts. In the third section we introduce
the setting and disclose why a naive attempt to cope with pyramids fails. In section 4 we will
elaborate on the idea that the construction of Whitney-forms can be viewed as an interpolation
of a special kind. We first confine ourselves to tetrahedral meshes. In the fifth section we
will apply this idea to pyramids and present the finite elements obtained thus. Finally, the
sixth section is devoted to a straightforward verification that the new elements meet all the
requirements and possess reasonable approximation properties.

2. Discrete differential forms. There is huge body of literature on the calculus of dif-
ferential forms. For an exposition we refer to [14]. InRn anl-form,0 ≤ l ≤ n, is a mapping
of Rn into the

(
n
l

)
-dimensional vector space of alternatingl-multilinear forms onRn . After a

basis ofRn has been chosen, there is a canonical way to identify differential forms with vec-
torfields, their “vector proxies”. The usual identification inR3 is depicted in table 2.1. Using

Differential form Related functionu/vectorfieldu

x 7→ ω(x) ω(x) = u(x)

x 7→ {v 7→ ω(x)(v)} ω(x)(v) = 〈u(x), v〉
x 7→ {(v1, v2) 7→ ω(x)(v1, v2)} ω(x)(v1, v2) = 〈u(x), v1 × v2〉

x 7→ {(v1, v2, v3) 7→ ω(x)(v1, v2, v3)} ω(x)(v1, v2, v3) = u(x) det(v1, v2, v3)
TABLE 2.1

Relationship between differential forms and vectorfields in 3D

this identification the exterior derivatived of differential forms spawns the familiar differen-
tial operators of vector analysis (see table 2.2). The appropriate transformation of differential
forms under a smooth changeΦ of variables is described by the pullback operator, whose
meaning for the vector proxies is listed in table 2.2. A crucial feature of the pullback is that
it commutes both with integration and the exterior derivative.

Given a triangulationTh (in the sense of [15]) of some domainΩ ∈ R
n , we choose

some polytope as a reference element for each type of element occurring inTh. We demand
that for each element we can find a smooth, regular, maybe affine, mapping onto a suitable
reference element. On the reference element we define spaces of discrete differential forms
and degrees of freedom. Following the concept of affine equivalent finite elements [15, 21],
global spaces and degrees of freedom can be declared via transformations, which are provided
by the pullback of differential forms (given in table 2.2).
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Forms d pullback patching condition

0-form grad F0(u)(x̂) = u(Φ−1(x̂)) C0-continuity

1-form curl F1(u)(x̂) = DΦT (Φ−1(x̂))u(Φ−1(x̂)) tangential continuity

2-form div F2(u)(x̂) = det(DΦ)DΦ(Φ−1(x̂))u(Φ−1(x̂)) normal continuity

3–form 0 F3(u)(x̂) = det DΦ(Φ−1(x̂))u(Φ−1(x̂)) —
TABLE 2.2

Meaning of exterior derivative, continuity of traces, pullback for vector proxies of differential forms of different
order in three dimensions

We aim at conforming finite element spaces. Consequently, the traces of discrete differ-
ential forms onto any interelement boundary (a(n−1)–face) have to be unique and they have
to be fixed by the degrees of freedom associated with that face. This makes the vector proxies
fulfill the patching condition from table 2.2 and guarantees that they provide finite elements
conforming inH1(Ω),H(curl; Ω), andH(div; Ω), respectively.

In addition an “exact sequence property” must hold for the spaces of discrete differential
forms if Ω is contractible: The exterior derivative of a discretel-form is to yield a valid
discretel + 1-form. In addition, any discretel + 1-form with vanishing exterior derivative
should have a representation as the exterior derivative of some discretel-form.

Finally, the discrete differential forms have to possess approximation properties, in or-
der to be useful for Galerkin discretizations. It is a standard insight in finite elements that
satisfactory approximation properties are directly linked to the fact that all polynomials of
a certain degree are contained in the spaces on the reference elements [11]. In the case of
Whitney-forms that provide only first order schemes, we have to make sure that all constant
forms can be represented.

