
Electronic Transactions on Numerical Analysis.
Volume 8, 1999, pp. 21-25.
Copyright  1999, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

AN OPTIMUM ITERATION FOR THE MATRIX POLAR DECOMPOSITION �

A. A. DUBRULLEy

Abstract. It is shown that an acceleration parameter derived from the Frobenius norm makes Newton’s iteration
for the computation of the polar decomposition optimal and monotonic in norm. A simple machine-independent
stopping criterion ensues. These features are extended to Gander’s formulas for full-rank rectangular matrices.
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1. Introduction. The polar decomposition of a nonsingular matrixA 2 Rn�n is defined
by

A =WM; W;M 2 Rn�n;

(
W TW = I;

M =MT ; xTMx > 0 8 x 6= 0:

In [3], Higham describes a simple algorithm for the iterative computation ofW based on
Newton’s method applied to the identityW TW = I ,

W (0) = A;

W (k+1) =
1
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�
; k = 1; 2; : : : ;

W =W (1);

where
(k) is an acceleration parameter. The iteration preserves the singular vectors of the
iterate, and transforms the singular valuesf�(k)i gni=1 of W (k) according to
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For appropriate values of
(k), the singular values converge to unity from above after the first
iteration. The optimum setting of
(k) to



(k)
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=
�
�
(k)
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(k)
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�
�1=2

minimizes a bound on�(k)max = kW (k+1)k2 and produces monotonic convergence for the`2
norm of the iterates.

Since it is not practical to computè2 norms, software implementations must resort to
approximations of
(k)

2
. Higham’s substitute,



(k)
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�k[W (k)]�1k1k[W (k)]�1k1
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�1=4
;(1.2)

minimizes the product of the bounds
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but does not guarantee monotonic convergence of the productkW (k)k1kW (k)k1. This itera-
tion generally delivers an IEEE double-precision solution in about ten or fewer steps with the
stopping criterion

kW (k+1) �W (k)k1 � � kW (k)k1;(1.3)

where� is a constant of the order of machine precision. After convergence to the numerical
limit ~W , the other factor of the decomposition is computed as

~M =
1

2

�
~W TA+AT ~W

�
:

Generalizations of this algorithm to rectangular and rank-deficient matrices and modifi-
cations for performance enhancement are discussed in [1] and [4].

The approximation (1.2) of the optimal acceleration parameter does not substantially af-
fect convergence in practice, but it does not preserve norm monotonicity, a feature especially
interesting for iteration control in software implementations. We show next that an alternate
choice for
(k) is optimal and produces monotonic convergence in the Frobenius norm.

2. Acceleration in the Frobenius norm. In [5], Kenney and Laub report good experi-
mental results from the replacement of


(k)
2

by



(k)
F =

�k[W (k)]�1kF
kW (k)kF

�1=2

:(2.1)

As proved below, it turns out that the corresponding (Frobenius) iteration is optimal with
respect to the associated norm and converges monotonically as fast as the true`2 iteration.

We first consider optimality. By squaring equation (1.1) and summing overi we get

kW (k+1)k2F =
1

4

�
2n+ 
(k)2 kW (k)k2F +

1


(k)2
k[W (k)]�1k2F

�
:(2.2)

It is easily verified that
(k)F minimizeskW (k+1)kF such that

kW (k+1)k2F =
1

2

�
n+ kW (k)kF k[W (k)]�1kF

�
; kW (k+1)kF � kW (k)kF :(2.3)

Monotonicity derives from the first of the above formulas because the singular values of
W (k) are not less than unity fork � 1, andk[W (k)]�1kF � p

n � kW (k)kF . Hence, the
`2 and Frobenius iterations are equivalent in the sense that they are optimal contractions for
their associated norms.

To compare rates of convergence, we consider the Frobenius and`2 iterates of a matrix
with singular values not less than unity (this is the case after the first iteration in both meth-
ods). By the definition of the acceleration parameter, the Frobenius iterate is bounded above
in the Frobenius norm by thè2 iterate, and therefore converges as fast.

