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NUMERICAL EXPERIMENTS WITH PARALLEL ORDERINGS FOR ILU
PRECONDITIONERS*

MICHELE BENZIT, WAYNE JOUBERT, AND GABRIEL MATEESCU

Abstract. Incomplete factorization preconditioners such as ILU, ILUT and MILU are well-known robust
general-purpose techniques for solving linear systems on serial computers. However, they are difficult to parallelize
efficiently. Various techniques have been used to parallelize these preconditioners, such as multicolor orderings and
subdomain preconditioning. These techniques may degrade the performance and robustness of ILU precondition-
ings. The purpose of this paper is to perform numerical experiments to compare these techniques in order to assess
what are the most effective ways to use ILU preconditioning for practical problems on serial and parallel computers.
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1. Introduction.

1.1. Motivation and focus. Krylov subspace methods [21] are customarily employed
for solving linear systems arising from modeling large-scale scientific problems. The con-
vergence of these iterative methods can be improvegrégonditioningthe linear system
Az = b. The preconditioned systed ~'Ax = M b (for left preconditioning) can be
solved faster than the original system if theeconditioner)M is an efficient and good ap-
proximation of A; efficient, in the sense that the cost of solvihf: = v is much smaller
than the cost of solvinglu = v, and good in the sense that the convergence rate for the
preconditioned iteration is significantly faster than for the unpreconditioned one.

Incomplete factorization techniques [24],[17],[20] provide a good preconditioning strat-
egy for solving linear systems with Krylov subspace methods. Usually, however, simply
applying this strategy to the full naturally ordered linear system leads to a method with lit-
tle parallelism. Incomplete factorization is also useful as an approximate subdomain solver
in domain decomposition-based preconditioners, such as Additive Schwarz Method (ASM)
preconditioning [23].

In this paper we study the effect of the following algorithm parameters on the conver-
gence of preconditioned Krylov subspace methods:

e Symmetric reorderings of the matrix: this applies to incomplete factorization (ILU)
preconditioners;
e Subdomain overlap: this applies to Additive Schwarz preconditioners.

Symmetric permutations of the linear system have been first used in direct factorization
solution methods for reducing the operation count and memory requirements. For example,
the Minimum Degree ordering is effective for direct solvers in that it tends to reduce the num-
ber of nonzeros of thé& andU factors [12]. Other reorderings can have a beneficial effect
on incomplete factorizations employed as preconditioners, e.g., by providing a parallel pre-
conditioner [21]; the storage for the preconditioner is typically controlled by the incomplete
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factorization scheme. However, parallel orderings may degrade the convergence rate, and
allowing fill may diminish the parallelism of the solver.

In this paper, we consider structurally symmetric matrices arising from partial differential
equations (PDEs) discretized on structured grids using finite differences. We focus on sym-
metric permutations as they represent similarity transformations and preserve the spectrum
of the linear system matrix. Furthermore, symmetric permutations preserve the structural
symmetry of a matrix and the set of diagonal elements.

Additive Schwarz methods [23] derive a preconditioner by decomposing the problem
domain into a number of overlapping subdomains, (approximately) solving each subdomain,
and summing the contributions of the subdomain solves. Variants of ASM are obtained by
varying the amount of overlap and the subdomain solvers. When the subdomains are solved
approximately using an incomplete factorization, the resulting preconditioner can be thought
of as a “parallel ILU” strategy. Like block Jacobi, ASM has good parallelism and locality, but
these advantages could be offset by a high iteration count of the underlying Krylov subspace
method.

1.2. Related work. A lexicographic ordering of the grid points in a regular two- or
three-dimensional grid is obtained by scanning the grid nodes and assigning numbers to the
nodes in the order in which they are seen in the scanning. A widely used orderindNiatthe
ural Order (NO), which is the order induced by labeling the grid nodes from the bottom up,
one horizontal line at a time and (for three-dimensional grids) scanning consecutive vertical
planes. Several reorderings have been considered in the literature as alternatives to the natural
order. Among these aMinimum Degre€MD), Multiple Minimum DegreéMMD), Reverse
Cuthill-McKee(RCM), Nested DissectiofND), andMulticoloring (MCL). For a description
of these reorderings see [6],[11],[12],[16],[21]. MMD, MD, and ND reorderings attempt to
minimize the fill in the factors, while RCM reduces the bandwidth of the matrix.

The degree of parallelisn{DOP) of a preconditioning algorithm is the number of pro-
cessors that can work simultaneously on constructing or applying the preconditioner. MCL
provides large grain parallelism for no-fill incomplete LU factorization [21]. With multicol-
oring, the linear system is partitioned in subsets of equations that do not have any internal
dependencies between unknowns. For direct solvers, fill-reducing (ND, MD, MMD) and
bandwidth-reducing (RCM) reorderings are superior to NO [12]. The usefulness of these
reorderings for incomplete factorization preconditioners is not well established.

A simple incomplete factorization of a matrikis A = LU + R, where the triangular
matricesL andU have the same nonzero structure as the lower and upper triangular parts of
A, respectively, and? is theresidualmatrix. This strategy is known as no-fill ILU, and is
denoted by ILU(0). For symmetric positive definite (SPD) probleths; L™ and the factor-
ization is called no-filincomplete Choleskylenoted by IC(0). One can attempt to improve
the effectiveness of an incomplete LU factorization by allowing fill-in in the triangular factors
L, U. The ILU(1) method allows nonzeros entries for the elements with level of fill at most
one (see [21], pp. 278-281); the corresponding factorization for SPD problems is denoted
by IC(1). A more sophisticated preconditioner is a dual-dropping ILU preconditioner [20],
denoted by ILUTE, p), wherer is the dropping threshold angdis the maximum number of
nonzeros of fill allowed in a row above those present in the original matrix.

The effect of reorderings on the performance of ILU-type preconditioners has been stud-
ied by Duff and Meurant [7], Benzt al.[2], and Saad [19], among others. Duff and Meurant
have studied the impact of reorderings on incomplete factorization preconditioning for SPD
problems. The sources of inaccuracy in incomplete factorizations and the effect of reorder-
ings on accuracy and stability have been analyzed by Chow and Saad [4] ane:BanA].

