
Electronic Transactions on Numerical Analysis.
Volume 8, 1999, pp. 26-35.
Copyright 1997, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

PRECONDITIONERS FOR LEAST SQUARES PROBLEMS BY LU
FACTORIZATION �

A. BJÖRCKy AND J. Y. YUANz

Abstract. Iterative methods are often suitable for solving least-squares problemsminkAx � bk2, whereA 2
Rm�n is large and sparse. The use of the conjugate gradient method with a nonsingular square submatrixA1 2
Rn�n of A as preconditioner was first suggested by L¨auchli in 1961. This conjugate gradient method has recently
been extended by Yuan to generalized least-squares problems.

In this paper we consider the problem of finding a suitable submatrixA1 and its LU factorization for a sparse
rectangular matrixA. We give three algorithms based on the sparse LU factorization algorithm by Gilbert and
Peierls.

Numerical results are given, which indicate that our preconditioners can be effective.

Key words. Linear least squares, preconditioner, conjugate gradient method, LU factorization.

AMS subject classifications.65F10, 65F20.

1. Introduction. Consider the linear least-squares problem

min
x2Rn

kAx� bk2; (A 2 Rm�n; b 2 Rm; m � n)(1.1)

wherek � k2 denotes the Euclidean vector norm. For large scale sparse problems iterative
solution methods are often preferable to direct methods. To improve the rate of convergence
of an iterative method it can be applied to the preconditioned problem

min
y2Rn

kAS�1y � bk2; y = Sx;(1.2)

where the nonsingular matrixS 2 Rn�n is a preconditioner.
Here we will consider a class of preconditioners based on a partitioning ofA,

PA =

�
A1

A2

�
;(1.3)

whereP is a permutation matrix andA1 2 Rn�n a nonsingular submatrix. Such precondi-
tioners first seem to have been suggested by L¨auchli [11], and later investigated by Chen [4].
For applications see also [6, 7, 8, 12, 13, 15], and the survey in [2]. The detailed construction
of preconditioners of this form for sparse problems seems to have been little studied in the
literature.

A powerful class of iterative methods is obtained by applying the conjugate gradient
method to the normal equations of the preconditioned problem (1.2),

S�TATAS�1y = S�TAT b:(1.4)

Note that for numerical stability care is needed in the implementation of this method. The
stability in finite precision of the conjugate gradient and Lanczos methods for least squares
problems is discussed in [3].

� Received November 30, 1997. Accepted for publication December 11, 1998. Recommended by D. Calvetti
December 11, 1998. The work of the second author was partially supported by CNPq, Brazil.

y Department of Mathematics, Link¨oping University, S-581 83, Link¨oping, Sweden (akbjo@math.liu.se)
z Department of Mathematics, Universidade Federal do Paran´a, Curitiba, Paran´a, Brazil

(jin@gauss.mat.ufpr.br)

26

ETNA
Kent State University
etna@mcs.kent.edu

A. Björck and J. Y. Yuan 27

Yuan [18] recently presented block iterative methods, which useA1 as preconditioner,
for the generalized least-squares problem

min
x2Rn

(Ax � b)TW�1
(Ax� b);(1.5)

whereW is symmetric and positive definite. The solution to this problem satisfies the normal
equationsATW�1Ax = ATW�1b. Introducing the scaled residual vectorr = W�1(b�Ax)
these can be written in augmented form as

�
Wr +Ax = b

AT r = 0
:(1.6)

An outline of the paper is as follows. In Section 2 we give two basic conjugate gradient
methods usingA1 in (1.3) as preconditioner, and give bounds for the rate of convergence.
We also show how one of these can be adapted to solve the generalized least squares prob-
lem (1.5). An algorithm for selectingn linearly independent rows fromA to formA1, and
performing a sparse LU factorization ofA1 is outlined in Section 3. In order to save multipli-
cation and storage, we use a modification of the algorithm of Gilbert and Peierls [9]. In order
to ensure the numerical stability of this algorithm, we consider using partial pivoting.

In Section 4 the LU factorization algorithms are tested on some sparse rectangular matri-
ces from the Harwell-Boeing sparse matrix collection [5]. Numerical comparisons between
the conjugate gradient method and the preconditioned conjugate gradient method with the
preconditionerA1 given by our algorithms are also given for the generalized least squares
problem (5) whereA andW are Hilbert matrices. From the comparison results, the precon-
ditioned conjugate gradient method is much better than the conjugate gradient method.

