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ON THE CONVERGENCE OF MULTIGRID METHODS FOR FLOW PROBLEMS *

INGEMAR PERSSON, KLAS SAMUELSSON, AND ANDERS SZEPESSY

Abstract. We prove two theorems on the residual damping in multigrid methods when solving convection dom-
inated diffusion equations and shock wave problems, discretized by the streamline diffusion finite element method.
The first theorem shows that a V-cycle, including sufficiently many pre and post smoothing steps, damps the residual
in Lto¢ for a constant coefficient convection problem with small diffusion in two space dimensions, without the as-
sumption that the coarse grid is sufficiently fine. The proof is based on discrete Green’s functions for the smoothing
and correction operators on a uniform unbounded mesh aligned with the characteristic. The second theorem proves
a similar result for a certain continuous version of a two grid method, with isotropic artificial diffusion, applied to
a two dimensional Burgers shock wave problem. We also present numerical experiments that verify the residual
damping dependence on the equation, the choice of artificial diffusion and the number of smoothing steps. In par-
ticular numerical experiments show improved convergence of the multigrid method, with damped Jacobi smoothing
steps, for the compressible Navier-Stokes equations in two space dimensions by using the theoretically suggested
exponential increase of the number of smoothing steps on coarser meshes, as compared to the same amount of work
with constant number of smoothing steps on each level.

Key words. multigrid methods, convergence, convection-diffusion, conservation laws, Green’s function, shock
waves.
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1. Introduction. In this paper, we analyze multigrid algorithms for solving discrete
equations approximating stationary convection dominated diffusion equations and a shock
wave problem in a scalar conservation law in two space dimensions. We focus our theoretical
analysis on model problems and compare with numerical experiments, including more gen-
eral problems as the compressible Navier-Stokes equations. A conclusion from our analysis
and experiments, for a multigrid method with damped Jacobi smoothing steps, is that it is
advantageous to increase the number of smoothing steps on coarser levels, as compared to
the same amount of work with constant number of smoothing steps on each level.

We first consider the convection-diffusion problem to finduch that

Uy, —eAu=F, x=(x1,72) € Q C R?,

(1.1) ulpo = 0,

whereF' is a given source function ard> 0 is a given small constant. We shall study multi-
grid algorithms for solving, approximately, the streamline-diffusion finite element equations,
cf. [19], of (1.1): FindU € V},, such that

h h
(1.2) ap(U,v) = (Uygy,v + 5%1) + (eVU,Vv) = (F,v + 5%1) Yv € V,

whereV}, is a usual finite element space of continuous functions that are linear (i.e. they
belong toP; (K)) on each triangld( in a mesHl'™” of Q, with mesh sizé,

Vi ={v e Q) :v|g € P1(K)VK € T"}
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and
(v, w) E/Qv(x)w(x)dx.

Here H} () denotes the Sobolev space of functions that vanis{®and have one deriva-
tive in Ly (2). The multigrid algorithm is based on a hierarchy of refined meshes with corre-
sponding finite element spaces = V,,, with the sets of nodal point§; = {xi}fﬁl, j=
0,1,2,...J, whereVy D Vi D Vh... D Vj. Starting with an approximate solution
Uy € Vo = V}, of U in (1.2), the first step in the multigrid method is the smoothing op-
erationSy r : Vo — Vj defined by the damped Jacobi method with a suitable small positive
damping constant, (pre) smoothing steps = 0,1,...,1 — 1 and

[20 =Uo, B

(13) Um+£(ml) ? Um(l'z) - hLO[GO(Umad)i) - (F, ¢z + %éi,ml)] sz € -/V’j,
SO,FUO = U,,D.

Here, forj = 0,1,2,...,J, we use that;(-,-) = as,(-,-), h; is the mesh size i}, and

Bj ={¢: f.V:fl is the standard basis Iry, i.e. ¢; € V; together with

(1.4 o) ={ 5 b21

for all i and nodal points;, € N;. The basis (1.4) implies the representation

Nj
(1.5) Un(z) =Y Un(zi)di(z), forUnm €V;.

Consider the special case éf= 1, i.e. the two grid method, and an approximation
Uy € Vp of U in (1.2). Then, the first approximatidﬁﬁ’éite Vois

~pre
(1.6a) UResi= So.rUo —d,

where the coarse grid correctidre V; on the finest level is defined by

h,
(1.6b) a1(d, v) = ao(So,rUo,v) — (F,v + 70%) Yo € 1.

By including also post smoothing, the next approximation is

= —pre
(17) Unext: SO,FUrﬁ’ext

Assumption 1.8 In a multigrid V-cycle iteration, the correction equation (1.6b) on
V; = Vi is solved approximately by recursivly applying smoothing steps, on lgvahd
its correction inV; 1. The correction equation ori; is solved exactly. We analyze the con-
vergence of this V-cycle iteration with pre and post smoothing by studying an approximation
U, of U and its next iteraté/next which is the multigrid approximation of the two grid
solutionUnextin (1.7).

We use a multigrid method applicable to elliptic problems as well as to shock wave
problems described by conservation laws, and focus on the analysis of a special and simple
but general applicable multigrid method. Therefore, we study the damped Jacobi smoothing
operator which is independent of the ordering of the nodes, although, for the problem (1.1),
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the convergence can be improved by ordering the nodes in the direction of the flow and for
applying Gauss-Seidel iterations in the smoothing steps; see [8] and related results for domain
decomposition methods [11], [23]. The one dimensional problem corresponding to (1.1) and
(1.2) with 2, the independent solution, ard= 0, yields a bilinear formu which reduce to

the upwind operator. Therefore, smoothing steps based on an ordering of the nodes in the
direction can solve this one dimensional problem (1.2) in one step. However, for flows in two
and three dimensions, which do not have typical inflow and outflow regions, ordering of the
nodes is hard to achieve.

In this work we present two theorems on the residual damping in multigrid methods
solving convection dominated diffusion equations and shock wave problems, discretized by
the streamline diffusion finite element method. Usually, the convergence study of multigrid
methods for elliptic problems uses the iteration error and its behavior in energy norms. Our
study focuses on the residual andiitsnorm, and the analysis is based on Green'’s functions,
which motivate the use af,-norms. Theorem 1.1, below, proves that a V-cycle, including
sufficiently many pre and post smoothing steps, damps;ira residual, initially localized
inside 2, for a constant coefficient convection problem with small diffusion in two space
dimensions, without the assumption that the coarse grid is sufficiently fine. The proof is
based on discrete Green'’s functions related to the smoothing and correction operators.

Theorem 1.2, below, proves a similar result for a certain continuous version of a two
grid method, with isotropic artificial diffusion, applied to a two dimensional Burgers shock
wave problem. We compare, in Fig. 1 and Section 7, the result of Theorems 1.1 and 1.2
with numerical experiments describing the residual damping dependence on the equation, the
choice of artificial diffusion and the number of smoothing steps.

To have an efficient multigrid method, V-cycles must reduce and damp the residual. The
numerical testin Fig. 1, below, shows the residual damping of one V-cycle applied to (1.1). In
the Experimentg and1, initially the L,-norm of the residual is equal toand localized to
a point in the center of the domain. The-norm-~(n) of the residual aften V-cycles,n = 1
andn = 5, in Experimentd and 1 respectively, are computed as the number of pre and
post smoothing steps are increased. Experimiérghows the asymptotic average damping
7 = (y(5)/v(1))*/* of a V-cycle in the multigrid method with many cycles. We see that
the damping from an initially localized residual is similar to the (generic) one of Experiment
IIT in Fig. 1. Moreover, we note that the damping@ ) can be made smaller by increasing
v. How doesy(1) depend orv,e and J? How many smoothing steps should we take on
each level to obtain optimal damping? Theorem 1.1, below, answers these questiths of
In Section 7.2, we discuss the effect of several V-cycles on the average damping. Further
numerical results on elliptic, convection and shock wave problems are given in Sections 7
and 8.

The first theorem on residual daming avoids possible boundary effects by assuming that
the residualR(v) = ao(Uy,v) — (F,v + hv,, /2) is supported insidé€, i.e. R(v) = 0
for all v supported in a neighborhood 6f). To further simplify the analysis we assume
thatu(z) — 0, as|z| — oo, and that) = R? is discretized by a uniform mesh where
the characteristic directiofil, 0) is aligned with the mesh. Our analysis of the damping
requires precise information of the residuals evolution in the V-cycle. The requirement for
extensive information restricts us to model cases, which we, on the other hand, can describe
in detail. For instance, it is shown in Section 7.1 that the the residual damping depends on the
orientation of the mesh with respect to the characteristics. In Section 2, we derive an error
representation for the multigrid V-cycle iterations based on the smoothing and correction
steps for the problem (1.1). In Section 3, we first formulate an evolutionary Green’s function
problem and derive its representation of V-cycle iteration errors, and then we give an overview
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Fic. 1. Residual damping rate of multigrid V-cycles. We use multigrid iterations to solve
(2.1) in the computational domait = (0,1) x (0,1), with e = hy, and homogeneous
Dirichlet boundary conditions. For a description of the parameters used in the multigrid
cycle see Table 1, Experiment A in Section 7. Experimie(upper figurex) and 1 (lower
figure x) start with an initial Dirac-like algebraic residual witt.;-norm equal to 1.0 at the
center of the computational domain. Experimémtepicts thel; -norm-y(n) of the residual
after one V-cycle (i.en = 1) as a function of the number of smoothing stepghe solid

line in the upper figure is given by, /v + Co/7, cf. (1.10), wherel; = 3.56,C = 1.05

are determined as the least square fit to the dataThe asymptotic damping is defined to
be the average reduction facter= (y(m)/(v(1))"/™~1, m — oo, of the L;-norm of the
residual in two consecutive V-cycles. Experimehitsand I11 depict asymptotic damping
factors where we have chosen = 5, for two different initial residuals. In Experiment
1T the initial residual is a Dirac-delta function. The third Experimdmt/, denoted byo,
depicts the asymptotic damping of the multigrid method applied to (1.1), with an initial guess
Up = 0andF = sin(10z) sin(15y). Theorems 1.1 and 1.2 tregafl), and Section 7.2 studies
v(n), n > 1.

of the proof of residual damping stated in Theorem 1.1. This overview is an attempt to explain
the idea of the proof on one page. The full proof in Sections 4-6 is basically an extension
of the overview, which is based on differential operators, to discrete difference operators.
The proof uses Fourier methods to analyze the evolutionary Green’s function problem on a
uniform mesh. Our main result is

THEOREM 1.1. LetQ = R? be discretized by a hierarchy of uniform meshes, with
triangle edges in the directio(i, 0), (0, 1) and (1, 1), where the mesh sizg,, on levelj,
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satisfies
hj=2h;_1, j=1,2,...,J,

and, on the finest level,= 0,

Define the set
Vﬁl ={veVy: vy, <1, v(zy,-) =0for|z,| > 8},
and assume that, for sond® > 0, the residual error is supported B, B] X R, i.e.
ho
ao(Ug,v) — (Fyv + ?vm) =0 Yve{weVy:w(x,-)=0for|z| < B}
Then the quotient of residuals, measuredif[— B, B] x R),

(1.9) _sup,eya |ao(Unexs v) — (Fyo + By, )|
' YB = ’
sup,eyy Jao(Us, v) = (F,v + Hog, )|

for two consecutive V-cycle iteraté% and Upext defined in (1.6-7) and Assumption 1.8,
approximating the solution of (1.2), withy pre and post smoothing steps on leyesatisfies

J—1
Clhj IOg(B/hJ) 02 j Cohl
. < E . —).
) e j:o[ €v;j " ﬁj]HlZO(l " €v; )

In addition, let for anyd) < v < 1, the number of smoothing stepson each levelj =
0,1,2,...,J — 1, satisfy

C3hj JlOg(B/hJ) 04
. . > 2.
(111) e
Then the damping
B <y

holds. The work of this V-cycle is of the ord®rlog® N provided the number of degrees of
freedom in the finest spadg is N and

(1.12) ho ~ €.

