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WHITNEY ELEMENTS ON PYRAMIDS *

V. GRADINARU AND R. HIPTMAIR f

Abstract. Conforming finite elements i (div; ©2) and H (curl; Q) can be regarded as discrete differential
forms (Whitney—forms). The construction of such forms is based on an interpolation idea, which boils down to
a simple extension of the differential form to the interior of elements. This flexible approach can accommodate
elements of more complicated shapes than merely tetrahedra and bricks. The pyramid serves as an example for
the successful application of the construction: New Whitney forms are derived for it and they display all desirable
properties of conforming finite elements.
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1. Introduction. The true meaning of differential operators likier andcurl is only re-
vealed when they are looked at from the perspective of differential forms. In many cases, the
calculus of differential forms is a very natural and powerful tool to express the partial differ-
ential equations arising from mathematical modeling of physical phenomena. This holds true,
in particular, in electromagnetism and thermodynamics [3, 13, 32]. For the sake of numerical
simulation the model equations have to be cast in a discrete form in which the interesting
guantities are determined by only a finite number of degrees of freedom.

Hence, it highly desirable to have discrete differential forms at one’s disposal that inherit
essential properties of their continuous counterparts. Provided that discrete differential forms
are available, the first order equations of the physical model can be directly mapped to systems
of equations. Disguised as a finite volume scheme this is the gist of the Finite Integration
Technique in electromagnetism [24, 34, 35].

When the Galerkin approach for the discretization of the weak form of the model equa-
tions is chosen, which underlies the finite element method [10, 11], it has been realized that
discrete differential forms supply excellent choices for finite element approximation spaces
[8]. They immediately supply conforming finite elements, for instanceHifliv; 2) and
H(curl; Q). In particular in the field of computational electromagnetism this insight has
boosted the popularity of so-called edge elements [1, 6, 23, 25, 31, 33]. They are representa-
tives of discrete 1-forms and the natural discrete space of electric and magnetic fields.

Discrete differential forms are built upon triangulations of the domain of interest. By
a triangulation we mean a partition €f into closed non-overlapping convex polyhedrons
(elements) such that every vertex is a vertex of all adjacent elements [15]. For simplicial
triangulations Whitney had introduced discrete differential forms in 1957 [36]. Inside each
element they are linear polynomials, but a generalization to higher polynomial degrees is
possible [20, 21, 30]. Independently, several authors [26, 27, 29] devised vector valued finite
elements that can be regarded as special cases of discrete differential forms. In a sense, the
perspective of differential forms brings about valuable unification.

We will adopt the term “Whitney-forms” for all discrete differential forms of lowest de-
gree. Their generic feature is a special choice of degrees of freedom. Generally speaking,
discretel-forms,[ € N, are fixed by the values of their integrals ovdaces of the elements.
Consequently, in the case bforms in three dimensions (edge elements), the degrees of free-
dom are provided by path integrals along the edges of the mesh. Correspondingly, the fluxes
through faces of elements uniquely describe a discrete Whitney-2-form. Up to now, Whitney
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forms have been constructed for various shapes of elements, for simplices, hypercubes and
prisms [18, 22, 26].

The big advantage of finite element schemes is their enormous flexibility in terms of
meshes facilitating the resolution of complex geometries and local mesh refinement. In prin-
ciple, tetrahedral meshes can handle all situations. However, on behalf of efficientimplemen-
tation, often a combination of both tetrahedral and hexahedral elements should be preferred
[5]. Then, if so-called hanging nodes destroying the integrity of the mesh, are to be avoided,
the mesh has to be padded with pyramids [4].

This paper pursues a systematic approach to construct Whitney forms by means of a gen-
eralized concept of interpolation. Great attention will be payed to finding a whole sequence
of discrete differential forms of order 1 through 3 so that the central exact sequence property
of differential forms [14] is preserved on the discrete level.

The plan of the paper is as follows: In the next section we briefly discuss differential
forms and desirable properties of their discrete counterparts. In the third section we introduce
the setting and disclose why a naive attempt to cope with pyramids fails. In section 4 we will
elaborate on the idea that the construction of Whitney-forms can be viewed as an interpolation
of a special kind. We first confine ourselves to tetrahedral meshes. In the fifth section we
will apply this idea to pyramids and present the finite elements obtained thus. Finally, the
sixth section is devoted to a straightforward verification that the new elements meet all the
requirements and possess reasonable approximation properties.