Let A = LU. The residual matrix® = A — A measures the accuracy of the incom-
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plete factorization. Lef - || denote the Frobenius norm of a matrix. Chow and Saad [4]
and Benziet al. [2] have shown that for nonsymmetric probleifiB||r may be an insuf-

ficient characterization of the convergence of the preconditioned iterative methods. This is
in contrast with symmetric positive definite problems wh&rgrovides a good measure of
convergence. These authors have shown that the stability of the triangular solves is gauged
by the Frobenius norm of thaeviation from identitynatrix, £ = I — AA~1. For ILU(0),

|R||» can be small, whilé E|| » may be very large, i.e4 can be very ill-conditioned. Note
thatEl = RA 1.

Benziet al. [2] have shown that RCM and MD reorderings can be beneficial for prob-
lems that are highly nonsymmetric and far from diagonally dominant. Specifically, MD has
the effect of stabilizing the ILU(0) triangular factors, while RCM improves the accuracy of
incomplete factorizations with fill.

Saad [19] has shown that improving the accuracy of the preconditioner, by replacing
ILU(O) with dual dropping ILU preconditioning ILUT, p), greatly improves the perfor-
mance of red-black (RB) ordering, so that by increagirie ILUT preconditioner induced
by RB will eventually outperform the one induced by NO, as measured by iterations or float-
ing point operations. RB ordering is the simplest variant of MCL, in which the grid points
are partitioned in two independent subsets (see Subsection 2.1 and [21], page 366).

1.3. Contributions of the paper. Our main contribution is to show that parallel order-
ings can perform well even in a sequential environment, producing solvers requiring a lower
wall-clock time (and in some cases reduced storage needs) than NO, especially for ILUT pre-
conditioning of two-dimensional problems. We also show that for problems which are highly
nonsymmetric and far from diagonally dominant these orderings are still better than NO, but
they are outperformed by RCM. For such problems we also observe that parallel orderings
can have a stabilizing effect on the ILU(O) preconditioner.

We propose and investigate a new MCL ordering, which allows for parallel ILU(1) and
IC(1) preconditioners. We perform numerical experiments with multicoloring for nonsym-
metric problems and incomplete factorizations with fill-in, extending the work done by Poole
and Ortega [18] and by Jones and Plassmann [15] who studied the effect of MCL reorderings
on IC(0) preconditioners for SPD problems. Our experiments suggest that for nonsymmetric
problems, the loss in convergence rate caused by switching from NO to multicolorings for
ILU(0) and ILU(1) preconditioners is compensated by the large DOP of the multicolorings.

We extend the study [7] in two ways: first, we show that RB applied to symmetric ILUT
can outperform NO; second, we look at RB applied to nonsymmetric problems. We further
the study of Benzet al. [2] on orderings for nonsymmetric problems by considering MCL
and ND orderings.

We further the work of Saad by considering the performance of RB on larger problems
(Saad considers problems with up26® = 15,625 unknowns, while we consider up to
160, 000 unknowns) and comparing RB with RCM and ND, in addition to NO. Finally, we
assess the scalability of one-level overlapping ASM preconditioning for the set of model
problems defined below.

1.4. Model problems. Although in practical experience it is often desirable to solve
problems with complex physics on possibly unstructured grids, a minimal requirement of an
effective parallel scheme is that it work well on simple, structured problems. For this reason,
we will focus on a small set of model problems on structured grids which are “tunable” in
terms of problem size and difficulty. The numerical experiments throughout the paper use
the following three model PDE problems, all of them with homogeneous Dirichlet boundary
conditions. Below we denote h¥ the Laplace operator in two or three dimensions.
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Problem 1. The Poisson’s equation:
(1.1) —Au=g.

Problem 2. Convection-diffusion equation with convection in the xy-plane:

1.2) —eAu + 3el’yu + 2efg”yu =g.
ox oy

Problem 3. Convection-diffusion equation with convection in the z-direction:
0
(1.3) —eAu+ —u=g.
0z

The domain of the unknown functianis either the unit square or the unit cube, respec-
tively for two-dimensional (2D) and three-dimensional (3D) problems. The discretization
scheme employs a regulag x n, x n. grid (n. = 1 for 2D), five- and seven-point sten-
cils for 2D and 3D, respectively, and centered finite differences. N.dte the number of
unknowns of the linear syster' = n,n,n.. The right-hand side of the linear system
Axz = b arising from discretization is artificial, i.eb,is obtained by computing = Ag,
whereé¢ = (1,1,...,1)7.

For Problems 2 and 3, we vary the weight of the convection term by changing the pa-
rametere. The set of values we choose foare{1/100,1/500, 1/1000}, where a smaller
value ofe gives a less diagonally dominant coefficient matiifor a fixed problem size [2].

More precisely, it can be easily verified that Problem 2 gives rise to a diagonally dominant
M-matrix if and only ife/h > e/2, whereh denotes the mesh size. The corresponding con-
dition for Problem 3 i=/h > 1/2. Note that for a fixed, the value of: controls also the
deviation from symmetry of the coefficient matrix, in the sense that the Frobenius norm of the
symmetric part ofdA decreases asdecreases, while the norm of the skew-symmetric part re-
mains constant. Thus, for a fixéd the discrete problem becomes more difficult & made
smaller; see also [2]. As is well-known, the discretization becomes unstable and nonphysical
solutions may result when the conditions ©fh are violated, particularly when boundary
layers are present in the solution. In this case, the computed solutions are still useful in that
they allow to determine the existence and location of such boundary layers; see, e.g., [9]. In
the remainder of the paper, we will not address the issue of whether the discrete solution is a
good approximation to the continuous solution.

We have employed three Krylov subspace accelerators as follows: Conjugate Gradi-
ent (CG) [14] for Problem 1, Bi-CGSTAB [25] for Problem 2, and GMRES(30) [22] for
Problem 3. For a description of all these Krylov subspace methods, see [21]. The stopping
criterion is||ry|| < egrl|rol| + €4, where|| - || is the Euclidean norm;, = b — Az, and
er = €4 = 1075, The overall conclusions of this study are not dependent on the particular
choice of the right-hand side and of the stopping criterion.

