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ON THE CONVERGENCE OF MULTIGRID METHODS FOR FLOW PROBLEMS �

INGEMAR PERSSONy, KLAS SAMUELSSONz, AND ANDERS SZEPESSYx

Abstract. We prove two theorems on the residual damping in multigrid methods when solving convection dom-
inated diffusion equations and shock wave problems, discretized by the streamline diffusion finite element method.
The first theorem shows that a V-cycle, including sufficiently many pre and post smoothing steps, damps the residual
in Lloc

1
for a constant coefficient convection problem with small diffusion in two space dimensions, without the as-

sumption that the coarse grid is sufficiently fine. The proof is based on discrete Green’s functions for the smoothing
and correction operators on a uniform unbounded mesh aligned with the characteristic. The second theorem proves
a similar result for a certain continuous version of a two grid method, with isotropic artificial diffusion, applied to
a two dimensional Burgers shock wave problem. We also present numerical experiments that verify the residual
damping dependence on the equation, the choice of artificial diffusion and the number of smoothing steps. In par-
ticular numerical experiments show improved convergence of the multigrid method, with damped Jacobi smoothing
steps, for the compressible Navier-Stokes equations in two space dimensions by using the theoretically suggested
exponential increase of the number of smoothing steps on coarser meshes, as compared to the same amount of work
with constant number of smoothing steps on each level.

Key words. multigrid methods, convergence, convection-diffusion, conservation laws, Green’s function, shock
waves.
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1. Introduction. In this paper, we analyze multigrid algorithms for solving discrete
equations approximating stationary convection dominated diffusion equations and a shock
wave problem in a scalar conservation law in two space dimensions. We focus our theoretical
analysis on model problems and compare with numerical experiments, including more gen-
eral problems as the compressible Navier-Stokes equations. A conclusion from our analysis
and experiments, for a multigrid method with damped Jacobi smoothing steps, is that it is
advantageous to increase the number of smoothing steps on coarser levels, as compared to
the same amount of work with constant number of smoothing steps on each level.

We first consider the convection-diffusion problem to findu such that

(1:1)
xux1 � ��u = F; x = (x1; x2) 2 
 � lR2;

xuj@
 = 0;

whereF is a given source function and� > 0 is a given small constant. We shall study multi-
grid algorithms for solving, approximately, the streamline-diffusion finite element equations,
cf. [19], of (1.1): FindU 2 Vh; such that

(1:2) ah(U; v) � (Ux1 ; v +
h

2
vx1) + (�rU;rv) = (F; v +

h

2
vx1) 8v 2 Vh;

whereVh is a usual finite element space of continuous functions that are linear (i.e. they
belong toP1(K)) on each triangleK in a meshT h of 
, with mesh sizeh,

Vh � fv 2 H1
0 (
) : vjK 2 P1(K) 8K 2 T hg
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and

(v; w) �
Z



v(x)w(x)dx:

HereH1
0 (
) denotes the Sobolev space of functions that vanish on@
 and have one deriva-

tive inL2(
). The multigrid algorithm is based on a hierarchy of refined meshes with corre-
sponding finite element spacesVj � Vhj ; with the sets of nodal pointsNj = fxigNj

i=1; j =

0; 1; 2; : : : J; where V0 � V1 � V2 : : : � VJ : Starting with an approximate solution
U0 2 V0 = Vh of U in (1.2), the first step in the multigrid method is the smoothing op-
erationS0;F : V0 ! V0 defined by the damped Jacobi method with a suitable small positive
damping constantc, (pre) smoothing stepsm = 0; 1; : : : ; �0 � 1 and

(1:3)

�U0 = U0;
�Um+1(xi) = �Um(xi)� c

h0
[a0( �Um; �i)� (F; �i +

h0
2
�i;x1)] 8xi 2 Nj ;

S0;F �U0 � �U�0 :

Here, forj = 0; 1; 2; : : : ; J; we use thataj(�; �) � ahj (�; �), hj is the mesh size inVj , and

Bj � f�igNj

i=1 is the standard basis inVj , i.e.�i 2 Vj together with

(1:4) �i(xk) =

�
1; k = i;

0; k 6= i;

for all i and nodal pointsxk 2 Nj . The basis (1.4) implies the representation

(1:5) �Um(x) =

NjX
i=1

�Um(xi)�i(x); for �Um 2 Vj :

Consider the special case ofJ = 1, i.e. the two grid method, and an approximation
U0 2 V0 of U in (1.2). Then, the first approximation�U

pre
next2 V0 is

(1:6a) �U
pre
next= S0;FU0 � d;

where the coarse grid correctiond 2 V1 on the finest level is defined by

(1:6b) a1(d; v) = a0(S0;FU0; v)� (F; v +
h0

2
vx1) 8v 2 V1:

By including also post smoothing, the next approximation is

(1:7) �Unext= S0;F �U
pre
next:

Assumption 1.8. In a multigrid V-cycle iteration, the correction equation (1.6b) on
Vj = V1 is solved approximately by recursivly applying smoothing steps, on levelj, and
its correction inVj+1. The correction equation onVJ is solved exactly. We analyze the con-
vergence of this V-cycle iteration with pre and post smoothing by studying an approximation
U0 of U and its next iterateUnext, which is the multigrid approximation of the two grid
solution �Unext in (1.7).

We use a multigrid method applicable to elliptic problems as well as to shock wave
problems described by conservation laws, and focus on the analysis of a special and simple
but general applicable multigrid method. Therefore, we study the damped Jacobi smoothing
operator which is independent of the ordering of the nodes, although, for the problem (1.1),
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the convergence can be improved by ordering the nodes in the direction of the flow and for
applying Gauss-Seidel iterations in the smoothing steps; see [8] and related results for domain
decomposition methods [11], [23]. The one dimensional problem corresponding to (1.1) and
(1.2) withx2 the independent solution, and� = 0, yields a bilinear forma which reduce to
the upwind operator. Therefore, smoothing steps based on an ordering of the nodes in thex1
direction can solve this one dimensional problem (1.2) in one step. However, for flows in two
and three dimensions, which do not have typical inflow and outflow regions, ordering of the
nodes is hard to achieve.

In this work we present two theorems on the residual damping in multigrid methods
solving convection dominated diffusion equations and shock wave problems, discretized by
the streamline diffusion finite element method. Usually, the convergence study of multigrid
methods for elliptic problems uses the iteration error and its behavior in energy norms. Our
study focuses on the residual and itsL1-norm, and the analysis is based on Green’s functions,
which motivate the use ofL1-norms. Theorem 1.1, below, proves that a V-cycle, including
sufficiently many pre and post smoothing steps, damps inL1 a residual, initially localized
inside
, for a constant coefficient convection problem with small diffusion in two space
dimensions, without the assumption that the coarse grid is sufficiently fine. The proof is
based on discrete Green’s functions related to the smoothing and correction operators.

Theorem 1.2, below, proves a similar result for a certain continuous version of a two
grid method, with isotropic artificial diffusion, applied to a two dimensional Burgers shock
wave problem. We compare, in Fig. 1 and Section 7, the result of Theorems 1.1 and 1.2
with numerical experiments describing the residual damping dependence on the equation, the
choice of artificial diffusion and the number of smoothing steps.

To have an efficient multigrid method, V-cycles must reduce and damp the residual. The
numerical test in Fig. 1, below, shows the residual damping of one V-cycle applied to (1.1). In
the ExperimentsI andII , initially theL1-norm of the residual is equal to1 and localized to
a point in the center of the domain. TheL1-norm
(n) of the residual aftern V-cycles,n = 1

andn = 5, in ExperimentsI andII respectively, are computed as the number of pre and
post smoothing steps are increased. ExperimentII shows the asymptotic average damping
�
 � (
(5)=
(1))1=4 of a V-cycle in the multigrid method with many cycles. We see that
the damping from an initially localized residual is similar to the (generic) one of Experiment
III in Fig. 1. Moreover, we note that the damping
(1) can be made smaller by increasing
�. How does
(1) depend on�; � andJ? How many smoothing steps should we take on
each level to obtain optimal damping? Theorem 1.1, below, answers these questions of
(1).
In Section 7.2, we discuss the effect of several V-cycles on the average damping. Further
numerical results on elliptic, convection and shock wave problems are given in Sections 7
and 8.

The first theorem on residual daming avoids possible boundary effects by assuming that
the residualR(v) � a0(U0; v) � (F; v + hvx1=2) is supported inside
, i.e. R(v) = 0

for all v supported in a neighborhood of@
. To further simplify the analysis we assume
that u(x) ! 0, as jxj ! 1, and that
 = lR2 is discretized by a uniform mesh where
the characteristic direction(1; 0) is aligned with the mesh. Our analysis of the damping
requires precise information of the residuals evolution in the V-cycle. The requirement for
extensive information restricts us to model cases, which we, on the other hand, can describe
in detail. For instance, it is shown in Section 7.1 that the the residual damping depends on the
orientation of the mesh with respect to the characteristics. In Section 2, we derive an error
representation for the multigrid V-cycle iterations based on the smoothing and correction
steps for the problem (1.1). In Section 3, we first formulate an evolutionary Green’s function
problem and derive its representation of V-cycle iteration errors, and then we give an overview
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FIG. 1. Residual damping rate of multigrid V-cycles. We use multigrid iterations to solve
(1.1) in the computational domain
 = (0; 1) � (0; 1), with � = h0 and homogeneous
Dirichlet boundary conditions. For a description of the parameters used in the multigrid
cycle see Table 1, Experiment A in Section 7. ExperimentsI (upper figure�) andII (lower
figure�) start with an initial Dirac-like algebraic residual withL1-norm equal to 1.0 at the
center of the computational domain. ExperimentI depicts theL1-norm
(n) of the residual
after one V-cycle ( i.e.n = 1) as a function of the number of smoothing steps�. The solid
line in the upper figure is given bŷC1=� + Ĉ2

p
�, cf. (1.10), wherêC1 = 3:56; Ĉ2 = 1:05

are determined as the least square fit to the data�. The asymptotic damping is defined to
be the average reduction factor�
 � (
(m)=(
(1))1=(m�1), m!1, of theL1-norm of the
residual in two consecutive V-cycles. ExperimentsII and III depict asymptotic damping
factors where we have chosenm = 5, for two different initial residuals. In Experiment
II the initial residual is a Dirac-delta function. The third ExperimentIII , denoted byo,
depicts the asymptotic damping of the multigrid method applied to (1.1), with an initial guess
U0 = 0 andF = sin(10x) sin(15y). Theorems 1.1 and 1.2 treat
(1), and Section 7.2 studies

(n); n > 1:

of the proof of residual damping stated in Theorem 1.1. This overview is an attempt to explain
the idea of the proof on one page. The full proof in Sections 4-6 is basically an extension
of the overview, which is based on differential operators, to discrete difference operators.
The proof uses Fourier methods to analyze the evolutionary Green’s function problem on a
uniform mesh. Our main result is

THEOREM 1.1. Let 
 = lR2 be discretized by a hierarchy of uniform meshes, with
triangle edges in the direction(1; 0); (0; 1) and (1; 1), where the mesh size,hj , on levelj,
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satisfies

hj = 2hj�1; j = 1; 2; : : : ; J;

and, on the finest level,j = 0,

h0 � 3�:

Define the set

V 1
� � fv 2 V0 : kvkL1 � 1; v(x1; �) = 0 for jx1j > �g;

and assume that, for someB > 0, the residual error is supported in[�B;B]�RI , i.e.

a0(U0; v)� (F; v +
h0

2
vx1) = 0 8v 2 fw 2 V0 : w(x1; �) = 0 for jx1j � Bg:

Then the quotient of residuals, measured inL1([�B;B]� lR),

(1:9) 
B �
supv2V 1

B
ja0(Unext; v)� (F; v + h0

2
vx1)j

supv2V 1
1

ja0(U0; v)� (F; v + h0
2
vx1)j

;

for two consecutive V-cycle iteratesU0 andUnext, defined in (1.6-7) and Assumption 1.8,
approximating the solution of (1.2), with�j pre and post smoothing steps on levelj, satisfies

(1:10) 
B �
J�1X
j=0

[
C1hj log(B=hj)

��j
+

C2p
�j

]�
j
i=0(1 +

C0hi

��i
):

In addition, let for any0 < 
 < 1, the number of smoothing steps�j on each level,j =

0; 1; 2; : : : ; J � 1, satisfy

(1:11) �j � [
C3hj

�

J log(B=hj)



+
C4


2
]:

Then the damping


B � 


holds. The work of this V-cycle is of the orderN log2N provided the number of degrees of
freedom in the finest spaceV0 isN and

(1:12) h0 � �:

The constantsCi; i = 0; : : : ; 4, are independent of
B , J , hj and�.
Remark. The assumptionh0 � 3� can, with small notational changes in the proof, be

replaced byh0 � c0�, wherec0 is a positive constant of order one.
Remark. As predicted from Theorem 1.1, the damping
(1), in Fig. 1, can be made

smaller than1 by increasing the number of smoothing steps.
In Section 7.1 we discuss the case when the characteristic is not aligned with the mesh,

showing that the damping can be mesh dependent. The numerical experiments in Section
7.9 show that the exponential increase of the number of smoothing steps on coarser meshes,
suggested by the Theorem 1.1, improves the convergence of the multigrid method for the
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compressible Navier-Stokes equations in two space dimensions, as compared to the same
amount of work with constant number of smoothing steps on each level.