2. CG methods preconditioned by LU factorizations. Iterative methods usingA1 in
(1.3) as preconditioner often have very good convergence properties. However, the row per-
mutation matrixP must be chosen so that then rows ofA1 are linearly independent and
AA�11 is well conditioned.

In this section we assume for simplicity that the permutationP in (1.3) has been carried
out in advance, and that we have computed the matrixC = A2A

�1
1 2 R(m�n)�n, where

AA�11 =

�
In

A2A
�1
1

�
=

�
I

C

�
:(2.1)

Then the preconditioned problem can be written in the form

min
y

�
In
C

�
y �

�
b1
b2

� ; y = A1x; C = A2A
�1
1 ;(2.2)

whereb has been partitioned conformingly withA. The normal equations for this problem
are

(In + CTC)y = b1 + CT
2 b2;(2.3)

andx can then be retrieved fromA1x = y. Läuchli [11] proposed to apply the conjugate
gradient algorithm to this system of equations. This leads to the following algorithm:

ETNA
Kent State University
etna@mcs.kent.edu

28 Preconditions for Least Squares Problems

LU PRECONDITIONEDCGLSI. Set

r
(0)
1 = b1; r

(0)
2 = b2; p(0) = s(0) = b1 + CT b2; 0 = ks(0)k22;

and fork = 0; 1; 2; : : : while k > tol compute

q(k) = Cp(k);

�k = k=(kp(k)k22 + kq(k)k22);
r
(k+1)
1 = r

(k)
1 � �kp

(k);

r
(k+1)
2 = r

(k)
2 � �kq

(k);

s(k+1) = r
(k+1)
1 + CT r

(k+1)
2 ;

k+1 = ks(k+1)k22;
�k = k+1=k;

p(k+1) = s(k+1) + �kp
(k):

Solvex fromA1x = b1 � r1.

It is well known (see Bj¨orck [2, Chap. 7.4]) that for the conjugate gradient method
applied to the preconditioned normal equations (1.4) the error is reduced according to

kA(x� xk)k2 � 2

�p
�� 1p
�+ 1

�k
kA(x� x0)k2

wherex0 is the initial solution and� = �(S�TATAS�1) the condition number of the pre-
conditioned normal matrix.

The convergence of the conjugate gradient method applied to (2.3) has been studied by
Freund [8]. The eigenvalues of(In + CTC) are

�i = 1 + �2i (C); i = 1; : : : ; n;(2.4)

where�i(C) are the singular values ofC. It follows that

�(AA�11) =

p
1 + �21(C)p
1 + �2n(C)

�
p
1 + �2;

where

� = �1(C) = kCk2 = kA2A
�1
1 k2 � �max(A2)

�min(A1)
:(2.5)

Hence, the standard error bounds based on Chebyshev polynomials for this CG method is
(see Freund [8])

kA(x� xk)k2
kA(x� x0)k2 < 2

�2k

1 + �4k
� =

�

1 +
p
1 + �2

:(2.6)

To get fast convergence we want to have� small. According to (2.5) this is achieved if
the blocking (1.3) can be chosen so thatkA2k2 is small andA1 well-conditioned. SinceC
has at mostp = minfm� n; ng distinct singular values, the matrix(I + CTC) will have at
mostminfp + 1; ng distinct eigenvalues. Hence, in exact arithmetic, CGLSI will converge

ETNA
Kent State University
etna@mcs.kent.edu

A. Björck and J. Y. Yuan 29

in at mostminfp+ 1; ng steps. Therefore, in particular, we can expect rapid convergence if
p� n.

An alternative is obtained by eliminatingr1 from the relations

r1 = b1 � y = �CT r2; r2 = b2 � Cy:

Then we get a system of dimension(m� n)� (m� n) for r2

(CCT
+ Im�n)r2 = b2 � Cb1;(2.7)

andx can be retrieved from

A1x = b1 + CT r2:(2.8)

The system (2.7) can be interpreted as the normal equations for

min
r2

��CT

Im�n

�
r2 �

�
b1
b2

� :(2.9)

If (m � n) is small the system (2.7) can be cheaply solved by Cholesky factorization,
A QR decomposition of the matrix(�C Im�n)

T of sizen � (m � n) also can be used to
solve forr2. Note that the special form of this matrix allows for further economizing in the
QR decomposition, see [2, Sec. 2.7.2].