3. Construction by transformation. As consequence of affine equivalence, the con-
struction of the local finite element spaces can be entirely carried out on areference element.
By transformation the scheme is then fixed for any other element. Whitney-forms for the cube
Q are well known [26]. We recall the local spacesW l(Q) of vector proxies for Whitney-l-
forms,l ∈ N:

• 0-forms: W0(Q) = Q1,1,1(Q);
• 1-forms: W1(Q) = Q1,1,0(Q)×Q1,0,1(Q)×Q0,1,1(Q);
• 2-forms: W2(Q) = Q0,0,1(Q)×Q0,1,0(Q)×Q1,0,0(Q);
• 3-forms: W3(Q) = Q0,0,0(Q).

Here,Qk1,k2,k3 denotes the spaces of 3-variate tensor-product polynomials with degree≤ kj
in the independent variablexj , j = 1, 2, 3.

It is tempting to treat the pyramidP as a degenerate cube. For instance, the transforma-
tion

Φ :


Q 7→ Px
y
z

 7→

(1− z)x
(1− z)y

z

 ⇐⇒ Φ−1 :


P 7→ Qx
y
z

 7→

x/(1− z)
y/(1− z)

z


“collapses” the cube into a pyramid. In particular the unit cubeQ =]0; 1[3 will be mapped
onto the pyramidP with verticesa1 = (0, 0, 0), a2 = (1, 0, 0), a3 = (0, 1, 0), a4 = (1, 1, 0),
a5 = (0, 0, 1) (see figure 3.1). We are going to use this very pyramidP as reference pyramid.
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FIG. 3.1.Rectangular and pyramidal reference element

Now, we can use the transformation rule from table 2.2 for a functionu onT that corre-
sponds to a 0-form :

F0(u)(x̂) := u(Φ−1(x̂)) , x̂ ∈ P .(3.1)

Pick linear functionsβ1, . . . , β5 ∈ Q1,1,1(Q) such thatβi(qj) = δij , i = 1, . . . , 4, j =
1, . . . , 8, andβ5(qj) = 0 for j = 1, 2, 3, 4, β5(qj) = 1 for j = 5, 6, 7, 8. The numbering of
the verticesqi, i = 1, . . . , 8 of the cube is given in Figure 3.1. Note thatβ5 ≡ 1 on the top
plane of the cube. Thus it is a promising candidate for a function that the mappingF0 will
take to a Whitney-0-form basis function associated with vertex #5 of the pyramid. In detail
the images of these functions under the transformation read

β1 = (1− x)(1− y)(1− z)

β2 = x(1− y)(1− z)

β3 = (1− x)y(1− z)

β4 = xy(1− z)

β5 = z

⇒

π1 := F0β1 =
(1− z − x)(1− z − y)

1− z

π2 := F0β2 =
x(1− z − y)

1− z

π3 := F0β3 =
(1− z − x)y

1− z

π4 := F0β4 =
xy

1− z

π5 := F0β5 = z.

(3.2)

We refer to Figure 3.1 for the coordinate directions. Straightforward computations establish
a few facts about the transformed functions:

LEMMA 3.1. The functionsπ1, . . . , π5 from (3.2) fulfill:
(i) πi(aj) = δij , i, j = 1, . . . , 5.
(ii) The restrictions ofπ1, . . . , π5 to the square bottom plane of the pyramid are bilinear

in x, y, their restrictions to the triangular faces are linear.
(iii) Any linear function on the pyramid can be represented as a linear combination of

π1, . . . , π5.
(iv) Theπi, i = 1, . . . , 5, form a non-negative partition of unity.
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We conclude that{π1, . . . , π5} is a valid nodal basis for the local space of Whitney-0-
forms on the pyramidP . Here, “nodal” means that they form a set dual to the set of degrees
of freedom. We stress that the second property ensures that the local space on pyramids fits
those on tetrahedra and hexahedra; if the degrees of freedoms, that is, the function values
at the vertices of a commmon face of two elements, coincide, then overall continuity of the
finite element function across this face is guaranteed. This is the well-known compatibility
condition for 0-form andH1-conformity, respectively.

At first glance, the same procedure should succeed for the other forms, too, now using the
appropriate transformationsFl for vector proxies of l-forms given in table 2.2. For standard
Whitney-1-forms on the cubeQ the nodal basis function associated with edge #7 (that is
[a4, a8] in figure 3.1) and its image under the mappingF1 read

β7(x, y, z) =

 0
0
xy

 =⇒ (F1β7)(x, y, z) =

 0
0
xy

(z − 1)2

 .