Theorem 1.1 says that if we start with a residual supported in[�B;B] � R, then one
V-cycle will decrease theL1([�B;B] � R) norm of the residual, by a factor
B . Besides
confirming Experiment I in Fig. 1, one would like to use the theorem to prove that the multi-
grid method converges. However, we can not directly draw this conclusion from Theorem
1.1. Our proof of Theorem 1.1 is based on Fourier methods suitable to unbounded domains,
and in an unbounded domain, theL1(R � R)-norm damping
1 of the V-cycle becomes
unbounded due to the factorlog(B=hj) in (1.10). Therefore, to prove that a V-cycle forms an
L1-contraction of the residual, we need to study bounded domains and boundary effects. If
the damping (1.10) holds in a bounded domain, the V-cycle would form anL1 contraction for
the residual and the multigrid method would converge, provided sufficiently many smoothing
steps are used. In addition to the numerical experiments, a further motivation that including
boundary conditions does not change the behavior of the damping (1.10) is given in Section
9, Theorem 9.1, where the residual damping of a continuous version of the two grid method
in the domain(�1; 0)�R is shown to give a contraction. This analysis is based on explicit
solutions of a certain convection diffusion problem with variable coefficients. These explicit
solutions are obtained by the Hopf-Cole transformation for the Burgers equation and are cru-
cial also for treating the shock wave problem in Section 8. The iteration error can be obtained
from the residual using the stability of the problem, again based on Green’s functions as
described in Section 7.5.

It remains to find a convergence proof of the multigrid method for convection diffusion
problems in the fully discrete case including boundary conditions. Our analysis could be a
first step in understanding some ingredients in such multigrid convergence. An other inter-
esting open question is to prove multigrid convergence for convection problems with more
sophisticated smoothers, such as the Gauss-Seidel method combined with proper ordering of
the nodes. Gauss-Seidel smoothers can treat the case� � h0, where the Jacobi smoother is
very inefficient; see Fig. 5 in Section 8.

In Section 8, we study the convection-diffusion problem

(1:13) Lw � (u(x1)w)x1 � ��w = 0;

which is the linearization of the two dimensional Burgers equation

(1:14)
(u

2

2
)x1 � ��u = 0; x = (x1; x2) 2 RI 2;

u(�1; �) = �1;
with the solutionu(x1) = � tanh x1

2�
. We consider for the problem (1.13) a continuous

version of a two grid method onV� andV2�, with the isotropic diffusion�� and2��, re-
spectively. This continuous two grid method is obtained by replacing the discrete smoothing
operator by its zero mesh size limit. In Section 8, we prove

THEOREM 1.2. Assume that the residual errorLU0 initially is localized in the shock
wave regionB, i.e. LU0(x) = 0 for x =2 B � f(x1; x2) 2 RI 2 : jx1j � Ch0g. Then one
iteration of the continuous two-grid cycle, with� pre and post smoothing steps, damps the
residual with a factor


B =
kLUnextkL1(RI 2)

kLU0kL1(RI
2)

� 1

2
+
C

�
:

The proof is based on an explicit Green’s function of the two dimensional variable coef-
ficient problem (1.13), which after a separation of variables is obtained from the Hopf-Cole
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transformation. The Green’s function is then used to evaluate the residual both in the smooth-
ing and in the correction problem. The damping in Theorem 1.2 has an interesting lower
bound1=2, which is confirmed by our numerical experiments in Fig. 5 in Section 8, based on
an experiment with the nonlinear multigrid method applied to (1.14).

Multigrid methods are widely used for solving fluid dynamics problems numerically; see
[7], [18], but for convection dominated problems there exists as yet no satisfactory conver-
gence theory for these multigrid methods. The convergence of multigrid iterations is related
to the propagation and damping of the perturbations in the approximated equation. In con-
vection dominated problems, the behavior of perturbations depends on the particular solution
and the approximating scheme in a more distinct way than for elliptic problems, where the
multigrid theory is well developed; see [5]. For instance for flow problems:

(A) the stability requires a mesh size dependent artificial diffusion, causing the discrete
equations to vary with the grid.

(B) the damping is different inside and outside the shock regions.
If the equation (1.1) is solved without artificial diffusion and by a pure Galerkin method,

then the multigrid method converge if and only if the coarsest meshT hJ is fine enough, i.e
hJ � C�; see [1], [6], [12], [17]. Consequently, the exact coarse grid problem is in fact
an expensive problem to solve for small�. We have complete freedom in choosing suit-
able correction problems as long as they yield satisfactory convergence results. For stability
reasons, it is natural to study correction steps where the bilinear form is based on a stable
method for convection problems, e.g. the streamline diffusion method (1.2), or the first order
accurate method with isotropic artificial diffusion1

2
(hjrU;rv) replacing1

2
(hjUx1 ; vx1) in

(1.2). These two examples of stable bilinear forms are mesh size dependent and hence differ-
ent from the fine space forma0(�; �). Therefore, they cause an additional first order artificial
diffusion error in a multigrid method based on corrections of type (1.6b).

For meshes withhj < 3� the streamline diffusion modification1
2
(hjux1 ; vx1) should be

omitted in (1.2). Following this simplification, the solution procedure is a standard Galerkin
finite element method and requireshJ < C�, i.e. that the coarse mesh is sufficiently fine. To
reduce the work of the coarsest correction problems one must havehJ � �. Our assumption,
that h0 � 3� in Theorem 1.1, restricts the study to the behavior of multigrid methods in
the convection dominated case, which in particular is important for coarse meshes. It also
requires one to solve the exact “coarse” grid problem for the standard Galerkin method above
with small�. The conditions (1.11) and (1.12) ensure us that the residual damping does not
deteriorate as�! 0 and that the work is of almost optimal order.

The problem that the bilinear forms change with the mesh levels can be avoided by
adding the same amount of artificial diffusionhJ� on all levels, thereby causing an artificial
diffusion error of orderhJ . ForhJ of orderh0, the scheme is still first order accurate and the
multigrid method converges; see [2]. In case of several levels, e.g.hJ � 1, the bilinear form
must change with the levels otherwise the accuracy will be insufficient.

Numerical experiments with the multigrid method for the problem (1.1) based on the first
order accurate diffusion converge slightly slower than the method based on the streamline
diffusion; we discuss the reason of this behavior in Section 7.2.

The convergence analysis in the proof of Theorem 1.1 that treats the aspect (A), and the
behavior of the damping (B) for a two-dimensional shock wave is studied in Theorem 1.2. In
particular, we see that the residual is damped faster inside than outside the shock wave region
for the two grid method using isotropic artificial diffusion.

In one space dimension the bilinear forms, corresponding to (1.1), are the same for the
streamline diffusion method and the first order accurate artificial diffusion method, and the
convergence of the two grid method was proved by Hackbush [16], both for periodic and
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Dirichlet boundary conditions. Reusken’s work [24] was the first to prove convergence of a
two grid method for (1.1) in two space dimensions with changing bilinear form. The correc-
tion problem in his method is based on Schur complements and the smoothing operator is a
block Jacobi iteration onffine nodesg n fcoarse nodesg with exact inversion of a block (this
is related to ordering the nodes). His proof uses periodic boundary conditions and Fourier
analysis.

Our analysis of the smoothing problem involves considering the smoothing iterations as
a time stepping scheme, and yields that a sufficient number of smoothing steps is required to
damp the residual; see the related previous works [3], [22]. Our use of the Galerkin orthog-
onality in the correction problem was inspired by [3] and the work [4] on a posteriori error
estimates of multigrid methods.

2. A representation formula for multigrid iterations. In this section we derive an
error representation of the iterations in a V-cycle method, based on the smoothing and cor-
rection steps for the error. We start by definingeU to be the iteration error in the multigrid
method, i.e.

(2:1) eU � �U � U;

whereU is the exact discrete solution of (1.2) and�U is the V-cycle iterate based on (1.3)
and (1.6). Expressed in theeU -variable, the smoothing on the finest level can be written,
m = 0; 1; : : : ; �0 � 1,

(2:2)
eU0 = U0 � U;eUm+1(xi) = eUm(xi)� ch0L0

eUm(xi); xi 2 N0;

where the residual error is defined by

(2:3) Lj eU(xi) � 1

h2j
aj(eU; �i); for j = 0; 1; 2; : : : ; J;

for the basis functions�i 2 Bj , satisfying (1.4). The correctionP1 eU�0 2 V1, of eU�0 2 V0,
on the finest level yields the new approximation of the erroreUeU�0 � P1 eU�0 ;
where the operatorPj+1 : V0 ! Vj+1 is defined by

(2:4) aj+1(Pj+1
eU�j ; v) = aj(eU�j ; v) 8v 2 Vj+1; for j = 0; 1; 2; : : : ; J � 1:

The correction step (1.6) at levelj = 0 is in the multigrid method solved approximately, in
two steps. In the first step we smooth on the level1,m = 0; 1; : : : ; �1 � 1,

(2:5)

d0 = 0;

dm+1(xi) = dm(xi)� ch1[L1dm(xi)� 1
h1
(a0( �U�0 ; �i)� (F; �i +

h0
2
�i;x1))]

= dm(xi)� ch1[L1dm(xi)� 1
h1
a0(eU�0 ; �i)]; xi 2 N1:

Define the correction errored by

(2:6) edm � �dm + P1 eU�0 :
By (2.4) and (2.5) we haveed0 = P1 eU�0 ;edm+1(xi) = edm(xi)� ch1L1

edm(xi); xi 2 N1:
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We note that the correction errored satisfies a similar smoothing condition on levelj = 1 as
the erroreU does on the finer level. In the second step,d, and hence alsoed, is mapped to the
coarser mesh analogous, to the correction ofeU on the finer level, i.e.

(2:7) a2(P2 ed�1 ; v) = a1(ed�1 ; v) 8v 2 V2:

Therefore, we see that the evolution of the correction errored is described byed�1 = S1;0 ed(1),
whereed(j) is given by

(2:8) ed(j+1) � Pj+1Sj;0 ed(j); ed(0) = eU0 for j = 0; 1; 2; : : : ; J � 1:

Thus, the three grid approximationd�2 of the correctiond in (1.6), obtained by (2.6-8), has
the representation

d�2 = �ed�1 + P1 eU�0 + P2 ed�1 = �S1;0 ed(1) + P1S0;0 ed(0) + P2S1;0 ed(1):
Analogously, by recursively applying (2.5-8) we obtain the multigrid approximationd�J of the
two grid correctiond defined in (1.6). The multigrid V-cycle without post smoothing, applied
to the erroreU and starting witheU0 in (2.2) has the following error after one iteration

(2:9)

eUpre
next= S0;0 eU0 � d�J

= (S0;0�P1S0;0)ed(0)+(S1;0 � P2S1;0)ed(1) + : : :+ (SJ�1;0 � PJSJ�1;0)ed(J�1)
=

J�1X
j=0

(I � Pj+1)Sj;0 ed(j);
whereJ is the coarsest grid level. We have used that the correction inVJ is solved ex-
actly. The correction errored(j) evolves with smoothing and mapping onto coarser and coarser
meshes according to (2.8). By including post smoothing, the erroreUnextafter one V-cycle is

(2:10) eUnext=
J�1X
j=0

�Sj(I � Pj+1)Sj;0 ed(j);
where

(2:11) �Sj � �0�i�jSi;0 � S0;0S1;0 : : : Sj;0:

3. Green’s functions and an overview of the proof.In this section, we first give a
representation of the iteration erroreU and the residualL0

eU , defined in (2.3), in terms of a
Green’s function related to the problem (1.2). Then in the end of the section we present an
overview of the proof of Theorem 1.1.