The conjugate gradient method can be adapted to solve the system (2.7). The resulting
algorithm is as follows:

LU PRECONDITIONEDCGLSII. Set

v
(0)
1 = b1; v

(0)
2 = b2; p(0) = s(0) = b2 � Cb1; 0 = ks(0)k22;

and fork = 0; 1; 2; : : : while k > tol compute

q(k) = �CT p(k);

�k = k=(kp(k)k22 + kq(k)k22);
v
(k+1)
1 = v

(k)
1 � �kq

(k);

v
(k+1)
2 = v

(k)
2 � �kp

(k);

s(k+1) = v
(k+1)
2 � Cv

(k+1)
1 ;

k+1 = ks(k+1)k22;
�k = k+1=k;

p(k+1) = s(k+1) + �kp
(k):

SolveA1x = b1 � CT (b2 � v2) for x.

Algorithm CGLSII requires about the same storage and work as CGLSI. Since the eigen-
values of(I + CCT) are the same as those of(I + CTC) the convergence rate will also be
the same. Yuan [18] has shown that an advantage of CGLSII is that it can more easily be
adapted to solve generalized least squares problems. For the generalized problem (1.5) the
normal equations (2.3) become

(In CT)W�1

�
In
�C

�
y = (In CT)W�1b; A1x = y:(2.10)

ETNA
Kent State University
etna@mcs.kent.edu

30 Preconditions for Least Squares Problems

On the other hand the equations (2.7) and (2.8) generalize to

(�C Im�n)W

��CT

Im�n

�
r2 = b2 � Cb1;(2.11)

A1x = b1 � (In 0)W

� �CT

Im�n

�
r2:(2.12)

Here the symmetric system (2.11) can be solved by the conjugate gradient method without
the need of inverting or factorizing the full covariance matrixW . Yuan shows in [18] that the
standard error bounds based on Chebyshev polynomials for this CG method is

kA(x� xk)kW�1

kA(x� x0)kW�1

< 2
�2k

1 + �4k
; �2 =

(1 + �2)� � 1

(1 +
p
(1 + �2)�)2

:(2.13)

where� = �(W) is the spectral condition number ofW , and

kxkW�1 = (xTW�1x)1=2:

(For� = 1 this estimate reduces to (2.6).)
THEOREM 2.1. Let�n andn be smallest eigenvalues ofATA andAT

1 A1 respectively.
Then

�(I + CTC) � �(ATA)
�n

n
:

Proof. Let�1 be the largest eigenvalue ofATA,A1x1 eigenvector ofI+CTC associated
with �1, the largest eigenvalue ofI + CTC, i.e., �1 = maxkxk2=1 x

TATAx and�1 =

maxkxk2=1 x
T (I + CTC)x. Then,

�1 � xT1 A
T
1 (I + CTC)A1x1 = �1x

T
1 A

T
1 A1x1 � �1n:

Assume that�n = minkxk2=1 x
T (I + CTC)x is the smallest eigenvalue ofI+CTC. Hence,

�n � 1. It follows that

�(I + CTC) � �1 � �1

n
= �(ATA)

�n

n
:

REMARK 1. If x1 is not eigenvalue ofATA associated with�1, then

�(I + CTC) < �(ATA)
�n

n
:

Thus we must choose the preconditionerA1 as well as possible such thatn � �n to guar-
antee�(I + CTC) � �(ATA).

3. LU-decomposition algorithms. Läuchli [11] used Gauss-Jordan elimination to ex-
plicitly compute the matrixC = A2A

�1
1 in (2.1). Then at each iteration step in the precon-

ditioned conjugate gradient methods matrix vector products withC andCT are computed.
This approach is suitable only when(m� n) is not too large compared ton.

WhenA has many more rows than columns it is preferable to factorize justA1 rather
thanA and not form the matrixC = A2A

�1
1 explicitly. If C is not formed, we need to

ETNA
Kent State University
etna@mcs.kent.edu

A. Björck and J. Y. Yuan 31

perform in each iterative step two matrix vector multiplications withA2 andAT
2 , and solve

two linear systems of the form

A1y = c and AT
1 z = d:(3.1)

To do this efficiently we need to compute the LU factorization ofA1. We could compute the
LU factorization of the complete matrixA and then extract the LU factorization ofA. How-
ever, this would require extra computation and storage. Further we would need an auxiliary
array to save a copy ofA2.

