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PRECONDITIONERS FOR LEAST SQUARES PROBLEMS BY LU
FACTORIZATION *

A. BJORCK! AND J. Y. YUAN#

Abstract. Iterative methods are often suitable for solving least-squares problem§Az — b||2, whereA €
R™X" s large and sparse. The use of the conjugate gradient method with a nonsingular square sdhmatrix
R™*™ of A as preconditioner was first suggested kawuthli in 1961. This conjugate gradient method has recently
been extended by Yuan to generalized least-squares problems.

In this paper we consider the problem of finding a suitable submatyiand its LU factorization for a sparse
rectangular matrixA. We give three algorithms based on the sparse LU factorization algorithm by Gilbert and
Peierls.

Numerical results are given, which indicate that our preconditioners can be effective.
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1. Introduction. Consider the linear least-squares problem

(1.2) m%{l [|[Az — bll2, (A€R™™, beR™, m>n)
zeR™

where|| - |2 denotes the Euclidean vector norm. For large scale sparse problems iterative
solution methods are often preferable to direct methods. To improve the rate of convergence
of an iterative method it can be applied to the preconditioned problem

(1.2) min [|[AS "'y —bll2, y= Su,
yeR”

where the nonsingular matrix € R™*™ is a preconditioner.
Here we will consider a class of preconditioners based on a partitionidg of

(1.3) PA= (j;) ,

whereP is a permutation matrix and; € R™*™ a nonsingular submatrix. Such precondi-
tioners first seem to have been suggestedauychli [11], and later investigated by Chen [4].
For applications see also [6, 7, 8, 12, 13, 15], and the survey in [2]. The detailed construction
of preconditioners of this form for sparse problems seems to have been little studied in the
literature.

A powerful class of iterative methods is obtained by applying the conjugate gradient
method to the normal equations of the preconditioned problem (1.2),

(1.4) S™TATAS 1y =8"TATh.

Note that for numerical stability care is needed in the implementation of this method. The
stability in finite precision of the conjugate gradient and Lanczos methods for least squares
problems is discussed in [3].
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Yuan [18] recently presented block iterative methods, whichAis@s preconditioner,
for the generalized least-squares problem

: Ty -1 _
(1.5) min (Az —b)" W (Az — b),

wherelV is symmetric and positive definite. The solution to this problem satisfies the normal
equationsi?W 1 Az = ATW ~1b. Introducing the scaled residual vector W 1 (b— Ax)
these can be written in augmented form as

Wr+ Az =0b
(1.6) { ATy —0

An outline of the paper is as follows. In Section 2 we give two basic conjugate gradient
methods usingd; in (1.3) as preconditioner, and give bounds for the rate of convergence.
We also show how one of these can be adapted to solve the generalized least squares prob-
lem (1.5). An algorithm for selecting linearly independent rows from to form 4,, and
performing a sparse LU factorization df is outlined in Section 3. In order to save multipli-
cation and storage, we use a modification of the algorithm of Gilbert and Peierls [9]. In order
to ensure the numerical stability of this algorithm, we consider using partial pivoting.

In Section 4 the LU factorization algorithms are tested on some sparse rectangular matri-
ces from the Harwell-Boeing sparse matrix collection [5]. Numerical comparisons between
the conjugate gradient method and the preconditioned conjugate gradient method with the
preconditionerd; given by our algorithms are also given for the generalized least squares
problem (5) whered andW are Hilbert matrices. From the comparison results, the precon-
ditioned conjugate gradient method is much better than the conjugate gradient method.

2. CG methods preconditioned by LU factorizations. Iterative methods using, in
(1.3) as preconditioner often have very good convergence properties. However, the row per-
mutation matrixP? must be chosen so that therows of A, are linearly independent and
AAT" is well conditioned.