3.1. Green’s functions for the V-cycle.Let for a givenU0 and eU0 � U0 � U , the
residualR be given by

(3:1) L0(eU0)(xi) = R(xi) 8xi 2 N0;

and define, for a fixedxi 2 N0, the discrete Green’s function�(� ;xi) 2 V0 satisfying

(3:2) L0�(xl;xi) = �(xl � xi); 8xl 2 N0;
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where� is the discrete Dirac function

(3:3) �(xk) =

�
1=h20; xk = 0,
0; xk 6= 0,

xk 2 N0:

Equations (3.1) and (3.2) imply by a discrete Duhamels principle that

eU0(xl) =
X
xi2N0

R(xi)�(xl;xi)h
2
0;

and

L0
eU0(xl) =

X
xi2N0

R(xi)L0�(xl;xi)h
2
0 = R(x`):

The corresponding smoothing steps for the� variable on the finest level satisfy

(3:4)
�0 = �(� ;xi);

�m+1(xk) = �m(xk)� ch0L0�m(xk); m = 0; 1; : : : ; �0 � 1:

Therefore, we have eUm(xl) =
X
xi2N0

R(xi)�m(xl;xi)h
2
0;

and

L0
eU�0(xl) = X

xi2N0

R(xi)L0��0(xl;xi)h
2
0:

The exactly solved correction step (1.6) yields

a0(��0 ; v) = a1(P1��0 ; v) 8v 2 V1:

Hence, the two grid method has the residual

L0(eU�0 � P1 eU�0)(xl) = X
xi2N0

R(xi)L0(��0 � P1��0)(xl;xi)h
2
0:

In the multigrid method (2.5-8), withJ correction levels, we obtain as in (2.9) and (2.10)

(3:5)

L0(eUpre
next)(xl) =

J�1X
j=0

X
xi2N0

R(xi)L0(�
(j)
�j
� Pj+1�

(j)
�j

)(xl;xi)h
2
0;

L0(eUnext)(xl) =
J�1X
j=0

X
xi2N0

R(xi)L0
�Sj(�

(j)
�j
� Pj+1�

(j)
�j

)(xl;xi)h
2
0;

provided�(j) is defined ased(j) in (2.8), i.e.,

(3:6) �
(j+1)

0 = Pj+1�
(j)
�j
; �(j)�j

= Sj;0�
(j)
0 ; �

(0)

0 = �0; j = 0; 1; 2; : : : ; J � 1:

Below we shall use theL2-projectione�j+1 : L2(
)! Vj+1 defined by

(3:7)

Z



ve�j+1wdx =

Z



vwdx 8v 2 Vj+1:
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Our next step is to estimate the discrete`1-norm of the right hand side in (3.5) using that for
w 2 V0

(3:8) kwk`1 �
X
xi2N0

jw(xi)jh20:

By combining the definition (2.3), the correction equation (2.4) and (3.6), (3.7) we obtain the
following representation formula

(3:9)

L0(eUpre
next)(xl) =

PJ�1
j=0

P
xi2N0

R(xi)L0(�
(j)
�j � Pj+1�

(j)
�j )(xl;xi)h

2
0

=
P

j;i[(aj(�
(j)
�j ; �l)� aj+1(Pj+1�

(j)
�j ; �l))

+ ( 1
2
(h0 � hj)�

(j)
�j ;x1 ; �l;x1)� ( 1

2
(h0 � hj+1)Pj+1�

(j)
�j ;x1 ; �l;x1)]R(xi)

=
P

j;i[aj(�
(j)
�j ; (I � e�j+1)�l)� aj+1(Pj+1�

(j)
�j ; (I � e�j+1)�l)

+ ( 1
2
(h0 � hj)�

(j)
�j ;x1 ; �l;x1)� ( 1

2
(h0 � hj+1)(Pj+1�

(j)
�j )x1 ; �l;x1)]R(xi)

=
P

j;i[((�
(j)
�j ;x1 � Pj+1�

(j)
�j ;x1); (I � e�j+1)�l)

� ( eD2
x1
((
hj
2
+ �)�

(j)
�j � (

hj+1

2
+ �)Pj+1�

(j)
�j ); (I � e�j+1)�l)

� (� eD2
x2
(�

(j)
�j � Pj+1�

(j)
�j ); (I � e�j+1)�l)

� ( 1
2
(h0 � hj) eD2

x1
�
(j)
�j ; �l) + ( 1

2
(h0 � hj+1) eD2

x1
Pj+1�

(j)
�j ; �l)]R(xi);

where we use the following notation for discrete second order derivatives

(3:10) eD2
xk

: V0 ! V0 (� eD2
xk
w; v) = (wxk ; vxk) 8v 2 V0; k = 1; 2:

Let

h�j
2

=
hj

2
+ �;

which by the assumptionh0 � 3� in Theorem 1.1 implies

h�j = Cjhj :

For notational simplicity we considerCj = 1, which by the assumptionh0 � 3� corresponds
to the neglectable change of replacinghj=2 byhj=2�� in the streamline diffusion parameter.
Hereafter, the superscript� is omitted.

Now defining the discrete residualeLj�(j)�j 2 V0 by

(eLj�(j)�j
; v) = aj(�

(j)
�j
; v) 8v 2 V0;

we can rewrite the residual

(3:11)

L0(eUpre
next)(xl)

=
PJ�1

j=0

P
xi2N0

[(eLj�(j)�j ; (I � e�j+1)�l)� (eLj+1Pj+1�
(j)
�j ;x1 ; (I � e�j+1)�l)

� ( 1
2
(h0 � hj) eD2

x1
�
(j)
�j ; �l) + ( 1

2
(h0 � hj+1) eD2

x1
Pj+1�

(j)
�j ; �l)]R(xi):

It turns out that one single pre smoothing V-cycle can not make the residual quotient in
(1.9) small, however, two V-cycles will damp the residual. We discuss this in more detail in
Section 7.8. The mechanism of the damping in the second iteration is similar to the reason
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why one V-cycle with pre and post smoothing damps the residual. Let us now study the case
with post smoothing. In order to use the correction equations (2.3), we shall assume that the
smoothing operator defined in (2.11),

�Sj � �0�i�jSi;0

is translation invariant, which is the case for a uniform mesh and the constant coefficient
problem (1.2) studied here. The post smoothing operator is a convolution

(3:13) �Sjv(xk) =
X
yi2N0

�gj(yi)v(xk � yi) � �gj � v(xk); 8v 2 V0; xk 2 N0;

for a certain function�gj , which will be studied in detail in Section 4. The translation invari-
ance implies that

(3:14)

aj( �Sj�
(j); �l) =

X
yi2N0

�gj(yi)aj(�
(j)(� � yi); �l)

=
X
yi2N0

�gj(yi)aj(�
(j); �l(�+ yi))= aj(�

(j); �gj(� �) � �l);

and similarly for�SjPj+1�
(j). As in (3.9) we obtain by (3.14) the residual error representation

(3:15)

L0(eUnext)(xl) =

J�1X
j=0

X
xi2N0

aj(�
(j)
�j
; (I � e�j+1)�gj(� �) � �l)R(xi)

�
X
j;i

aj+1(Pj+1�
(j)
�j
; (I � e�j+1)�gj(� �) � �l)R(xi)

+
X
j;i

1

2
(h0 � hj)(�

(j)
�j ;x1

; �gj(� �) � �l;x1)R(xi)

�
X
j;i

1

2
(h0 � hj+1)((Pj+1�

(j)
�j

)x1 ; �gj(� �) � �l;x1)R(xi):

In Section 8, we derive a similar representation for the residual in a linearized shock wave
problem, which is not translation invariant.

Our goal is to estimate thè1-norms of the sums in equality (3.15) by using the properties
of the smoothing operatorSj;0 in (1.3), (2.2) and the correction operatorPj in (2.4). This is
carried out in three steps. First, the smoothing operator is analyzed by Fourier methods in
Section 4. Then, in Section 5, the correction operator is studied, also using Fourier analysis.
Finally, in Section 6, we combine the results of Sections 4 and 5 to estimate the residual in
(3.15) and thereby prove Theorem 1.1.

3.2. Overview of the proof. Let us first give a heuristic motivation that (3.15) implies
the damping of the V-cycle in Theorem 1.1. This motivation also gives the basic structure and
idea of the proof of Theorem 1.1, which is an extension of this overview, based on differential
operators, to discrete operators. The proof has the three steps: Evolution of the smoothing
problem, estimates of the correction problem, and residual error estimates.

Evolution of the smoothing.In Section 4, we shall see that the following parabolic problem
reflects the behavior of the smoothing (3.6) at levelj

(3:16) �t + chjLj� = 0; 0 < t < �j ;
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where

Lj� � �x1 �
hj

2
�x1x1 � ��x2x2 :

LetX � Lj�, then

(3:17) Xt + chjLjX = 0; 0 < t < �j ;

and by (3.2) we haveX(x; 0) = �(x � xi) initially at level zero, where for simplicityxi is
chosen as the origin. The solution of (3.17) on the finest levelj = 0 is a Gaussian

(3:18) X(x; t) =
exp[�(x1 � chjt)

2=(cth2j )� x22=(2tchj�)]p
2�tch

3=2
j �1=2

:

In the correction step, the Gaussian is mapped to the coarser mesh having twice the mesh size.
Assume that�j > hj=�, cf. (1.11), then the Gaussian is well resolved on the coarser mesh
and therefore the mapping to the coarser mesh yields a neglectable change. Hence,X(�; �j)
in (3.18) is a good approximation ofLj�(j) also at the next levelsj > 0.

The correction problem.To estimate the three parts�x1 ; hj�x1x1 and��x2x2 of the residual,
we solve for� in

(3:19) Lj� = X(� ; �j):
Then we obtain� as a new approximate Gaussian

(3:20) �((x1; x2); �j) �
(
exp[�x22=(4c�x1)]=

p
4��x1 if x1 > hj

p
�j ,

exp[�c1jx1j=hj � x22=(4c�hj)]=
p
c2�hj if x1 < hj

p
�j .

Residual error estimates.By the expression (3.20) for� we can estimate the residual error
caused by the artificial diffusion part of (3.15)

(3:21)

Z
x1>hj

p
�j

Z 1

�1
hj j�x1x1 jdx1dx2 � C

Z 1

x1>hj
p
�j

hj=x
2
1dx1 =

Cp
�j
:

To estimate the projection partaj(�; (I � e�j+1)�gj(� �) � �l), we first use

(3:22)

Z B

�B

Z
RI

(j�x1 j+ hj j�x1x1 j+ �j�x2x2 j)dx � C log
B

hj
;

which follows similarly to (3.21). Then, standard error estimates of theL2-projection (3.7)
yield

(3:23) k(I � e�j+1)�gjkL1
� Ch2j+1k�gjkW 2

1
;

whereW 2
1 denotes the Sobolev space of functions with two derivates inL1(RI

2). The def-
inition (3.13) implies that�gj � X(� ; �j), so that by (3.22), (3.18), (3.23) and the factP

�l2B0 �l = 1 we have

(3:24)

kaj(�; (I � e�j+1)�gj � ��)k`1((�B;B)�RI )

� k(I � e�j+1)�gjk`1
Z B

�B

Z
RI

(j�x1 j+ hj j�x1x1 j+ �j�x2x2 j)dx

� Ch2j+1kX(� ; �j)kW 2
1
log B

hj
� Chj

��j
log B

hj
:
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FIG. 4.1.The uniform aligned mesh.

By summation overR(xi) in (3.15) and combining (3.21), (3.24) we have heuristically mo-
tivated that (1.10) holds. In Sections 4, 5 and 6 we rigorously do the analogous analysis of
(3.16-18), (3.19-20) and (3.21-24), respectively, for the discrete problem (1.2) in the case of

 = RI 2 and a uniform mesh.

4. `1-estimates of the Green’s function in the smoothing problem.In this section,
we follow the idea in (3.16-18) to estimate the residual in the smoothing problem. To obtain
estimates of the smoothing and correction operators we simplify by assuming that the mesh
is uniform and that
 = RI 2 is unbounded and hence excluding possible boundary effects; in
Section 9 we include boundary conditions. We consider meshesMj with nodal points

(4:1) (n;m)hj ; n;m 2 ZZ;
and edges in the direction(1; 0), (0; 1); (1; 1), see Fig. 2. The mesh is in this case aligned
to the characteristic direction(1; 0). In Section 7.1, we treat a uniform mesh which is not
aligned to the characteristic and thereby introduces fourth order dissipation in the cross wind
direction, which improves the multigrid convergence.