The constant§’;,i = 0, ..., 4, are independent of s, J, h; ande.

Remark The assumptiof, > 3e can, with small notational changes in the proof, be
replaced byhy > coe, Wheregy is a positive constant of order one.

Remark As predicted from Theorem 1.1, the dampip@), in Fig. 1, can be made
smaller tharl by increasing the number of smoothing steps.

In Section 7.1 we discuss the case when the characteristic is not aligned with the mesh,
showing that the damping can be mesh dependent. The numerical experiments in Section
7.9 show that the exponential increase of the number of smoothing steps on coarser meshes,
suggested by the Theorem 1.1, improves the convergence of the multigrid method for the
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compressible Navier-Stokes equations in two space dimensions, as compared to the same
amount of work with constant number of smoothing steps on each level.

Theorem 1.1 says that if we start with a residual supportdd- 8, B] x R, then one
V-cycle will decrease thé; ([—B, B] x R) norm of the residual, by a factoiz. Besides
confirming Experiment | in Fig. 1, one would like to use the theorem to prove that the multi-
grid method converges. However, we can not directly draw this conclusion from Theorem
1.1. Our proof of Theorem 1.1 is based on Fourier methods suitable to unbounded domains,
and in an unbounded domain, tiige (R x R)-norm dampingy., of the V-cycle becomes
unbounded due to the factlarg(B/h;) in (1.10). Therefore, to prove that a V-cycle forms an
L-contraction of the residual, we need to study bounded domains and boundary effects. If
the damping (1.10) holds in a bounded domain, the V-cycle would fori,arontraction for
the residual and the multigrid method would converge, provided sufficiently many smoothing
steps are used. In addition to the numerical experiments, a further motivation that including
boundary conditions does not change the behavior of the damping (1.10) is given in Section
9, Theorem 9.1, where the residual damping of a continuous version of the two grid method
in the domain(—o0, 0) x R is shown to give a contraction. This analysis is based on explicit
solutions of a certain convection diffusion problem with variable coefficients. These explicit
solutions are obtained by the Hopf-Cole transformation for the Burgers equation and are cru-
cial also for treating the shock wave problem in Section 8. The iteration error can be obtained
from the residual using the stability of the problem, again based on Green’s functions as
described in Section 7.5.

It remains to find a convergence proof of the multigrid method for convection diffusion
problems in the fully discrete case including boundary conditions. Our analysis could be a
first step in understanding some ingredients in such multigrid convergence. An other inter-
esting open question is to prove multigrid convergence for convection problems with more
sophisticated smoothers, such as the Gauss-Seidel method combined with proper ordering of
the nodes. Gauss-Seidel smoothers can treat the:casé,, where the Jacobi smoother is
very inefficient; see Fig. 5 in Section 8.

In Section 8, we study the convection-diffusion problem

(1.13) Lw = (u(zy)w),, —eAw =0,

which is the linearization of the two dimensional Burgers equation

2

(% )z, — €Au =0, 37:(371,372)€R2,

1.14
(1.14) uﬁ:oo ) =F1,

with the solutionu(z;) = —tanh 3. We consider for the problem (1.13) a continuous
version of a two grid method ol and V5, with the isotropic diffusiorcA and2eA, re-
spectively. This continuous two grid method is obtained by replacing the discrete smoothing
operator by its zero mesh size limit. In Section 8, we prove

THEOREM 1.2. Assume that the residual erratUy initially is localized in the shock
wave regionB, i.e. LUy(z) = 0forz ¢ B = {(x1,25) € R* : || < Chg}. Then one
iteration of the continuous two-grid cycle, withpre and post smoothing steps, damps the
residual with a factor

ILUnextlL, (r2) < 1
LU ||, (r2) 2

1A

B = +

The proofis based on an explicit Green'’s function of the two dimensional variable coef-
ficient problem (1.13), which after a separation of variables is obtained from the Hopf-Cole
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transformation. The Green’s function is then used to evaluate the residual both in the smooth-
ing and in the correction problem. The damping in Theorem 1.2 has an interesting lower
bound1/2, which is confirmed by our numerical experiments in Fig. 5 in Section 8, based on
an experiment with the nonlinear multigrid method applied to (1.14).

Multigrid methods are widely used for solving fluid dynamics problems numerically; see
[7], [18], but for convection dominated problems there exists as yet no satisfactory conver-
gence theory for these multigrid methods. The convergence of multigrid iterations is related
to the propagation and damping of the perturbations in the approximated equation. In con-
vection dominated problems, the behavior of perturbations depends on the particular solution
and the approximating scheme in a more distinct way than for elliptic problems, where the
multigrid theory is well developed; see [5]. For instance for flow problems:

(A) the stability requires a mesh size dependent artificial diffusion, causing the discrete
equations to vary with the grid.

(B) the damping is different inside and outside the shock regions.

If the equation (1.1) is solved without artificial diffusion and by a pure Galerkin method,
then the multigrid method converge if and only if the coarsest ri&shis fine enough, i.e
hy < Ckg; see [1], [6], [12], [17]. Consequently, the exact coarse grid problem is in fact
an expensive problem to solve for small We have complete freedom in choosing suit-
able correction problems as long as they yield satisfactory convergence results. For stability
reasons, it is natural to study correction steps where the bilinear form is based on a stable
method for convection problems, e.g. the streamline diffusion method (1.2), or the first order
accurate method with isotropic artificial diffusidiih; VU, Vv) replacingl (h;Us,, ,v,,) in
(1.2). These two examples of stable bilinear forms are mesh size dependent and hence differ-
ent from the fine space form (-, -). Therefore, they cause an additional first order artificial
diffusion error in a multigrid method based on corrections of type (1.6b).

For meshes with; < 3¢ the streamline diffusion modificatiof(h;us, , v, ) should be
omitted in (1.2). Following this simplification, the solution procedure is a standard Galerkin
finite element method and requirks < Ce, i.e. that the coarse mesh is sufficiently fine. To
reduce the work of the coarsest correction problems one musthaye e. Our assumption,
that hy > 3e in Theorem 1.1, restricts the study to the behavior of multigrid methods in
the convection dominated case, which in particular is important for coarse meshes. It also
requires one to solve the exact “coarse” grid problem for the standard Galerkin method above
with smalle. The conditions (1.11) and (1.12) ensure us that the residual damping does not
deteriorate as — 0 and that the work is of almost optimal order.

The problem that the bilinear forms change with the mesh levels can be avoided by
adding the same amount of artificial diffusibpA on all levels, thereby causing an artificial
diffusion error of order. ;. Forh; of orderhy, the scheme is still first order accurate and the
multigrid method converges; see [2]. In case of several levelshg.g- 1, the bilinear form
must change with the levels otherwise the accuracy will be insufficient.

Numerical experiments with the multigrid method for the problem (1.1) based on the first
order accurate diffusion converge slightly slower than the method based on the streamline
diffusion; we discuss the reason of this behavior in Section 7.2.

The convergence analysis in the proof of Theorem 1.1 that treats the aspect (A), and the
behavior of the damping (B) for a two-dimensional shock wave is studied in Theorem 1.2. In
particular, we see that the residual is damped faster inside than outside the shock wave region
for the two grid method using isotropic artificial diffusion.

In one space dimension the bilinear forms, corresponding to (1.1), are the same for the
streamline diffusion method and the first order accurate artificial diffusion method, and the
convergence of the two grid method was proved by Hackbush [16], both for periodic and
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Dirichlet boundary conditions. Reusken’s work [24] was the first to prove convergence of a
two grid method for (1.1) in two space dimensions with changing bilinear form. The correc-
tion problem in his method is based on Schur complements and the smoothing operator is a
block Jacobi iteration offfine node$ \ {coarse nodgswith exact inversion of a block (this
is related to ordering the nodes). His proof uses periodic boundary conditions and Fourier
analysis.

Our analysis of the smoothing problem involves considering the smoothing iterations as
a time stepping scheme, and yields that a sufficient number of smoothing steps is required to
damp the residual; see the related previous works [3], [22]. Our use of the Galerkin orthog-
onality in the correction problem was inspired by [3] and the work [4] on a posteriori error
estimates of multigrid methods.

2. A representation formula for multigrid iterations. In this section we derive an
error representation of the iterations in a V-cycle method, based on the smoothing and cor-
rection steps for the error. We start by definirigo be the iteration error in the multigrid
method, i.e.

(2.1) U=0-1,

whereU is the exact discrete solution of (1.2) ahdis the V-cycle iterate based on (1.3)
and (1.6). Expressed in tHé-variable, the smoothing on the finest level can be written,
sz,l,...,l/O—l,

(2 2) " [70 = g() - U: _
) Um+1(1'i) = Um(l'z) — CthgUm(l'i), xr; € No,

where the residual error is defined by

~ 1 ~
(23) L]U(QZZ) = Faj(U,(bi), for ] =0,1,2,...,J,
J

for the basis functions; € B;, satisfying (1.4). The correctioR, U,, € Vi, of U,, € Vo,
on the finest level yields the new approximation of the ekfor

(71/0 - Plﬁl/oa

where the operataP;; : Vo — V4, is defined by

(2.4) aj+1(Pj1U,,,0) = a;(Uy,,v) Yo € Vi, for j=0,1,2,...,J — 1.
The correction step (1.6) at levgl= 0 is in the multigrid method solved approximately, in
two steps. In the first step we smooth on the leyeh = 0,1,...,v; — 1,

do = 0,

(a'Onguoa¢i) - (Fa ¢z + %fbi,m))]
a()(U,,O,(bi)], x; € Nl.

(2.5)  dmir1(zi) = dm(@i) — cha[Lidm(z:) — 1=
= dm(xl) — chl[lem(xi) - hLl

Define the correction erraf by

(2.6) A = —dm + PLU,,.

By (2.4) and (2.5) we have

do = PiU,,
dm+1(mi) = dm(l'z) — Chllem(l'i), T; € Nl.
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We note that the correction errdrsatisfies a similar smoothing condition on leyet 1 as
the errorU does on the finer level. In the second si¢pand hence alsd, is mapped to the
coarser mesh analogous, to the correctioti @n the finer level, i.e.

(2.7) az(Pady, ,v) = a1(dy, ,v) Vv € Va.

Therefore, we see that the evolution of the correction efisrdescribed byl,, = S od(*)
whered?) is given by

(2.8) dUt) = P18 0d?D, d© =T, for j=0,1,2,...,J —1.

Thus, the three grid approximatiatj of the correctiond in (1.6), obtained by (2.6-8), has
the representation

&5 = —dy, + PiUy, + Pady, = —S1,0d") + PySp0d® + P2Sy od ).

Analogously, by recursively applying (2.5-8) we obtain the multigrid approximatjasf the
two grid correction/ defined in (1.6). The multigrid V-cycle without post smoothing, applied
to the erroi/ and starting with, in (2.2) has the following error after one iteration

Ohext= Soolo — d;

= (So 0—P1So,0)d (0)+(51,0 - PZSl,O)d(l) + ...+ (Ss_10—PrSs_10)d d7-1

Z[ Pji1) JOd(J
7=0

(2.9)

where J is the coarsest grid level. We have used that the correctidryiis solved ex-

actly. The correction erraf) evolves with smoothing and mapping onto coarser and coarser
meshes according to (2.8). By including post smoothing, the éiaktafter one V-cycle is

(2.10) Unext= Z S;(I = Pj11)S;0dY),
j=0

where

(211) Sj = HOSiSjSi,O = SO,OSI,O . Sj70.

3. Green’s functions and an overview of the proof.In this section, we first give a
representation of the iteration errfrand the residual.o U, defined in (2.3), in terms of a
Green'’s function related to the problem (1.2). Then in the end of the section we present an
overview of the proof of Theorem 1.1.