In this section we assume for simplicity that the permutaftoin (1.3) has been carried
out in advance, and that we have computed the métrix A, A7 € R(m~")*" where

1 I, (I
2 = ()= (8).
Then the preconditioned problem can be written in the form
I, A
c )Y b

whereb has been partitioned conformingly with. The normal equations for this problem
are

(2.2) min
y

‘, y:Alma C:AZAil,

(2.3) (I, + CTC)y = by + CLb,

andz can then be retrieved from 2 = y. Lauchli [11] proposed to apply the conjugate
gradient algorithm to this system of equations. This leads to the following algorithm:
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LU PRECONDITIONEDCGLSI. Set
r” =b, Y =bs, pO =5 = b +0Tby, 0= [I53,
and fork = 0,1,2,...while v > tol compute

¢ = cp),
ar = /(™15 +11a™113),

r§k+1) — Tgk) _ Oékp(k),
r;k+1) — Ték) _ Oékq(k),

) D) T (),
Vi1 = |Is

Bk = Yie+1/7k>
P = gD | g ()

VI,

Solvez from A1z = b; —ry.

It is well known (see Bjrck [2, Chap. 7.4]) that for the conjugate gradient method
applied to the preconditioned normal equations (1.4) the error is reduced according to

VE—1
VE+1

wherez; is the initial solution and: = x(S~1AT AS~1) the condition number of the pre-
conditioned normal matrix.

The convergence of the conjugate gradient method applied to (2.3) has been studied by
Freund [8]. The eigenvalues 0f, + C7C) are

k
1A — o)l < 2 ( ) 1A - 20)]l:

(2.4) \i = 1407 (C), i=1,...,n,
whereo; (C) are the singular values 6f. It follows that
_ 1+ 02(C)
K(AATH = Y—L— < \/1+a2,
WA =T a2(C) ~
where

Omax (AZ)
Omin (Al ) '

Hence, the standard error bounds based on Chebyshev polynomials for this CG method is
(see Freund [8])

(2.5) a=01(C)=||Clls = [|A24; |2 <

) N
1A=zl = T+ T+ Vitar

To get fast convergence we want to havemall. According to (2.5) this is achieved if
the blocking (1.3) can be chosen so tHal||» is small and4; well-conditioned. Sinc&
has at mosp = min{m — n,n} distinct singular values, the matrix + C*'C) will have at
mostmin{p + 1,n} distinct eigenvalues. Hence, in exact arithmetic, CGLSI will converge

(2.6)
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in at mostmin{p + 1,n} steps. Therefore, in particular, we can expect rapid convergence if
p<Ln.
An alternative is obtained by eliminating from the relations

r=b—y=-CTry, ro = by — Cly.
Then we get a system of dimension — n) x (m — n) for ry
(2.7) (CCT 4+ Ii_p)ry = by — Chy,
andz can be retrieved from
(2.8) Az =by +CTry.

The system (2.7) can be interpreted as the normal equations for

-cT by
()= Gl
If (m — n) is small the system (2.7) can be cheaply solved by Cholesky factorization,
A QR decomposition of the matrig-C' I,,,_,,)T of sizen x (m — n) also can be used to
solve forr,. Note that the special form of this matrix allows for further economizing in the
QR decomposition, see [2, Sec. 2.7.2].

The conjugate gradient method can be adapted to solve the system (2.7). The resulting
algorithm is as follows:

LU PRECONDITIONEDCGLSII. Set

(2.9 min

T2

vgo) = by, véo) =by, PV =50 =by—Cb;, 7= ||S(0)||%7
and fork = 0,1, 2, ... while; > tol compute

g = —Tph),
ar = /(™15 +11a™113),

U£k+1) — ng) . akq(k),
’UékJrl) — U;k) . akp(k),

stk — v;kﬂ) — Cv§k+1),

Ve+1 = ||S(k+1)||§a

Bk = Yie+1/7k>
P = gD | g ()

SolveA x = by — CT(by — v) for z.