4.1. The smoothing problem.In the first step, we study the evolution of the residual

X(j)(xi) � Lj�
(j)(xi); xi 2 Nj ;

where by (2.3) and (4.1)Lj : Vj ! Vj ,X(j) 2 Vj , is the finite difference operator with nodal
values

(4:2)

(LjX
(j))(hjn; hjm) = 1

hj
[X(j)(hjn; hjm)� 5

6
X(j)(hj(n� 1); hjm)

� 1
6
X(j)(hj(n+ 1); hjm)� 1

6
X(j)(hjn; hj(m+ 1)) + 1

6
X(j)(hjn; hj(m� 1))

� 1
6
X(j)(hj(n� 1); hj(m� 1)) + 1

6
X(j)(hj(n+ 1); hj(m+ 1))]

+ �
h2
j

[� 1
4
X(j)(hjn; hj(m+ 1)) + 1

2
X(j)(hjn; hjm)� 1

4
X(j)(hjn; hj(m� 1))]:

For simplicity in the notation we have replacedahj (�; �) by ahj�2�(�; �), cf. (3.9). Taking the
Lj difference quotient of�(j) in (3.4), we obtain the evolutionary problem

(4:3) X
(j)
k+1(xi) = X

(j)
k (xi)� chjLjX

(j)
k (xi) 8xi 2 Nj :
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Let bZ be the Fourier transform ofZ, i.e.

bZ(!1; !2) = h2j
P

n;m2ZZ Z(hjn; hjm) exp(i(n!1 +m!2)hj);

Z(hjn; hjm) = (2�)�2
R 2�=hj
0

R 2�=hj
0

bZ(!1; !2) exp(�i(n!1 +m!2)hj)d!1d!2:

Then the smoothing problem (4.3) transforms to

bX(j)
k+1 =

bX(j)
k � c[1� 5

6
exp(�ihj!1)� 1

6
exp(ihj!1)� 1

6
exp(ihj!2) +

1
6
exp(�ihj!2)

� 1
6
exp(�ihj!1 � ihj!2) +

1
6
exp(ihj!1 + ihj!2) +

�
hj
(1� cos(hj!2))] bX(j)

k :

Therefore, the Green’s functiongj 2 Vj of (4.3) for�j smoothing steps is

(4:4)
bgj = (1� c[1� 5

6
exp(�ihj!1)� 1

6
exp(ihj!1)� 1

6
exp(ihj!2) +

1
6
exp(�ihj!2)

� 1
6
exp(�ihj!1 � ihj!2) +

1
6
exp(ihj!1 + ihj!2) +

�
hj
(1� cos(hj!2))])

�j ;

which satisfies thè1-estimates of Lemma 4.1 below, to be used in Section 6 to estimate
(3.15). LetDxi andD(2)

xi denote the difference operators

(4:5)

Dxi ; D
(2)
xi : Vj ! Vj ; i = 1; 2;

e1 � (1; 0); e2 � (0; 1);

Dxiv(x) =
v(x+hjei)�v(x)

hj
;

D
(2)
xi v(x) =

v(x+hjei)�2v(x)+v(x�hjei)
h2
j

;

and furthermore, letgj be extended toRI 2 by gj 2 Vj .
LEMMA 4.1. There is a constantC, independent ofhj and�, such that

(4:6) kgjk`1 �
P

xi2Nj
jgj(xi)jh2j � 1 +

Chj
��j

;

(4:7) h2jkgjkw2
1
� Chj

��j
;

(4:8) k� eD(2)
x2 gjk`1 + khj eD(2)

x1 gjk`1 � C
hj�j

;

(4:9) kDx1gjk`1 � C
hj
p
�j
;

wherew2
1 denotes the discrete version of the Sobolev spaceW 2

1 , (defined below (3.23))

kvkw2
1
� k jD(2)

x1
vj+ jD(2)

x2
vj+ jDx1Dx2vj k`1 :

Proof. First we note that by (4.4)

(4:10a)
jbgj � exp(�c(h2j!2

1 + �hj!
2
2 � hj!1i)�j)j

� C(h2j!
2
1 + �hj!

2
2)

2�j exp(�c(h2j!2
1 + �hj!

2
2)�j):
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Next, we split

(4:10b) gj �
exp(� (x1�c�jhj)2

4ch2
j
�j

� x22
4c�hj�j

)

4�c
q
�h3j�

2
j

into near and far fields,N andF , respectively, where

N = f(x1; x2) 2 Nj : jx1j �
q
h2j�j ; jx2j �

p
�hj�jg;

F = Nj nN:
Then thè 1-norm of (4.10b) can be estimated in terms of weighted`2-norms as follows

(4:11)







gj�
exp(� (x1�c�jhj )

2

4ch2
j
�j

�
x2
2

4c�hj�j
)

4�c
p

�h3
j
�2
j








`1

=
X
N

������gj �
exp(� (x1�c�jhj)2

4ch2
j
�j

� x22
4c�hj�j

)

4�c
q
�h3j�

2
j

������h2j
+
X
F

������gj �
exp(� (x1�c�jhj)2

4ch2
j
�j

� x22
4c�hj�j

)

4�c
q
�h3j�

2
j

������h2j
� I + II;

where by Cauchy’s inequality, Parseval’s formula and (4.10a)

I �






gj �

exp(� (x1�c�jhj )
2

4ch2
j
�j

�
x2
2

4c�hj�j
)

4�c
p

�h3
j
�2
j








`2

sX
N

h2j

�


bgj � exp(�c(h2j!2

1 + �hj!
2
2 � hj!1i)�j)




L2([0;2�=hj ]2)

sX
N

h2j

� C=�j ;

II �






[( x1p

h2
j
�j
)2 + ( x2p

hj��j
)2]gj �

exp(� (x1�c�jhj )
2

4ch2
j
�j

� x2
2

4c�hj�j
)

4�c
p

�h3
j
�2
j

)








`2

�
sX

F

[(
x1q
h2j�j

)2 + (
x2p
hj��j

)2]�2h2j

�




[( @!1p

h2
j
�j
)2 + (

@!2p
hj��j

)2](bgj � exp(�c(h2j!2
1 + �hj!

2
2 � hj!1i)�j))






L2([0;2�=hj ]2)

� (2h2j�j�hj�j)
1=4 � C

�j
:

Moreover, the functionexp(�c(h2j!2
1 + �hj!

2
2 � hj!1i)�j) is the Fourier transform of

exp(� (x1�c�jhj)2
4ch2j�j

� x22
4c�hj�j

)

4�c
q
�h3j�

2
j

;
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which with our quadrature (3.8) has`1-norm less than1 + Chj=(��j). Combining this with
the estimates ofI andII prove (4.6).

Next, to estimate(4:7) we proceed as above

(4:12)

kh2jD(2)
x1 gjk`1 � kh2jD(2)

x1 gjk`2
sX

N

h2j

+





[( x1p
h2
j
�j
)2 + ( x2p

hj��j
)2]h2jD

(2)
x1 gj






`2

sX
F

[(
x1q
h2j�j

)2 + (
x2p
hj��j

)2]�2h2j

� I + II;

where

jI j � C(1� cos(!1hj))bgjkL2
(h3j��

2
j )

1=4 � C
�j
;

jII j � C





 [( @!1p
h2
j
�j
)2 + (

@!2p
hj��j

)2](1� cos(!1hj))bgj




L2

(h3j��
2
j )

1=4 � C
�j
;

which proves that theD(2)
x1 part of thew2

1-norm satisfies (4.7). The proof of theD(2)
x2 and

Dx1Dx2 parts follows as above.
To prove (4.8), we note that by (3.10)

(4:120) eD(2)
x1
gj(xl) =

X
xi2N0

M�1(i)D(2)
x1
gj(xl � xi) �M�1 �D(2)

x1
gj ;

whereM�1(i) � fM�1(�+ i; �) is the inverse of the mass matrix inV0

fM(n;m) =

Z
RI 2

�n�mdx:

Since

kM�1k`1 � C;

we have

k eD(2)
x1
gjk`1 = kM�1 �D(2)

x1
gjk`1 � kM�1k`1kD(2)

x1
gjk`1 � CkD(2)

x1
gjk`1 ;

which by (4.12) proves that the second term of (4.8) satisfies the required bound. The estimate
of the first term and (4.9) follows as (4.7).

4.2. The correction problem. Our next step is to study the residuala(�; �) in the cor-
rection step

(4:13) aj+1(Pj+1�
(j)
�j
; v) = aj(�

(j)
�j
; v) 8v 2 Vj+1; � 2 Vj :

Let us therefore define the residualsX(j) 2 Vj and �Pj+1X
(j) 2 Vj+1 by

(4:14) X(j)(xm) � 1

h2j
aj(�

(j)
�j
; �m) 8xm 2 Nj ; �m 2 Bj ; �m(xm) = 1;

(4:15)

( �Pj+1X
(j))(xn) � 1

h2j+1

aj+1(Pj+1�
(j)
�j
; ��n) 8xn 2 Nj+1; ��n 2 Bj+1; ��n(xn) = 1:
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We note that the residualX(j) is the result of the smoothing (4.3). In the correction step, the
residual is mapped to�Pj+1X

(j) on the coarser grid. Our goal is now to express�Pj+1X
(j)

in terms ofX(j). By (4.13-15) and sinceBj+1 3 ��n(x) =
P

i
��n(xi)�i(x); �i 2 Bj , we

obtain

(4:16) ( �Pj+1X
(j))(xn) =

X
xi2Nj

h2j

h2j+1

��n(xi)X
(j)(xi) 8xn 2 Nj+1:

We have

X
fi:�i2Bjg

h2j

h2j+1

��n(xi) = 1 8��n 2 Bj+1;X
fn: ��n2Bj+1g

��n(xi) = 1;

which by (4.16) shows that the correction operator�P does not increase the`1-norm

(4:17)

k �Pj+1X
(j)k`1 =

X
n

h2j+1j( �Pj+1X
(j))(xn)j

�
X
n

X
i

jX(j)(xi)j��n(xi)h2j =
X
i

h2j jX(j)(xi)j = kX(j)k`1 :

¿From our multigrid algorithm (3.5) and from the evolution of the Greens function�(j)

in (3.6), we are led to study successive smoothing problems with initial data given by�Pj+1

corrections of the residualLj�(j) smoothed on the finer mesh. Define

X(j) � Lj�
(j):

Then the representation (3.6) implies that

(4:18)
X(�1) = �;

X(j) = gj( �PjX
(j�1)); j = 0; : : : ; J;

where �Pj is given by (4.16),�P0 � I and

gj( �PjX
(j�1)) = gj � ( �PjX(j�1)):

Here the operator� denotes the convolution

w � v(xi) =
X

yn2Nj

w(xi � yn)v(yn);

and the Green’s functiongj is thej-level smoothing function defined in (4.4). Combining
(4.13), (4.17), (4.18) and Lemma 4.1, we obtain



ETNA
Kent State University 
etna@mcs.kent.edu

64 Multigrid for Flow

LEMMA 4.2. There is a constantC, independent ofJ , hj and�, such that forj � J � 1

k �Pj+1X
(j)k`1 � �i�j(1 +

Chi

��i
);

kgj( �PjX(j�1))k`1 � �i�j(1 +
Chi

��i
);

h2j (kgj( �PjX(j�1))kw2
1
+ k( �PjX(j�1))kw2

1
) � Chj

��j
�i�j(1 +

Chi

��i
);

k� eD(2)
x2 gj �Pj+1X

(j)k`1 + khj eD(2)
x1 gj �Pj+1X

(j)k`1 � C
hj�j

�i�j(1 +
Chi

��i
);

kDx1gj
�Pj+1X

(j)k`1 � C
hj
p
�j
;

k� eD(2)
x2

�Pj+1X
(j)k`1 + khj eD(2)

x1
�Pj+1X

(j)k`1 � C
hj�j

Q
i�j(1 +

Chi
��i

);

kDx1
�Pj+1X

(j)k`1 � C
hj
p
�j
;

and by assumption (1.11)

�i�j(1 +
Chi

��i
) � C:

The effect of the post smoothing operator is a consequence of
LEMMA 4.3. Let

�Sj = �i�jSi;0

be the post smoothing operator in (2.10), then

(4:19) �Sjv(xn) =
X

y0k2N0

�gj(y0k)v(xn � y0k ) 8v 2 V0; xn 2 N0;

where

�gj(xn) �
X

yik2Ni;i=1;:::;j

g0(xn � y1k )g1(y1k � y2k)g2(y2k � y3k) : : : : : : gj(yjk )

satisfies

(4:20a) k�gjk`1 � C;

(4:20b) k(I � e�j+1)�gjk`1 �
Chj

��j
:

Proof. We have by (4.4)

Si;0v(xn) =
X

yik2Ni

gi(yik )v(xn � yik);

which implies (4.19); and by (4.6) we see that (4.20a) holds.
Fourier transforming yields

b�gj(!) = �i�jbgi(!);
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wherebgi is given in (4.4). Using weighted̀2-norms as in (4.11) we conclude that

h2j+1kD(2)
x1 �gjk`1 � C

�j
;

h2j+1kD(2)
x2 �gjk`1 � Chj

��j
;

h2j+1kDx1Dx2�gjk`1 �
Ch

1=2

j

�1=2�j
:

Hence, combining this and the standard estimate of theL2-projection

(4:21) k(I � e�j+1)�gjk`1 � Ch2j+1k�gjkw2
1
;

cf. [13], [10], proves (4.20b).