3.1. Green's functions for the V-cycle. Let for a givenU, and (70 = Uy — U, the
residualR be given by

(3.1) Lo(Uo)(xi) = R(z;) Vz; € Ny,
and define, for a fixed; € Ny, the discrete Green’s functid@it- ; z;) € Vj satisfying

(3.2) Lo&(z;z;) = 8(z — ), Vo € N,
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whered is the discrete Dirac function

l/hg, T = 0,

0, . 7& 0, Tk E./\/o.

Equations (3.1) and (3.2) imply by a discrete Duhamels principle that
Uo(zr) = Y Rl@:)é(i; w)hg,
z;€No

and

LoUo(w) = ) R(wi)Lo&(i;2:)hg = R(xe).
z; ENo

The corresponding smoothing steps for §heariable on the finest level satisfy

(3.4) g(- i),

o
Emr1(zr) = Em(zr) — choLo&m(zr), m=0,1,...,19 — 1.

Therefore, we have

Unl(w) = Y R(w:i)m(@i; xi)hg,

z;ENp

and

LOﬁuo(wl) = Z R(wi)Logl’o(xl;xi)hg'
z; ENo

The exactly solved correction step (1.6) yields
ao(&yy,v) = a1 (P1&,,v) Vv e V.
Hence, the two grid method has the residual
Lo(Uyy — PuU) (1) = D R(wi)Lo(§v — Piéuy) (@i; 2:) 3.
zi€No
In the multigrid method (2.5-8), witll correction levels, we obtain as in (2.9) and (2.10)

J—1

~ re . .
Lo(Uﬁext)(xz) =Y > R(@i)Lo(§) — Pia&l)) (@i zi)hg,
(3.5) ;i(i z; ENp
Lo(Unext(x1) = > Y R(xi)LoS;(€) — Pia&l)) (i zi)hi,
j=0 zi€ENo

provided¢ () is defined agl?) in (2.8), i.e.,
(36) 5(()J+1) = Pj-i—lé'z(/i)a 1(4) = Sj,Og(()J)a g(()O) = 507 .] = 07 17 27 seey J -1

Below we shall use thég—projectionﬁjH : Ly(Q2) — V41 defined by

(3.7) /Uﬁjﬂwdm:/vwda: Yv € Vi1,
Q Q
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Our next step is to estimate the discrétenorm of the right hand side in (3.5) using that for
w € Vy

(3.8) lwlle, = D |w(w:)|hp-
z;ENp

By combining the definition (2.3), the correction equation (2.4) and (3.6), (3.7) we obtain the
following representation formula

Lo(Thied (@) = S0 Y en R Lo(€8)) — Pt €60) (ers )13
= 3,0 (69, d0) — ajr (P &), in)
+ (S(ho — hj)EDas, G1.ay) — (S (ho — hjs1) Piy1 €5, d1., )| R(2:)
= Ej,i[aj(gl(/z:)’ (I = Tjs1) ) — aj+1(Pj+1fl(/z); (I —TLjy1)y)
(3.9) + ((ho = 1)) ey, b1,01) — ((ho = hyjs1) (Pis1 €5 )ay, 1.0y )IR(2:)
= 304 l(€0as = Pyaaelle), (1 = T10) )
— (D2 (% + &) — (M + )P &), (I — 1))
— (eD2,(€) — P €0, (1 — 1))
— (4(ho = hj)D2,69, ¢1) + (5(ho — hy1) D2, Pia &), ¢n) | R(w),

where we use the following notation for discrete second order derivatives

(3.10) lND?Ek Vo =W (—l~)3kw,v) = (Wg,,Ve,) YvEV, k=1,2.
Let

h* hs

o hy

> 2

which by the assumptiohy > 3¢ in Theorem 1.1 implies
h; = Cjh;.

For notational simplicity we considér; = 1, which by the assumptiofls, > 3e corresponds
to the neglectable change of replacing2 by h; /2 — e in the streamline diffusion parameter.
Hereafter, the superscriptis omitted.

Now defining the discrete residuj¢’?’ e V; by
(LieD,v) = a; (€, v) v € Vo,

we can rewrite the residual

Lo(Thex) (@)
B = Y ens (L6 (I = Tj1) 1) — (Ljsr Pisa €, (I = Tjs1) )

— (5(ho — hj)D2, €5, dn) + (L (ho — hj1) D2, P15, )| R(:).

It turns out that one single pre smoothing V-cycle can not make the residual quotient in
(1.9) small, however, two V-cycles will damp the residual. We discuss this in more detalil in
Section 7.8. The mechanism of the damping in the second iteration is similar to the reason
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why one V-cycle with pre and post smoothing damps the residual. Let us now study the case
with post smoothing. In order to use the correction equations (2.3), we shall assume that the
smoothing operator defined in (2.11),

S; = To<i<jSio
is translation invariant, which is the case for a uniform mesh and the constant coefficient
problem (1.2) studied here. The post smoothing operator is a convolution
(3.13) Sjv(zy) = Z 9i(yiv(ze —yi) = g *v(ze), Yo € Vo, 2 € No,
yi ENo
for a certain functiory;, which will be studied in detail in Section 4. The translation invari-

ance implies that

a;(SiED,d) = > gi(wi)ai (€9 (- —vi), d)
yi ENo
= > 9iw)ai(E9, (- +yi)= a; (€9, g;(— ) * ),

yi€No

(3.14)

and similarly forS; P, £1). As in (3.9) we obtain by (3.14) the residual error representation

J—1
Lo(Unexd(@) =Y > a;(€, (I =T0j41)5;(— ) * 1) R(x:)
Jj=0 z;eNo
=Y aja (P&, (T =Ti41)3;(— ) * ¢) R(ws)
(3.15) g . ‘
+ 2 5 (ho = 1) (€9, 5i(= ) * 1.0 R(x:)
7yt

= 50— By ) (Pra€)ar, 35— ) * G ) B,
X

In Section 8, we derive a similar representation for the residual in a linearized shock wave
problem, which is not translation invariant.

Our goal is to estimate thig-norms of the sums in equality (3.15) by using the properties
of the smoothing operatd;  in (1.3), (2.2) and the correction operai@y in (2.4). This is
carried out in three steps. First, the smoothing operator is analyzed by Fourier methods in
Section 4. Then, in Section 5, the correction operator is studied, also using Fourier analysis.
Finally, in Section 6, we combine the results of Sections 4 and 5 to estimate the residual in
(3.15) and thereby prove Theorem 1.1.

3.2. Overview of the proof. Let us first give a heuristic motivation that (3.15) implies
the damping of the V-cycle in Theorem 1.1. This motivation also gives the basic structure and
idea of the proof of Theorem 1.1, which is an extension of this overview, based on differential
operators, to discrete operators. The proof has the three steps: Evolution of the smoothing
problem, estimates of the correction problem, and residual error estimates.

Evolution of the smoothingn Section 4, we shall see that the following parabolic problem
reflects the behavior of the smoothing (3.6) at lejvel

(316) &+ Chijf =0, 0<t< vj,
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where

h;
ng = fﬂh - Ejfﬂhml - szzzz-
Let X = L;¢, then
(317) X+ ChijX =0, 0<t< vj,

and by (3.2) we hav& (z,0) = 6(x — z;) initially at level zero, where for simplicity; is
chosen as the origin. The solution of (3.17) on the finest Igvel0 is a Gaussian

exp[—(x1 — chjt)?/(cth}) — 3/ (2tchje)]
ﬂwtch?ﬂelﬂ

In the correction step, the Gaussian is mapped to the coarser mesh having twice the mesh size.

Assume thav; > hj/e, cf. (1.11), then the Gaussian is well resolved on the coarser mesh

and therefore the mapping to the coarser mesh yields a neglectable change.Heneg,
in (3.18) is a good approximation @f;¢/) also at the next levels > 0.

(3.18) X(z,t) =

The correction problemTo estimate the three pags, , h;&;,,, andeé,,,, of the residual,
we solve for¢ in

(319) Ljf = X( ,l/j).
Then we obtairg as a new approximate Gaussian

exp[—3/(4cex)]//Amexy if 1> hjvv,,

220 Sl {exp[—cum/hj — a3 (eehy)I/ /el it 1 <y

Residual error estimatesBy the expression (3.20) fgr we can estimate the residual error
caused by the artificial diffusion part of (3.15)

00 00 C
(3.21) / / hjléz o, |dziday, < C hj/ridr, = —.
:E1>h]‘\/l7j —00 :E1>h]‘\/l7j \/17]

To estimate the projection parf(§, (I — ﬁjﬂ)gj(— -) * ¢y), we first use

B
B
(322) [l hsltera |+ elrana i < Clog -
—BJR J

which follows similarly to (3.21). Then, standard error estimates offtkirojection (3.7)
yield

(3.23) (I = 1) Gjlle, < ChGl|3]lwe,

whereW? denotes the Sobolev space of functions with two derivatds, {iR*). The def-
inition (3.13) implies thatg; ~ X (- ,v;), so that by (3.22), (3.18), (3.23) and the fact
Y618, 91 = 1 we have

llaj (€, (I = Tj41)3j * ) lles (= B,B)xR)
B
(3.24) < T =T )g5le / ) /R (€or | + B lEaran | + €l€anal)de

Ch; B
J_J log R

— €V

~ CRZNIX (v w2 log £ <
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FIG. 4.1.The uniform aligned mesh.

By summation oveR(z;) in (3.15) and combining (3.21), (3.24) we have heuristically mo-
tivated that (1.10) holds. In Sections 4, 5 and 6 we rigorously do the analogous analysis of
(3.16-18), (3.19-20) and (3.21-24), respectively, for the discrete problem (1.2) in the case of
Q = R? and a uniform mesh.

4. (,-estimates of the Green’s function in the smoothing problem.n this section,
we follow the idea in (3.16-18) to estimate the residual in the smoothing problem. To obtain
estimates of the smoothing and correction operators we simplify by assuming that the mesh
is uniform and thaf2 = R? is unbounded and hence excluding possible boundary effects; in
Section 9 we include boundary conditions. We consider mesfewith nodal points

(4.1) (n,m)hj, n,m € Z,

and edges in the directiqaii, 0), (0,1), (1,1), see Fig. 2. The mesh is in this case aligned

to the characteristic directiofi,0). In Section 7.1, we treat a uniform mesh which is not
aligned to the characteristic and thereby introduces fourth order dissipation in the cross wind
direction, which improves the multigrid convergence.

4.1. The smoothing problem.In the first step, we study the evolution of the residual

XU (@) = L;69) (23), @i € N,

where by (2.3)and (4.1); : V; — V;, X € V;, is the finite difference operator with nodal

values )
(L X (9) Y(hjn, hyjm) = T [X(])(hjn,hjm) X(])(h (n—1),h;m)

XD (hj(n+1),hjm) — X0 (hjn, hj(m + 1)) + XD (hjn, hj(m — 1))
1X(f)(h (n—1),hj(m —1)) + X (hj(n + 1), hj(m + 1))]
+ S [—1 XU (hyn, hj(m + 1)) + $X 9 (hjn, hym) — 1X D (hjn, hj(m — 1))].

(4.2)

For simplicity in the notation we have replacegl (-, -) by an; 2c(-, ), cf. (3.9). Taking the
L; difference quotient of /) in (3.4), we obtain the evolutionary problem

(43) X @) = X (@) = ey LX) () Vi € NG
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Let Z be the Fourier transform df, i.e.