The main advantage of the Frobenius acceleration resides in the low-cost computability
of the norm, which can be used for efficient and precise iteration control. Monotonic con-
vergence prescribes that the computation should end when the Frobenius norm of the iterate
ceases to decrease, that is, when

fl"
�
kW (k+1)kF

�
� fl"

�
kW (k)kF

�
; k > 1;(2.4)
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function w=polar(a)
%

% Initialization:
w=a;
limit=(1+eps)*sqrt(size(a,2));
a=inv(w’);
g=sqrt(norm(a,’fro’)/norm(w,’fro’));
w=0.5*(g*w+(1/g)*a);
f=norm(w,’fro’);
pf=inf;
% Iteration:
while (f>limit) & (f<pf)

pf=f;
a=inv(w’);
g=sqrt(norm(a,’fro’)/f);
w=0.5*(g*w+(1/g)*a);
f=norm(w,’fro’);

end
return

FIG. 2.1. Iterative computation of the orthogonal factor of the polar decomposition with acceleration in the
Frobenius norm.

where fl"(:) is floating-point representation in machine precision". A backup test,

fl"
�
kW (k+1)kF

�
� (1 + ")

p
n; k � 0;

sharpens control and may save one iteration. Criterion (2.4) is preferable to the negligibility
condition (1.3) in two respects: it is machine independent, and it does away with the com-
putation ofkW (k+1) �W (k)k1, as onlykW (k+1)kF , a byproduct of the iteration, is needed.
The MATLAB implementation of the computation of~W is displayed in Figure 2.1. The
initialization step (first iteration) takes the singular values to the interval[1;1[ where the
monotonicity and backup tests apply. The inversion ofW (k) dominates the computation, and
little can be done to reduce this cost, short of using approximations discussed in [4] that are
not likely to preserve essential properties of the iteration.

The algorithm is self-correcting in the sense that the norm minimization automatically
takes into account the rounding errors inherent in each iterate. After the first iteration, the
norm reduction of the iterates outweighs the forward bound of the rounding errors, and mono-
tonicity is maintained. Self-correction would not take place if we were using the economical
formula (2.3) to evaluatekW (k+1)kF , with the possibility of a premature termination of the
iteration. The effects of rounding errors dwindle in the course of the computation because
the Frobenius condition number�F (W (k)) monotonically decreases at the same rate as the
norm, as shown by the following identity derived from equation (2.3):

�F (W
(k)) = 2 (kW (k+1)kF +

p
n) (kW (k+1)kF �

p
n):

Numerical experiments comparing Higham’s and Frobenius accelerations were performed for
a wide variety of matrices with assigned singular values, including those cited in [3] and [5].
With the setting� = n", the former was generally less economical by one step, because the
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distance between two successive iterates in test (1.3) substantially overestimates the distance
to the limit. Both algorithms delivered results accurate to machine precision as measured by
kI � ~W T ~Wk andk ~W TA�AT ~Wk=k ~W TAk.

3. Application to full-rank rectangular matrices. The polar decomposition of a full-
rank rectangular matrixA 2 Rm�n, is defined by

A =

(
WM; W 2 Rm�n; W TW = I; M 2 Rn�n; m > n;

MW; W 2 Rm�n; WW T = I; M 2 Rm�m; m < n:
:

Since each of these definitions derives from the other by substitution ofAT for A, we shall
restrict our discussion to the casem > n.

Gander [1] generalizes Newton’s iteration to full-rank rectangular matrices inRm�n as
follows:

W (k+1) =
1

2
W (k)

�

(k)I +

1


(k)

�
W (k)TW (k)

�
�1
�
; m > n:(3.1)

A singular-value factorization of the iterate,

W (k) = U (k)�(k)V (k)T ; U (k) 2 Rm�n; �(k); V (k) 2 Rn�n;

yields the same singular-value relation (1.1) as in the casem = n. It follows that all deriva-
tions concerning the Frobenius acceleration also apply to Gander’s formulas. Squaring of
equation (1.1) and summation overi produce the expression ofkW (k+1)k2F to be minimized
by 
(k), but sinceW (k) does not have an inverse, the identity

nX
i=1

1

�2i
= kW (k)(W (k)TW (k))�1k2F

provides a substitute forkW (k)�1k2F in equation (2.2). The optimal value of the acceleration
parameter ensues:



(k)
F =

�kW (k)(W (k)TW (k))�1kF
kW (k)kF

�1=2

:

For efficiency in algorithm implementations, this expression suggests the modification of the
iteration formula (3.1) to

W (k+1) =
1

2

�

(k)W (k) +

1


(k)
W (k)

�
W (k)TW (k)

�
�1
�
; m > n:

Note that Gander’s approach requires the inversion of a matrix whose condition number
is the square of that ofW (k), which could be numerically harmful in the initial iterations.
An alternate approach avoids this drawback by combining a QR factorization and the polar
decomposition of the triangular factor, as outlined below:

A = QR

R = 
M

)
) W = Q
; Q 2 Rm�n; QTQ = I:
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4. Conclusion. The properties of the Frobenius acceleration uncovered here re-establish
the optimality of Newton’s iteration with̀2 acceleration for a norm computable at low cost.
These properties allow for portable and efficient software implementations, where mono-
tonicity advantageously replaces negligibility for precise iteration control.
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