5. L1-estimates of the Green’s function in the correction problem.Here we shall
estimate the Green’s function of the correction problem (4.13), following the idea given in
(3.15) and (3.16). Our error representation formula (3.15) is based on the solutionsPj+1�

(j)
�j

and�(j)�j of the correction problem

(5:1)
h2j+1Lj+1Pj+1�

(j)
�j (xi) = aj+1(Pj+1�

(j)
�j ; �i)

= aj(�
(j)
�j ; �i) = h2j+1

�Pj+1X
(j) 8�i 2 Bj+1;

where

Lj�
(j)
�j

= X(j);

and whereX(j) is given in (4.3), (4.14), (4.18). The discrete Green’s functionGj of the
correction problem

(5:2) LjGj = �; �(xi) �
(

0; 0 6= xi 2 Bj ;
1
h2
j

; xi = 0;

yields the representation

(5:3) �(j)�j
= Gj �X(j);

and by (5.1)

(5:4) Pj+1�
(j)
�j

= Gj+1 � �Pj+1X
(j):

To estimate(I � e�j)�
(j)
�j ;x1 ; (I � e�j)Pj+1�

(j)
�j ;x1 , and the other parts of the residual in (3.15)

we will use the estimates ofX(j) in Lemma 4.2 and the above representations. Therefore, in
addition to the estimates ofX(j), we need similar estimates ofG, which we obtain by Fourier
transforming in thex2-direction. Let the Fourier transformbG be defined by

bGn(!) = hj
X
m2ZZ

G(hjn; hjm) exp(i!hjm);

G(hjn; hjm) = (2�)�1
Z 2�=hj

0

bGn(!) exp(�i!hjm)d!;
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and extendG toRI 2 byG 2 Vj . Then equation (5.2) transforms to

(5:5)

1
6
bGn�1[5� exp(�i!hj)] + bGn[1 +

�
hj
(1� cos(!hj))� i

3
sin(!hj)]

+ 1
6
bGn+1[exp(i!hj)� 1] = �0(n):

By z-transforming this difference equation according to
P1

n=�1
bGnz

n, we see that its char-
acteristic equation

��2z2 + �1z + �0 = 0

has two roots

(5:6) z� =
�1

2�2
�
p
�21 + 4�2�0

2�2
;

where the coefficients satisfy

�0 =
1
6
(exp(i!hj)� 1);

�1 = 1� �
h
(1� cos(!hj))� i

3
sin(!hj);

�2 =
1
6
(exp(�i!hj)� 1) + 1:

We shall see that

(5:7) bGn =

(
a(z+)

�n; n � 0;

a(z�)�n; n < 0x;

is the bounded solution of (5.5), wherea is given by

a =
1

�1 � �2(z�)� �0(z+)
:

The function bGn in (5.7) is the bounded solution of (5.5) ifjz+j � 1 and jz�j � 1. We
verify these estimates of the characteristic roots in (5.7) by expanding the Taylor series of the
functionz�, given in (5.6), in the variable

c0 � �(1� cos(!hj))

hj
;

aroundc0 = 0, and use thatz+jc0=0 = 1 to obtain

(5:8a) jz+j � 1 +
�hj!

2

2
+O(c02) > 1 + c00�hj!

2;

(5:8b) jz+j�n=4j np
n�hj

@!z+j � C; n � 1;

(5:8c) jz+j�n=4j n

n�hj
@2!z+j � C; n � 1;

wherej!hj j � �, andc00 is a positive constant independent of� andhj provided�=hj < C <

1. The estimate (5.8a) implies that

(5:8d) jz�j = �0�2

jz+j
� 1

2
:
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Our next step is to prove
LEMMA 5.1. There holds forA � h2j=�

(5:9a)

Z
y1�A

Z 1

�1
jG(y1; y2)jdy2dy1 � CA;

(5:9b)

Z
A<y1<B

Z 1

�1
jDx1G(y1; y2)jdy2dy1 � C log

B

A
;

(5:9c)

Z
A<y1<B

Z 1

�1
j� eD(2)

x2
G(y1; y2)jdy2dy1 � C log

B

A
;

(5:9d)

Z
y1>A

Z 1

�1
hj j eD(2)

x1
G(y1; y2)jdy2dy1 � C

hj

A
;

(5:9e)

Z
y1=A

jG(y1; y2)jdy2 � C;

(5:9f)

Z
y1=A

jDx1G(y1; y2)jdy2 �
C

A
:

Proof. Let us start to prove (5.9f). We shall use the technique in Lemma 4.1 based
on the near and far field decomposition (4.11). Let us first assume thatA � h2j=�, i.e.
y1 � nhj � h2j=�, thenR

y1=A
jDx1G(y1; y2)jdy2 =

R
jy2j<�n jDx1G(A; y2)jdy2 +

R
jy2j��n jDx1G(A; y2)jdy2

� I + II;

where�n is chosen as

(5:10) �n = a

( p
�hjn; n� � hj ;

hj ; n� < hj :

Then by (5.7) and (5.8), we have by the equivalence of`1 andL1-norms combined with
Parseval’s relation

I � Ck dDx1GnkL2

p
�n �

(
C=(hjn); n � 1;

C(1=2)n; n � 0;

II � C



( y2�n )2Dx1Gn





L2

qR
jy2j>�n

dy2
(y2=�n)2

� C



(@!�n )2 d(Dx1Gn)





L2

p
�n �

(
C=(hjn); n � 1;

C(1=2)n; n � 0:

In the last inequality we used

jz+j�n=4jn@!z+
�n

j2 + jz+j�n=4jn@
2
!z+

�2n
j2 � C;
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and

j@!a
�n

j+ j@
2
!a

�2n
j � C;

which both follow from (5.6). Now combining the estimates ofI andII above proves that
(5.9f) holds. We obtain the estimate (5.9b) by integrating (5.9f). The estimates (5.9c,d,e)
follow similarly, using also the relation (4.120) betweeneD(2)

xi andD(2)
xi . For the case (5.9a),

wheny1 < h2j=�, the choice of�n is modified according to (5.10), and we see as above that
for y1 > 0,

R
RI
jG(y1; y2)jdy2 � C; which combined with the exponential decay (5.7) and

(5.8a,b,c), fory1 < 0, implies (5.9a).

6. Estimates of the residual in (3.15).Proof. [of Theorem 1.1] In this section we
shall combine the results of Sections 4 and 5 to estimate the residual in (3.15), and thereby
complete the proof of Theorem 1.1. The residual given by (3.15) has two main parts; the first
consists of the projections of�(j) � �

(j)
�j

(6:1) aj(�
(j); (I � e�j+1)�gj � �); aj+1(Pj+1�

(j); (I � e�j+1)�gj � �);
and the second part is the artificial diffusion terms

(6:2)
1

2
k(h0 � hj) eD2

x1
�(j)kL1

;
1

2
k(h0 � hj+1) eD2

x1
Pj+1�

(j)kL1
:

Both parts will be estimated by the representation (5.3), (5.4)

�(j)(x) =
X

yn2Nj

Gj(yn)X
(j)(x� yn)h

2
j ;

Pj+1�
(j)(x) =

X
yn2Nj+1

Gj+1(yn) �Pj+1X
(j)(x� yn)h

2
j+1;

whereX(j),Gj 2 Vj and the relevant estimates ofX andG are given in Lemmata 4.1-2 and
5.1.

Using that
P

l �l = 1, we have by Lemma 4.3 and (3.15)

(6:3)

kL0
eUnextk`1 �

J�1X
j=0

X
xl;xi2N0

h20jR(xi)j [ jaj(�(j)(� ;xi); (I � e�j+1)�gj(� �) � �l)j

+ j 1
2
(h0 � hj)( eD2

x1
�(j)(� ;xi); �gj(� �) � �l)j+ : : :]

� kRk`1 maxi
X
j;l

X
yn2N0

h
j(I � e�j+1)�gj(�yn)aj(�(j)(� ;xi); �l�n)j

+hj j�gj(�yn)j j( eD2
x1
�(j)(� ;xi); �l�n)j+ : : :

i
� kRk`1 maxi

X
j

"
k(I � e�j+1)�gjk`1

Z B

�B

Z
RI

j�(j)x1
(� ;xi)jdx

+k�gjk`1
Z
RI 2

hj j eD(2)
x1
�(j)(� ;xi)jdx + : : :

�
� kRk`1 maxi

X
j

"
Chj

��j

Z B

�B

Z
RI

jDx1�
(j)(� ;xi)jdx

+k�gjk`1
Z
RI 2

hj j eD(2)
x1
�(j)(� ;xi)jdx + : : :

�
;
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where+ : : : denotes the other similar terms in (3.15). The final step in estimating theL1-norm
of the residual above and in (3.15) is to evaluate the integrals above by applying Lemmata
5.1, 4.2. To take advantage of the favourablex1-decay of thex2-integrals ofG in (5.9a,d),
we sum by parts as follows

(6:4)

khj eD(2)
x1 �

(j)kL1
�



P

y1�hj�1=2j
; y2Nj

hj eD(2)
x1 X

(j)(x � y)Gj(y)h
2
j





L1

+









X

y1>hj�
1=2
j

; y2Nj

hjX
(j)(x� y)D(2)

x1
Gj(y)h

2
j









L1

+



P

y1=hj�
1=2
j

; y2Nj
hjX

(j)
x1 (x� y)Gj(y)hj





L1

+



P

y1=hj�
1=2
j

; y2Nj
hjX

(j)(x� y)Gj;x1(y)hj





L1

� khj eD(2)
x1 X

(j)k`1
R
y1<hj�

1=2
j

jGj(y)jdy

+ kX(j)k`1
R
y1>hj�

1=2
j

jhj eD(2)
x1 Gj(y)jdy

+ khjX(j)
x1 k`1

R
y1=hj�

1=2
j

jGj(y)jdy2
+ khjX(j)k`1

R
y1=hj�

1=2

j

jGj;x1(y)jdy2 � C

�
1=2
j

:

The other parthj eD(2)
x1 Pj+1�

(j) in (6.3) can be estimated similarly and satisfies the same

bound. We note that by assumption (1.11)�
1=2
j � hj=�, which implies thatA = hj�

1=2
j �

h2j=�, and therefore the assumption in Lemma 5.1 holds. By choosingA = Chj in Lemma
5.1, it follows similarly that

(6:5)

Z B

�B

Z
RI

j�(j)x1
jdx+

Z B

�B

Z
RI

j� eD(2)
x2
�(j)jdx � C log

B

hj
:

Combining (6.3-5) proves Theorem 1.1.
Remark. In the particular case studied here, the Green’s functionsg andG in (4.4) and

(5.2), respectively, are translation invariant, and hence also�(j) becomes translation invariant,
i.e. �(j)(x;xn) = �(j)(xn;x) = �(x� xn) for a certain function�. Therefore, the sum over
xi in (3.15) is in fact a convolution and hence, by the Youngs inequality, the`1-norm in
Theorem 1.1 can be replaced by anyLp-norm,1 � p � 1.

7. Numerical results and extensions.In this section we discuss some extensions of
Theorem 1.1 and numerical experiments of the multigrid method. The extensions are mo-
tivated by the continuous analogue of the multigrid method in (3.16-24) and by numerical
experimentsf; a rigorous analysis of the discrete case following Theorem 1.1 is tedious and is
not carried out here.

7.1. Non-aligned mesh.Assume that we solve the equation

ux1 +
1

2
ux2 � ��u = f

with the streamline diffusion finite element method using the mesh in Fig. 2, Section 4. Then,
the characteristic direction(1; 1=2) is not parallel to any edge of the mesh and the difference
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operator corresponding to (4.2) takes the form

(7:1)

(LjX
(j))(hjn; hjm) = 1

hj
[X(j)(hjn; hjm)� 1

2
X(j)(hj(n� 1); hjm)

+ 1
8
X(j)(hjn; hj(m� 1))� 1

2
X(j)(hj(n� 1); hj(m� 1)) + 1

8
X(j)(hjn; hj(m+ 1))]

+ �
h2
j

[� 1
4
X(j)(hjn; hj(m+ 1)) + 1

2
X(j)(hjn; hjm)� 1

4
X(j)(hjn; hj(m� 1))]:

In orthogonal coordinates(�1; �2), with �1 aligned with the characteristic(1; 1=2), the Fourier
transform ofLj has fourth order dissipation in the�2-direction in contrast to the operator in
(4.2). TheL1-norm of the Green’s function for the post smoothing operator, cf. (3.16), related
to the continuous version ofLj

@

@�1
� ��� 2h3j

625

@4

@�42
;

can be estimated byk(I � e�j+1)�gjkL1
� Ch2jp

2
625

h4
j
�j+hj��j

replacing
Ch2j
hj��j

in (1.10). The

artificial diffusion term in (1.10), i.e. theC2=
p
�j term, does not change. This replacement

indicates that the multigrid method, based on Jacobi smoothing steps, could work for� = 0

andh0 > 0 if the mesh is not aligned with the characteristic; however, due to the small factor
2/625, the number of smoothing steps required to sufficiently damp one V-cycle might be very
large. After one V-cycle, Experiment B in Table 1 shows large amplifications of5:4 and4:7
for five and ten smoothing steps, respectively. However, after several cycles the asymptotic
damping is strictly less than1:0 using five and ten smoothing steps. This is in contrast to
the aligned case of experiment G, in the same table, where the damping degenerates to 1.0
as�=h0 tends to zero. Hence, an analysis of the asymptotic damping, for�=h0 � 1, in the
non-aligned case would require a study of the residual in multiple cycles, cf. Section 7.2.

7.2. Isotropic artificial diffusion and the effect of several V-cycles.As mentioned in
Section 1, to stabilize the convection problem we can also use the first order accurate isotropic
artificial diffusion (hjrU;rv) instead of the streamline diffusion form(hjUx1 ; vx1). The

isotropic form gives an additional artificial diffusion term(h0�hj) eD(2)
x2 �

(j) in (3.11), (3.15),

which has the same estimate as�D(2)
x2 �

(j) in (6.5) and yields the additional contributionZ B

�B

Z
RI

j(h0 � hj) eD(2)
x2
�(j)jdx � C log

B

hj

to the corresponding
B in (1.10). Also in practice, one V-cycle based on isotropic diffusion
and post smoothing, does not damp the residual for fine meshes, cf. experiments D,E,F in
Table 1, and the damping factor is increasing with larger domains. However, several cycles
damp the residual. Let us briefly try to explain this behavior of the damping for the two grid
method withh1 = 2h0. The evolution of the initial Dirac measure residual yields, after one
V-cycle, a small partR2 of the residual error withL1-norm

kR2kL1
� C1

�0
log

B

h0
+

C2p
�0
;

and a larger partR1 which is the artificial diffusion term(h1 � h0) eD(2)
x2 P1�

(1). Let us now
study the evolution of thex2-Fourier transform of the residual error, caused by the artificial
x2-diffusion,

R1 � �(x1)
h1

2
!2 exp(�!2x1h1); �(x1) �

�
1; x1 > 0,
0; x1 � 0.
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TABLE 1.