2. Discrete differential forms. There is huge body of literature on the calculus of dif-
ferential forms. For an exposition we refer to [14].Rf ani-form,0 < [ < n, is a mapping
of R" into the(?)—dimensional vector space of alternatirgiultilinear forms orR™. After a
basis ofR™ has been chosen, there is a canonical way to identify differential forms with vec-
torfields, their “vector proxies”. The usual identificationi is depicted in table 2.1. Using

‘ Differential form ‘ Related functioni/vectorfieldu ‘
X - w(x) w(x) = u(x)
x = {v—w(x)(v)} w(x)(v) = (u(x),v)

x — {(v1,v2) — w(x)(v1,va2)} w(x)(v1, ve) = (u(x), vy X va)

(

(x)(v1,v2,v3)} | w(x)(v1,ve,vs) = u(x)det(vy, va,vs)
TABLE 2.1

Relationship between differential forms and vectorfields in 3D

x = {(v1,ve,v3) — w

this identification the exterior derivativeof differential forms spawns the familiar differen-
tial operators of vector analysis (see table 2.2). The appropriate transformation of differential
forms under a smooth changeof variables is described by the pullback operator, whose
meaning for the vector proxies is listed in table 2.2. A crucial feature of the pullback is that
it commutes both with integration and the exterior derivative.

Given a triangulatior7;, (in the sense of [15]) of some domaih € R", we choose
some polytope as a reference element for each type of element occurfing\ie demand
that for each element we can find a smooth, regular, maybe affine, mapping onto a suitable
reference element. On the reference element we define spaces of discrete differential forms
and degrees of freedom. Following the concept of affine equivalent finite elements [15, 21],
global spaces and degrees of freedom can be declared via transformations, which are provided
by the pullback of differential forms (given in table 2.2).
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‘ Forms ‘ d ‘ pullback ‘ patching condition
0-form | grad Fo(w)(X) = u(®1(x)) CO-continuity
1-form | curl FH(w)(X) = DT (@7 1(%))u(®~ 1 (%)) tangential continuity|
2-form | div | F*(u)(X) = det(D®)D®(®1(%x))u(®~1(x)) | normal continuity
3-form| 0 F3(u)(X) = det DO(P71(%))u(®~ (%)) —

TABLE 2.2
Meaning of exterior derivative, continuity of traces, pullback for vector proxies of differential forms of different
order in three dimensions

We aim at conforming finite element spaces. Consequently, the traces of discrete differ-
ential forms onto any interelement boundaryi{a- 1)—face) have to be unique and they have
to be fixed by the degrees of freedom associated with that face. This makes the vector proxies
fulfill the patching condition from table 2.2 and guarantees that they provide finite elements
conforming inH' (), H (curl; Q), andH (div; ), respectively.

In addition an &xact sequence propettyust hold for the spaces of discrete differential
forms if Q2 is contractible: The exterior derivative of a discréttorm is to yield a valid
discretel + 1-form. In addition, any discrete+ 1-form with vanishing exterior derivative
should have a representation as the exterior derivative of some disfoete.

Finally, the discrete differential forms have to possess approximation properties, in or-
der to be useful for Galerkin discretizations. It is a standard insight in finite elements that
satisfactory approximation properties are directly linked to the fact that all polynomials of
a certain degree are contained in the spaces on the reference elements [11]. In the case of
Whitney-forms that provide only first order schemes, we have to make sure that all constant
forms can be represented.

3. Construction by transformation. As consequence of affine equivalence, the con-
struction of the local finite element spaces can be entirely carried outefarance element
By transformation the scheme is then fixed for any other element. Whitney-forms for the cube
Q are well known [26]. We recall the local spada# (Q) of vector proxies for Whitney-
forms,l € N:
e O-forms: W°(Q) = Q1,11 (
e 1-forms: WH(Q) = Q1.1.0(
e 2-forms: W2(Q) = Qo.0.1(
3-forms: W3(Q) = Qo.0.0(
Here,Qk, k,.x, denotes the spaces of 3-variate tensor-product polynomials with degege
in the independent variable, j = 1,2, 3.
It is tempting to treat the pyrami as a degenerate cube. For instance, the transforma-
tion