1.5. Computing environment. We have used code from tfiRETSd1] library and our
own code; the experiments have been performed on an SGI Origin 2000 machine with 32
nodes.

The experiments in Section 4 are based on the PETSc toolkit which provides message
passing-based interprocess communication, with Single-Program Multiple-Data (SPMD) as
the parallel programming model. PETSc is based on the industry-standard MPI message
passing application programming interface. The toolkit has been installed on the Origin 2000
machine we have used in the debugging mode (-g compiler option). The timing data are
obtained using the PETSc functi®etscGetTime(vhich gives the wall-clock time. The
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toolkit uses left-preconditioning and the residual used in the stopping test corresponds to the
preconditioned problem.

The code for the experiments in Sections 3 and 5 has been compiled using the compiler
options-pfa (automatic parallelization of do-loopg)32 (new 32-bit objects}O0 (turn
off optimization). The timing data are obtained using the Fortran intrinsic funditiome()
from which the user CPU time is extracted. The code uses right preconditioning. The runsiin
Section 3 use one processor, while those in Section 5 use eight processors.

2. Background.

2.1. Multicoloring orderings. Given a graphG = (V, E), whereV is the set of
vertices andFE is the set of edges, thgraph coloring problems to construct a partition
(C1,Cs,...,C,.) of the setV such that all vertices in the same p@&ftform an independent
set, i.e., vertices in the same subset are not connected by any edge. The minimum number of
colors necessary for a graph= c¢min, is thechromatic numbeof the graph. The relevance
of the chromatic number from a computational point of view is that all unknowns in the same
subset can be solved in parallel. Thus, the number of inherent sequential steps is greater or
equal to the chromatic number of the graph.

With each matrixA € RV *" we can associate a graphy suchthat’ = {1,2,..., N}
and(i,j) € E ¢ a;; # 0. For arbitraryA, finding the chromatic number @¥ 4 is NP-
hard, but in practice a suboptimal coloring suffices. For the 5-point stencil discretization,
it is easy to find a 2-coloring of the graph, commonly calted-blackcoloring. For red-
black coloring, the degree of parallelism in applying an IC(0) or ILU(O) preconditioner is
N/2 (N is the number of unknowns), which justifies considering this ordering strategy. The
problem with this approach is that a no-fill preconditioner obtained with RB may result in
poor convergence.

For SPD matrices arising from finite difference discretizations of two-dimensional ellip-
tic problems, Duff and Meurant [7] have shown, by way of experiments, that RB reordering
has a negative effect on the convergence of conjugate gradient preconditioned with IC(0).
Poole and Ortega [18] have observed similar convergence behavior for multicolorings.

2.2. Scalability. Let T),(n, K') be the time complexity of executing an iterative linear
solver on a parallel computer wighprocessors, whelE is a parameter equal to the number
of subproblems (for example, the number of subdomains in the case of ASM) into which the
solver divides the original problem of si2é, andn is the subproblem sizéy = n K.

Following Gustafson [13], an algorithm $galableif the time complexity stays constant
when the subproblem size is kept constant while the number of processors and the number
of subproblems both increagetimes, i.e..T,(n,p) = O(T1(n,1)). The scalability of an
iterative linear solver can be decomposed into two types of scalability (see, for exampe, Cai
al. [3]): (i) algorithmicor numerical scalabilityi.e., the number of iterations is independent
of the problem size; (iiparallel scalability i.e., the parallel efficienc’ (n,p)/p Tp(n,p)
remains constant whengrows.

In the case of linear solvers for problems arising from elliptic PDEs, it is likely that
the two conditions for scalability cannot be simultaneously achieved; see, for example, Wor-
ley [26]. Hence, in practice a method is considered scalable if the number of iterations de-
pends only weakly on the number of subproblems and the parallel efficiency decreases only
slightly asp increases.

3. Performance of serial implementations.In this section we are concerned with the
serial performance of reorderings for ILU preconditioners. We look at the effect of RB, RCM,
and ND on several ILU preconditioners.
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Iffill is allowed, the advantage of RB providing a parallel preconditioner is greatly dimin-
ished; however, by allowing fill the accuracy of the RB-induced preconditioner may improve
so much that it outperforms NO, thereby making RB an attractive option for uniprocessor
computers. Indeed, Saad has observed [19] that, for a given problem and dropping tolerance
7, there is an amount of filby, such that ifp > pg then the preconditioner ILUT(p) in-
duced by RB outperforms the corresponding preconditioner induced by NO. On the other
hand, it has been observed by Beetzal. [2] that, for highly nonsymmetric problems, RCM
outperforms NO when fill in the preconditioner is allowed. We further these studies by per-
forming numerical experiments on NO, R&)dRCM, thereby comparing RB to RCM, and
considering larger problems (more than 100,000 unknowns).

For the drop tolerance-based solvers we use global scaling, i.e., we divide all the matrix
elements by the element of largest magnitude in the matrix. Thus, all entries in the scaled
matrix are in the intervgl—1, 1]. This scaling has no effect on the spectral propertied,of
but it helps in the choice of the (absolute) drop tolerance, which is a nuinkef ol < 1.

As an alternative, we tried the relative drop tolerance approach suggested in [20], where
fill-ins at step: are dropped whenever they are smaller in absolute valueTlvanimes

the 2-norm of theith row of A. For the problems considered in this paper, the two drop
strategies gave similar results. For 2D problems, weJet n,, and for 3D problems, we
letn, =ny, =n,.

The number of iterations (l), the solver times (T) in seconds, and the memory require-
ments of the preconditioners are shown in Tables 3.1-3.6. Héfadenotes the amount of
fill-in (in addition to the nonzero entries in the matrix) in the fill-controlled preconditioners.
We denote as SILUT a modification of the ILUT algorithm which gives rise to a symmetric
preconditioner whenever the original matrix is symmetric. Symmetry is exploited by stor-
ing only the upper triangular part of. Throughout the paper we use as unit for storage
measurementk = 1024. The solver time reported is the sum of the time to construct the
preconditioner and the time taken by the iterations of the preconditioned Krylov subspace
method. The bold fonts indicate the smallest iteration count, time, and fill for each precondi-
tioner.