Experiment � method hfine hcoarse �pre �post 
(1) 
(5) �


A 1/64 SD 1/64 1/4 3 3 1.87 0.113 0.495
A 1/64 SD 1/64 1/4 5 5 1.25 0.0230 0.368
A 1/64 SD 1/64 1/4 10 10 0.647 0.00178 0.229

B 0 SD,� 1/64 1/4 5 5 5.39 - 0.880
B 0 SD,� 1/64 1/4 10 10 4.69 - 0.777

C 1/64 SD 1/64 1/4 3 0 4.74 0.760 0.633
C 1/64 SD 1/64 1/4 5 0 4.22 0.308 0.520
C 1/64 SD 1/64 1/4 10 0 3.59 0.0525 0.348

D hj ISO 1/8 1/4 5 5 0.676 0.0174 0.400
D hj ISO 1/16 1/8 5 5 0.907 0.0446 0.471
D hj ISO 1/32 1/16 5 5 1.14 0.0708 0.499
D hj ISO 1/64 1/32 5 5 1.35 0.0961 0.516

E hj ISO 1/8 1/4 5 5 0.676 0.0174 0.400
E hj ISO 1/16 1/4 5 5 1.08 0.0902 0.537
E hj ISO 1/32 1/4 5 5 1.53 0.245 0.633
E hj ISO 1/64 1/4 5 5 2.00 0.502l 0.707
E hj ISO 1/128 1/4 5 5 2.53 0.915 0.775
F hj ISO 1/8 1/4 10 10 0.482 0.00205 0.256
F hj ISO 1/16 1/4 10 10 0.840 0.0159 0.371
F hj ISO 1/32 1/4 10 10 1.24 0.0555 0.460
F hj ISO 1/64 1/4 10 10 1.71 0.166 0.558
F hj ISO 1/128 1/4 10 10 2.20 0.379 0.644

G 1=32 SD 1/64 1/4 5 5 1.20 - 0.362
G 1=128 SD 1/64 1/4 5 5 1.37 - 0.438
G 1=512 SD 1/64 1/4 5 5 2.05 - 0.606
G 1=2048 SD 1/64 1/4 5 5 3.45l - 0.784
G 1=8192 SD 1/64 1/4 5 5 4.17 - 0.885
G 1=32768 SD 1/64 1/4 5 5 4.40 - 0.922
G 0 SD 1/64 1/4 5 5 4.48 - � 1

Residual damping ratio of multigrid V-cycles. We use multigrid iterations to solveux1 �
��u = 0 in (0; 1) � (0; 1), with an initial Dirac-like algebraic residual withL1-norm 1.0
at the center of the computational domain. We use the homogeneous Dirichlet boundary
conditions except at the outflow boundary atx1 = 1, where the homogeneous Neumann
boundary condition is applied. The constant in the damped Jacobi steps isc = 0:2. The
number of pre and post smoothing steps are increased by a factor of two on each coarser
level, i.e. �jpre = 2j�pre. TheL1-norm of the residual aftern V-cycles is
(n), and�
 �
(
(5)=
(1))1=(5�1) the average damping of V-cycles 2 to 5, which in practice approximates
the asymptotic damping of one V-cycle, except in experiment B and G where the5 in �
 is
changed to15. Note that
(0) = 1:0. In experiment B, the convective partux1 has been
replaced byru � (cos�; sin�), where� is the angle to thex1-axis. In experiment B, we
choosetan� = 1=4, i.e the characteristic is not aligned with the mesh. In the last experiment
of G, with� = 0, the residual is not asymptotically damped.
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Initially in the second V-cycle, the Fourier transformed iteration error�2, due to artificial
diffusion, satisfies

�2;x1 + h0!
2�2;x2x2 = R1;

and then in the smoothing steps (which is multiplication byexp(�!2h20�0) for thex2-part)
this residual remains approximately the same (forjx1j not too small). Therefore, its correction
condition

P1�2;x1 + h1!
2P1�2 = R1;

with the solution

P1�2 = �(x1)
h1

2
!2x1 exp(�!2x1h1);

describe the residual error

h1

2
!2P1�2 =

�(x1)

x1
(
h1x1!

2

2
)2 exp(�!2x1h1):

Combining the residual error in the last equation, the smaller errorR2, and making a slight
modification inP1�2 for jx1j � Ch0 (due to damping in the smoothing), we obtain the
following residual damping aftern cycles


B = (G(n) +
C1

�0
) log

B

h0
+

C2p
�0
;

where

G(n) �
Z
RI

jF�1(h1x1!
2

2
)n exp(�!2h1x1)jdx2:

The operatorF�1 denotes the inverse Fourier transform in thex2-direction. A numerical
computation shows thatG(4) = 0:02346 is the minimum ofG; other values ofG areG(0) =
1, G(1) = 0:121, G(3) = 0:0270 andG(5) = 0:0263. Hence in the two grid method the
residual will be damped after four V-cycles providedB=h0 < 1018 and�0 is chosen such
thatkR2kL1

� 1=2. Experiments D,E,F in Table 1 show that a residual, which has an initial
L1-norm of size 1.0, may increase after one iteration, but after some additional V-cycles the
residual is damped below its initial value.

7.3. Higher dimensions. In d dimensions the problem (1.1) and the estimates corre-
sponding to the residualX in (3.14) and the Green’s function� in (3.16) are changed by
replacingx22 by

Pd
i=2 x

2
i in the exponential and the appropriate square root in the denomina-

tor by (�)d�1=2. This change does not alter the estimates (3.17-19). Therefore, we expect the
estimate (1.10) of
B to hold ind dimensions,d > 2.

7.4. Higher order elements.For kth order elements we have two choices. Either we
can, (i) use the higher order method also on coarser levels, or we can, (ii) compute the correc-
tion with piecewise linear elements onthe same mesh/and on all coarser meshes. Fork = 2,
iterations based on (i) and (ii) use the same number of degrees of freedom. Both strategies
work numerically. In alternative (i), we can use in (3.23)

(7:2) k(I � e�j+1)�gjkL1
� Ckh

k+1
j+1k�gjkWk+1

1

;
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which for case (i) has the bound

Ck(
2hjp
hj��j

)k+1 = Ck2
k+1(

hj

��j
)(k+1)=2

instead of

C1

(2hj)
2

hj��j
= C14

hj

��j

in (3.24). The case (ii) similarly yields the bound

C1

h2j

hj��j
= C1

hj

��j
:

Hence, consideringhj=(��j) close to1, the piecewise linear case (ii) gives a damping which
is a factor2�(k+1)C1=Ck smaller than the damping in case (i), indicating that the alternative
(ii) is more efficient. The constantCk � 1=(k + 1) is the interpolation constant in (7.2).
The computational cost for one V-cycle using alternative (ii) is also lower than for case (i),
since the assembled matrix is sparser for linear elements and a lower order quadrature rule
is required. In practice it is possible for many problems to use streamline diffusion (for
quadratic elements) on the finest levelj = 0 and first order isotropic artificial diffusion on the
correction problems with piecewise linear elements on levelsj = 1; 2; : : : ; J . This scheme
combines the higher order approximation of the streamline diffusion method with the robust
and cheap smoothing on the correction problems and is used in the computation shown in
Fig. 6 in Section 8.3.

7.5. Estimates of the error. The multigrid method needs a criteria on how small the
residuala(U; �) � (F; �) should be to terminate the V-cycle iterations. Becker, Johnson and
Rannacher [4] have studied such criteria determined bya posterioriestimates and the require-
ment that: (i) the discretization error from the finite element method, and (ii) the error caused
by solving the equations approximately by the multigrid method, are of the same order. The
multigrid erroreM of (ii) can be written, (see [4], [20]),

(7:3) eM (y) =

Z
RI 2

R dx;

whereR � Ux1 � ��U � F is the residual and solves the continuous problem, dual to
(1.1),

L� � � x1 � �� = �(� � y); in 
;

 j@
 = 0:

Therefore, is the dual function of the Green’s function� in (3.16), and satisfies the same
estimate (3.20), withx replaced by(�(x1 � y1); x2 � y2). This estimate and (7.3) imply

jeM (y)j � CkRkL1p
hj�

;

and sincekRkL1
is damped, the erroreM can be made arbitrary small by increasing the

number of V-cycles. If the correction problems have consistent bilinear forms, then the or-
thogonality in the correction problems can be used to improve the estimate (7.3), see [4]. In
our case the similar procedure would be to base ana posterioriestimate on (3.9) or (3.15).
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7.6. A singular perturbed symmetric elliptic problem. Consider for� � 1 the sin-
gular perturbed symmetric elliptic problem

(7:4)
ux1x1 + �ux2x2 = f; x 2 
;

uj@
 = 0:

The damping in the V-cycle can be analyzed analogously, to the problem (1.1), with the
difference that the artificial diffusion terms in (3.15) now are absent and the post smoothing
operator�gj satisfies

k(I � e�j+1)�gjkL1
� C

��j
;

since the Gaussian in (3.14) changes to

X(x; t) =
exp[�x21=(4cth2j)� x22=(4cth

2
j�)]

4�tch2j�
1=2

:

TheL1-norm of the residual has the same estimate as in (3.22)

Z B

�B

Z
RI

(j�x1x1 j+ �j�x2x2 j)dx � C log
B

hj
;

and we conclude that the damping satisfies


B �
J�1X
j=0

C

��j
log

B

hj
:

Compared to the damping (1.10) for the convective problem (1.1), the above damping is
larger by a factor1=hj. Indeed, numerical experiments indicate that the convergence of the
multigrid method for (7.4) is slower than for problem (1.1).

7.7. Small and large diffusion. In Fig. 3 we compare by numerical experiments the
residual of the convection diffusion equation (1.1) for� = h0 and� = 1. We see that the
damping yields residuals which in both cases are qualitatively the same.

In agreement with the analysis of Theorems 1.1 and 1.2, numerical experiments show
that theL1-norm of the V-cycle residuals due to an initial Dirac residual function (3.3) is
larger than the residuals due to other initial functions (with the sameL1-norm).

For a fixed number of pre and post smoothing steps theL1-norm of the residual after one
V-cycle in Theorem 1.1 is bounded by~C1 + ~C2=�. Experiment G in Table 1 shows that this
is a good estimate for�=h0 � 1=32. For the case� � h0, theL1-norm of the residual after
one V-cycle is uniformly bounded; but the experiments also show that the asymptotic residual
quotient, in two consecutive V-cycles, becomes arbitrary close to1, and hence the multigrid
method does not work; see Section 7.1.
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FIG. 3. Spatial distribution of the residuals for the convection-diffusion problem of Table
1. The convection is in thex1-direction. Two choices of the diffusion� are studied: To the
left, � = h0 = 1=64with streamline diffusion stabilization, and to the right,� = 1. The initial
residual is a Dirac function withL1-norm 1.0 at the center of the computational domain. For
both sizes of diffusion we use V-cycle iterations with�

j
pre = �

j

post= 5 � 2j damped Jacobi

smoothing steps, with finest levelj = 0, h0 = 1=64, and coarsest levelj = 4 with h4 = 1=4.
After five V-cycle iterations theL1-norm of the algebraic residual has been damped from 1.0
to 0.023 and 0.0084, for the small and large diffusion case, respectively. We conclude from
the figures above that in both cases the residual damping is caused by diffusion and not by
transport.

7.8. No post smoothing.The projection part of the residual in (3.11), for a V-cycle
without post smoothing, will be damped by the pre smoothing steps on the appropriate level
in the next V-cycle

Sj;0PjSj�1;0Pj�1 : : : P2S1;0P1S0;0(I � e�j)eLj�(j);
which is similar to the smoothing by�gj in a post smoothing step, cf. (3.13). Therefore, we
expect the damping for two V-cycles without post smoothing to be close to the damping of
one V-cycle with post smoothing. This is confirmed in Table 1, experiments A,C.