)i
) X Q1,0,1(Q) x Qo,1,1(Q);
)
)-

Q
Q
Q) x Q0,1,0(Q) x 91,0,0(Q);
Q

Q = P P Q

P x (1—2)x — $L. x x/(1—2)
y| = [(d—2)y y| = |y/(Q-2)
z z z z

“collapses” the cube into a pyramid. In particular the unit cgbe=]0; 1[* will be mapped
onto the pyramid® with verticesa; = (0,0,0), a2 = (1,0,0),as = (0,1,0),a4 = (1,1,0),
as = (0,0,1) (see figure 3.1). We are going to use this very pyrafk reference pyramid.
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a6

FiG. 3.1.Rectangular and pyramidal reference element

Now, we can use the transformation rule from table 2.2 for a funetionT" that corre-
sponds to a O-form :

(3.1) F(u) (%) = u(@ (%)), X€P.

Pick linear functionss, ... , 85 € Q1,1,1(Q) such thatB;(q;) = d;;, ¢ = 1,...,4,j =
1,...,8,andBs(q;) =0forj =1,2,3,4, 85(q;) = 1 for j = 5,6,7,8. The numbering of

the verticesy;, i = 1, ... ,8 of the cube is given in Figure 3.1. Note th&t = 1 on the top
plane of the cube. Thus it is a promising candidate for a function that the ma@piwgl

take to a Whitney-0-form basis function associated with vertex #5 of the pyramid. In detail
the images of these functions under the transformation read

(3.2)
i = I—-z2)(1-y)(1-=2) m =30 = (1_2_531(2_3_9)
fo = 2(l-y)1-2) T =30 = w
Bs = (Q1—2)y(l—-=2) = m3:=38; = W
Ba = zy(l—=z) =38 = 1my
-z
bo = = =305 = =z

We refer to Figure 3.1 for the coordinate directions. Straightforward computations establish
a few facts about the transformed functions:

LEMMA 3.1.The functionsry, ... , 5 from (3.2)fulfill:
(I) Wi(aj) = 5iju i,j = ]., cen ,5.
(i) Therestrictions ofr, ... , 75 to the square bottom plane of the pyramid are bilinear

in z, y, their restrictions to the triangular faces are linear.

(iii) Any linear function on the pyramid can be represented as a linear combination of
Tlyeee 375

(iv) Them;,i=1,...,5, form a non-negative partition of unity.
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We conclude tha{ry, ... , 75} is a valid nodal basis for the local space of Whitney-0-
forms on the pyramidP. Here, “nodal” means that they form a set dual to the set of degrees
of freedom. We stress that the second property ensures that the local space on pyramids fits
those on tetrahedra and hexahedra; if the degrees of freedoms, that is, the function values
at the vertices of a commmon face of two elements, coincide, then overall continuity of the
finite element function across this face is guaranteed. This is the well-known compatibility
condition for O-form and{ *-conformity, respectively.

At first glance, the same procedure should succeed for the other forms, too, now using the
appropriate transformatiorg for vector proxies of I-forms given in table 2.2. For standard
Whitney-1-forms on the cub@ the nodal basis function associated with edge #7 (that is
[a4, ag] in figure 3.1) and its image under the mappgigread

0 0
Briwy)=| 0] = @Bwy)=|

We know that the compatibility condition for 1-forms boils down to the continuity of the tan-
gential components across interelement faces. For the triangular face spanned by the vertices
a3, a4, a5, which has a normal vectar = $v/2(0,1, 1), we find

t1
e
1—t2 15

(3.3) (§'6:) xn=—3V3

wheret; andt, are the local coordinates of the face chosen such(that, 2)” = (¢1,1 —

ta,t2)T ande; = (1,0,0)7 is thet;-coordinate direction. The tangential components of edge
element vectorfields on a face of a tetrahedron are linear with respect to any local Cartesian
coordinate system. Obviously, the expression from (3.3) is not linear. The bottom line is that
the mapped 1-forms cannot be matched with conventional edge elements on tetrahedra. The
same holds true for 2-forms. This demonstrates the failure of the mapping approach and calls
for a different construction on a pyramid.