Z(wi,ws) = B mez Z(hjn, hym) exp(i(nwy + mws)hy),
Z(hjn,hym) = (2m)~2 fo?'ﬁ/hj fo?'ﬁ/hj Z (w1, ws) exp(—i(nwi + mws)h;)dw, dw,.
Then the smoothing problem (4.3) transforms to
AA’,E{F)l = AA’,(cj) —c[1 = 2 exp(—ihjwi) — § exp(ihjwi) — & exp(ihjws) + & exp(—ihjws)
— ¢ exp(—ihjwy — ihjwy) + § exp(ihjwy + ihjwy) + h—EJ(l - cos(hjwﬁ)])?,gj).

Therefore, the Green’s functign € V; of (4.3) forv; smoothing steps is

gi = (1—c[l — 3 exp(—ihjwi) — § exp(ihjwi) — & exp(ihjw2) + & exp(—ihjws)

— g exp(—ihjwy —ihjwy) + § exp(ihjwy + ihjwy) + h—EJ(l — cos(hjws))])"s,

(4.4)

which satisfies thé-estimates of Lemma 4.1 below, to be used in Section 6 to estimate
(3.15). LetD,, andDg) denote the difference operators

D,.,D? v, 5V, i=1,2
e = (1,0), €y = (0,1),
(4.5) Dy v(z) = U(ﬂH-hjei)—U(ﬂ,
D;%)U(x) — v(x+hj;i)—Qt;L(zm)—&-v(x—hjei)’

J

and furthermore, lej; be extended t&” by g; € V;.
LEMMA 4.1.There is a constar@, independent of; ande, such that

(4.6) lgille, = X e, lgi(@i)lhf < 1+ fThjj,
(47) Blgilluz < S,

(4.8) D52 gjlles + 11 D5 gjller < 757
(4.9) 1Dz, gjlle, < h%ﬁj,

wherew? denotes the discrete version of the Sobolev spége(defined below (3.23))

[0llwz = Il 1D 0] + IDE) 0] + [ Day Dayol -

Proof. First we note that by (4.4)

lg; — exp(—c(h?w% + ehjwi — hjwii)v;)|

4.10
(4.102) < C’(h?w% + ehjw3)?v; exp(—c(h?w% + ehjw3)v;).
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Next, we split
(z1—cvjhj)? z2
eXp(_ 4ch2.]1/j] - 466h2j1/]‘)
(410b) gj — 2

dmey [eh3v?

into near and far fieldsy and F', respectively, where
N = {(z1,22) € Nj : |z1| < y[h3v;, |za| < \/ehjvy},
F=N;\N.

Then thel;-norm of (4.10b) can be estimated in terms of weightedorms as follows

hi)2 2
(z1=cvjhy) 2

exp(— ach2u; 74cehju]')
_ j
9i 4ﬁc\/eh?1/]?
€1
(z1—cvjhj)? z2
Z exp(_ 4ch?Ju]-J - 4C€h2jl/]') B2
(4.11) N dme, [ehivy
_(@i—evihy)?  ad
eXp( 4ch?1/j 4cehj1/j) h2
+> |9 - — j
F 4re ehjl/j
=I+11,

where by Cauchy’s inequality, Parseval’s formula and (4.10a)

2 2
(z1=cvjhy) P

exp(— 2en2o. Toehov;) [
< L Jvi ivi 2
I - 9i 4ﬁc\/eh?1/]? ZhJ
(2 N
~ 2
< ||gj _eXp(_C(hiw% + ehjwi — hjwii)y; HL2 ([0,27/ h;]2) ”Zhi
N
S C/”ja
21 —cv;h;)2 22
1 2 _ j
IT < (=) + () )

4776\/6h?1/?

£2

2h2

S

H[( A2 4 (—2=)?g; — exp(—c(hw? + ehjwd — hjwni)vy))

,/h?l/j v/ hjev;

X (Zhjlljehjl/j)l/4 < %

IN

Lx([0,27/h;]?)

Moreover, the functiomxp(—c(hjwi + ehjws — hjwii)v;) is the Fourier transform of

_(@mi—evihy)?®  af
exp( 4ch12.l/]- 4cehj1/j)

)
3,2
4re ehjyj
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which with our quadrature (3.8) hds-norm less than + Ch;/(ev;). Combining this with
the estimates of and/I prove (4.6).
Next, to estimat¢4.7) we proceed as above

12Dl < ||h§D£?gjnz2\/ﬁ
N

i + oty

=I1+11,

(4.12) 2

P

where

1] < C(1 = cos(wihy))gjllL, (Wjev)/* < £,

(hJ )1/4 S C
Ly N

Ouwo ~
|II| < C H Tuj)z + (\/ﬁ)z](l - COS(wlhj))gj

which proves that thé)g(fl) part of thew?-norm satisfies (4.7). The proof of tliég(fz) and
D, D,, parts follows as above.
To prove (4.8), we note that by (3.10)

(4.12) zl gJ ) Z M= zl gJ (11— i) =M '« D(Z)gaa
z; ENp

whereM (i) = J\N/Fl(- + 14, -) is the inverse of the mass matrixif

M(n,m) :/ Ondmdr.
-
Since
Mg, <C,
we have
IDPgjlle, = 1M1« DPgille, < 1Mo, IDP gslle, < CIIDP gjlles,

which by (4.12) proves that the second term of (4.8) satisfies the required bound. The estimate
of the first term and (4.9) follows as (4.7).

4.2. The correction problem. Our next step is to study the residudk, -) in the cor-
rection step

(4.13) aj41(Ps1€Y),v) = a;(€7),0) Vv e Vi, C€V;
Let us therefore define the residual$’) € V; andP;41 X € Vj1; by
. 1 .
(4.14) X(])(wm) = ﬁa](&(fz):(lﬁm) Vam € -/V.ja bm € Bj, pm(zm) =1,
J
(4.15)

. . 1 - _ i}
(P XW)(z,) = 2 aj11(Pi1€9), ¢n) Von € Nji1,6n € Biyr, fn(zn) = 1.
J+1
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We note that the resid_uad(f) is the result of the smoothing (4.3). In the correction step, the
residual is mapped t6’j+1X(j) on the coarser grid. Our goal is now to expré§$1XU)

in terms of X (), By (4.13-15) and sincB;1 3 ¢n(z) = X, ¢n(2i)0i(z), ¢:i € B;, we
obtain

2

_ . h2 )
(4.16) (P X)) = Y - du(@) XD (2;) Vo, € Ny
z; EN; hj+1

We have

2

= ¢n(xi) =1 Yo, € Bjy1,
{i:p;eB;}  ItH1

Z &n(xz) =1,

{n:¢n€Bjt1}

which by (4.16) shows that the correction operdtadoes not increase tifg-norm

1P XDlgy = b3 (P X)) ()]

(4.17) o : ,
<> Z | X9 ()| (i) = ZhﬁlX‘”(wi)l = [|XDg,.

¢From our multigrid algorithm (3.5) and from the evolution of the Greens fungtion
in (3.6), we are led to study successive smoothing problems with initial data givéh.hy
corrections of the residudl;¢) smoothed on the finer mesh. Define

x0 = Ljf(j).
Then the representation (3.6) implies that

X(_l) = 6,
(4.18) » G
XV = gJ(PJX] )’.7:0,"','],
whereP; is given by (4.16)P, = I and
g9;(P;XU™Y) = g x (P XUY).

Here the operator denotes the convolution

wxv(z;) = Z w(T; — Yn)v(Yn),

yneNj

and the Green'’s functioy; is the j-level smoothing function defined in (4.4). Combining
(4.13), (4.17), (4.18) and Lemma 4.1, we obtain
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LEMMA 4.2.There is a constar@, independent of, h; ande, such thatforj < J —1

Ch;

||pj+1X(j)||f1 S HlS](l + s )7
_ Ch;
lg; (P XU, < Micj(1+ ﬁ)’
B lgs (B XUz + (P XGD)le) € Lammg(1+ S
AL wi J wy) = gy <] ev;
~ _ , ~ _ . Ch;
1€D) g; P XD |lg, + |h;DE) g; Prn XD, < 75T (1 + GVZ),
1D2,9; Pin XDy < 557
€D Pia XDy, + [|h;DE) Pra X Dle, < 79T, (1 + S,
||DI1Pj+1X(j)Hll < hj%j’
and by assumption (1.11)
Ch;
;< (1 L)y < C.
SJ( + v ) >
The effect of the post smoothing operator is a consequence of
LEMMA 4.3.Let
Sj = Ii<;Sio
be the post smoothing operator in (2.10), then
(4.19) Sjv(ay) = Z 9i (o, )v(@n — yo,) Vv € Vo, @ € N,
Yo, ENo
where
gj(zn) = > 9o(@Tn — Y1,)91 (Y1, — ¥2,)92 (Y2 —¥3,) - - - - 95 (Y5.)
Vi, ENii=1,...,5
satisfies
(4.20a) lgjlle, < C,
~ B Ch
(4.20b) 17 = W) gille, < —
61/]

Proof. We have by (4.4)

Siyov(xn) = Z gi(yik)v(mn - yik):
Yiy, EN;

which implies (4.19); and by (4.6) we see that (4.20a) holds.
Fourier transforming yields

~

gj(w) = Mi<;gi(w),
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whereg; is given in (4.4). Using weightetb-norms as in (4.11) we conclude that

C
v;?
Chj;

L)
€Vj

_ chl/?
h§+1||Dlezzgj||Zl < 51/;1/j'

2) —
12 11D g5l
h2_ D(Q)—.
]+1|| T2 gJ“Zl

IN

IN

Hence, combining this and the standard estimate oLthprojection
(4.21) (I = 1i1)gille < ChTllgslle,

cf. [13], [10], proves (4.20b}l

5. L,-estimates of the Green’s function in the correction problem.Here we shall
estimate the Green'’s function of the correction problem (4.13), following the idea given in
(3.15) and (3.16). Our error representation formula (3.15) is based on the solBfiol j)

andg,(,f) of the correction problem

h?+1Lj+1Pj+1§z(/§) (2:) = a1 (P, b))
= a;( x(/ﬁ),ﬁf’i) = h?+1pj+1X(j) Vo € Bjta,

L;gy) = x0),

and whereX (/) is given in (4.3), (4.14), (4.18). The discrete Green’s functivnof the
correction problem

0, 0#x; €Bj,
(5:2) L;Gj =0, 8(wi) = { L, 5i=0,
yields the representation
(5.3) ¢ =G« X0,
and by (5.1)
(5.4) Pja &) = Gy x P X9

To estimate(! — T1;)¢7,.,, (I — 1) Pj;1£5),,, and the other parts of the residual in (3.15)
we will use the estimates of (/) in Lemma 4.2 and the above representations. Therefore, in
addition to the estimates &f /), we need similar estimates 6f which we obtain by Fourier
transforming in thex,-direction. Let the Fourier transfortd be defined by

Gp(w) = h; Z G(hjn, hym)exp(iwh;m),
mezZ

27 /h; N
G(hjn,hjm) = (2m) ! / Gr(w) exp(—iwhjm)dw,
0
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and extend7 to R? by G € V;. Then equation (5.2) transforms to

1[5 — exp(—iwh;)] + Gp[1 + 7= (1 — cos(why)) — £ sin(wh;)]

(5.5) s
+5 G exp(iwh;) — 1] = do(n).