We know that the compatibility condition for 1-forms boils down to the continuity of the tan-
gential components across interelement faces. For the triangular face spanned by the vertices
a3, a4, a5, which has a normal vectorn = 1

2

√
2(0, 1, 1)T , we find

(F1β7)× n = −1
2

√
2

t1
1− t2

· e1 ,(3.3)

wheret1 andt2 are the local coordinates of the face chosen such that(x, y, z)T = (t1, 1 −
t2, t2)T ande1 = (1, 0, 0)T is thet1-coordinate direction. The tangential components of edge
element vectorfields on a face of a tetrahedron are linear with respect to any local Cartesian
coordinate system. Obviously, the expression from (3.3) is not linear. The bottom line is that
the mapped 1-forms cannot be matched with conventional edge elements on tetrahedra. The
same holds true for 2-forms. This demonstrates the failure of the mapping approach and calls
for a different construction on a pyramid.

4. Interpolation on simplices. Sloppily speaking a differential form of orderl can be
regarded as a mapping assigning to each smooth oriented manifold of dimensionl a real
number, the value of its integral [16]. Vice versa, once all these integrals are known, the form
is uniquely determined. This view permits us to tackle the construction of discrete differential
forms as an interpolation problem: Given the values of the integrals over only a finite number
of convex manifolds (the vertices, edges or faces of the mesh), find a simple way to express
integrals over general mani–folds through these values. Of course, this task of interpolation
has many solutions. To obtain practical finite elements, we strive to come up with a procedure
as simple as possible.

In fact, all we need to specify is a way to evaluate the integrals over simplices. Write
[x1, . . . , xl+1] for the convex span ofx1, . . . , xl+1 ∈ R

3 . Orientation is induced by the
ordering of the vertices. If the integrals of a smoothl-form ω over all such simplices are
known, we get from the definition of a differential form [14]

ω(x)(v1, . . . , vl) = l! lim
t→0

1
tl

∫
[x1,... ,xl+1]

ω ,(4.1)

wherex1 = x, xi+1 = x + tvi, for i = 1, . . . , l, vi ∈ R3 . Recall that anl-form evaluated
at a point yields an alternatingl-linear form onR3 .
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We first illustrate the idea of interpolation in the case of a tetrahedral mesh, where
no complications are encountered. LetT be a non-degenerate tetrahedron with vertices
a1, a2, a3, a4. We will use the terml-face, l = 0, 1, 2, to refer to a vertex (l = 0), an
edge (l = 1) or a face (l = 2).

For 0-forms the degrees of freedom are just the values of the associated continuous func-
tion φ at the vertices ofT . The simplest way to extend these values is linear interpolation

φ(x) =
4∑
i=1

φ(ai)λi(x) ,(4.2)

whereλi is the barycentric coordinate function of the tetrahedron associated with vertexai.
Note that, equivalently, we could have introduced theλi as the canonical basis functions for
Whitney-0-forms. Now, our goal is to find the counterparts of linear interpolation for forms
of higher orderl, l = 1, 2, 3.

For discretel-forms the degrees of freedoms are the integrals∫
[aj1 ,... ,ajl+1 ]

ω ,

where1 ≤ j1 ≤ . . . ≤ jl+1 ≤ 4. We point out that the order of the vertices fixes an
orientation of the face, which, in turn, affects the sign of the integral. We can read (4.2) as
follows: An interior point of the simplex is represented as a weighted sum of its vertices.
The weights, in this case values of the barycentric coordinates, tell us, how to interpolate the
integrals of the 0-form. Thus, the essential idea is to represent anyl-simplex insideT by a
“weighted sum” of itsl-faces.

In the case of 1-forms consider the arbitrary1–simplex[x, y] , an oriented line, with
x, y ∈ T , x =

∑
i λi(x)ai, y =

∑
i λi(y)ai. Then

[x, y] = {tx + (1− t)y ; 0 ≤ t ≤ 1}

=

{∑
i

[tλi(x) + (1− t)λi(y)]ai ; 0 ≤ t ≤ 1

}

=

∑
i

[t
∑
j

λj(y)λi(x) + (1− t)
∑
j

λj(x)λi(y)]ai ; 0 ≤ t ≤ 1


=

∑
i

∑
j

λi(x)λj(y)[tai + (1− t)aj ] ; 0 ≤ t ≤ 1

 .