We will use the sparse LU-decomposition algorithm of Gilbert and Peierls [9], modified
so that we get a LU decomposition ofA1 only. This algorithm performs Gaussian elimination
in column-wise order, and breaks the computation of each column into a symbolic and a
numerical stage. Thejth column ofL andU are computed by solving a sparse triangular
system. This approach allows partial pivoting by rows to be performed in time proportional
to arithmetic operations.

The algorithm of Gilbert and Peierls can be modified to work for ann�m matrix with
m � n. For our least squares problems the matrixA is m � n, with m � n. Therefore
we apply Gilbert and Peierls’ algorithm to the transposed matrixAT to obtain a factorization
A1 = UTLT of ann� n nonsingular submatrix. To reduce fill-in we first sort the rows ofA

by increasing nonzero count.
We use similar notations as Gilbert and Peierls in [3] for description of the basic algo-

rithm. Thusj is the index of the row ofL andU being computed.aj = (aj1; : : : ; aj;j�1)
T ,

a0j = (ajj ; : : : ; ajn)
T ;

Lj =

0
@

l11 : : : 0
...

...
...

lj�1;1 : : : lj�1;j�1

1
A L0j =

0
B@

lj1 : : : lj�1;j
...

...
...

l1;n : : : lj�1;n

1
CA ;

and l0j = (ljj ; : : : ; lnj)
T , uj = (u1j ; : : : ; uj�1;j)

T where ljj = 1. Also we usec0j =

(cjj ; : : : ; cnj)
T as an intermediate result.

In the basic algorithm SP1, ifjuiij < �, where� is small tolerance, we consider theith
column inAT as linearly dependent on the firsti � 1 columns. Such a column is put out of
all further computations in the factorization, and interchanged with a later column. We repeat
this process untili = n or more thanm � n linearly dependent columns have been found.
The output of Algorithm SP1 isA1 = UTLT whereL is unit lower triangular.

ALGORITHM SP1

1. Set initial valuesl = m, index(i) = i, i = 1; : : : ;m;
2. For j = 1, ton do

Compute columnj ofU andL;

2.1 solveLjuj = aj for uj ; (aTj is thejth row inA)

2.2cj = a0j � L0juj ;

2.3 if jcjj j � � then go to 2.5

else

interchange thejth column and thelth column ofAT ,

and update index andl;

2.4 if l � j thenrank(A) < n and stop else goto 2.1

2.5ujj = cjj ; l0j = cj=ujj .

ETNA
Kent State University
etna@mcs.kent.edu

32 Preconditions for Least Squares Problems

The upper triangular solve in step 2.1 proceeds as follows (see [9]: for eachk with
ukj 6= 0 (in the topological order determined in the previous step) do

uj = uj � ukj (l1k : : : lj�1;k)
T
:

Algorithm SP1 computes elements in the LU-decomposition ofA1 in a column-wise
fashion. Now we shall consider the LU decomposition ofA1 asUTLT whereU is unit upper
triangular.

ALGORITHM SP2
1. Set initial valuesl = m, index(i) = i, i = 1; : : : ;m;
2. For j = 1; : : : ; n do

2.1 solveUjlj = aj for lj ;

2.2cj = a0j � U 0
j lj ;

2.3 if jcjj j � � then go to 2.5

else

interchange thejth row and thelth row ofA,

and update index andl;

2.4 if l � j thenrank(A) < n and stop else goto 2.1

2.5 ljj = cjj ; u0j = cj=ljj :

2.6 l = m

Algorithm SP3 performs partial pivoting, and is obtained by making the following changes
in Algorithm SP2:

ALGORITHM SP3
Before step 2.3 insert

2.3ak = argmaxj�i�n jcjij ands1 = cjk;
Change 2.6 to:

2.6 if k = j goto 2.7 else do

exchangecjj , index1(j) andU 0
ji; (i = 1; : : : ; j � 1)

respectively withcjk, index1(k) andU 0
jk; (i = 1; : : : ; j � 1).