By z-transforming this difference equation accordingdtg. Gn2", we see that its char-
acteristic equation

—a2? +anz+ ag =0

has two roots

Vi +4dasag
(5.6) e = Oy Vi dasae

- 2a2 20&2 ’

where the coefficients satisfy

ap = & (exp(iwh;) — 1),
a1 =1 — £(1 — cos(whj)) — £ sin(why),
1

ay = 5(exp(—iwh;) — 1) + 1.
We shall see that
G,(Z_i_)_n’ n >0,

a(z_)"", n <0z,

(5.7) Gn = {

is the bounded solution of (5.5), whetés given by
1

ar —az(z-) —ao(z4)

a =

The functionG,, in (5.7) is the bounded solution of (5.5)|#+] > 1l and|z_| < 1. We
verify these estimates of the characteristic roots in (5.7) by expanding the Taylor series of the
functionz.., given in (5.6), in the variable

o= €(1 — cos(wh;))

hj
arounde’ = 0, and use that, |..—o = 1 to obtain

2
eh;w

(5.8a) lz4| > 1+ — T O(c”?) > 1+ c"ehjw?,
(5.8b) o | 0,24 < O, n> 1
J
gy M
(5.8¢) |2+ | /4|th632+| <C, n>1,

where|wh;| < 7, andc” is a positive constant independentaidh; providede/h; < C' <
1. The estimate (5.8a) implies that

[e 710 %]
|24

<

DN | =

(5.8d) 2| =
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Our next step is to prove
LEMMA 5.1. There holds ford > 73 /e

(5.9a) / / G(y1,y2)|dy2dyr < CA,
y1<A
e B
(5.90) / / 1D, Gy, y2)ldyadys < Clog
A<y1<B o0
<L B
(5.9¢) / / eD2) G (y1, y2)|dydy, < Clog =,
A<y1<B 00 A
5 hy
(5.9d) h i1Da) G(y1,y2)|dy2dys < C—,
y1>A A
(5.9€) / |G (y1,y2)|dy2 < C,
y1=A
c
(59f) |D:t1G ylvy2)|dy2 < Z
yi=

Proof. Let us start to prove (5.9f). We shall use the technique in Lemma 4.1 based
on the near and far field decomposition (4.11). Let us first assumeAthat h?/e, ie.

y1 =nhj > h?/e, then
Jo=a 1P Gyr,y2)ldy> = [, 125, P G(A,y2)ldy2 + [, 155, 1Dy G(A, y2)|dy>
=I1+11,

whereg,, is chosen as

\eh; > h,;
(5.10) Bp=a{ VI =N

h]', ne < hj.

Then by (5.7) and (5.8), we have by the equivalencé,ofnd L;-norms combined with
Parseval’s relation

C/(hjn), n>1,

I <C D;\G'n 2 n <
< DGV _{ A,

1

1 <CH

J e
lv2l>Ba 02/Bn)7

<@ 06w w—ng{ Ofthym), n 21,

L C(1/2)", n<o.

In the last inequality we used

N0,z nd?z
|7n/4|—ﬂLu L2 4 |Z+|7"/4|—52 12 <o,
n n

|2+
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and

Ona 02a
| |+| |<C

which both follow from (5.6). Now comblnmg the estimateslodnd Il above proves that
(5.9f) holds. We obtain the estimate (5.9b) by integrating (5.9f). The estimates (5.9¢,d,e)

follow similarly, using also the relation (4.1)23etweenl~)§c2i) andDg). For the case (5.9a),
wheny; < h?/e, the choice of3,, is modified according to (5.10), and we see as above that
fory; > 0, fR |G(y1,y2)|dy= < C, which combined with the exponential decay (5.7) and
(5.8a,b,c), fory; < 0, implies (5.9a)0

6. Estimates of the residual in (3.15).Proof. [of Theorem 1.1] In this section we
shall combine the results of Sections 4 and 5 to estimate the residual in (3.15), and thereby
complete the proof of Theorem 1.1. The residual given by (3.15) has two main parts; the first

consists of the projections ¢f/) = 51(,?)

(6.1) aj (€9, (I —Tj11)g; % @), a1 (P19, (I = Ijip1)g; * 0),

and the second part is the artificial diffusion terms

1 ~ . 1
(6.2) ll(ho = hj) D3, €91, 1o = hjs1)D3, Pipa €9 ||p,.
Both parts will be estimated by the representation (5.3), (5.4)
€0 (z Z Gi(yn) X9 (2 — yn)h
Yn ENj
Pia&W(z) = Y Gia(yn) P X9 (@ — ya)hdyy,
yn €N 11

whereX "), G; € V; and the relevant estimates &fandG are given in Lemmata 4.1-2 and
5.1.
Using that), ¢; = 1, we have by Lemma 4.3 and (3.15)
J—1

ILoUnextle, <> Y. B3R [1a; (€ (52, (T = Tj11)g;(— ) * é1)|

j=0z,2;€No
+15(ho — hy) (D2, €9 El'i),gj(_ )xo0)l+-
< |IRlle, maxzz Z |: 041)3;(— yn)aj(g(j)(' ;i) Gr—n)|

4l yn €ENo
+h|7; (—yn)| (D269 (- 52), d1—n)| + .. ]
(63) < [|Rlle, max,Z lH(I Ij41) 9J||tzl/ /IE z;)|dz
#lgsl [ DD alde + . ]
< [|R|[e, max; lCh / /|Dm1§ z;)|dz

+||gj||e1/R2hj|D;?§ D ;:vi)|da:+...] :
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where+ . . . denotes the other similar termsin (3.15). The final step in estimating; tmorm

of the residual above and in (3.15) is to evaluate the integrals above by applying Lemmata
5.1, 4.2. To take advantage of the favourabledecay of ther,-integrals ofG in (5.9a,d),

we sum by parts as follows

IR DD, B D) XD (@ = )G (y)13|

< 1/2
= Zylﬁhﬂ//  YEN; L

+ Y. XYz -y)DR)G;(y)h}
y1>hju;/2, yEN;

+ Eylzhjll;/2y yEN; thgE]l') C y)Gj (y)hj HL
(6.4) + Zylzhj V2, yen; th(j) (@ = y)Gja: (Y)h;

<D XD g, [, a2 |Gy (y)ldy

yl<hjl/j

L1

1

Ly

FIXDlles [, 20,072 1 DG ()l dy
10 X Ne, [,y 02 |G () ldy

y1:hjl/j

j C
X DM, f, 102 1Gs )l <

The other parhjﬁg)PijU) in (6.3) can be estimated similarly and satisfies the same
bound. We note that by assumption (1.&}62 > hj/e, which implies that4 = th;/2 >
h?/e, and therefore the assumption in Lemma 5.1 holds. By choo$irgCh; in Lemma
5.1, it follows similarly that

B . B ~ . B
(6.5) / / €D da + / / |eDZ¢W|dy < C'log —.
—BJR -BJR h;

Combining (6.3-5) proves Theorem 101.

Remark In the particular case studied here, the Green'’s funcioarsdG in (4.4) and
(5.2), respectively, are translation invariant, and henceg@isdecomes translation invariant,
i.e. £V (z;2,) = €U (z,; ) = k(x — x,) for a certain functiom:. Therefore, the sum over
x; in (3.15) is in fact a convolution and hence, by the Youngs inequality/th@orm in
Theorem 1.1 can be replaced by ayrnorm,1 < p < oo.

7. Numerical results and extensions.In this section we discuss some extensions of
Theorem 1.1 and numerical experiments of the multigrid method. The extensions are mo-
tivated by the continuous analogue of the multigrid method in (3.16-24) and by numerical
experimentsf; a rigorous analysis of the discrete case following Theorem 1.1 is tedious and is
not carried out here.

7.1. Non-aligned mesh.Assume that we solve the equation

1
Ug, + 5“902 —€eAu=f

with the streamline diffusion finite element method using the mesh in Fig. 2, Section 4. Then,
the characteristic directiofi, 1/2) is not parallel to any edge of the mesh and the difference
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operator corresponding to (4.2) takes the form
(L; XD)(hjn, hjm) = L[X(j)(hn hjm) — X(])(h (n—1),h;m)

(7.1) +5XU (hjn, hj(m — 1)) — 3 XU (hj(n — 1), hj(m — 1)) + XD (hjn, hj(m + 1))]
+hfz_[—iX(j)(hjn, hj(m + 1)) + £ XU (hjn, hjm) — 1 XD (hjn, hj(m - 1))].

In orthogonal coordinatds; , (2 ), with ¢; aligned with the characteristit, 1/2), the Fourier
transform ofL; has fourth order dissipation in tffe-direction in contrast to the operator in
(4.2). TheL-norm of the Green'’s function for the post smoothing operator, cf. (3.16), related
to the continuous version df;

213 e
N i
oG, 625 OCH

Chj replacmg i in (1.10). The

vV 6%5 h4 vi+hjev; hjev

artificial diffusion term in (1.10), i.e. th€>/,/v; term, does not change. This replacement
indicates that the multigrid method, based on Jacobi smoothing steps, could werk for
andhg > 0 if the mesh is not aligned with the characteristic; however, due to the small factor
2/625, the number of smoothing steps required to sufficiently damp one V-cycle might be very
large. After one V-cycle, Experiment B in Table 1 shows large amplificatiorssdodnd4.7

for five and ten smoothing steps, respectively. However, after several cycles the asymptotic
damping is strictly less thah.0 using five and ten smoothing steps. This is in contrast to
the aligned case of experiment G, in the same table, where the damping degenerates to 1.0
ase/hg tends to zero. Hence, an analysis of the asymptotic damping/fer < 1, in the
non-aligned case would require a study of the residual in multiple cycles, cf. Section 7.2.

can be estimated by(7 — I1,11)g,||z, <

7.2. Isotropic artificial diffusion and the effect of several V-cycles.As mentioned in
Section 1, to stabilize the convection problem we can also use the first order accurate isotropic
artificial diffusion (h; VU, V) instead of the streamline diffusion forth;U,,, v,,). The

isotropic form gives an additional artificial diffusion teia, — hj)D(2)§ 7in (3.11), (3.15),
which has the same estimateaﬁﬁ)f(j) in (6.5) and yields the additional contribution

[ [ 10 1) D20 ds < Clog 3
-8R h;

to the correspondingg in (1.10). Also in practice, one V-cycle based on isotropic diffusion
and post smoothing, does not damp the residual for fine meshes, cf. experiments D,E,F in
Table 1, and the damping factor is increasing with larger domains. However, several cycles
damp the residual. Let us briefly try to explain this behavior of the damping for the two grid
method withh; = 2hg. The evolution of the initial Dirac measure residual yields, after one
V-cycle, a small parR, of the residual error witt; -norm

Ci, B O
1Falle, < 7~log _+\/_0

and a larger parf; which is the artificial diffusion ternth; — ho)ﬁﬁ) P, Let us now
study the evolution of the,-Fourier transform of the residual error, caused by the artificial
xo-diffusion,

1, x>0,

h
Ry = 0(171)?1(,02 eXp(—walhl), 0(171) = {0 2, <0
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TABLE 1.
Experiment € method | hfjne | hcoarse| vpre Vpost ~(1) ~(5) o

A 1/64 SD 1/64 1/4 3 3 1.87 0.113 | 0.495
A 1/64 SD 1/64 1/4 5 5 1.25 | 0.0230 | 0.368
A 1/64 SD 1/64 1/4 10 10 0.647 | 0.00178| 0.229
B 0 SDo 1/64 1/4 5 5 5.39 - 0.880
B 0 SD« 1/64 1/4 10 10 4.69 - 0.777
C 1/64 SD 1/64 1/4 3 0 4.74 0.760 | 0.633
C 1/64 SD 1/64 1/4 5 0 422 | 0.308 | 0.520
C 1/64 SD 1/64 1/4 10 0 3.59 | 0.0525 | 0.348
D h; ISO 1/8 1/4 5 5 0.676 | 0.0174 | 0.400
D h; ISO 1/16 1/8 5 5 0.907 | 0.0446 | 0.471
D h; I1ISO 1/32 1/16 5 5 1.14 | 0.0708 | 0.499
D h; ISO 1/64 1/32 5 5 1.35 | 0.0961 | 0.516
E h; I1ISO 1/8 1/4 5 5 0.676 | 0.0174 | 0.400
E h; ISO 1/16 1/4 5 5 1.08 | 0.0902 | 0.537
E h; ISO 1/32 1/4 5 5 1.53 | 0.245 | 0.633
E h; I1ISO 1/64 1/4 5 5 2.00 0.5021 | 0.707
E h; ISO 1/128 1/4 5 5 253 | 0.915 | 0.775
F h; I1ISO 1/8 1/4 10 10 0.482 | 0.00205| 0.256
F h; ISO 1/16 1/4 10 10 0.840 | 0.0159 | 0.371
F h; ISO 1/32 1/4 10 10 1.24 | 0.0555 | 0.460
F h; ISO 1/64 1/4 10 10 1.71 0.166 | 0.558
F h; I1ISO 1/128 1/4 10 10 2.20 0.379 | 0.644
G 1/32 SD 1/64 1/4 5 5 1.20 - 0.362
G 1/128 SD 1/64 1/4 5 5 1.37 - 0.438
G 1/512 SD 1/64 1/4 5 5 2.05 - 0.606
G 1/2048 SD 1/64 1/4 5 5 3.45| - 0.784
G 1/8192 SD 1/64 1/4 5 5 4.17 - 0.885
G 1/32768 SD 1/64 1/4 5 5 4.40 - 0.922
G 0 SD 1/64 1/4 5 5 4.48 - ~1