4. Interpolation on simplices. Sloppily speaking a differential form of ordécan be
regarded as a mapping assigning to each smooth oriented manifold of dimémsi@al
number, the value of its integral [16]. Vice versa, once all these integrals are known, the form
is uniquely determined. This view permits us to tackle the construction of discrete differential
forms as an interpolation problem: Given the values of the integrals over only a finite number
of convex manifolds (the vertices, edges or faces of the mesh), find a simple way to express
integrals over general mani—folds through these values. Of course, this task of interpolation
has many solutions. To obtain practical finite elements, we strive to come up with a procedure
as simple as possible.

In fact, all we need to specify is a way to evaluate the integrals over simplices. Write
[x1,...,x+1] for the convex span of;,...,x;1 € R3. Orientation is induced by the
ordering of the vertices. If the integrals of a smodt#torm w over all such simplices are
known, we get from the definition of a differential form [14]

. 1
(4.2) wx)(vy,...,vy) =1 }1_1}1(1) 7 / w,
(%1, %141]
wherex; =x, x;.1 =x+tv;,fori=1,...,1, v; € R3. Recall that ari-form evaluated

at a point yields an alternatiriginear form onR3.
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We first illustrate the idea of interpolation in the case of a tetrahedral mesh, where
no complications are encountered. LBtbe a non-degenerate tetrahedron with vertices
aj,as, a3, as. We will use the term-face,! = 0,1, 2, to refer to a vertexi(= 0), an
edge (= 1) oraface[=2).

For O-forms the degrees of freedom are just the values of the associated continuous func-
tion ¢ at the vertices of . The simplest way to extend these values is linear interpolation

(4.2) b(x) = Z d(ai)Ai(x) ,

where)\; is the barycentric coordinate function of the tetrahedron associated with wgrtex
Note that, equivalently, we could have introduced Xhas the canonical basis functions for
Whitney-0-forms. Now, our goal is to find the counterparts of linear interpolation for forms
of higher ordei, [ = 1, 2, 3.

For discretd-forms the degrees of freedoms are the integrals

w,
[ajl 7aj[+1]

wherel < j; < ... < jiz1 < 4. We point out that the order of the vertices fixes an
orientation of the face, which, in turn, affects the sign of the integral. We can read (4.2) as
follows: An interior point of the simplex is represented as a weighted sum of its vertices.
The weights, in this case values of the barycentric coordinates, tell us, how to interpolate the
integrals of the O-form. Thus, the essential idea is to represent-simyplex insidel” by a
“weighted sum” of itg-faces.

In the case of 1-forms consider the arbitrdrnsimplex|x,y] , an oriented line, with
x,yeT,x=>, (x)a;,y =>,; Ai(y)a;. Then

x,y]={tx+(1—-t)y; 0<t <1}

= {Z[Mi(x) + (1 =tNi(y)ai; 0<t< 1}

%

ST XA 1—tZ)\ yai; 0<t<1

i J

ZZA y)lta; + (1 —t)a;]; 0 <t <1
Hence, taking into account orientation, we will represent

(4.9 /W—ZZA /w—z “nNE) [ e

i<

Plugging this formula into (4.1) and using that the exterior derivative of a O-form is the gra-
dient, we get

W) (v) = lim = S Gy 06+ %) = X50) = A iCx + 1) = Ai(0)] / w
i<J [a;,a;]
@4 =S NGO (x)(v) — Ay (x)dN (x) (V)] / w.

v [ai,a]



ETNA

Kent State University
etna@mcs.kent.edu

160 Whitney Elements on Pyramids

Now, take into account that the vectorfieldelonging taw is defined byw(x)(v) = (u, v),
v € R3, where(-, -) stands for the Euclidean inner product (cf. Table 2.1). It is evident from
(4.4) that for the vector proxy we get

u(x) = 3 (grad Ai(x) - A; () — grad A (x) - Ai(x) / w.

i<J [ai,a,]

Itis just the standard edge element basis functions [7]
(4.5) Bi; =grad A; - \; —grad \; - \;

that have emerged, weighted with the values of the degrees of freedom. From (4.3) we infer
thatforl <i#j<4,1<k#1<4

/ (Bris t) dI' =

[ai,ay]

{il if {i,5} = {k,1}

0 else,

as expected for basis functions.