2.7 ljj = cjj

u0j = cj=ljj :

We finally mention an alternative approach suggested by Saunders [16] is to use Gaussian
elimination with row interchanges to compute a stable, sparse factorizationPA = LU , where
L 2 Rm�n unit lower trapezoidal,U upper triangular, and useU as preconditioner. The
rational for this choice is that any ill-conditioning inA is usually reflected inU , andL tends
to be well conditioned. A preliminary pass through the rows ofA can be made to select a
triangular subset with maximal diagonal elements. The matrixL is not saved, and subsequent
use of the operatorAU�1 involves back-substitution withU and multiplication withA. This
approach has the advantage that often there is very little fill inU , and henceU is likely to
contain less non-zeros thanA.

4. Numerical experiments. All programs were written in FORTRAN 77 and executed
in double precision. The computations were performed on a SUN Workstation running UNIX
at Information Laboratory, the Federal University of Paran´a, Curitiba, Brazil.

The three LU factorization algorithms in Section 3 were tested on some sparse rectan-
gular matrices from the Harwell-Boeing sparse matrix collection by Duff, Grimes and Lewis

ETNA
Kent State University
etna@mcs.kent.edu

A. Björck and J. Y. Yuan 33

[5]. The numerical results are given in Tables 1–3 for the case� = 0. The CPU time is the
time in seconds for the factorization andm andn are the numbers of rows and columns of
sparse matrixA. NZ is the number of nonzero elements in matrixA andNZ2 the number of
nonzero elements in the submatrixA2. NZL andNZU are the numbers of nonzero elements
of the triangular factorsL andU in the LU decomposition ofA1.

We also did numerical comparisons between the conjugate gradient method and the pre-
conditioned conjugate gradient method with the preconditionerA1 selected by algorithms in
the previous section for the generalized least squares problems (GLSP) (5) whereA and
W are Hilbert matrices andb generated by random number, with convergence tolerance
� = 0:0000001. The comparison results were given in Table 4.

Algorithm SP1 gives almost the same number of nonzero elements in the LU decompo-
sition as SP2, but needs much more CPU time. Algorithms SP2 and SP3 are faster than SP1
by a factor of 5–10, but have more fill-in. We have also considered� 6= 0, e.g.,� = 10�10 and
10�8. All three algorithms worked for the matrices tested, and gave an LU decomposition of
a nonsingular submatrixA1. All results have shown that for all algorithms the bigger� we
give, the less CPU time is used and the more nonzero elements in the LU decomposition of
A1 result.

It follows from Table 4 that the preconditioned conjugate gradient method with selected
preconditionerA1 is much better than the conjugate gradient method in the number of itera-
tions, CPU time and also precision of solutions.

REFERENCES

[1] J. L. BARLOW, N. K. NICHOLS AND R. J. PLEMMONS, Iterative methods for equality-constrained least
squares problems, SIAM J. Sci. Statist. Comput., 9 (1988), 892–906.

[2] A. B JÖRCK, Numerical Methods for Least Squares Problems, in Frontiers in Applied Mathematics, SIAM,
1996.

[3] A. B JÖRCK, T. ELFVING AND Z. STRAKOS̆, Stability of conjugate gradient and Lanczos methods for
linear least squares problems, SIAM. J. Matrix Anal. Appl., 19 (1998), 720–736.

[4] Y. T. CHEN, Iterative methods for linear least squares problems, Technical Report CS-75-04, University
of Waterloo, Canada, 1975.

[5] I. S. DUFF, R. G. GRIMES AND J. G. LEWIS, User’s guide for Harwell-Boeing sparse matrix test prob-
lems collection, Technical Report RAL-92-086, Rutherford Appleton Laboratory, 1992.

[6] D. J. EVANS AND C. LI, Numerical aspects of the generalized cg-method applied to least squares prob-
lems, Computing, 41 (1989), 171–178.

[7] , The theoretical aspects of the gcg-method applied to least-squares problems, Inter. J. Comput.
Math., 35 (1990), 207–229.

[8] R. FREUND, A note on two block SOR methods for sparse least squares problems, Linear Algebra Appl.,
88/89 (1987), 211–221.

[9] J. R. GILBERT AND T. PEIERLS, Sparse partial pivoting in time proportional to arithmetic operations,
SIAM J. Sci. Statist. Comput., 9 (1988), 862–874.