Residual damping ratio of multigrid V-cycles. We use multigrid iterations to selye-

eAu = 01in (0,1) x (0,1), with an initial Dirac-like algebraic residual wittL,-norm 1.0

at the center of the computational domain. We use the homogeneous Dirichlet boundary
conditions except at the outflow boundarymat = 1, where the homogeneous Neumann
boundary condition is applied. The constant in the damped Jacobi steps-i9.2. The
number of pre and post smoothing steps are increased by a factor of two on each coarser
level, i.e. Vf)re = 2J'1/pre. The L,-norm of the residual aften V-cycles isy(n), andy =

(v(5)/~(1))"/6~1 the average damping of V-cycles 2 to 5, which in practice approximates
the asymptotic damping of one V-cycle, except in experiment B and G whéfdrtheis
changed tal5. Note thaty(0) = 1.0. In experiment B, the convective part, has been
replaced byVu - (cos a, sin ), whereq is the angle to ther;-axis. In experiment B, we
choosegan a = 1/4, i.e the characteristic is not aligned with the mesh. In the last experiment
of G, withe = 0, the residual is not asymptotically damped.
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Initially in the second V-cycle, the Fourier transformed iteration egwordue to artificial
diffusion, satisfies

2
52,391 + how gz,wzwz = Rl)

and then in the smoothing steps (which is multiplicatioreky(—w?h21y) for the zo-part)
this residual remains approximately the same |(fef not too small). Therefore, its correction
condition

Pi& gy + hw? P& = Ry,

with the solution
_ hi o 2
P& = 9(331)?4*) r1 exp(—w z1hy),

describe the residual error

2
—w2P1§2 _ 0(.271) (hlxlw

5 o 5 )2 exp(—w?z1hy).

Combining the residual error in the last equation, the smaller étspand making a slight
modification in P&, for |z;1| < Chy (due to damping in the smoothing), we obtain the
following residual damping after cycles

B o B
v = (G(n) + Vo)log ™ + N

where

h1m1w2

G(n)E/R|.7-'*1(T)”exp(—w2h1m1)|dm2.

The operatotF~! denotes the inverse Fourier transform in thedirection. A numerical
computation shows th&t(4) = 0.02346 is the minimum of&; other values off areG(0) =

1, G(1) = 0.121, G(3) = 0.0270 andG(5) = 0.0263. Hence in the two grid method the
residual will be damped after four V-cycles providBgdh, < 10'® andv, is chosen such
that||Rz||z, < 1/2. Experiments D,E,F in Table 1 show that a residual, which has an initial
L,-norm of size 1.0, may increase after one iteration, but after some additional V-cycles the
residual is damped below its initial value.

7.3. Higher dimensions. In d dimensions the problem (1.1) and the estimates corre-
sponding to the residuat’ in (3.14) and the Green’s functiaghin (3.16) are changed by
replacingz3 by ZLZ =7 in the exponential and the appropriate square root in the denomina-
tor by (-)4~1/2. This change does not alter the estimates (3.17-19). Therefore, we expect the
estimate (1.10) of to hold ind dimensionsd > 2.

7.4. Higher order elements. For kth order elements we have two choices. Either we
can, (i) use the higher order method also on coarser levels, or we can, (ii) compute the correc-
tion with piecewise linear elements tme same meslahd on all coarser meshes. Fote 2,
iterations based on (i) and (ii) use the same number of degrees of freedom. Both strategies
work numerically. In alternative (i), we can use in (3.23)

(7.2) I = T0)gille, < Ok 11Gillyesr,
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which for case (i) has the bound

2h: . . hi
Ck( J )k+1 — Ck2k+1(_J)(k+1)/2
Vhjev; €vj
instead of
2h:)2 h;
Clg — 014_3
thVj 61/]'

in (3.24). The case (ii) similarly yields the bound

h? hs
C,——=0,—.
hjel/j Gl/j

Hence, consideringi; /(ev;) close tol, the piecewise linear case (i) gives a damping which

is a factor2~(*+1) C, /C), smaller than the damping in case (i), indicating that the alternative
(i) is more efficient. The constar@), ~ 1/(k + 1) is the interpolation constant in (7.2).

The computational cost for one V-cycle using alternative (i) is also lower than for case (i),
since the assembled matrix is sparser for linear elements and a lower order quadrature rule
is required. In practice it is possible for many problems to use streamline diffusion (for
guadratic elements) on the finest leyet 0 and first order isotropic artificial diffusion on the
correction problems with piecewise linear elements on leyeis1,2,...,J. This scheme
combines the higher order approximation of the streamline diffusion method with the robust
and cheap smoothing on the correction problems and is used in the computation shown in
Fig. 6 in Section 8.3.

7.5. Estimates of the error. The multigrid method needs a criteria on how small the
residuala(U, -) — (F,-) should be to terminate the V-cycle iterations. Becker, Johnson and
Rannacher [4] have studied such criteria determinealjibysterioriestimates and the require-
ment that: (i) the discretization error from the finite element method, and (ii) the error caused
by solving the equations approximately by the multigrid method, are of the same order. The
multigrid errore,; of (ii) can be written, (see [4], [20]),

(7.3) err(y) = /R R,

whereR ~ U,, — eAU — F'is the residual ang solves the continuous problem, dual to
(1.1),

L*¢ = _1/1201 - EA,(/} = 6( - y)v in Qa
Ylaq = 0.
Therefore ) is the dual function of the Green’s functignin (3.16), and satisfies the same
estimate (3.20), with: replaced by(—(z1 — y1), 2 — y2). This estimate and (7.3) imply
ClRllz,
\/hjﬁ ’
and sincel||R||r, is damped, the errary, can be made arbitrary small by increasing the
number of V-cycles. If the correction problems have consistent bilinear forms, then the or-

thogonality in the correction problems can be used to improve the estimate (7.3), see [4]. In
our case the similar procedure would be to basa posterioriestimate on (3.9) or (3.15).

lear(y)] <
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7.6. A singular perturbed symmetric elliptic problem. Consider fore < 1 the sin-
gular perturbed symmetric elliptic problem

(7 4) Ugiz, + €Ugyzy = f, €,
u|,99 =0.

The damping in the V-cycle can be analyzed analogously, to the problem (1.1), with the
difference that the artificial diffusion terms in (3.15) now are absent and the post smoothing
operatolg; satisfies

~ _ C
(I = 41)35llL, < ;)

since the Gaussian in (3.14) changes to

exp[—a?7/(4cth3) — 5/ (4cthie)] -

X(z,t) =
(2,1) Amtchiel/?

The L{-norm of the residual has the same estimate as in (3.22)

B B
[ (inil + déeasalide < Clog 3
—BJR J
and we conclude that the damping satisfies

J-1 B
7B < Z o, log [
7=0

Compared to the damping (1.10) for the convective problem (1.1), the above damping is
larger by a factod /h;. Indeed, numerical experiments indicate that the convergence of the
multigrid method for (7.4) is slower than for problem (1.1).

7.7. Small and large diffusion. In Fig. 3 we compare by numerical experiments the
residual of the convection diffusion equation (1.1) fo= hy ande = 1. We see that the
damping yields residuals which in both cases are qualitatively the same.

In agreement with the analysis of Theorems 1.1 and 1.2, numerical experiments show
that theL;-norm of the V-cycle residuals due to an initial Dirac residual function (3.3) is
larger than the residuals due to other initial functions (with the shypeorm).

For a fixed number of pre and post smoothing stepd.thaorm of the residual after one
V-cycle in Theorem 1.1 is bounded 6% + C,/e. Experiment G in Table 1 shows that this
is a good estimate far/hg > 1/32. For the case < hg, the L,-norm of the residual after
one V-cycle is uniformly bounded; but the experiments also show that the asymptotic residual
guotient, in two consecutive V-cycles, becomes arbitrary clode émd hence the multigrid
method does not work; see Section 7.1.
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FiG. 3. Spatial distribution of the residuals for the convection-diffusion problem of Table
1. The convection is in the; -direction. Two choices of the diffusierare studied: To the
left, e = hg = 1/64 with streamline diffusion stabilization, and to the right= 1. The initial
residual is a Dirac function with.; -norm 1.0 at the center of the computational domain. For
both sizes of diffusion we use V-cycle iterations Wﬁhe = ”fJost = 5 - 27 damped Jacobi
smoothing steps, with finest leyiek 0, hy = 1/64, and coarsest levgl = 4 with hy = 1/4.
After five V-cycle iterations the;-norm of the algebraic residual has been damped from 1.0
to 0.023 and 0.0084, for the small and large diffusion case, respectively. We conclude from
the figures above that in both cases the residual damping is caused by diffusion and not by
transport.

7.8. No post smoothing.The projection part of the residual in (3.11), for a V-cycle
without post smoothing, will be damped by the pre smoothing steps on the appropriate level
in the next V-cycle

S;0P;iS; 10Pj 1...PyS10P1So0(I —TI;)L;69,

which is similar to the smoothing by; in a post smoothing step, cf. (3.13). Therefore, we
expect the damping for two V-cycles without post smoothing to be close to the damping of
one V-cycle with post smoothing. This is confirmed in Table 1, experiments A,C.

7.9. Distribution of smoothing steps and Navier-Stokes equations/Vhat is the opti-
mal distribution of smoothing steps on the different levels in a multigrid method? For pure
diffusion problems the optimal strategy is to use the same number of smoothing:steps,
on every levelj; see [16]. Here we compare this strategy= vo1 = constant, with the
alternativer; = vge 2/ = constant 27, where the number of smoothing steps increase ex-
ponentially on coarser meshes. By choosigg= 15 andvy, = 10 the two strategies give
the same amount of work, for a uniform mesh where each triangle is refined into four new
triangles. The numerical results in Fig. 4 show that #he= 10 - 2/-strategy is the best
of these two smoothing strategies, when they are applied to the stationary two-dimensional
compressible Navier-Stokes equations for an ideal gas with specific heaf résiee [21]),
artificial viscosity,e = 0.01, and source terny;,

(7.5) divF(W) = eAW + f,
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whereW = (p, pu, pv, pE) is the vector consisting of the density, momentum inithend
x directions and the energy.