Hence, taking into account orientation, we will represent∫
[x,y]

ω :=
∑
i

∑
j

λi(x)λj(y)
∫

[ai,aj]

ω =
∑
i<j

[λi(x)λj(y) − λi(y)λj(x)]
∫

[ai,aj]

ω .(4.3)

Plugging this formula into (4.1) and using that the exterior derivative of a 0-form is the gra-
dient, we get

ω(x)(v) = lim
t→0

1
t

∑
i<j

[λi(x)(λj(x + tv) − λj(x)) − λj(x)(λi(x + tv)− λi(x))]
∫

[ai,aj ]

ω

=
∑
i<j

[λi(x)dλj(x)(v) − λj(x)dλi(x)(v)]
∫

[ai,aj ]

ω .(4.4)
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Now, take into account that the vectorfieldu belonging toω is defined byω(x)(v) = 〈u, v〉,
v ∈ R3 , where〈·, ·〉 stands for the Euclidean inner product (cf. Table 2.1). It is evident from
(4.4) that for the vector proxy we get

u(x) =
∑
i<j

(grad λi(x) · λj(x)− grad λj(x) · λi(x))
∫

[ai,aj ]

ω .

It is just the standard edge element basis functions [7]

βij := grad λi · λj − grad λj · λi(4.5)

that have emerged, weighted with the values of the degrees of freedom. From (4.3) we infer
that for1 ≤ i 6= j ≤ 4, 1 ≤ k 6= l ≤ 4∫

[ai,aj]

〈βkl, t〉 dΓ =

{
±1 if {i, j} = {k, l}
0 else ,

as expected for basis functions.
Discrete 2-forms can be constructed in a similar fashion. In this case plane triangles

[x, y, z], x, y, z ∈ T , in the interior of the tetrahedron have to be represented as “combina-
tions” of faces. Using barycentric coordinates, we can write

[x, y, z] = {t1x + t2y + t3z; 0 ≤ ti ≤ 1, t1 + t2 + t3 = 1}

=

{
4∑

i,j,k=1

λi(x)λj(y)λk(z)(t1ai + t2aj + t3ak);
0 ≤ ti ≤ 1, i = 1, 2, 3
t1 + t2 + t3 = 1

}
.

This suggests the formula

∫
[x,y,z]

ω =
∑
i<j<k

 ∑
π∈Perm{i,j,k}

sgn(π)λπ(i)(x)λπ(j)(y)λπ(k)(z)
∫

[ai,aj,ak]

ω

 .(4.6)

Using (4.1), after tedious computations we arrive at a representation for the vector proxy of
ω,

u(x) =
∑
i<j<k

βijk

∫
[ai,aj ,ak]

〈u, n〉 dΓ ,

with the basis functions for Whitney-2-forms [7]

�ijk := 2(λi gradλj × gradλk + λj gradλk × gradλi + λk gradλi × gradλj) .(4.7)

Again, the canonical basis functions for lowest order face elements have emerged from the
construction.

5. Interpolation for the pyramid. What foils a straightforward application of the in-
terpolation idea to a pyramid is both the apparent lack of natural barycentric coordinates and
the fact that certain convex spans of vertices do not occur as edges or faces, respectively.
The first difficulty is easily overcome by resorting to the functionsπ1, . . . , π5 from (3.2),
which provide a basis for Whitney-0-forms on the pyramid; From lemma 3.1(iv) we get
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x =
∑
i πi(x)ai for anyx ∈ P . Hence, theπi, i = 1, . . . , 5 are a full replacement for the

barycentric coordinates. Thus, we can simply state formulas (4.3) and (4.6) withλi replaced
by πi and summation ranging between 1 and 5.

Then we face the second problem, since the edges[a2, a3], [a1, a4] and the faces
[a2, a3, a5], [a1, a4, a5], [a1, a2, a4], [a1, a3, a4] occur in the formula, but no degrees of free-
dom are specified on them. The idea is toexpress each integral over an non-existent edge
or face by a weighted sum of degrees of freedomobserving the following rule:Expressions
for integrals over edges contained in a face ofP may only be based on degrees of freedoms
associated with that face. This rule is necessary to get compatibility across faces, because
only degrees of freedom belonging to a face may contribute to the tangential/normal trace of
the interpolant onto that face.