Algorithm CGLSII requires about the same storage and work as CGLSI. Since the eigen-
values of(I + CC7) are the same as those(d@f+ C*'C) the convergence rate will also be
the same. Yuan [18] has shown that an advantage of CGLSII is that it can more easily be
adapted to solve generalized least squares problems. For the generalized problem (1.5) the
normal equations (2.3) become

Iy

(2.10) (I, cTyw <—c

)y: (I, CTYW™'b, Axz=y.
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On the other hand the equations (2.7) and (2.8) generalize to

_cT
(211) (—C [m—n)W<[ B >7‘2:b2—0b1,
T
(2.12) Az =by — (I, 0)W<IC >r2.

Here the symmetric system (2.11) can be solved by the conjugate gradient method without
the need of inverting or factorizing the full covariance mat#ix Yuan shows in [18] that the
standard error bounds based on Chebyshev polynomials for this CG method is

|A(z — z)[|w— <9 p* = (1+a?)B -1
|A(z — zo)||lw—1 1+ pik’ (1+ /(1 +a2)p)?

whereg = k(W) is the spectral condition number Bf, and

(2.13)

lzllw-1 = (@ W )2,

(For 8 = 1 this estimate reduces to (2.6).)
THEOREM2.1. Let), and+, be smallest eigenvalues af A and A 4, respectively.

Then
T T 4\ An
k(I+C" C)<k(A A)7—

Proof. Let )\, be the largest eigenvalue df A, A,z eigenvector of +C7 C associated
with o1, the largest eigenvalue df+ C7C, i.e., \y = max),|,=1 27 AT Az andgy =
MaX|| ||,=1 QZT([ + CTC)JZ Then,

Al Z .’L’TA{(I + CTC)Al.Z’l = Ul.Z’TA{Al.’L’l Z 01Yn-

Assume that,, = min,,—1 z* (I + C*C)x is the smallest eigenvalue 6§ C* C. Hence,
on > 1. It follows that

(I +CTC) < oy < 2 = (AT A) 22,
Tn Tn

REMARK 1. If z; is not eigenvalue ofi” 4 associated with\;, then
An

Tn

k(I +CTC) < k(AT A)

Thus we must choose the preconditiodgras well as possible such that ~ )\, to guar-
anteex(I + CTC) < k(AT A).

3. LU-decomposition algorithms. Lauchli [11] used Gauss-Jordan elimination to ex-
plicitly compute the matrixC’ = A, A7 in (2.1). Then at each iteration step in the precon-
ditioned conjugate gradient methods matrix vector products @itmdC” are computed.
This approach is suitable only whém — n) is not too large compared ta

When A has many more rows than columns it is preferable to factorize4ugtather
than A and not form the matrixC’ = A, A7" explicitly. If C is not formed, we need to
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perform in each iterative step two matrix vector multiplications withand AT, and solve
two linear systems of the form

(3.1) Ay =c and ATz = d.

To do this efficiently we need to compute the LU factorizatiomef We could compute the
LU factorization of the complete matrix and then extract the LU factorization df How-
ever, this would require extra computation and storage. Further we would need an auxiliary
array to save a copy of-.

We will use the sparse LU-decomposition algorithm of Gilbert and Peierls [9], modified
so that we get a LU decompositiondf only. This algorithm performs Gaussian elimination
in column-wise order, and breaks the computation of each column into a symbolic and a
numerical stage. Thgth column of L andU are computed by solving a sparse triangular
system. This approach allows partial pivoting by rows to be performed in time proportional
to arithmetic operations.

The algorithm of Gilbert and Peierls can be modified to work fonanm matrix with
m > n. For our least squares problems the mattixs m x n, with m > n. Therefore
we apply Gilbert and Peierls’ algorithm to the transposed matfixo obtain a factorization
Ay = UTLT of ann x n nonsingular submatrix. To reduce fill-in we first sort the rowstof
by increasing nonzero count.