3.1. Symmetric positive definite problems.We consider symmetric ILUT precondi-
tioning and incomplete Cholesky preconditioners with no fill and with level of fill one, de-
noted respectively by IC(0) and IC(1). We examine the effect of RB and ND orderings on the
convergence of preconditioned CG. As already mentioned, allowing fill in the preconditioner
largely limits the parallelism provided by RB ordering. Except for the IC(0) preconditioner,
for which the degree of parallelism of applying the preconditioné¥ &, the other precon-
ditioners have modest parallelism. The results are reported in Tables 3.1-3.2.

We may draw several conclusions from these results. First, nested dissection ordering is
not competitive with other orderings for 1IC(0), IC(1) and SILUT, thus we will exclude this
ordering from the subsequent discussion. Second, our numerical results for IC(0) indicate the
same performance for NO and RCM,; this is in accordance with theoretical results [27] which
show that the ILU(O) preconditioner induced by RCM is just a permutation of that induced by
NO. Third, while NO and RCM are the best orderings for IC(0), the best ordering for IC(1)
is RB, followed by RCM and NO. This is true for both 2D and 3D problems.

The best reordering for SILUT from an iteration count standpoint is RCM, followed by
RB and NO. In the 2D case, notice that RB, even though requiring slightly more iterations
than RCM, leads to a preconditioner that has a fill of roughly 2/3 of that of the RCM pre-
conditioner. This has an effect on the solver time: for small problem si¥es (322, 642,
not shown) the best reordering is RCM, but for the larger problems RB is the best reordering,
in terms of CPU time. Here, the higher iteration count of RB as compared to RCM is out-
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TABLE 3.1
Iterations (1), time (T), and fill versus problem siZ€), for Problem 1, 2D domain, with different reorderings
and preconditioners

Preconditioner

N=n2| Ord IC(0) IC(1) SILUT(.01,5) SILUT(.001,10)
| T | T Fill | T Fill | T Fill
(sec) (sec) | (k) (sec) | (k) (sec) | (k)

128Z] NO 57 | 3.70 39 | 330 | 158 32 | 274 | 314 || 14| 265 | 154
RB 94 | 5.95 31 | 268 | 315 25 | 231 | 393 | 15| 178 | 782
RCM 57 | 3.79 39 | 332 | 158 | 24 | 233 | 463 | 12| 2.03 | 121
ND 110 | 6.89 59 | 491 | 285 45 | 387 | 403 | 25| 2.87 | 79.6
2562 | NO 109 | 27.9 67 | 215 | 635 | 54 | 181 | 126 || 24 | 16.3 | 628
RB 183 | 45.4 52 | 17.1 | 127 41 | 142 | 158 || 27 | 11.4 | 316
RCM || 109 | 27.8 67 | 215 | 635 39 | 148 | 188 || 21 | 12.6 | 499
ND 175 | 446 || 108 | 354 | 114 86 | 29.7 | 163 || 41| 18.6 | 323
3002 NO 126 | 43.8 78 | 33.8 | 873 | 63 | 28.7| 174 || 26 | 24.0 | 865
RB 214 | 72.6 60 | 26.8 | 174 47 | 225 | 217 || 30 | 17.4 | 435
RCM || 126 | 44.1 78 | 335 | 873 | 45 | 23.3 | 259 || 22| 179 | 688
ND 199 | 69.5 || 116 | 51.5 | 150 98 | 47.2 | 244 || A7 | 29.4 | 467
4002 NO 166 | 105 102 | 78.2 | 155 82 | 66.2 | 310 || 32 | 50.1 | 1544
RB 278 | 179 78 | 62.3 | 310 61 | 51.1 | 388 || 36 | 36.9 | 775
RCM || 166 | 104 102 | 77.6 | 155 59 | 53.1 | 463 || 28 | 39.0 | 1230
ND 259 | 163 149 | 118 | 268 || 112 | 96.8 | 432 || 64 | 69.0 | 826

TABLE 3.2
Iterations (1), time (T), and fill versus problem siZ€), for Problem 1, 3D domain, with different reorderings
and preconditioners

Preconditioner
N =n3| Ord IC(0) IC(D) SILUT(.01,5) SILUT(.001,10)
| T | T Fill | T Fill | T Fill
(sec) (sec) | (k) (sec) | (k) (sec) | (k)

163 NO 14| 035 10| 044 | 105 10| 039 | 138 8 | 0.55 | 381
RB 16 | 0.40 9 | 049 | 158 | 15| 043 | 9.8 8 | 0.39 | 195
RCM || 14 | 035 || 10 | 0.46 | 105 || 9 | 0.36 | 13.8|| 6 | 0.47 | 38.7
ND 21| 048 | 13| 056 | 142| 14| 046 | 121 | 11| 052 | 25.9
323 NO 23 | 403 | 17| 496 | 90.1 || 16 | 431 | 119 || 14| 6.28 | 313
RB 31| 616 || 15| 488 | 135 || 27 | 659 | 79.3 || 14| 4.79 | 158
RCM || 23 | 413 || 17 | 492 | 90.1 || 15 | 4.07 | 119 || 11 | 5.38 | 317
ND 38| 6.01 | 23| 654 | 122 || 27 | 6.23 | 979 | 18 | 6.01 | 209
403 NO 28 | 941 20| 109 | 178 || 19| 9.64 | 236 || 16 | 13.5 | 615
RB 38 | 127 || 17 | 921 | 267 || 31| 13.1 | 155 || 17| 9.37 | 310
RCM || 28 | 936 || 20 | 109 | 178 || 18 | 9.38 | 236 || 13 | 11.8 | 621
ND 45 | 143 || 27 | 151 | 241 || 33 | 148 | 191 || 22 | 13.7 | 409
503 NO 34 | 225 || 24| 25.2 | 351 || 22 | 22.8 | 466 || 18 | 29.7 | 1206
RB 47 | 295 || 20 | 194 | 527 || 37 | 29.3 | 303 || 19 | 19.1 | 607
RCM || 34 | 223 || 24 | 25.0 | 351 || 22 | 21.9 | 466 || 16 | 26.5 | 1216
ND 55| 345 | 33| 346 | 477 || 39| 340 | 376 || 27 | 32.6 | 804

weighed by the lower cost of applying the RB preconditioner, so that overall RB becomes the
best reordering for large problems with a moderately high level of fill such as 5 or 10.