Discrete 2-forms can be constructed in a similar fashion. In this case plane triangles
[x,y,2], x,y,z € T, in the interior of the tetrahedron have to be represented as “combina-
tions” of faces. Using barycentric coordinates, we can write

x,y,2)] = {tix+ty+1t3z;0<¢; <1, ¢+t +1t3=1}

4 0§t1§1,221,2,3
= {i’j;%_l )\7(X))\] (y))\k(z)(tlai + tgaj + f,gak), H ottty =1 } .

This suggests the formula

(4.6) /wz 3 S sgn(m e (96 ()i (2) / w
]

[%,¥Z i<j<k \ m&Perm{i,j,k} [s,87,a4]

Using (4.1), after tedious computations we arrive at a representation for the vector proxy of
w!

u(x) = Z Bijk / (u,n)dl",

i<j<k (s8]

with the basis functions for Whitney-2-forms [7]
(4.7) B =2(Nigrad \; x grad X\ + \; grad A\, x grad A; + A\x grad \; x grad )\;) .

Again, the canonical basis functions for lowest order face elements have emerged from the
construction.

5. Interpolation for the pyramid. What foils a straightforward application of the in-
terpolation idea to a pyramid is both the apparent lack of natural barycentric coordinates and
the fact that certain convex spans of vertices do not occur as edges or faces, respectively.
The first difficulty is easily overcome by resorting to the functians. .. , 75 from (3.2),
which provide a basis for Whitney-0-forms on the pyramid; From lemma 3.1(iv) we get
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x = ), m(x)a; foranyx € P. Hence, ther;, i = 1,... ,5 are a full replacement for the
barycentric coordinates. Thus, we can simply state formulas (4.3) and (4.6) witplaced
by m; and summation ranging between 1 and 5.

Then we face the second problem, since the edgesas], [a;1,a4] and the faces
[ag, a3, a5], [a1, a4, as], [a1, a2, a4], [a1, a3, a4] occur in the formula, but no degrees of free-
dom are specified on them. The idea isetgress each integral over an non-existent edge
or face by a weighted sum of degrees of freeddaserving the following ruleExpressions
for integrals over edges contained in a facefdfmay only be based on degrees of freedoms
associated with that faceThis rule is necessary to get compatibility across faces, because
only degrees of freedom belonging to a face may contribute to the tangential/normal trace of
the interpolant onto that face.

FIG. 5.1. Numbering of the “edgest; = [a1,az2], e2 = [a2,a4], e3 = [a3,a4], ea = [a1,a3],
es = [a1,a5], es = [a2,a5], e7 = [a3,a5], es = [a4,a5], e9g = [a2,a3], e10 = [a1, a4]
and “faces” f1 = [a1,a2,a5], f2 = [a1,a3,a5], f3 = [a2,a4,a5], fa = [a3,a4,a5], f5 = [a1,a3,a2],

fo = [a1,a4,a2], fr = [a1,a4,a3], fs = [a2,a4,a3], fo = [a1,a5,a4], fi0 = [a2,a3,as]

Recall that we confine ourselves to constructing Whitney-forms on the reference pyramid
only; any pyramidP of the actual mesh can be mapped oRtby a smooth transformatich :
P — P. Thenthe Whitney-forms OR arise from those of by the pullback transformations
specified in table 2.2.

Let us denote like in Figure 5.1 the edges and the faces and let the basis of the reference
pyramid bef, = [a;, a3, a4, as].

Keeping in mind the above rule, it is clear how to choose the weights for the non-existent
edges of the pyramid. They are all contained in the bottom square. Hence,

fw-ulfw+1/2fw+l/3fw+l/4fw

fw—ulfw+u2fw+u3fw+u4fw

€10

In addition, the discrete 1-form when restricted to the bottom square must agree with the
trace onto a face of a discrete 1-form on a cube. In other words, we can just take the cue from
discrete 1-forms on a square to fix the weightandy; uniquely. Expressions for Whitney-
1-forms on a square are well known and evaluation of their integrals along the diagonal yields
pi=%,i=1,2,3,4,1;, = %,i=2,4,1;, = —%,i = 1,3. Then we crank up the machine of
section 4. Using a definition a¥;; = grad m; - 7; — grad wj - m; similar to that of (4.5), we

end up with the following expressions for the canonical basis functions=1, ... , 8, for
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Whitney-1-forms on pyramids:

¥ = Y2+ %’1914 - %’1923, v¥s = Yis;
Y2 = %’1923 + P2q + %’1914, Yo = Uas;
Y5 = 3014+ 34 — 03, Y7 = Uss;
Yo = 3%u+ds+ 303, 4y = s

Computing the gradients we get the related vectorfidlesy, )7 € P):

l—2z-y 0 Y 0
71: O a72: v 773: O a74: l1-z-= 9
Ty Ty Ty Ty
1—2 1—=2 1—=2 y 1—=2
Yz Yz
i 1—2 Z+1—z
Tz Tz
Y5 = Z_l—z ) Y6 = 1— 2 ’
Y TYz Y TYz
1— 2 — _ _
SR i G S R G
Yz Yz
1—=2 1—=2
Tz Tz
7= _Z+1—z ’ T8 = 11—z
n xy TYZ xy xYz
YTT (1—2)? 1—2z (1-2)?

The problem for 2-forms is more delicate. It boils down to determining the ten weights
Kiyi=1,...,5,in

Jw = mfw+m [wt+n [wtn [w+n [w
(5.1) fo fo f1 f2 f3 fa
' Jw = kpJwtr [wthre [wtry [wtks [w.
fio fo f1 f2 f3 fa

Three different considerations guide to search for the weights:

Firstly, we point out that we need not worry about the weights of the four triangles con-
tained in the bottom square. Parallel to the above reasoning they can be fixed by examining
discrete 2-forms on the square, which are just constants. This implies

fon fom[om [ -4«

fs fe id fs fo

Secondly, as we emphasized in section 2, on behalf of basic approximation properties, the
constant forms have to be contained in the space of dis2#fetens on the reference element.
Accordingly, the weights); andx; (cf. (5.1)) for the interior faces have to be chosen such
that (5.1) is satisfied fow = const.. Switching to vector proxies, we have to ensure that
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the equations hold for the three constant vector fi¢ld$, 0)”, (0,1,0)7, and(0,0,1)7.
Straightforward calculation of the integrals yields respectively

O'le + 0'771 — 1-772 =+ 1.7]3 + O.n4 — _1;
(5.2) O-m — 1. + 0.1 + O0-m3 + 1emg = 1
—1-m + 0-m + O0-m + 1l.mg + 1-my = 0.

The same linear system of equations can be obtained for the weigl8sll, (5.2) is an un-
derdetermined linear system. Thus, we have to employ a third consideration to get additional
conditions. They are provided by the “exact sequence property” of section 2 in conjunction
with Stokes’ theorem:

The space of discrete 3-forms on the pyramid will be of dimension 1. In other words,
discrete 3-forms have to be constant. Consequently, all discrete 2-forms must have constant
exterior derivatives. Writing” for the tetrahedrofa;, as, a4, as] contained in the pyramid,

we get
vol(T") 1
/dwh, = YoI(P) /dwh = §/dwh,
P P
for any discrete 2-formy;,. By Stokes’ theorem applied to bothandT
1 1
3 /wh+/wh,+/wh+/wh,+/wh =§/dwh=
fo f1 f2 f3 fa P
:/W}1,+/Wh+/wil,+/wh7
fo

f1 f3 fe

and the last integral can be replaced by its representation from (5.1). When we plug in “test
forms” into the resulting equations, we get more linear equations for the weights. Appropriate
test forms are provided by the, hitherto unknown, basis fcxf;tnsatisfyingffi ¢; = 6ij

i,j = b,1,2,3, 4. This gives the five linear conditions

Loy + O-m 4+ 0-m2 + 0-m3 + 0-ms = 0 [for ¢y ;

O + 1-m 4+ 0-m2 + 03 + 0-m = —3  [for¢,];
(53) 0m + 0-m + 1.m + O0-mg + Oemy = 3 [for ¢s);

O-m + O-m + O-mp + Leoms + 0-mg = —3  [for¢y);