7.9. Distribution of smoothing steps and Navier-Stokes equations.What is the opti-
mal distribution of smoothing steps on the different levels in a multigrid method? For pure
diffusion problems the optimal strategy is to use the same number of smoothing steps,�j ,
on every level,j; see [16]. Here we compare this strategy�j = �01 = constant, with the
alternative�j = �02 2j = constant 2j , where the number of smoothing steps increase ex-
ponentially on coarser meshes. By choosing�01 = 15 and�02 = 10 the two strategies give
the same amount of work, for a uniform mesh where each triangle is refined into four new
triangles. The numerical results in Fig. 4 show that the�j = 10 � 2j-strategy is the best
of these two smoothing strategies, when they are applied to the stationary two-dimensional
compressible Navier-Stokes equations for an ideal gas with specific heat ratio
, (see [21]),
artificial viscosity,� = 0:01, and source term,f ,

(7:5) divF (W ) = ��W + f;



ETNA
Kent State University 
etna@mcs.kent.edu

76 Multigrid for Flow

whereW = (�; �u; �v; �E) is the vector consisting of the density, momentum in thex1 and
x2 directions and the energy.
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FIG. 4. Algebraic residual for a smooth solution and a shock wave solution of the
Navier-Stokes equations in Section 7.9, using the nonlinear full approximation multigrid
scheme with damped Jacobi smoothing steps. The graphs show the algebraic residual er-
ror for the finest level and its correction problems on coarser levels. The graphs compare the
algebraic residual error with six levels of multigrid cycles using�j = 15 and�j = 10 �2j , re-
spectively, number of smoothing steps on levelj. These two strategies have the same amount
of work. The finest level,j = 0, has3969 nodal points for the problem with the smooth
solution, and15041 nodal points for the shock problem. Fig. 4AB and Fig. 4CD show the
residual error for the smooth solution (7.5-6), and the shock wave problem (7.5),(7.7), re-
spectively. The algebraic residual error is marked as follows. Finest levelj = 0 : solid line
with crosses, levelj = 1 : dashed line with circles, levelj = 2 : dotted line with plus, level
j = 3 : dash-dotted line with stars and levelj = 4 : solid line with circles. We note that the
residual on the finest level is smaller for the�j = 10 � 2j strategy, and therefore this strategy
is better. Moreover, the residual errors for the correction problems on levelj = 1 andj = 2

are larger for the strategy�j = 15, indicating that they should be solved more accurately.
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To prevent oscillations on coarser grids, we add a numerical artificial diffusion term,
(
p
�2 + (h�)2 � �)�W , where� denotes the maximal absolute value of the eigenvalues of

the two Jacobians defined by the fluxF , andh denotes the mesh size. The finest level prob-
lem and the coarser problems are solved with piecewise linear elements using this isotropic
artificial diffusion and the non-linear full approximation multigrid method with damped Ja-
cobi smoothing steps; see [7] and Section 8. The mesh refinement is global and uniform. We
study two problems. The first problem has a smooth solution and the second problem has a
planar stationary shock. In the case of the smooth solution,
 = 1:4 and the source termf is
chosen to satisfy (7.5) for the solution

(7:6) (�; u; v; E) = (1 +
1

2
(x21 + x22))(1; 1; 1; 1);

and the computation is performed on the unit square. The shock wave problem is solved with
f = 0; 
 = 2:0 and the boundary conditions

(7:7)
W (0; x2) = (1;

p
3:5; 0; 2:75);

W (4; x2) = (1:4;
p
3:5; 0; 3:25);

in the computational domain(0; 4) � (0; 1). The computations in Fig. 4 show that the�j =

10 � 2j-strategy yields a smaller residual than by choosing the smoothing steps as�j = 15.
Numerical experiments also show that the�j = 2j�02-strategy is more robust than the�j =
�01-strategy, when decreasing the constants�0i in an equi-work consistent way. When�01 is
chosen below10 the method becomes unstable.

8. A 2D shock wave problem.The two-dimensional nonlinear shock wave problem

(8:1)
F (u) � (u

2

2
)x1 � ��u = 0; x = (x1; x2) 2 RI 2;

u(�1; �) =�1;
has a stationary one-dimensional Burgers shock solution, and it can be solved by the full
multigrid method based on the full approximation scheme (see [7]); the smoothing operator
S0;0 is then given by (2.2) and (3.16) withF (u) replacingLu and the correction step is

U
pre
next= S0;0U0 � ( �U � �1S0;0U0):

Here, the mesh size is chosen such thath0 � �, the operator�1 is the nodal interpolant onto
V1, and �U 2 fv : vjK 2 P1(K) 8K 2 T h1g satisfies

Fh1(
�U; v) = Fh1(�1S0;0U0; v) + F�(S0;0U0; v) 8v 2 V1;

and

Fh(u; v) �
Z
RI 2

[(
u2

2
)x1v + hrurv]dx:

When the perturbationsw = U
pre
next� U0 become sufficiently small, the nonlinear two grid

method above is approximated by the two level method (1.6) for the linearized problem

(8:2) Lw � (u(x1)w)x1 � ��w = 0;

which is a convection-diffusion problem where the compressive flowu(x1) = � tanh x1
2�

is
a Burgers shock wave solving (8.1). We have chosen the coordinates so thatx1 = 0 is the
center of the wave.
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We study the damping of the two grid method for (8.2), where for simplicityh0 = �

andh1 = 2h0. To begin, we need a representation of the residual. The residual representa-
tion (3.15) for the constant coefficient problem (1.1) used translation invariance of the post
smoothing operator�gj ; for the shock wave problem (8.2) the corresponding smoothing oper-
ator is not translation invariant due to thex1-dependent flowu(x1). Our first step is to derive
a residual representation, in view of the related continuous problem, described in (3.16-24).
Now the orthogonality of the correction problem for post smoothing is based on the property
thatL andS0;0 commute, which is proved in Lemma 8.1 below. The second step is to study
the Green’s function for (8.2) and estimate the damping of the two grid method.

8.1. Residual representation.The Green’s functiong(x; t;x; t) for the shock wave
equation (8.2)

(8:3)
gt + h0Lg = 0; t > t;

g(x; t;x; t) = �(x� x);

and its dual

(8:4)  (x; t; �x; �t) = g(�x; �t;x; t);

(8:5)
� t + h0L� � � t + h0[�u(x1) x1 � �� ] = 0; t < �t;

 (x; �t; �x; �t) = �(x� �x);

are both translation invariant in time, but not in space sinceu = u(x1).
Let the smoothing operatorS be defined by

(8:6) Sv(x) =

Z
RI 2

g(x; �; y; 0)v(y)dy;

then we have
LEMMA 8.1. The operatorsL andS commute.
Proof. We have by (8.3-6)

SLv =
R
RI 2 g(x; �; y; 0)Lv(y)dy =

R
RI 2 L�yg(x; �; y; 0)v(y)dy

=
R
RI 2 L�y (y; 0;x; �)v(y)dy =

R
RI 2 h

�1
0  t(y; 0;x; �)v(y)dy

= � R
RI 2 h

�1
0 gt(x; �; y; 0)v(y)dy =

R
RI 2 Lxg(x; �; y; 0)v(y)dy = LSv;

where the subscript of operatorL (andK;� below) denotes the dependent variable.
Let the evolution of the Green’s function for the two grid iteration error be defined by,

cf. (3.4), (3.16),

�t + h0L� = 0; t > 0;

L�(x; 0) = �(x� �x):

A small modification in the treatment of the correction problem (3.9), yields as in (3.11) the
residual error

(8:7)

L0(eUpre
next)(xl) =

X
xi2N0

[( eL0�
(0)
�0
; �l � r) � ( eL0P1�

(0)
�0;x1

; �l � r)

� (h0 � h1)(�P1�
(0)
�0 ; r)]R(xi) 8r 2 V1;
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whereP1 is defined as in (2.4) for the bilinear form corresponding to the problem (8.2). Given
�l, choose nowr according to

(8:8) r =

R
RI 2 �l(x)dxR

RI 2

P
��k2B1;l

��k(x)dx

X
��n2B1;l

��n;

whereB1;l � f��n 2 B1 : xn 2 supp(�l)g, supp(�l) � fx : �l(x) 6= 0g and expandr in the
basisB0

r(x) =
X

xi2N0; �i2B0

r(xi)�i(x):

Then, we have

(8:9) ( eL0�; �l � r) = ( eL0�; �l)�
X
xi2N0

( eL0�; �i)r(xi) � (K( eL0�; ��))l;

where the difference operatorK satisfies

Kij = 0; jxi � xj j >
p
2h0;

Kp = 0 8p 2 fpolynomials of degree at most1g;

andK is a difference operator of second order. This, and interpolation estimates like (4.21)
imply that

(8:10) kKXk`1 � Ckh20Xkw2
1
:

By Lemma 8.1 and (8.7) we obtain the following representation for the residual

(8:11)
jRj � jLS(� � P1�)j = jSL(� � P1�)j

� jSKL�j+ jSK(L� (h1 � h0)�)P1�j+ j(h0 � h1)S�P1�j:

The same steps carry over directly to the discrete version of the operatorL and smoothingS
in the two level method.

8.2. Damping by smoothing.To estimate theL1-norm of the residualR in (8.11) we
need an estimate of the smoothing operatorS and the function�. The residual

X � (u(x1)�)x1 � h0�� = L�

satisfies the same equations as the iteration error�

(8:12) Xt + h0LX = 0;

since the operatorL is time independent. We shall now study the Green’s functionX(�; t) =
g(�; t; �x; 0) with X(�; 0) = �(� � x

¯
) for x

¯
in the shock wave regionB � f(x1; x2) 2 RI 2 :

jx1j � Ch0g. The other case when the residual is far away from the shock, i.e. when x
¯

is far
from the shock, is for the first V-cycles related to the constant coefficient problem (1.2). In
Section 7.2 we saw that the streamline diffusion form yields slightly better convergence than
the first order accurate isotropic form(hrU;rv); a scheme that switches from streamline to
isotropic diffusion near shocks is studied e.g. in [26].
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The Green’s functionX can be found by separation of variables; hypothesizing that
X(x1; x2; t) = �(x1; t)�(x2; t), then (8.12) holds provided

�t + h0[(u(x1)�)x1 � h0�x1x1 ] = 0; �(� ; 0) = �(� � x1);

�t � h20�x2x2 = 0; �(� ; 0) = �(� � x2):

We have

(8:13a) �(x2; t) =
1p
4�h20t

exp[�(x2 � x2)
2=(4h20t)]:

In fact, the function� also has an explicit solution, which can be derived by the Hopf-Cole
transformation (see [15])

(8:13b) �(x; t;x1; 0) =

Z x
1

�1
'(y0; 0;x; t)dy0;

where' is the following sum of heat kernels

(8:14a)

'(y; 0;x; t)

= e�x=(2h0)

ex=(2h0)+e�x=(2h0)
@yH

+(x� y; t) +
h�1
0

(ex=(2h0)+e�x=(2h0))2
H+(x� y; t)

+ ex=(2h0)

ex=(2h0)+e�x=(2h0)
@yH

�(x� y; t)� h�1
0

(ex=(2h0)+e�x=(2h0))2
H�(x� y; t);

and

(8:14b) H�(z; s) = H(z � s; s) =
1p

4�h20s
exp [�(z � h0s)

2=(4h20s)]:

In particular, since(�1
2
tanh x

2h0
)x is the eigenfunction corresponding to the zero eigenvalue

of L, we have

(8:15a)

�(x; t;x1; 0)� (�1
2
tanh x

2h0
)x

=
R
RI
(�(x0; 0)� (�1

2
tanh x0

2h0
)x0)�(x; t;x

0; 0)dx0

=
R
RI
(sign(x1 � x0)� �1

2
tanh x0

2h0
)'(x0; 0;x; t)dx0

� Ch�10 exp(�c(jxj=h0 + t));

which implies

(8:15b)

Z
RI

(�(x; t) � �1
2

tanh
x

2h0
)dx = 0:

Here sign(x) � 1; if x > 0 and sign(x) � �1 if x � 0. Equality (8.15b) follows from the
fact that the function!, dual to', defined by

@

@x
!(x; t; y; 0) = '(y; 0;x; t);

satisfies

!t + h0[u(x1)!x1 � h0�!] = 0; !(� ; 0) = �(� � y);
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and hence Z
RI

'(y; 0;x; t)dx = !(1; t; y; 0)� !(�1; t; y; 0) = 0:

Our construction yields

(8:16) X(x; t;x; 0) = g(x; t;x; 0) = �(x1; t;x1; 0)�(x2; t;x2; 0);

and therefore, by (8.6), the smoothing operatorS has an explicit expression. To determine
the iteration error�, we shall solve for� in the residual equation

(8:17a) L� = X:

In the constant coefficient case we could directly obtain the solution of the stationary problem
by Fourier methods. Now, we shall compute the solution of the stationary problem (8.17a)
by means of the corresponding time dependent problem,

(8:17b) ��t + h0L�� = h0X(� ; �;x; 0);

for which we know the Green’s function. Then we shall use that

�(� ; �) = lim
t!1

��(� ; t):

When applying Duhamel’s principle to the time dependent problem (8.17b), the space-time
integrals will only be well defined provided the stationary solution is sufficiently localized,
which for Green’s functions depends on the number of space dimensions. In order to achieve
sufficient locality, it is suitable to seek first��x2x2 , which satisfies

@

@t
��x2x2 + h0L��x2x2 = h0Xx2x2(� ; �; x¯; 0);

sinceL is x2 independent. Using thatX is the Green’s function of (8.12) and that� satisfies
(8.15) we have