Smooth solution - constant smoothing strategy Smooth solution - 2% smoothing strategy
T T T T T T

-3

R~ -~

b---o-

4k~ 0= == -
b 2 o 3 sy

—6___

log(Algebraic error)
log(Algebraic error)
i i |

. . . . . .
1 2 3 4 5 6 7 8 9
MG-cycle

Shock Wave Problem - constant smoothing strategy
T T

log(Algebraic error)
log(Algebraic error)
| i

_14F

~16-

—18-

L L L _2(f it L L
6 7 8 9 0 1 2 3

L L L
6 7 8 9

L L L
1 2 3

4 5 4 5
MG-cycle MG-cycle

FIG. 4cC FIG. 4D

Fic. 4. Algebraic residual for a smooth solution and a shock wave solution of the
Navier-Stokes equations in Section 7.9, using the nonlinear full approximation multigrid
scheme with damped Jacobi smoothing steps. The graphs show the algebraic residual er-
ror for the finest level and its correction problems on coarser levels. The graphs compare the
algebraic residual error with six levels of multigrid cycles using= 15 andv; = 10-27, re-
spectively, number of smoothing steps on lgv@hese two strategies have the same amount
of work. The finest level; = 0, has3969 nodal points for the problem with the smooth
solution, and15041 nodal points for the shock problem. Fig. 4AB and Fig. 4CD show the
residual error for the smooth solution (7.5-6), and the shock wave problem (7.5),(7.7), re-
spectively. The algebraic residual error is marked as follows. Finest JexeD : solid line
with crosses, level = 1 : dashed line with circles, level = 2 : dotted line with plus, level
j = 3 : dash-dotted line with stars and levgk= 4 : solid line with circles. We note that the
residual on the finest level is smaller for the= 10 - 2/ strategy, and therefore this strategy
is better. Moreover, the residual errors for the correction problems on lgvell andj = 2
are larger for the strategy; = 15, indicating that they should be solved more accurately.
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To prevent oscillations on coarser grids, we add a numerical artificial diffusion term,
(/€2 + (hB)%2 — €)AW, wheref denotes the maximal absolute value of the eigenvalues of
the two Jacobians defined by the flix andh denotes the mesh size. The finest level prob-
lem and the coarser problems are solved with piecewise linear elements using this isotropic
artificial diffusion and the non-linear full approximation multigrid method with damped Ja-
cobi smoothing steps; see [7] and Section 8. The mesh refinement is global and uniform. We
study two problems. The first problem has a smooth solution and the second problem has a
planar stationary shock. In the case of the smooth solujien,1.4 and the source terrfiis
chosen to satisfy (7.5) for the solution

(7.6) (p,u,v, E) = (1+ %(w%—l—x%))(l,l,l,l),

and the computation is performed on the unit square. The shock wave problem is solved with
f =0, v = 2.0 and the boundary conditions

W(0,25) = (1,/3.5,0,2.75),

(77) W(4,m2) = (14, m70,3‘25),

in the computational domaiff), 4) x (0, 1). The computations in Fig. 4 show that the=
10 - 27-strategy yields a smaller residual than by choosing the smoothing steps-as5.
Numerical experiments also show that the= 27v,-strategy is more robust than the =
Vo1 -Strategy, when decreasing the constagtsn an equi-work consistent way. Wheg, is
chosen belovi0 the method becomes unstable.

8. A 2D shock wave problem.The two-dimensional nonlinear shock wave problem

F(u)E(’f;)m—eAu =0, == (21,72) € R?,

(81) u(:i:oo,~) =¥,

has a stationary one-dimensional Burgers shock solution, and it can be solved by the full
multigrid method based on the full approximation scheme (see [7]); the smoothing operator
So,0 is then given by (2.2) and (3.16) witfi(u) replacingLu and the correction step is

Uf?l;?(t: SOJ)UO - (U - 7TlSo,oU0).

Here, thg mesh size is chosen such that ¢, the operatorr; is the nodal interpolant onto
Vi,andU € {v:v|x € P1(K) VK € T™} satisfies

Fh1 (U,U) = Fh1 (71'15070[]0,’1}) + F6(5070U0,1)) Vv € Vi,

and
2

Fy(u,0) = /1%2[(“3)9“@ + hVuVolde.

When the perturbations = Uﬁéit— Uy become sulfficiently small, the nonlinear two grid
method above is approximated by the two level method (1.6) for the linearized problem

(8.2) Lw = (u(zy)w),, —eAw =0,

which is a convection-diffusion problem where the compressive fiwy) = — tanh £ is
a Burgers shock wave solving (8.1). We have chosen the coordinates sq tkab is the
center of the wave.
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We study the damping of the two grid method for (8.2), where for simpligity= ¢
andh; = 2hg. To begin, we need a representation of the residual. The residual representa-
tion (3.15) for the constant coefficient problem (1.1) used translation invariance of the post
smoothing operatdj;; for the shock wave problem (8.2) the corresponding smoothing oper-
ator is not translation invariant due to the-dependent flovu(z; ). Our first step is to derive
a residual representation, in view of the related continuous problem, described in (3.16-24).
Now the orthogonality of the correction problem for post smoothing is based on the property
that£ andSy o commute, which is proved in Lemma 8.1 below. The second step is to study
the Green’s function for (8.2) and estimate the damping of the two grid method.

8.1. Residual representation.The Green’s functiory(z, t; z,t) for the shock wave
equation (8.2)

gt+h0£g :07 t>ta

(55) gt t) =5z — ),

and its dual

(8.4) U(x, t;2,1) = g(2,; 2, 1),

(8.5) =y + ho L = —tp + ho[—u(z1)py, —€eAY] =0, t<t,

'Qb(x:t_;jj:ﬂ = 6(‘7j - j)a

are both translation invariant in time, but not in space sineeu(z).
Let the smoothing operatdt be defined by

(36) Su@) = | alavin.0ps)dy,

then we have
LEMMA 8.1.The operators. and.S commute.
Proof. We have by (8.3-6)

SLy = [ g(x,v3y,0)Lo(y)dy = [ Lyg(x, vy, 0)v(y)dy
= Jge L300y, 052, v)0(y)dy = [p2 hg 1y, 052, v)o(y)dy
= - fRZ halgt(x, vy, O)U(y)dy - fRZ ‘ng(l., vy, O)U(y)dy = ESU:
where the subscript of operatér(and K, A below) denotes the dependent variable.

Let the evolution of the Green’s function for the two grid iteration error be defined by,
cf. (3.4), (3.16),

&+ hoLE =0, t>0,
LE(x,0) =0(x — 7).

A small modification in the treatment of the correction problem (3.9), yields as in (3.11) the
residual error

Lo@PEN@) = Y (Lot ¢y —r) — (LoPeD,,, 1 — )

(87) miENo
— (ho — h)(APEY ) R(z;) Vr e Vi,
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whereP; is defined as in (2.4) for the bilinear form corresponding to the problem (8.2). Given
¢, choose now according to

"= fR2 ¢l($)d$ 7
(8.8) s, on)E 72 b,

Pn€B1

whereB; ; = {¢n € B1 : z, € SUper)}, SUpgr) = {z : ¢ (z) # 0} and expand in the
basisB,

W= Y re)die).

z;ENo, ¢i €Bo

Then, we have

(8.9) (Lo&, d1 — 1) = (Lo& d1) — Y (Lo, di)r(wi) = (K (Lo&, ¢ )i,
z:ENp

where the difference operatéf satisfies

Ki]' = 0, |$Z — ij| > \/ih(),
Kp =0 Vp e {polynomials of degree at mos},

andK is a difference operator of second order. This, and interpolation estimates like (4.21)
imply that

(8.10) KX |le, < CAGX ||,2-
By Lemma 8.1 and (8.7) we obtain the following representation for the residual

|LS(§ — P& = |SLE — P&
ISK L]+ |SK (L — (hy — ho)A)Pié| + | (ho — hi)SAPLE.

(8.11) 7] i

The same steps carry over directly to the discrete version of the opératat smoothing
in the two level method.

8.2. Damping by smoothing. To estimate th&.;-norm of the residuaR in (8.11) we
need an estimate of the smoothing oper&tand the functiorf. The residual

X = (u(@1)€)e, — ho AL = LE
satisfies the same equations as the iteration érror
(8.12) X+ hoLX =0,

since the operataf is time independent. We shall now study the Green'’s funclién¢) =
g(-,t;%,0) with X(-,0) = 6(- — x) for x.in the shock wave regioB = {(z1,72) € R* :

|z1| < Cho}. The other case when the residual is far away from the shock, i.e. wisefarx

from the shock, is for the first V-cycles related to the constant coefficient problem (1.2). In
Section 7.2 we saw that the streamline diffusion form yields slightly better convergence than
the first order accurate isotropic forfVU, Vv); a scheme that switches from streamline to
isotropic diffusion near shocks is studied e.g. in [26].
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The Green’s functionX can be found by separation of variables; hypothesizing that
X(z1,x2,t) = a(x1,t)B(x2,t), then (8.12) holds provided
o + ho[(u(ml)a)ml - hOaIlﬂUl] = 07 a(' 70) = 6( - gl),
B — h(z)ﬂﬂvzﬂvz =0, ﬂ( 70) =0
We have
1

VAThdt

In fact, the functiony also has an explicit solution, which can be derived by the Hopf-Cole
transformation (see [15])

(8.13a) B(x2,t) = exp[—(z2 — z,)?/(4h31)].

T

(8.13D) a(z,t;2,,0) = / ey, 0;2,t)dy’,

— 00

wherey is the following sum of heat kernels

o(y,0;,t)
e~/ (ho)

hot
8.14a) = wroro e O H T (@ =y, 1) + ey H (@ =y, 1)

2/ (2ho) hot
e 7 H— _ _ 0 H— _
} e*/(3hq) fo—=/(3hg) ay (-T y;t) (e7/h0) fo—=/(3hg) )2 (-T y:t),

and

(8.14b) H*(z,s) = H(z F s,5) = exp [—(z F hos)?/(4hs)].

1
VArhis
In particular, since§‘71 tanh Q””TO)I is the eigenfunction corresponding to the zero eigenvalue
of £, we have
a(z,t;z,,0) — (5 tanh 3he e
= [p(a(z',0) — (5 tanh %)m:)a(w,t;x',O)dw’
= [p(sign(z, — z') — 5 tanh 2 No(z!,0; z, t)da!

2hgo
< Chy " exp(—c(|z]/ho +1)),

(8.15a)

which implies

(8.15b) / (alz,t) — = tanh =2 )dz = 0.
R

2 2hg

Here sigriz) = 1, if z > 0 and sigriz) = —1 if z < 0. Equality (8.15b) follows from the
fact that the functio, dual toy, defined by

Seo(z,£53,0) = 9(3, 02, 1),
satisfies

wi + holu(z1)wz, — hoAw] =0, w(-,0)=0d(-—y),
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and hence
[ 0053,z = (oo, t1,0) = (00, 53,0) = .
R

Our construction yields
(8.16) X(z,t;2,0) = g(z,t;2,0) = (21, t; 21, 0)B(22, 15 25, 0),

and therefore, by (8.6), the smoothing operaidras an explicit expression. To determine
the iteration erro€, we shall solve fo€ in the residual equation

(8.17a) £E=X.

In the constant coefficient case we could directly obtain the solution of the stationary problem
by Fourier methods. Now, we shall compute the solution of the stationary problem (8.17a)
by means of the corresponding time dependent problem,

(817b) gt -l-hoﬁf_: hOX( , VT, 0)7
for which we know the Green'’s function. Then we shall use that

&(,v) = lim £(-,1).

t—o00

When applying Duhamel’s principle to the time dependent problem (8.17b), the space-time
integrals will only be well defined provided the stationary solution is sufficiently localized,
which for Green’s functions depends on the number of space dimensions. In order to achieve
sufficient locality, it is suitable to seek firgt, ., which satisfies

o - _
Egmzmz + hO’Cé-IzIz = h’OXEzEz(. 7’/)X'7 0)’

sinceL is z, independent. Using tha is the Green’s function of (8.12) and thakatisfies
(8.15) we have

Ze(e,vi,0) / / 122 X (@, t;y,0)X (y, vi 2, 0)dtdy
o 022

(8.17¢) = ﬁexp[—xz/%un(%tanh ),

h26?
/ / xl,t Y1, ) —Ot(l‘l,oo;yl,0))%5(1’2,15;yz,O)X(y,l/;g,O)dtdy,
R2 T3

where the last term is localized and has zero mass due to (8.15). Therefore, by integrating the
equation

(u§)w1 - hogﬂvlm =X - h0§m2x2

in thez-direction, we see that

T1
€lei2,0) = oy [ (X 032,0) — hofle, 13, 0)a0r, )]
0
_/“(X(ﬂc’,V;L 0) — hoé(2', v; 2,0)05a,
0

u(zy)

(8.18)

)z, exp(A(z) — A(w1))dry
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is a solution. Heer—yA(y) = u(y). The equations (8.18) and (8.2) show that the residual
parts(u)z, , b1z, 2, andhi &, ., in (8.11) are localized functions bounded by
CTq

. -1
exp[—x%/(chf)u)](T tanh 2—h0)x17

1
C—=
\VA4rvh3
whereC andc are positive constants. By replacihg with /4, in (8.17-18) we obtain the
same estimates fdr; £ as for&, where

(819) (UPlf)Il —hlAplf =X.