O + 0-m + 0-m2 + O0-m3 + lemy = 3 [for ¢,
These equations fix the weighis i = b, 1,2, 3,4 and they are compatible with (5.2). The
total system is overdetermined, but has the solutios 73 = —%, Ne =1y = % m =0. A

similar reasoning gives us the other weightssuch that we obtain the following expressions
for the canonical basis functiods, i = 1, 2, 3, 4, b for Whitney—2—forms on pyramids:

¢\ = - Ca=m2 - 5m0
1=T1 27'10 27'9, 2 = T2 27'10 27'97
Co=Ts+oTo+ o Co=Tita
3=T3 27'9 2710, 4= T4 27'10 27'97
¢, = 1 1 1 1
b= 27'5 276 27'7 2787



ETNA

Kent State University
etna@mcs.kent.edu

164 Whitney Elements on Pyramids

wherer; corresponds tg;, [ = 1,...,10 and they are given, for the fage = [a;, a;, ax),
by formula (4.7) deduced in the previous section, but this time wipkaying the role of:

T = 2(m; grad m; x grad m, + m; grad m; x grad m; + 7, grad m; % grad ;)

After computations we get the related vectorfielgs ¢, ) € P):

Tz 9 T
_ T —
1—=z2 1—=z
¢ = y—2+L ) Co = __Y2 )
1—=2 1—=2
z z
n Tz
x — T
1—=2 1—=z
CBZ — yz 5C4: y—f—i ) C5: Yy
1—=2 1—=z
Py P z—1

As mentioned above, the discrete 3-forms®rare just constants. So we have finally
found a complete sequence of spaces of Whitney-form3:on
WO = span{my,...,m5};
Wl = Span{71a e 778};

W2 = Span{Clv s aCS};
W3 = span{1}.

6. Properties. In the course of the construction in the previous section we took great
pains to ensure that interpolation remained local on faces of the pyramid. In addition the
weights were chosen to match the two-dimensional Whitney-forms on the faces. Evidently,
these two conditions make the patching condition hold for the new Whitney-forms, when
used on a mesh containing pyramids, tetrahedra, and bricks.

One aspect of the exact sequence property is readily confirmed: By straightforward com-
putations we get

gradm; = -y — 4 — 7
gradm = 11 — 72 — 7;
(6.1) gradms = Y1 — 3 — 7
gradmy = Y2 + 93 — 78
gradms = 5+ % t+ 7+ s
and
curly, = ¢ + (g
curly, = —¢; + (3;
curlys = (5 - Q4
curly, = (5 — (g
6.2 2
(6.2) curlvy = —¢; + (o
curlyy = —C; + i
curlyv, = ¢, — (o

curl 4

|
7S
w

|
T
'S
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We remark that the weights in the above sums are clear from Stokes’ theorem; they have
to agree with the entries of the vertex-edge and edge-face incidence matrices for a single
pyramid (cf. [9]).
To prove the second assertion of the exact sequence property, we have to rely on an
auxiliary result, the so-called “commuting diagram property”. We denot®y the space
of continuoud-forms and writeZ! the (local) interpolation operator fro®F! onto W'. It
maps an-formw onto that discreté-form that has the same integrals ovdaces ofP asw.
THEOREM 6.1 (Commuting Diagram Propertyyhe diagram

pF* . pFt 1. pF? L, pF?

Iol Ill Izl I3l
wo 4 ot 4 w2 L W
commutes.
Proof. We have to show thal{(Z'¢) = T!*1dyp, which is equivalent t@'+1d(o— Tl p) =
0, that is¢(d(¢ — Z'¢)) = 0, for all degrees of freedofy Hence, it is sufficient to prove
that, if 7 is an/—form, which makes all the degrees of freedom vanish, ¢ién) = 0, for all
degrees of freedom. But this is obvious by Stokes’ theorem. For instande;ffoms:

/deZ/TzO,

wheree are edges belonging to the fagell

We remark that the commuting diagram property is a key device in the theory of mixed
finite elements [12]. Also note that from theorem 6.1 we learn that all constants are contained
in W1, since all linear functions belong #&°.

THEOREM 6.2 (Existence of discrete potential§)ne has

Wl nker(d) =dW° W?nkerd) =dW?".