In the 3D case the best ordering for SILUT depends on the level of fill allowed: for
SILUT(.005, 5) the fastest solution is obtained with RCM, whereas RB is the best ordering
for SILUT(.001, 10). This appears to be due to the fact that RB does a better job at preserving
sparsity in the incomplete factors, while the convergence rate is only marginally worse than
with RCM.



3.2. Convection-diffusion problems. As we move from SPD problems to problems
which are nonsymmetric and lack diagonal dominance, the relative merits of RB and RCM
observed in the previous subsection change. In this subsection, we consider two- and three-
dimensional instances of Problem 2, by setting 1/100 ande = 1/500, and compare the
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Iterations (1), time (T), and fill versus problem siz€), for Problem 2, 2D domairg = 1/100, with different
reorderings and preconditioners

Preconditioner
N=n2| Ord ILU(0) ILU(T) ILUT(.005,5) ILUT(.001,10)
| T | T Fill | T Fill | T Fill
(sec) (sec) | (k) (sec) | (k) (sec) | (k)
1287 NO 32 | 341 18 | 234 | 315 16 | 255 | 80.6 || 8 | 2.07 | 177
RB 106 | 11.0 14 211 | 630 11 | 1.84 | 71.8 8 1.74 116
RCM 32 3.33 14 1.85 | 31.5 9 1.47 | 62.7 4 1.10 115
ND 90 9.39 38 499 | 57.0|| 21| 3.18 | 73.0 | 11 | 241 128
2562 NO 89 | 40.0 52 | 282 | 127 || 41| 26.8 | 324 || 22 | 21.1 | 771
RB 204 | 94.6 34 | 21.3 | 254 || 30| 19.6 | 286 || 18 | 15.1 | 528
RCM 87 39.4 42 22.8 | 127 26 | 17.2 | 309 13 | 121 592
ND 182 | 83.6 83 | 48.4 | 228 || 55| 35.0 | 296 || 28 | 22.8 | 532
3002 NO 106 | 64.7 62 46.1 | 174 51 | 45.7 | 475 26 | 33.8 | 1091
RB 239 | 143 43 | 35.1 | 349 || 38 | 324 | 393 || 22 | 246 | 733
RCM || 106 | 65.0 54 | 40.3 | 174 || 34 | 30.3 | 430 || 17 | 20.6 | 842
ND 201 | 125 104 | 83.3 | 300 || 66 | 58.0 | 427 || 35 | 38.5 | 759
4002 NO 159 | 173 90 117 | 310 || 66 | 106 | 924 || 37 | 82.1 | 1988
RB 313 | 336 66 | 97.4 | 621 || 56 | 84.0 | 700 || 32 | 61.3 | 1313
RCM 158 | 175 83 108 310 54 | 845 | 776 26 | 55.1 | 1555
ND 277 | 310 148 | 210 | 536 || 96 | 152 | 766 || 50 | 96.5 | 1357

TABLE 3.4

Iterations (1), time (T), and fill versus problem siz€), for Problem 2, 3D domairg = 1/100, with different
reorderings and preconditioners

Preconditioner
N=n2| Ord ILU(O) ILU(1 ILUT(.005,5) ILUT(.001,10)
] T ] T Fill | T Fill | T Fill
(sec) (sec) | (k) (sec) | (k) (sec) | (k)
163 NO 10 | 0.42 5| 03| 211 4 | 042 | 341 3 | 066 | 715
RB 19 | 0.77 4 | 035 | 31.6 6 | 045|198 | 4 | 053 | 39.1
RCM || 10 | 0.43 5| 035 | 211 3 1033|321 2 | 045 61.3
ND 15 | 0.62 7 | 050 | 28.4 6 | 055|240 4 | 0.72 | 45.0
323 NO 8 | 3.16 8 | 463 | 180 6 | 410 | 193 6 | 594 | 401
RB 36 | 13.1 7 | 477 | 270 6 | 3.95 | 156 5 | 463 | 308
RCM 8 | 3.17 5 | 3.30 | 180 5 | 3.56 | 205 3 | 3.80 | 410
ND 28 | 106 || 12 | 7.31 | 244 9 | 596 | 178 7 | 7.37 | 348
403 NO 10 | 7.81 9 | 10.1 | 356 8 | 9.48 | 332 7 | 119 | 730
RB 48 | 34.3 8 | 10.3 | 534 8 | 9.51 | 299 6 | 9.91 | 601
RCM || 10 | 7.85 4 | 565 | 356 4 | 5.83 | 370 3 | 6.75| 659
ND 33| 251 || 15| 17.3 | 483 12 | 141 | 329 9 | 16.1 | 659
503 NO 15| 236 || 12 | 334 | 703 11 | 24.0 | 587 || 10 | 29.2 | 1332
RB 57 | 835 || 10 | 29.1 | 1054 || 11 | 23.8 | 557 8 | 235 | 1114
RCM || 15 | 23.7 6 | 152 | 703 6 | 149 | 648 5 | 16.7 | 1103
ND 40 | 625 || 19 | 43.3 | 954 15| 342 | 602 || 11 | 35.1 | 1246

The effects of RB, RCM, and ND on the iteration count and execution time are illustrated
in Tables 3.3—3.6. Notice that, as for the incomplete Cholesky factorization, ND gives poor
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performance under all aspects (iterations, time, storage), in all test cases except for the 3D
domain,e = 1/500, with ILU(O).