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

f1

f2

f3

f4

f5

f6

f7

f8f9
f10

FIG. 5.1. Numbering of the “edges”e1 = [a1, a2], e2 = [a2,a4], e3 = [a3,a4], e4 = [a1,a3],
e5 = [a1, a5], e6 = [a2,a5], e7 = [a3, a5], e8 = [a4,a5], e9 = [a2,a3], e10 = [a1,a4]
and “faces” f1 = [a1, a2,a5], f2 = [a1,a3,a5], f3 = [a2,a4, a5], f4 = [a3,a4, a5], f5 = [a1,a3, a2],
f6 = [a1, a4,a2], f7 = [a1, a4,a3], f8 = [a2,a4,a3], f9 = [a1,a5, a4], f10 = [a2, a3,a5]

Recall that we confine ourselves to constructing Whitney-forms on the reference pyramid
only; any pyramid̃P of the actual mesh can be mapped ontoP by a smooth transformationΦ :
P̃ → P . Then the Whitney-forms oñP arise from those onP by the pullback transformations
specified in table 2.2.

Let us denote like in Figure 5.1 the edges and the faces and let the basis of the reference
pyramid befb = [a1, a3, a4, a2].

Keeping in mind the above rule, it is clear how to choose the weights for the non-existent
edges of the pyramid. They are all contained in the bottom square. Hence,

∫
e9

ω = ν1

∫
e1

ω + ν2

∫
e2

ω + ν3

∫
e3

ω + ν4

∫
e4

ω∫
e10

ω = µ1

∫
e1

ω + µ2

∫
e2

ω + µ3

∫
e3

ω + µ4

∫
e4

ω .

In addition, the discrete 1-form when restricted to the bottom square must agree with the
trace onto a face of a discrete 1-form on a cube. In other words, we can just take the cue from
discrete 1-forms on a square to fix the weightsνi andµi uniquely. Expressions for Whitney-
1-forms on a square are well known and evaluation of their integrals along the diagonal yields
µi = 1

2 , i = 1, 2, 3, 4, νi = 1
2 , i = 2, 4, νi = − 1

2 , i = 1, 3. Then we crank up the machine of
section 4. Using a definition ofϑij = grad πi · πj − grad πj · πi similar to that of (4.5), we
end up with the following expressions for the canonical basis functionsγi, i = 1, . . . , 8, for
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Whitney-1-forms on pyramids:

γ1 = ϑ12 + 1
2ϑ14 − 1

2ϑ23,

γ2 = 1
2ϑ23 + ϑ24 + 1

2ϑ14,

γ3 = 1
2ϑ14 + ϑ34 − 1

2ϑ23,

γ4 = 1
2ϑ14 + ϑ13 + 1

2ϑ23,

γ5 = ϑ15;
γ6 = ϑ25;
γ7 = ϑ35;
γ8 = ϑ45.

Computing the gradients we get the related vectorfields ((x, y, z)T ∈ P ):

γ1 =


1− z − y

0

x− xy

1− z

 , γ2 =


0

x

xy

1− z

 , γ3 =


y

0

xy

1− z

 , γ4 =


0

1− z − x

y − xy

1− z

 ,

γ5 =


z − yz

1− z

z − xz

1− z

1− x− y +
xy

1− z
− xyz

(1− z)2

 , γ6 =


−z +

yz

1− z
xz

1− z

x +
xy

1− z
− xyz

(1− z)2

 ,

γ7 =


yz

1− z

−z +
xz

1− z

y +
xy

1− z
− xyz

(1− z)2

 , γ8 =


− yz

1− z

− xz

1− z
xy

1− z
− xyz

(1− z)2

 .

The problem for 2-forms is more delicate. It boils down to determining the ten weightsηi,
κi, i = 1, . . . , 5, in∫

f9

ω = ηb
∫
fb

ω + η1

∫
f1

ω + η2

∫
f2

ω + η3

∫
f3

ω + η4

∫
f4

ω∫
f10

ω = κb
∫
fb

ω + κ1

∫
f1

ω + κ2

∫
f2

ω + κ3

∫
f3

ω + κ4

∫
f4

ω .
(5.1)

Three different considerations guide to search for the weights:
Firstly, we point out that we need not worry about the weights of the four triangles con-

tained in the bottom square. Parallel to the above reasoning they can be fixed by examining
discrete 2-forms on the square, which are just constants. This implies∫

f5

ω =
∫
f6

ω =
∫
f7

ω =
∫
f8

=
1
2

∫
fb

ω .