Proof. Takew in W' such thatdw = 0, so there is a continuous-form ¢ such that
w = dy. Picka := Ty € WP and use the commuting diagram property in order to obtain
da = Zdp = Tw = w. The second assertion can be established in the same way. Until
now, we referred only to the local properties, but we can follow the approach of the proof [21,
Thm. 18] to conclude the global existence of the discrete potentials for contractible domains.
O

When discrete differential forms are used in a finite element framewdrkaner prod-
ucts of basis functions and their exterior derivatives have to be evaluated in order to get the
entries of stiffness and mass matrices and load vectors. For second order variational prob-
lems, which typically occur in electromagnetism, those are obtained through integrals of the
form [ (a(x)b;, b;) dx and [ («(x)db;, db;) dx for every elemenp of the finite element
mesh. Here, stands for some nodal basis function of the global space of didefetms,
1 =0,1,2,3. The coefficient functiom(x) is to be bounded. First, note that by theorem 6.1
db; agrees with a linear combination of basis functions in the space of didcteteforms.
Secondly, the pullbacks of table 2.2 take the integrals to the reference pyramid and preserve
basis functions. Eventually, all we need to evaluate are integrals of the forms

[atmmax [ (ammdax [ (4GG 60 ax.

P P P
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wherea : P — R A : P — R33 are bounded functions. However, as some of the basis
functions onP are rational polynomial with a pole far = 1, the evaluation of the integrals
might run into difficulties. At second glance, this is not true, as a straightforward computation
confirms thatr; € L*(P), v; € L*(P), and¢; € L*(P). It turns out that the critical
monomials inz just cancel. This is illustrated by the following example:

(6.3) /w5 AP A dx =
11—z 1—-z 11—z

1 1—2 1

_ Z 2 _ Z 2 2

_/1—2 /y/m dxdydz /(1_2)2 /y /x dxdydz
0 0 0 0 0

0

1 1
/z(l — )tz — = /z(l —2)dz = L 0.00062
0

—_

(=2
Ne)

1620
0
We point out that integrals of the form (6.3) occur whenever the coefficient functipns
A(x) are replaced by their (component-wise) interpolant in the space of WHitfieyms.
Hence, the values of elementary integrals like (6.3) may be computed in advance and stored
in a table.

We start discussing the approximation properties of Whitney forms on pyramids by
noting that the local spaces on the reference pyramid contain all constants. In the case
of 0-forms even all affine - linear functions belong ¥6°(P). As a consequence, since
WY P) c L3(P), 1 = 0,1,2, we conclude from the Bramble-Hilbert-lemma (see, e.g.,
[15]) and continuity properties of the interpolation operators [2, 17] that there exist constants
co, €1, c2 > 0 such that

IN

||u—IOuHL2(P) co lulp2(py, Vu € H*(P);

(6.4) Hu — IluHLQ(P

A

1 (|u|H1(P) + ||curlu||H1(P)) , Yu € H'(curl; P);

IN

||u—IQuHL2(P) ¢o |ulgipy, Yue HY(P).
The next step involves classical affine equivalence techniques [15]. They are based on the
assumption oghape-regularityof the mesh. This condition carries the customary geometric
meaning that the ratio of the radii of the largest inscribed ball and smallest circumscribed ball
is bounded by the same constant for all elements of the mesh. In particular, for any pyramid
P we can find a diffeomorphisi® : P — P such that with := diam P, | det ®| < kyh~3,
ID®| oo 5y < k2l | Do~ < ksh uniformly with respect to all pyramids of the
mesh.

Then we use the appropriate pullback ©wfu on both sides of the estimates (6.4).
Lengthy computations, whose details are given in [26, 28], yield

o r)

) 2 ~ 2(Dy.
Hu— I u‘ L) < Coh |u|H2(P)7 Yu € H*(P);
71 1 . D).
(6.5) Hu -1 u‘ P < Cih (|u|H1(1;) + ||cur1u||H1(1;)) , Yu € H (curl; P);
~ ) L~
Hu—] u‘L2(13) < Coh ulg sy, Yue H(P).

The constant€y, C1, C- only depend oik, k2, k3 and the constants in (6.4). They are hence
independent or?, and the inequalities (6.5) can be converted into global approximation
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estimates on the entire mesh. In sum, the pyramidal Whitney-forms perfectly match the
approximation properties of their tetrahedral and hexahedral counterparts [12, 19].
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