We use similar notations as Gilbert and Peierls in [3] for description of the basic algo-

rithm. Thusj is the index of the row of. andU being computeda; = (aj1,-..,a;,-1)7,
G,} = (G,jj, ey ajn)T,
li1 ... 0 lijp oo iy
Li={ : L=+ |
lj,1,1 ljfl,jfl ll,n lj—l,n
andl; = (Ljj,...,Inj)", uj = (u1j,...,uj—1;)" wherel;; = 1. Also we usec; =
(¢jj,---»cnj)T as an intermediate result.

In the basic algorithm SP1, jfi;;| < €, wheree is small tolerance, we consider tith
columninAT as linearly dependent on the fiist- 1 columns. Such a column is put out of
all further computations in the factorization, and interchanged with a later column. We repeat
this process until = n or more thann — n linearly dependent columns have been found.
The output of Algorithm SP1igl; = UT LT whereL is unit lower triangular.

ALGORITHM SP1
1. Setinitial values = m, index(i) =i,i =1,...,m;
2. Forj=1,tondo
Compute columg of U and L;
2.1 solveLju; = a; for uy; (a] is thejth row in A)
2.2¢; = a — Liuy;
2.3if|cj;| > ethengoto 2.5
else
interchange thgth column and théth column ofA”,
and update index and
2.4if] < jthenrank(A) < n and stop else goto 2.1

S (A A
2.5u;; = ¢jj; lj—cj/u”.
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The upper triangular solve in step 2.1 proceeds as follows (see [9]: for/eadth
ug; # 0 (in the topological order determined in the previous step) do
Uj = Uj — Uky (llk ljfl,k )T
Algorithm SP1 computes elements in the LU-decompositionlpfin a column-wise

fashion. Now we shall consider the LU decompositionigfasU 7 LT whereU is unit upper
triangular.

ALGORITHM SP2
1. Setinitial values = m, index(i) =i,i =1,...,m;
2. Forj=1,...,ndo
2.1solvelU;l; = aj for ij;
2.2¢c; = a} - Ujly;
2.3if|cj;| > ethengoto 2.5
else
interchange thgth row and thdth row of 4,
and update index and
2.4if] < jthenrank(A) < n and stop else goto 2.1
2.515; = cjj; u;- =c;/ljj.
26l=m
Algorithm SP3 performs partial pivoting, and is obtained by making the following changes
in Algorithm SP2:

ALGORITHM SP3
Before step 2.3 insert

2.3ak = arg max;<;<n |Cji| andsl = Cjks
Change 2.6 to:

2.6ifk = j goto 2.7 else do

exchange;;, index1(j) andU;, (i = 1,...,5 — 1)

respectively with;y,, index1(k) andUj, (i = 1,...,5 — 1).

2.7l]’j = Cjj

uj = ¢/l
We finally mention an alternative approach suggested by Saunders [16] is to use Gaussian

elimination with row interchanges to compute a stable, sparse factorizatios LU, where
L € R™*™ unit lower trapezoidall/ upper triangular, and udé as preconditioner. The
rational for this choice is that any ill-conditioning i is usually reflected i/, andL tends
to be well conditioned. A preliminary pass through the rowsiofan be made to select a
triangular subset with maximal diagonal elements. The méatisnot saved, and subsequent
use of the operatodU —! involves back-substitution witll and multiplication with4. This
approach has the advantage that often there is very little fill imnd hencd’ is likely to
contain less non-zeros thah

4. Numerical experiments. All programs were written in FORTRAN 77 and executed
in double precision. The computations were performed on a SUN Workstation running UNIX
at Information Laboratory, the Federal University of Paa@uritiba, Brazil.