Secondly, as we emphasized in section 2, on behalf of basic approximation properties, the
constant forms have to be contained in the space of discrete2-forms on the reference element.
Accordingly, the weightsηi andκi (cf. (5.1)) for the interior faces have to be chosen such
that (5.1) is satisfied forω ≡ const.. Switching to vector proxies, we have to ensure that
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the equations hold for the three constant vector fields(1, 0, 0)T , (0, 1, 0)T , and(0, 0, 1)T .
Straightforward calculation of the integrals yields respectively

0 · ηb + 0 · η1 − 1 · η2 + 1 · η3 + 0 · η4 = −1;
0 · ηb − 1 · η1 + 0 · η2 + 0 · η3 + 1 · η4 = 1;
−1 · ηb + 0 · η1 + 0 · η2 + 1 · η3 + 1 · η4 = 0.

(5.2)

The same linear system of equations can be obtained for the weightsκi. Still, (5.2) is an un-
derdetermined linear system. Thus, we have to employ a third consideration to get additional
conditions. They are provided by the “exact sequence property” of section 2 in conjunction
with Stokes’ theorem:

The space of discrete 3-forms on the pyramid will be of dimension 1. In other words,
discrete 3-forms have to be constant. Consequently, all discrete 2-forms must have constant
exterior derivatives. WritingT for the tetrahedron[a1, a2, a4, a5] contained in the pyramid,
we get ∫

T

dωh =
vol(T )
vol(P )

∫
P

dωh =
1
2

∫
P

dωh

for any discrete 2-formωh. By Stokes’ theorem applied to bothP andT

1
2

∫
fb

ωh +
∫
f1

ωh +
∫
f2

ωh +
∫
f3

ωh +
∫
f4

ωh

 =
1
2

∫
P

dωh =

=
∫
f1

ωh +
∫
f3

ωh +
∫
f6

ωh +
∫
f9

ωh ,

and the last integral can be replaced by its representation from (5.1). When we plug in “test
forms” into the resulting equations, we get more linear equations for the weights. Appropriate
test forms are provided by the, hitherto unknown, basis formsζi, satisfying

∫
fi
ζj = δij ,

i, j = b, 1, 2, 3, 4. This gives the five linear conditions

1 · ηb + 0 · η1 + 0 · η2 + 0 · η3 + 0 · η4 = 0 [for ζb];
0 · ηb + 1 · η1 + 0 · η2 + 0 · η3 + 0 · η4 = − 1

2 [for ζ1];
0 · ηb + 0 · η1 + 1 · η2 + 0 · η3 + 0 · η4 = 1

2 [for ζ2];
0 · ηb + 0 · η1 + 0 · η2 + 1 · η3 + 0 · η4 = − 1

2 [for ζ3];
0 · ηb + 0 · η1 + 0 · η2 + 0 · η3 + 1 · η4 = 1

2 [for ζ4] .

(5.3)

These equations fix the weightsηi, i = b, 1, 2, 3, 4 and they are compatible with (5.2). The
total system is overdetermined, but has the solutionη1 = η3 = − 1

2 , η2 = η4 = 1
2 , ηb = 0. A

similar reasoning gives us the other weightsκi, such that we obtain the following expressions
for the canonical basis functionsζi, i = 1, 2, 3, 4, b for Whitney–2–forms on pyramids:

ζ1 = τ 1 −
1
2
τ 10 +

1
2
τ 9, ζ2 = τ 2 −

1
2
τ 10 −

1
2
τ 9,

ζ3 = τ 3 +
1
2
τ 9 +

1
2
τ 10, ζ4 = τ 4 +

1
2
τ 10 −

1
2
τ 9,

ζb = −1
2
τ 5 −

1
2
τ 6 −

1
2
τ 7 −

1
2
τ 8,
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whereτl corresponds tofl, l = 1, . . . , 10 and they are given, for the facefl = [ai, aj , ak],
by formula (4.7) deduced in the previous section, but this time withπ playing the role ofλ:

τ l = 2(πi grad πj × grad πk + πj grad πk × grad πi + πk grad πi × grad πj)

After computations we get the related vectorfields ((x, y, z)T ∈ P ):

ζ1 =


− xz

1− z

y − 2 +
y

1− z

z

 , ζ2 =


x− 2 +

x

1− z

− yz

1− z

z

 ,

ζ3 =


x +

x

1− z

− yz

1− z

z

 , ζ4 =


− xz

1− z

y +
y

1− z

z

 , ζ5 =


x

y

z − 1

 .