Using thatK* = K, we then note that the projection part of the residual error satisfies

8200 ISK@O] = | [ KX G0 e vz < .

and similarly for the contributions fromy A¢, (uPi€),, andh; AP €. To obtain (8.20) we
used the explicit expression (8.13), (8.16)%f In (8.20) it is important to note that the
y1-derivatives ink, cf. (8.10), makes the Green'’s functiéh decay exponentially fast it
(since by (8.13b) is localized around: = +hot) for x in the shock region, while thg,-
derivatives inK yield parabolic damping. The exponential damping is also seen in (8.15a).

Using the decomposition (8.17), (8.6) and (8.15), (8.17), (8.20) we see that-therm
of the error from the artificial diffusion

(ho ~ 1)S(Pi8)enes = 3 S(Pi)use

is bounded byl /2 + C exp(—cv). The termsl/2 andexp(—cv) correspond to the first and
second term, respectively, of the right hand side in (8.17). The exponential bound follows by
using (8.15b) and integrate by parts in thedirection to get a factoX (z,¢; y,0),, = ¢0.
The L{-norm of the remaining errdig — h1)S(P1€) s, «, is bounded by exp(—cvr) using
that¢,, is a localized bounded mass and thétz, v; y, 0),, is decaying exponentially fast
in time v. By combining all estimates of the residual error in (8.11), we obtain

THEOREM 1.2. Assume that the residual errdtU,, for the continuous version of the
two grid method applied to the shock wave problem (8.2), initially is localized in the shock
wave regionB, i.e. LUp(z) = 0forz ¢ B = {(x1,22) € R* : |x1] < Chg}. Then one
iteration of the continuous two-grid cycle, withpre and post smoothing steps, damps the
residual with a factor

_ 1£UnextlL, (r2)

y ¢
B LU, 2 v’

IN

1
5 +
This indicates that a residual error, localized in the shock region, is damped by the two
grid method, provided sufficiently many smoothing ste@se used.
To convert this analysis to a rigorous convergence proof for the discrete version of the
two-level method would require analogous estimates of the discrete version of the rasidual

Theorem 1.1 shows that the derivation (3.16-24) make sense for problem (1.1), we therefore
expect that the discussion above also is relevant in the fully discrete case.

8.3. Numerical test. In Fig. 5 we present numerical results of the two grid method
applied to the nonlinear shock wave problem (8.1) confirming the 1/2 in Theorem 1.2. Fig. 6
shows the result of using an adaptive space-time finite element method for a time dependent
Burgers problem, using the nonlinear full multigrid method; see [14], [25].
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Fic. 5. Convergence of the two grid method for a nonmoving Burgers shock. The
computational domain i$0,1) x (0,1) with Dirichlet boundary conditionsi(z1, z2) =
uo(x1) = —tanh(z; — 0.5/2/0.01). The equation is solved on the uniform grids with fine
grid hy = 1/32 and coarse grich; = 1/16 with isotropic artificial diffusionh;Au, j=0,1.
We use Jacobi smoothing steps with damping congtaat0.2, andvpre = vpost The
finite-dimensional equation has been solved accurately when a small Dirac-like residual with
Li-norm10~—* is introduced by addition to the right hand side of the assembled equation. In
the figure thel;-norm of the residual with different number of smoothing steps are plotted.
Note that the convergence after an increase settles down to a damping factor 1/2. The mass,
f(o’l)x(o’l) Rdz, of the residualR is damped by the factdr/2 as given by theory, This is a
difficult problem to solve when only using Jacobi smoothing. Experiments show that it takes
asymptotically 1440 Jacobi iterations to damp thgnorm of the residual by a factdr/2.
In the figure this finite dimensional effect starts to influence the convergence rate when the
number of smoothing steps are 160 and 320.
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FiG. 6. Two colliding Burgers shocks solving + uu, = eug,, u(z,0) = ug(x),
with e = 0.01 in the space-time domain. The approximate problem is solved with piece-
wise guadratic elements using streamline diffusion stabilization and the nonlinear multigrid
method. The correction problems use piecewise linear elements with isotropic artificial diffu-
sion; see [14], [25]. The figures show the adapted grid and the solution after 5 refinements.
The initial datau, is piecewise linear and the analytical solution is computed by the Hopf-
Cole transform. The solution in the figure has a relativg-error of 2.5%. The mesh contains
3730 triangles and has 7432 degrees of freedom.

9. Boundary conditions. In an unbounded domain, thie -norm dampingy., of the
multigrid method in (1.10) becomes unbounded due to the fdopdiB/h;). Therefore,
for a convection dominated problem to prove that a V-cycle forms aoontraction for the
residual, we need to study bounded domains and boundary effects. Our method to analyze
the damping is based on Green'’s functions. Hence, we would like to know Green'’s functions
for (1.1) including boundary conditions. We study here the following variant of boundary
conditions for (1.1)

LoU = u(z)Uy, —eAU = f, z1 <0,

©.1) U(0,z2,t) =0,

whereu(z,) = — tanh(z; /(2¢)) is the solution of Burgers equation (8.1). We can view (9.1)
as a kind of Dirichlet boundary condition at = 0 for (1.1), with a small modification of

the flow (1, 0) near the boundary. For the problem (9.1), we now construct Green’s functions
by means of the dual solutiogsandg in (8.13) and (8.14). Then, following Section 8, we
use the Green’s function to study -convergence for the continuous version of the two grid
method. We have

THEOREM9.1. Assume that there are positive constaBit€”' such that the initial resid-
ual, LoUy — f, satisfies

/ / (Lol — £)((, 22))|dedas < |[LoUo — flli, ooy expl(r + B)/C],
—o0 YR
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for z;y < —B. Then one iteration of the continuous two-grid cycle, wighpre and post
smoothing steps, damps the residual with a factor

ILoUnext— fllL.((—0,0)xR) _ [Ciholog(B/hg) — C- Coho
< + (1+
| LoUo — f||L1((—oo,0)xR) 240 \/;0 €Yo

)

Furthermore, the residual of the next iteration satisfies the same localized estimate as the
initial residual

/ /R (LoUnext— £) (@}, 22)) d, diy < |LoUnext— fllia (—so.0)xm) expl(a + B)/C),

for z; < —B, and there is a positive consta@t such that the continuous version of the
two-grid method is a contraction for the residualin ((—oc,0) x R), provided
C"holog(B/ho)

I/()ZCI-Ff.

Proof. The following sum of convected heat kern&ls-, given in (8.14),

T

Y(y, t;x,85ho) = / oy, t; ', 53 ho)dz'
— 00
—a/(2hg) =/(2hg) —
= 4&/(220)4-(”/(2;‘0) H+(:E —Y,s— t) + em/(Zh%)—+e—w/(2h0) H (:E —Y,s— t)7

solves
—tr — ho[(u(z1)Y)zy — hoVzy2,] =0,
Yy, ta,t) =6z —y).
Let
Bus 23,1) = s el (2 w0 (bl = 1),
and define

1/1(y,t;1‘,t_; ho) = 1/1(y1;t;931,t_; ho)ﬂ(yz,t;l’g,ﬂ,

which satisfies the backward problem

_{/;t - hO[(U(ml){/fv)zl - ho{/}vmlml - ezzmzxz] = 0, t < f,

Yy, tx,t) = 0(x —y).

Thus, the functiorﬁ(y, 0; z,t) is the Green’s function of the forward problem

~

gt + hOLOgE gt + ho[(u(w1)§)$1 - hogﬂvlm - GExm] = 07 T € R27 t> 07

9.2 ~ ~
( ) f(:ﬁ,O) = &o-

~

Now let the initial iteration erro€(- , t), for somey = (y1,y2) € (—00,0) x R, satisfy

Loé(x,0;9,0) =d(x —y), &= (z1,22) € (—00,0) x R,
0

~

£(0,0;y,0) :
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Then, we extend, for fixed, andy, the iteration errof(( T
R, and conclude theﬁt satisfies (9.2) with the conditiof( (0,
the definitionX = L& and the facd; Ly, = 0 imply

x2),0;y,0) to an odd function in
x2),t;y,0) = 0. Furthermore,
(0.3) X; +hoLoX =0, z€R?,

' X(2,0) =6(x—y)—d(x+y).

Using thath is dual toX andg, we obtain as in (8.16)
X(;l?, V) = J(ya 07 T,V; hO) - J(_ya 07 T,V; h0)7

and by solving the equatiobofz X, by means of the time dependent problem as in (8.17),
yields
(9.4) _
E(z,v59,0) = [ g2 (', 05,8 ho) X (y', v)dy' dt
= fOOO fRZ dj(yl, 0) z, t; ho)[d’(ﬁ% 0) y,, v hO) - 1/’(_1/; 0; yla v, hO)]dy,dt

Hence we have an explicit expression EAorand therefore, the residual error (8.11) for the
continuous version of the two grid method can be evaluated.
The corresponding solutiahin (3.16), without boundary condition af = 0, satisfies

(9.5) &(z,v;y,0 / / lim 1/1 y,0;z,t; h)w(y,O;y',V; h)dy'dt,
R2 h—0+

and is estimated in (3.20) and Lemma 5.1. The right hand side in (9.4) has two terms of the
same type as in (9.5), and it can be shown, using Lemma 8.1 and (8.11), that the residual error
for the continuous two grid method based@has the same damping; as¢ in (1.9) and
(1.10).

To studyL;-convergence of the continuous two grid method we also need that the resid-
ual decays sufficiently fast far; — —oo. Let us now assume that the initial residual error
LoUy = R satisfies

(9.6) / / \R((x), 22))|de’,d> < ||Rl1, exp[(z + B)/C] for o < —B.
— R

The representation (9.4) and analogues of (3.20), (5.7), (5.8d) imply

¢_ 4 _Cho forzy —yy > ho\/;,

q 7t; 70 T h /\I xT AE x d < 1 (ml y1)2’
/R(|€(m ) ) 1|+ 0|€ 1 1|+6|§ 2 2|) Y2 = {C’exp[ yi— 961]’ for x; - <h0\/;.

Then, using also (9.4), (1.10) at@(z) = [p. R x 0;y,0)dy, we see by the residual
representation (8.11) that the next |terat|on ylelds a re5|dual which satisfies the decay in (9.6)

/ / |LOUnexﬂd.1’2d.’r1 < ||R||L1 exp[(ml + B)/C] for r; < —B,
—oo JR

and the damping

| LoUnexdl L,

< B>
LoUolle, —
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where~p satisfies the bound in (1.10). Therefore, the continuous version of the two grid
method with the boundary condition (9.1) and the initial decay (9.6) gives a contraction for
the residual inL,, provided sufficiently many smoothing steps are ugked.

The corresponding case of a Neumann boundary conditien-at0 can be studied sim-
ilarly by replacing odd by even and thes, —i in (9.3) and (9.4) by+§, +1, respectively.
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