First, consider the mildly nonsymmetric problems; 1/100 (Tables 3.3 and 3.4). In the
two-dimensional case (Table 3.3), RCM and NO are equivalent (up to round-off) for ILU(0)
and are the best orderings. However, for ILU(1) for larger problems, RB is the best ordering
from a time and iteration count standpoint. The second best ordering is RCM, followed by
NO. Notice that RCM and NO induce the same size of the ILU(1) preconditioner, which has
about half the size of the fill-in induced by RB. For ILUT, the time, iteration, and storage
cost of RB and RCM are close, with RCM being somewhat bettepfer 10. For larger
problems RCM is generally the least expensive in terms of time and iterations, while RB
induces the smallest fill. Notice that for large fill the relative storage saving obtained with RB
as compared to RCM is less than the corresponding saving for the SPD case.

In the three-dimensional case (Table 3.4), RCM is the best ordering (or nearly so) for all
preconditioners, often by a wide margin. RB, which is much worse than NO with ILU(0),
gives a performance that is close to that of NO with ILU(1) and ILUT(.005, 5) and is some-
what better than NO with ILUT(.001, 10).

Next, consider the moderately nonsymmetric problems, 1/500 (see Tables 3.5 and
3.6), where & indicates failure to converge in 5000 iterations.

TABLE 3.5
Iterations (1), time (T), and fill versus problem siz€), for Problem 2, 2D domairg = 1/500, with different
reorderings and preconditioners

Preconditioner

NZ"% Ord ILU(0) ILU(1) ILUT(.005,5) ILUT(.001,10)
| T | T Fill | T Fill | T Fill

(sec) (sec) | (k) (sec) | (k) (sec) | (k)

1282 NO 44 4.5 10 1.4 31 9 1.8 99 5 1.8 206
RB 106 | 11.2 5 1.0 63 4 1.0 77 4 1.3 130
RCM 46 4.7 10 1.4 31 4 0.9 68 2 0.8 110

ND 82 8.6 39 5.3 57 12 | 22 75 6 1.7 130
2562 NO 6 3.0 12 7.3 127 || 12 8.1 214 9 8.4 482
RB 244 | 114. 8 6.0 254 8 5.8 199 5 5.0 353
RCM 6 3.2 5 3.6 | 127 || 5 3.6 97 3 3.0 222

ND 180 | 85.1 79 46.7 | 228 || 22 | 14.7 | 255 || 10 9.4 457
3002 NO 20 12.6 15 119 | 174|| 16 | 145 | 353 || 10 | 12.8 753
RB 276 | 162. 11 104 | 349 || 10 9.6 310 7 8.7 553
RCM 20 12.9 5 5.0 174 5 51 183 4 5.0 343

ND 196 | 121. 93 | 721 | 300 || 25| 224 | 378 || 12| 15.1 | 660
4002 | NO 48 | 52.8 28 | 394 | 310 || 27 | 43.2 | 738 || 14 | 31.4 | 1495
RB 332 | 355. 18 | 29.3 | 621 || 18 | 29.3 | 689 || 11 | 23.0 | 1126
RCM 48 | 53.9 12 | 181 | 310 || 11 | 176 | 462 || 5 | 11.4| 781
ND 244 | 275. || 120 | 170. | 536 || 44 | 71.2 | 728 || 19 | 39.5 | 1271

For two-dimensional domains (Table 3.5), NO and RCM are still the best orderings for
ILU(0), while RB is much worse than these two. For ILU(1), with the only exception of the
caseN = 1282, the best ordering is RCM; the performance of RB is about midway between
RCM and NO. RCM outperforms RB by all criteria: iterations, time, and preconditioner size.
This differs from the mildly nonsymmetric case, for which RB for ILU(1) typically wins
in terms of CPU time. The results for ILUT are qualitatively similar to those for ILU(1),
with RCM being the clear winner, and RB being better than NO. Notice that the size of the
ILUT(.001,10) preconditioner induced by RB is always larger than that of the RCM-induced
preconditioner. This behavior is different from that observed for Problem 1 amdthg/100
instance of Problem 2 and indicates that the advantage of RB leading to a smallét|iyUT
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preconditioner size than RCM ferlarge enough is problem-dependent.

TABLE 3.6
Iterations (1), time (T), and fill versus problem siz€), for Problem 2, 3D domairg = 1/500, with different
reorderings and preconditioners

Preconditioner
N:ng Ord ILU(0) ILU(1) ILUT(.005,5) ILUT(.001,10)
| T | T Fill | T Fill | T Fill
(sec) (sec) | (k) (sec) | (k) (sec) | (k)
163 NO T 63 3.05| 21.1 8 | 0.75| 389 | 4| 1.05 | 78.1
RB 56 2.22 17 1.01 | 31.6 19 | 1.19 | 19.9 7] 093 | 39.8
RCM || 4792 | 190 15 0.82 | 21.1 4 | 040 | 305 || 3| 0.62 | 66.4
ND 64 2.58 1640 | 80.7 | 28.4 26 | 1.58 | 24.1 6 | 096 | 45.2
323 NO t 17 8.73 | 180 7 | 6.09 | 313 51| 104 | 630
RB 38 14.0 12 7.17 270 13 | 7.85 159 8 | 8.42 319
RCM t 9 5.98 | 180 4 | 3.96 | 255 3| 483 | 533
ND 46 20.4 31 16.4 | 244 13| 890 | 194 6 | 9.17 | 366
403 NO 85 62.9 15 15.7 356 6 11.0 613 5| 17.6 | 1231
RB 46 38.2 11 13.2 534 13 | 15.2 312 6 | 15.8 624
RCM 68 58.3 9 10.3 | 356 3 | 5.87 | 505 3 | 9.67 | 1059
ND 39 32.0 23 25.2 483 11 | 15.8 379 7| 19.2 718
503 NO 34 52.3 16 334 | 703 7 | 23.7 | 1196 || 5 | 33.9 | 2404
RB 51 75.5 8 20.8 | 1054 || 11 | 26.5 609 6 | 26.4 | 1218
RCM 34 52.9 9 20.6 | 703 4 | 13.6 | 977 3 | 18.9 | 2069
ND 39 78.4 21 46.9 954 11| 315 744 8 | 40.0 | 1409

The results for the 3D domain (see Table 3.6) are similar to those for 2D, with two ex-
ceptions. First, for ILU(0), RB and ND are better than NO and RCMNot= 162, 323, 403;
note that 1LU(O) with the natural ordering (as well as RCM) is unstableMoe 163, 323.
Second, for ILUT, the minimum size of the preconditioner is induced by RB; this is similar
to the behavior observed in Tables 3.2 and 3.4. A salient characteristic of the ILUT precondi-
tioners for the 3D case is that the iteration counts are almost insensitive to the problem size,
which suggests that the incomplete factorization is very close to a complete one.