(8:17c)

h0
@2

@x2
2

�(x; �;x; 0) =

Z
RI 2

Z 1

0

h20
@2

@x22
X(x; t; y; 0)X(y; �;x; 0)dtdy

= 1p
4��h2

0

exp[�x22=(4h20�)](�12 tanh x1
2h0

)x1

+

Z
RI 2

Z 1

0

(�(x1; t; y1; 0)� �(x1;1; y1; 0))
h20@

2

@x22
�(x2; t; y2; 0)X(y; �;x; 0)dtdy;

where the last term is localized and has zero mass due to (8.15). Therefore, by integrating the
equation

(u�)x1 � h0�x1x1 = X � h0�x2x2

in thex1-direction, we see that

(8:18)

�(x; �;x; 0) = 1
u(x1)

Z x1

0

(X(x0; �;x; 0)� h0�(x; �; x
¯
; 0)x2x2)dx

0
1

�
Z x1

0

(
X(x0; �;x; 0)� h0�(x

0; �;x; 0)x2x2
u(x01)

)x0
1
exp(A(x01)�A(x1))dx

0
1
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is a solution. Hered
dy
A(y) = u(y). The equations (8.18) and (8.2) show that the residual

parts(u�)x1 , h1�x1x1 andh1�x2x2 in (8.11) are localized functions bounded by

C
1p

4��h20
exp[�x22=(ch20�)](

�1
2

tanh
cx1

2h0
)x1 ;

whereC andc are positive constants. By replacingh0 with h1 in (8.17-18) we obtain the
same estimates forP1� as for�, where

(8:19) (uP1�)x1 � h1�P1� = X:

Using thatK� = K, we then note that the projection part of the residual error satisfies

(8:20) jSK(u�)x1 j =
����Z
RI 2

KyX(x; �; y; 0)(u(y1)�(y; �;x; 0))y1dy

���� � C

�
;

and similarly for the contributions fromh0��, (uP1�)x1 andh1�P1�. To obtain (8.20) we
used the explicit expression (8.13), (8.16) ofX . In (8.20) it is important to note that the
y1-derivatives inK, cf. (8.10), makes the Green’s functionX decay exponentially fast int,
(since by (8.13b)' is localized aroundx = �h0t) for x

¯
in the shock region, while they2-

derivatives inK yield parabolic damping. The exponential damping is also seen in (8.15a).
Using the decomposition (8.17), (8.6) and (8.15), (8.17), (8.20) we see that theL1-norm

of the error from the artificial diffusion

(h0 � h1)S(P1�)x2x2 =
�h1
2
S(P1�)x2x2

is bounded by1=2 + C exp(�c�). The terms1=2 andexp(�c�) correspond to the first and
second term, respectively, of the right hand side in (8.17). The exponential bound follows by
using (8.15b) and integrate by parts in thex1-direction to get a factorX(x; t; y; 0)y1 = '�.
TheL1-norm of the remaining error(h0 � h1)S(P1�)x1x1 is bounded byC exp(�c�) using
that �x1 is a localized bounded mass and thatX(x; �; y; 0)y1 is decaying exponentially fast
in time�. By combining all estimates of the residual error in (8.11), we obtain

THEOREM 1.2. Assume that the residual errorLU0, for the continuous version of the
two grid method applied to the shock wave problem (8.2), initially is localized in the shock
wave regionB, i.e. LU0(x) = 0 for x =2 B = f(x1; x2) 2 RI 2 : jx1j � Ch0g. Then one
iteration of the continuous two-grid cycle, with� pre and post smoothing steps, damps the
residual with a factor


B =
kLUnextkL1(RI 2)

kLU0kL1(RI 2)

� 1

2
+
C

�
:

This indicates that a residual error, localized in the shock region, is damped by the two
grid method, provided sufficiently many smoothing steps� are used.

To convert this analysis to a rigorous convergence proof for the discrete version of the
two-level method would require analogous estimates of the discrete version of the residualX .
Theorem 1.1 shows that the derivation (3.16-24) make sense for problem (1.1), we therefore
expect that the discussion above also is relevant in the fully discrete case.

8.3. Numerical test. In Fig. 5 we present numerical results of the two grid method
applied to the nonlinear shock wave problem (8.1) confirming the 1/2 in Theorem 1.2. Fig. 6
shows the result of using an adaptive space-time finite element method for a time dependent
Burgers problem, using the nonlinear full multigrid method; see [14], [25].
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FIG. 5. Convergence of the two grid method for a nonmoving Burgers shock. The
computational domain is(0; 1) � (0; 1) with Dirichlet boundary conditionsu(x1; x2) =

u0(x1) = � tanh(x1 � 0:5=2=0:01). The equation is solved on the uniform grids with fine
grid h0 = 1=32 and coarse gridh1 = 1=16 with isotropic artificial diffusionhj�u, j=0,1.
We use Jacobi smoothing steps with damping constantc = 0:2, and �pre = �post. The
finite-dimensional equation has been solved accurately when a small Dirac-like residual with
L1-norm10�4 is introduced by addition to the right hand side of the assembled equation. In
the figure theL1-norm of the residual with different number of smoothing steps are plotted.
Note that the convergence after an increase settles down to a damping factor 1/2. The mass,R
(0;1)�(0;1)Rdx, of the residualR is damped by the factor1=2 as given by theory, This is a

difficult problem to solve when only using Jacobi smoothing. Experiments show that it takes
asymptotically 1440 Jacobi iterations to damp theL1-norm of the residual by a factor1=2.
In the figure this finite dimensional effect starts to influence the convergence rate when the
number of smoothing steps are 160 and 320.
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FIG. 6. Two colliding Burgers shocks solvingut + uux = �uxx; u(x; 0) = u0(x);

with � = 0:01 in the space-time domain. The approximate problem is solved with piece-
wise quadratic elements using streamline diffusion stabilization and the nonlinear multigrid
method. The correction problems use piecewise linear elements with isotropic artificial diffu-
sion; see [14], [25]. The figures show the adapted grid and the solution after 5 refinements.
The initial datau0 is piecewise linear and the analytical solution is computed by the Hopf-
Cole transform. The solution in the figure has a relativeL1-error of 2.5%. The mesh contains
3730 triangles and has 7432 degrees of freedom.

9. Boundary conditions. In an unbounded domain, theL1-norm damping
1 of the
multigrid method in (1.10) becomes unbounded due to the factorlog(B=hj). Therefore,
for a convection dominated problem to prove that a V-cycle forms anL1-contraction for the
residual, we need to study bounded domains and boundary effects. Our method to analyze
the damping is based on Green’s functions. Hence, we would like to know Green’s functions
for (1.1) including boundary conditions. We study here the following variant of boundary
conditions for (1.1)

(9:1)
L0U � u(x1)Ux1 � ��U = f; x1 < 0;

U(0; x2; t) = 0;

whereu(x1) = � tanh(x1=(2�)) is the solution of Burgers equation (8.1). We can view (9.1)
as a kind of Dirichlet boundary condition atx1 = 0 for (1.1), with a small modification of
the flow(1; 0) near the boundary. For the problem (9.1), we now construct Green’s functions
by means of the dual solutions' and� in (8.13) and (8.14). Then, following Section 8, we
use the Green’s function to studyL1-convergence for the continuous version of the two grid
method. We have

THEOREM 9.1. Assume that there are positive constantsB;C such that the initial resid-
ual,L0U0 � f , satisfies

Z x1

�1

Z
RI

j(L0U0 � f)((x01; x2))jdx01dx2 � kL0U0 � fkL1(�1;0)�RI ) exp[(x1 +B)=C];
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for x1 � �B. Then one iteration of the continuous two-grid cycle, with�0 pre and post
smoothing steps, damps the residual with a factor

kL0Unext� fkL1((�1;0)�RI )

kL0U0 � fkL1((�1;0)�RI )

�
�
C1h0 log(B=h0)

��0
+

C2p
�0

�
(1 +

C0h0

��0
):

Furthermore, the residual of the next iteration satisfies the same localized estimate as the
initial residualZ x1

�1

Z
RI

j(L0Unext�f)(x01; x2))jdx01dx2 � kL0Unext�fkL1(�1;0)�RI ) exp[(x1+B)=C];

for x1 � �B, and there is a positive constantC 0 such that the continuous version of the
two-grid method is a contraction for the residual inL1((�1; 0)�RI ), provided

�0 � C 0 +
C 0h0 log(B=h0)

�
:

Proof. The following sum of convected heat kernelsH�, given in (8.14),

 (y; t;x; s;h0) �
Z x

�1
'(y; t;x0; s;h0)dx

0

= e�x=(2h0)

ex=(2h0)+e�x=(2h0)
H+(x� y; s� t) + ex=(2h0)

ex=(2h0)+e�x=(2h0)
H�(x� y; s� t);

solves

� t � h0[(u(x1) )x1 � h0 x1x1 ] = 0;

 (y; �t;x; �t) = �(x� y):

Let

�(y2; t;x2; �t) =
1p

4��h0(�t� t)
exp[�(x2 � y2)

2=(4�h0(�t� t))];

and define e (y; t;x; �t;h0) �  (y1; t;x1; �t;h0)�(y2; t;x2; �t);

which satisfies the backward problem

� e t � h0[(u(x1) e )x1 � h0 e x1x1 � � e x2x2 ] = 0; t < �t;e (y; �t;x; �t) = �(x� y):

Thus, the functione (y; 0;x; t) is the Green’s function of the forward problem

(9:2)
b�t + h0L0

b� � b�t + h0[(u(x1)b�)x1 � h0b�x1x1 � �b�x2x2 ] = 0; x 2 RI 2; t > 0;b�(x; 0) = b�0:
Now let the initial iteration errorb�(� ; t), for somey = (y1; y2) 2 (�1; 0)�RI , satisfy

L0
b�(x; 0; y; 0) = �(x � y); x = (x1; x2) 2 (�1; 0)�RI ;b�(0; 0; y; 0) = 0:
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Then, we extend, for fixedx2 andy, the iteration errorb�((� ; x2); 0; y; 0) to an odd function in
RI , and conclude thatb� satisfies (9.2) with the conditionb�((0; x2); t; y; 0) = 0. Furthermore,
the definitionX � L0

b� and the fact@tL0 = 0 imply

(9:3)
Xt + h0L0X = 0; x 2 RI 2;

X(x; 0) = �(x� y)� �(x+ y):

Using thate is dual toX andb�, we obtain as in (8.16)

X(x; �) = e (y; 0;x; �;h0)� e (�y; 0;x; �;h0);
and by solving the equationL0

b� = X , by means of the time dependent problem as in (8.17),
yields
(9:4)b�(x; �; y; 0) =

R1
0

R
RI 2
e (y0; 0;x; t;h0)X(y0; �)dy0dt

=
R1
0

R
RI 2
e (y0; 0;x; t;h0)[ e (y; 0; y0; �;h0)� e (�y; 0; y0; �;h0)]dy0dt:

Hence we have an explicit expression forb�, and therefore, the residual error (8.11) for the
continuous version of the two grid method can be evaluated.

The corresponding solution� in (3.16), without boundary condition atx1 = 0, satisfies

(9:5) �(x; �; y; 0) =

Z 1

0

Z
RI 2

lim
h!0+

e (y; 0;x; t;h) e (y; 0; y0; �;h)dy0dt;
and is estimated in (3.20) and Lemma 5.1. The right hand side in (9.4) has two terms of the
same type as in (9.5), and it can be shown, using Lemma 8.1 and (8.11), that the residual error
for the continuous two grid method based onb� has the same damping
B as� in (1.9) and
(1.10).

To studyL1-convergence of the continuous two grid method we also need that the resid-
ual decays sufficiently fast forx1 ! �1. Let us now assume that the initial residual error
L0U0 = R satisfies

(9:6)

Z x1

�1

Z
RI

jR((x01; x2))jdx01dx2 � kRkL1
exp[(x1 +B)=C] for x1 � �B:

The representation (9.4) and analogues of (3.20), (5.7), (5.8d) implyZ
RI

(jb�(x; t; y; 0)x1 j+h0jb�x1x1 j+�jb�x2x2 j)dy2 �
(

C
x1�y1 + Ch0

(x1�y1)2 ; for x1 � y1 � h0
p
�;

C exp[y1�x1
ch0

]; for x1 � y1 < h0
p
�:

Then, using also (9.4), (1.10) andU0(x) =
R
RI 2 R(y)b�(x; 0; y; 0)dy; we see by the residual

representation (8.11) that the next iteration yields a residual which satisfies the decay in (9.6)Z x1

�1

Z
RI

jL0Unextjdx2dx1 � kRkL1
exp[(x1 +B)=C] for x1 � �B;

and the damping

kL0UnextkL1

kL0U0kL1

� 
B ;
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where
B satisfies the bound in (1.10). Therefore, the continuous version of the two grid
method with the boundary condition (9.1) and the initial decay (9.6) gives a contraction for
the residual inL1, provided sufficiently many smoothing steps are used.

The corresponding case of a Neumann boundary condition atx1 = 0 can be studied sim-
ilarly by replacing odd by even and the��; � e in (9.3) and (9.4) by+�; + e , respectively.
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