The three LU factorization algorithms in Section 3 were tested on some sparse rectan-
gular matrices from the Harwell-Boeing sparse matrix collection by Duff, Grimes and Lewis
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[5]. The numerical results are given in Tables 1-3 for the ease0. The CPU time is the
time in seconds for the factorization andandn are the numbers of rows and columns of
sparse matrixd. NZ is the number of nonzero elements in mattiand N Z2 the number of
nonzero elements in the submatdx. NZL andN ZU are the numbers of nonzero elements
of the triangular factor& andU in the LU decomposition ofl; .

We also did numerical comparisons between the conjugate gradient method and the pre-
conditioned conjugate gradient method with the preconditigneselected by algorithms in
the previous section for the generalized least squares problems (GLSP) (5) Aviagi
W are Hilbert matrices andl generated by random number, with convergence tolerance
e = 0.0000001. The comparison results were given in Table 4.

Algorithm SP1 gives almost the same number of nonzero elements in the LU decompo-
sition as SP2, but needs much more CPU time. Algorithms SP2 and SP3 are faster than SP1
by a factor of 5-10, but have more fill-in. We have also consideréd), e.g..c = 10~'° and
10~8. All three algorithms worked for the matrices tested, and gave an LU decomposition of
a nonsingular submatri¥d;. All results have shown that for all algorithms the biggeve
give, the less CPU time is used and the more nonzero elements in the LU decomposition of
A, result.

It follows from Table 4 that the preconditioned conjugate gradient method with selected
preconditionerd; is much better than the conjugate gradient method in the number of itera-
tions, CPU time and also precision of solutions.
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Algorithm SP1 withe = 0
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Matrix m n NA NA2 | NAL | NAU | CPU
ILLC1033 | 1033| 320 | 4732 | 3254 | 1100 | 1774 | 8.96875
WELL1033 | 1033 | 320 | 4732 | 3257 | 1243 | 1752 | 8.17578
ILLC1850 | 1850 | 712 | 8758 | 5378 | 3603 | 4927 | 144.891
WELL1850 | 1850 | 712 | 8758 | 5388 | 4152 | 5301 | 153.930

TABLE 4.2
Algorithm SP2 withe = 0

Matrix m n NA NA2 | NAL | NAU | CPU
ILLC1033 | 1033 | 320 | 4732 | 3214 | 1623 | 654 1.82031
WELL1033 | 1033 | 320 | 4732 | 3214 | 1802 | 844 1.02344
ILLC1850 | 1850 | 712 | 8758 | 5377 | 8652 | 2834 | 25.9297
WELL1850 | 1850 | 712 | 8758 | 5377 | 9073 | 2627 | 11.6280

TABLE 4.3
Algorithm SP3 withe = 0

Matrix m n NA | NA2 | NAL | NAU | CPU
ILLC1033 | 1033| 320 | 4732 | 3253 | 2865 | 2450 | 1.92188
WELL1033 | 1033| 320 | 4732 | 3256 | 3100 | 2976 | 1.80078
ILLC1850 | 1850| 712 | 8758 | 5379 | 13054 | 12579 11.4609
WELL1850| 1850 | 712 | 8758 | 5388 | 13058 | 12581 | 12.7108

TABLE 4.4
Comparison between CG and PCG for GLSP
CG PCG
m|n|IT | CPU e IT CPU | e
9 |8 |21 | 0.18662| 0.2794D-08| 1 0.0055| 0.1434D-07
9|7 |14 | 0.19877| 0.6519D-08| 4 0.0055| 0.5560D-07
96|10 | 0.22156| 0.6519D-08| 7 0.0396| 0.3817D-07
9(5|7 0.15960| 0.3725D-08| 1 0.0055| 0.1368D-06
8 | 8|20 | 0.21428| 0.1397D-07| O 0.0055| 0.1760D-08
8 | 7|14 | 0.22700| 0.2352D-07| 1 0.0055| 0.1499D-07
8 | 6|11 | 0.14108| 0.6985D-09| 4 0.0391| 0.7903D-08
8 (5|7 0.21004| 0.9313D-08| 6 0.0395| 0.7047D-08
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