As mentioned above, the discrete 3-forms onP are just constants. So we have finally
found a complete sequence of spaces of Whitney-forms onP :

W 0 = span{π1, . . . , π5};
W 1 = span{γ1, . . . ,γ8};
W 2 = span{ζ1, . . . , ζ5};
W 3 = span{1}.

6. Properties. In the course of the construction in the previous section we took great
pains to ensure that interpolation remained local on faces of the pyramid. In addition the
weights were chosen to match the two-dimensional Whitney-forms on the faces. Evidently,
these two conditions make the patching condition hold for the new Whitney-forms, when
used on a mesh containing pyramids, tetrahedra, and bricks.

One aspect of the exact sequence property is readily confirmed: By straightforward com-
putations we get

grad π1 = −γ1 − γ4 − γ5;
grad π2 = γ1 − γ2 − γ6;
grad π3 = γ4 − γ3 − γ7;
grad π4 = γ2 + γ3 − γ8;
grad π5 = γ5 + γ6 + γ7 + γ8;

(6.1)

and

curlγ1 = −ζ5 + ζ1;
curlγ2 = −ζ5 + ζ3;
curlγ3 = ζ5 − ζ4;
curlγ4 = ζ5 − ζ2;
curlγ5 = −ζ1 + ζ2;
curlγ6 = −ζ3 + ζ1;
curlγ7 = ζ4 − ζ2;
curlγ8 = ζ3 − ζ4 .

(6.2)
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We remark that the weights in the above sums are clear from Stokes’ theorem; they have
to agree with the entries of the vertex-edge and edge-face incidence matrices for a single
pyramid (cf. [9]).

To prove the second assertion of the exact sequence property, we have to rely on an
auxiliary result, the so-called “commuting diagram property”. We denote byDF l the space
of continuousl-forms and writeIl the (local) interpolation operator fromDF l ontoW l. It
maps anl-form ω onto that discretel-form that has the same integrals overl-faces ofP asω.

THEOREM 6.1 (Commuting Diagram Property).The diagram

DF0 d−−−−→ DF1 d−−−−→ DF2 d−−−−→ DF3

I0

y I1

y I2

y I3

y
W 0 d−−−−→ W 1 d−−−−→ W 2 d−−−−→ W 3

commutes.
Proof. We have to show thatd(Ilϕ) = Il+1dϕ, which is equivalent toIl+1d(ϕ−Ilϕ) =

0, that isξ(d(ϕ − Ilϕ)) = 0, for all degrees of freedomξ. Hence, it is sufficient to prove
that, if τ is anl–form, which makes all the degrees of freedom vanish, thenξ(dτ) = 0, for all
degrees of freedom. But this is obvious by Stokes’ theorem. For instance, for1–forms:∫

f

dτ =
∑
e∈f

∫
e

τ = 0,

wheree are edges belonging to the facef .
We remark that the commuting diagram property is a key device in the theory of mixed

finite elements [12]. Also note that from theorem 6.1 we learn that all constants are contained
in W 1, since all linear functions belong toW 0.

THEOREM 6.2 (Existence of discrete potentials).One has

W 1 ∩ ker(d) = dW 0, W 2 ∩ ker(d) = dW 1.

Proof. Takeω in W 1 such thatdω = 0, so there is a continuous0–form ϕ such that
ω = dϕ. Pick a := Iϕ ∈ W 0 and use the commuting diagram property in order to obtain
d a = Idϕ = Iω = ω. The second assertion can be established in the same way. Until
now, we referred only to the local properties, but we can follow the approach of the proof [21,
Thm. 18] to conclude the global existence of the discrete potentials for contractible domains.