3.3. Summary of results. The experiments above suggest that RB and RCM reorder-
ings can be superior to NO: they may lead to a reduction in the number of iterations and,
for threshold-based ILU, to a smaller amount of fill-in. For SPD problems and for mildly
nonsymmetric problems, RB and RCM are the best reorderings for the set of preconditioners
considered. The winner is either RB or RCM, depending on the type of preconditioner and
on the problem size.

On the other hand, RCM is the best reordering for highly nonsymmetric problems, for
almost all preconditioners and problem sizes covered in this section; for the few cases where
RCM is not the best choice, its performance is very close to the best choice. Therefore, the
robustness of RCM makes it the best choice for problems with strong convection. We mention
that similar conclusions hold when more adequate discretization schemes are used; see the
experiments with locally refined meshes in [2]. While it was already known that RB can
outperform NO provided enough fill is allowed (Saad [19]), here we have found that RCM is
even better.

We observe that, for the preconditioners with fill, the convergence is faster for the
convection-diffusion problems than for the Poisson’s equation corresponding to the same
problem size, preconditioner, and order.

We should make a comment on the methodology of these experiments. It should be
pointed out that these experiments are not exhaustive, and ideally one would like to say that
for a given problem, for any fixedr, p), one method is better than another, which would
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imply that the given method for its beét, p) is better than the other method fits best
(r,p), i.e., the choice of the best ordering is not an artifact of the parameterization of the
knobs(r,p). However, such a test would require a very large number of experiments with
different(r, p) values which would not be practical. Furthermore, we feel the results we have
given do give a general sense of the comparative performance of the methods.

In this Section we have not been concerned with the issue of parallelism, and the ex-
periments above were meant to assess the effect of different orderings on the quality of ILU
preconditionings in a sequential setting. The remainder of the paper is devoted to an evalua-
tion of different strategies for parallelizing ILU-type preconditioners.

4. Additive Schwarz preconditioning. In this section we examine the effect of the
problem size and number of subdomains (blocks the matrix is split into) on the convergence
of ASM. The subdomain size, denoted hyis chosen such that the subdomain boundaries
do not cross the z-axis. The experiments in this section use Problems 1 and 3. The number
of subdomains is always a divisor (or a multiple)@f the number of grid points along one
dimension. Note that this is not always a power of 2.

The ASM preconditioner divides the matrix in overlapping blocks (corresponding to sub-
domains of the PDE problem), each of which is approximately solved with IC(0) in the SPD
case, and ILU(0) in the nonsymmetric case. We call these variants ASM.IC0O and ASM.ILUO,
respectively.

The amount of overlap is denoted by Since Additive Schwarz preconditioners can
be improved by employing subdomain overlapping, we consider three levels of overlaps:
0 = 0,1,4; a O-overlap gives an approximate (since subdomain solves are ILU(0)) Block
Jacobi preconditioner. We have employed the ASM preconditioner provided by the PETSc
library. Conceptually, the preconditioner is formed by summing the (approximate) inverse of
each block, where for each block a restriction operator extracts the coefficients corresponding
to that block. A limited interpolation is employed, in which the off-block values for each
block are ignored (this is the PETSc’s IGM_RESTRICT preconditioner). The number
of processors isnin{16, K }; more processors caused a performance degradation for the
problem sizes considered here.

We perform two kinds of scalability experiments. In the first kind, we fix the problem
size N and increase the number of subdomdinsin the second, we fix the subdomain size,

n, and increasé&’. We monitor the iteration counts and the execution times. The grid nodes
are numbered row-wise in each xy-plane, so each matrix block corresponds to a subdomain
in an xy-plane.

4.1. Scalability for constant problem size.For the first kind of scalability experiments,
we measure for Problems 1 and 3 the number of iterations and solution times versus the
number of subdomaink'.

The results for Problem 1 solved with CG preconditioned with ASM are shown in Fig-
ures 4.1 through 4.4. The best wall-clock time is reached for alfostibdomains, for both
2D and 3D problems. From a running-time standpaing, 0 is the best choice, even though
the iteration count is smaller (fdk” large enough) wheth = 4. The improvement in con-
vergence brought by the overlap is not large enough to compensate for the higher cost of
iterations as compared to zero-overlap. On the other hand, an overlap prevents the
iteration count from increasing significantly wifki, and this effect is more pronounced in
the 2D case. Notice, however, that the number of iterations does not decrease monotonically
with increasing overlap: for example, increasinfom 1 to 4 for 3D,N = 403, K = 25,
increases the number of iterations by 10%. MoreoverHoe 2 a zero-overlap gives the
smallest number of iterations.
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with ASM are shown in Figures 4.5 and 4.6 for= 1/100, and Figures 4.7 and 4.8 for

e = 1/500. Notice that for Problem 3, unlike Problem 1, a zero-overlap leads to a number
of iterations which grows significantly with the number of subdomains. To keep the iteration

count low for K > 2% a nonzero overlap is necessary; an ovetlap 1 seems to be more

efficient thand = 4, since for the latter the reduction in the iteration count is offset by the
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higher cost per iteration. The rise in iteration count and communication cost with the number
of subdomains concur to cause a “valley” shape of the execution time. Thus the execution
time can be reduced by increasiAgup to a maximum (about 16 for the cases under test),
beyond which the time increases with
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FIG. 4.4.Time versus number of subdomains for Problem 1, 3D domain.
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ASM.ILUO for Problem 3, 3D, €=1/100, constant problem size
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FIG. 4.6.Time versus number of subdomains for Problem 3,:38,.01.