[10] A. JENNINGS AND M. A. A JIZ, Incomplete methods for solvingATAx = b, SIAM J. Sci. Statist. Com-
put., 5 (1984), 978–987.

[11] P. LÄUCHLI , Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, Numer. Math., 3 (1961),
226–240.

[12] T. L. MARKHAM , M. NEUMANN AND R. J. PLEMMONS, Convergence of a direct-iterative method for
large-scale least-squares problems, Linear Algebra Appl., 69 (1985), 155–167.

[13] W. NIETHAMMER, J. DE PILLIS AND R. S. VARGA, Convergence of block iterative methods applied to
sparse least-squares problems, Linear Algebra Appl., 58 (1984), 327–341.

[14] C. C. PAIGE, Fast numerically stable computations for generalized least squares problems, SIAM J. Nu-
mer. Anal., 16 (1979), 165–171.

[15] E. P. PAPADOPOULOU, Y. G. SARIDAKIS AND T. S. PAPATHEODOROU,Block AOR iterative schemes for
large-scale least-squares problems, SIAM J. Numer. Anal., 26 (1989), 637–660.

[16] M. A. SAUNDERS,Sparse least squares by conjugate gradients: a comparison of preconditioning methods,
in Proceedings of Computer Science and Statistics: Twelfth Annual Conference on the Interface,
Waterloo, Canada, 1979.

ETNA
Kent State University
etna@mcs.kent.edu

34 Preconditions for Least Squares Problems

[17] J.-Y. YUAN, The convergence of the 2-block SAOR method for the least-squares problem, Appl. Numer.
Math., 11 (1993), 429–441.

[18] , Iterative Methods for the Generalized Least-Squares Problem, Ph.D. thesis, Instituto de
Matemática Pura e Aplicada, Rio de Janeiro, Brazil, 1993.

[19] , Numerical methods for generalized least-squares problems, J. Comp. Appl. Math., 66 (1996),
571–584.

[20] J.-Y. YUAN AND A.-N. IUSEM, Preconditioned conjugate gradient method for generalized least squares
problems, J. Comp. Appl. Math., 71 (1996), 287–297.

ETNA
Kent State University
etna@mcs.kent.edu

A. Björck and J. Y. Yuan 35

TABLE 4.1
Algorithm SP1 with� = 0

Matrix m n NA NA2 NAL NAU CPU

ILLC1033 1033 320 4732 3254 1100 1774 8.96875

WELL1033 1033 320 4732 3257 1243 1752 8.17578

ILLC1850 1850 712 8758 5378 3603 4927 144.891

WELL1850 1850 712 8758 5388 4152 5301 153.930

TABLE 4.2
Algorithm SP2 with� = 0

Matrix m n NA NA2 NAL NAU CPU

ILLC1033 1033 320 4732 3214 1623 654 1.82031

WELL1033 1033 320 4732 3214 1802 844 1.02344

ILLC1850 1850 712 8758 5377 8652 2834 25.9297

WELL1850 1850 712 8758 5377 9073 2627 11.6280

TABLE 4.3
Algorithm SP3 with� = 0

Matrix m n NA NA2 NAL NAU CPU

ILLC1033 1033 320 4732 3253 2865 2450 1.92188

WELL1033 1033 320 4732 3256 3100 2976 1.80078

ILLC1850 1850 712 8758 5379 13054 12579 11.4609

WELL1850 1850 712 8758 5388 13058 12581 12.7108

TABLE 4.4
Comparison between CG and PCG for GLSP

CG PCG

m n IT CPU e IT CPU e

9 8 21 0.18662 0.2794D-08 1 0.0055 0.1434D-07

9 7 14 0.19877 0.6519D-08 4 0.0055 0.5560D-07

9 6 10 0.22156 0.6519D-08 7 0.0396 0.3817D-07

9 5 7 0.15960 0.3725D-08 1 0.0055 0.1368D-06

8 8 20 0.21428 0.1397D-07 0 0.0055 0.1760D-08

8 7 14 0.22700 0.2352D-07 1 0.0055 0.1499D-07

8 6 11 0.14108 0.6985D-09 4 0.0391 0.7903D-08

8 5 7 0.21004 0.9313D-08 6 0.0395 0.7047D-08