When discrete differential forms are used in a finite element framework,L2-inner prod-
ucts of basis functions and their exterior derivatives have to be evaluated in order to get the
entries of stiffness and mass matrices and load vectors. For second order variational prob-
lems, which typically occur in electromagnetism, those are obtained through integrals of the
form

∫
eP
〈α(x)bi, bj〉 dx and

∫
eP
〈α(x)dbi, dbj〉 dx for every element̃P of the finite element

mesh. Herebi stands for some nodal basis function of the global space of discretel-forms,
l = 0, 1, 2, 3. The coefficient functionα(x) is to be bounded. First, note that by theorem 6.1
dbi agrees with a linear combination of basis functions in the space of discretel + 1-forms.
Secondly, the pullbacks of table 2.2 take the integrals to the reference pyramid and preserve
basis functions. Eventually, all we need to evaluate are integrals of the forms∫

P

α(x)πjπk dx ,

∫
P

〈
A(x)γj ,γk

〉
dx ,

∫
P

〈
A(x)ζj , ζk

〉
dx .
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whereα : P → R, A : P → R
3,3 are bounded functions. However, as some of the basis

functions onP are rational polynomial with a pole forz = 1, the evaluation of the integrals
might run into difficulties. At second glance, this is not true, as a straightforward computation
confirms thatπj ∈ L2(P ), γj ∈ L2(P ), andζj ∈ L2(P ). It turns out that the critical
monomials inz just cancel. This is illustrated by the following example:

(6.3)
∫
P

π5

〈
γ

(3)
1 ,γ

(3)
2

〉
dx =

=

1∫
0

z

1− z

1−z∫
0

y

1−z∫
0

x2dxdydz −
1∫

0

z

(1− z)2

1−z∫
0

y2

1−z∫
0

x2dxdydz

=
1
6

1∫
0

z(1− z)4dz − 1
9

1∫
0

z(1− z)4dz =
1

1620
= 0.00062

We point out that integrals of the form (6.3) occur whenever the coefficient functionsα(x),
A(x) are replaced by their (component-wise) interpolant in the space of Whitney0-forms.
Hence, the values of elementary integrals like (6.3) may be computed in advance and stored
in a table.

We start discussing the approximation properties of Whitney forms on pyramids by
noting that the local spaces on the reference pyramid contain all constants. In the case
of 0-forms even all affine - linear functions belong toW 0(P ). As a consequence, since
W l(P ) ⊂ L2(P ), l = 0, 1, 2, we conclude from the Bramble-Hilbert-lemma (see, e.g.,
[15]) and continuity properties of the interpolation operators [2, 17] that there exist constants
c0, c1, c2 > 0 such that∥∥u− I0u

∥∥
L2(P )

≤ c0 |u|H2(P ), ∀u ∈ H2(P );∥∥u− I1u
∥∥
L2(P )

≤ c1

(
|u|
H1(P ) + ‖curl u‖

H1(P )

)
, ∀u ∈H1(curl; P );(6.4) ∥∥u− I2u

∥∥
L2(P )

≤ c2 |u|H1(P ) , ∀u ∈H1(P ) .

The next step involves classical affine equivalence techniques [15]. They are based on the
assumption ofshape-regularityof the mesh. This condition carries the customary geometric
meaning that the ratio of the radii of the largest inscribed ball and smallest circumscribed ball
is bounded by the same constant for all elements of the mesh. In particular, for any pyramid
P̃ we can find a diffeomorphismΦ : P̃ → P such that withh := diamP̃ , |det Φ| ≤ k1h

−3,
‖DΦ‖L∞( eP ) ≤ k2h

−1,
∥∥DΦ−1

∥∥
L∞(P )

≤ k3h uniformly with respect to all pyramids of the
mesh.

Then we use the appropriate pullback ofu/u on both sides of the estimates (6.4).
Lengthy computations, whose details are given in [26, 28], yield∥∥∥u− Ĩ0u

∥∥∥
L2( eP )

≤ C0h
2 |u|H2( eP ), ∀u ∈ H2(P̃ );∥∥∥u− Ĩ1u

∥∥∥
L2( eP )

≤ C1h
(
|u|
H1( eP ) + ‖curl u‖

H1( eP )

)
, ∀u ∈H1(curl; P̃ );(6.5) ∥∥∥u− Ĩ2u

∥∥∥
L2( eP )

≤ C2h |u|H1( eP ) , ∀u ∈H1(P̃ ) .

The constantsC0, C1, C2 only depend onk1, k2, k3 and the constants in (6.4). They are hence
independent oñP , and the inequalities (6.5) can be converted into global approximation
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estimates on the entire mesh. In sum, the pyramidal Whitney-forms perfectly match the
approximation properties of their tetrahedral and hexahedral counterparts [12, 19].
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