4.2. Scalability for increasing problem size.For the second kind of scalability ex-
periments, the number of iterations and execution times for solving Problem 1 with the CG
method are shown in Figures 4.9 through 4.12. The similar plots for Problem 3 (3D only)
solved with GMRES are shown in Figures 4.13 and 4.14fer1/100, and in Figures 4.15
and 4.16 for: = 1/500. Notice that we have used the same scale for all plots to facilitate
comparisons.

The algorithmic scalability for Problem 1 is satisfactory. The number of iterations in-
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ASM.ILUO for Problem 3, 3D, €=1/500, constant problem size
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FIG. 4.7.Iterations versus number of subdomains for Problem 3,38, .002.
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creases slowly with< for all the overlaps considered. Notice that the best execution times
are obtained with no overlap; an overlap= 1 leads to a slight increase in time, while
for 6 = 4 the cost per iteration is so high that it outweighs the reduction in the number of
iterations.

On the other hand, for Problem 3, the number of iterations increases significantly with
K for the overlapsy = 0,1. With § = 4, the number of iterations is kept low, but the
algorithm’s computation and communication requirements increase so much that the execu-
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ASM.ICO for Problem 1, 2D, scaled problem size
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FIG. 4.9.lterations versus number of subdomains for Problem 1, 2D domain.

tion time exceeds that fér = 0. One reason for the modest scalability is that the subdomain
boundaries cut the convection streamlines [5]; thus, we should expect poor performance since
the preconditioner fails to model important physical behavior.

The above results suggest that the Additive Schwarz preconditioners have limited scala-
bility with respect to problem size, at least when ILU(0) is used as an approximate subdomain
solver.

ASM.ICO for Problem 1, 2D, scaled problem size
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FIG. 4.10.Time versus number of subdomains for Problem 1, 2D domain.
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ASM.ICO for Problem 1, 3D, scaled problem size
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FIG. 4.11.lterations versus number of subdomains for Problem 1, 3D domain.

4.3. Comparison with Red-Black ordering. Both ASM and no-fill incomplete factor-
ization methods with RB ordering lead to highly parallel algorithms. A natural question is
which one should be preferred. For Poisson’s equation in 2D, a direct comparison between
the two methods suggests that PETSc’'s ASM on 16 processors is faster than 1C(0) with RB,
even assuming a perfect speed-up for the latter. This shows that the degradation in the rate
of convergence induced by the RB ordering in the symmetric case is a serious drawback. For

ASM.ICO for Problem 1, 3D, scaled problem size
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ASM.ILUO for Problem 3, 3D, €=1/100, scaled problem size
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FIG. 4.13.lterations versus number of subdomains for Problem 3,38, .01.

ASM.ILUO for Problem 3, 3D, €=1/100, scaled problem size
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FIG. 4.14.Time versus number of subdomains for Problem 3,638, .01.

the Poisson equation in 3D, the degradation in convergence rate induced by RB is less severe,
and the two methods give comparable performance. This remains true for problems that are
only mildly nonsymmetric.

For highly nonsymmetric problems with strong convection, as we saw, ASM has poor
convergence properties, whereas ILU(0) with RB ordering appears to be fairly robust. In this
case, ILU(0) with RB ordering appears to be better, although the performance of ASM can be
improved by taking the physics into account when decomposing the domain and by adding a
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ASM.ILUO for Problem 3, 3D, €=1/500, scaled problem size
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ASM.ILUO for Problem 3, 3D, €=1/500, scaled problem size
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FIG. 4.16.Time versus number of subdomains for Problem 3,638,.002.

coarse grid correction [23].

5. Multicolorings. In this section we consider multicoloring reorderings for which
ILU(O) and ILU(1) preconditioners can be easily parallelized. Assume a regular grid whose
nodes are evenly colored, i.e., each of ffiecolors is employed to colaV/c nodes. Then
ILU(0) preconditioners derived by multicoloring have a DOP\YN,... The upside of using
multicoloring-based ILU(0) preconditioners is the parallelism. The downside is that multicol-
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oring orderings may lead to slower convergence than the NO-based ILU(0) preconditioners.
As we will see, however, this need not always be the case.

It is not trivial to improve the accuracy of MCL-based ILU preconditioners by allowing
fill, since this may compromise the DOP. We propose a new MCL strategy, called PAR, which
gives an ILU(1) preconditioner witld (V) degree of parallelism. We perform numerical
experiments highlighting the performance of the PAR ordering and of other commonly used
multicolorings.

Poole and Ortega [18] have observed that multicoloring orderings may provide a com-
promise between the parallelism of RB and typically better convergence of NO. Their experi-
ments for symmetric positive definite problems suggest that multicoloring leads to an increase
in the number of iterations by 30 to 100% relative to NO.

Notice that RCM, or for that matter any ordering, can be viewed as a special case of
multicoloring [18]. To see this for RCM, consider a x n, two-dimensional grid and
a second order PDE in which the differential operator does not contain mixed derivatives.
Then the RCM ordering can be obtained by assigning one color to each “diagonal” of the
grid; therefore, RCM is an, +n, — 1 multicoloring. However, this variant of MCL requires
O(V/'N) colors, which limits the DOP t®(v/N). Therefore, RCM is a form of MCL which
does not have a scalable DOP. Similarly, for any ordering, the induced set of independent sets
or “wavefronts” can be thought of as a set of colors; however, the number of colors grows as
the problem size grows for many orderings of interest.

5.1. Parallel reorderings for ILU(0) and ILU(1). We consider three multicolor order-
ings: RB and two other orderings, denoted¥yC'O L andP AR, which are described below.
We compare the performance of these orderings with the baseline natural order (NO). Pre-
conditioning is done with ILU(0) and ILU(1); ILU(1) is employed only for the PAR ordering
which provides parallelism for ILU(1).

12 13 14 15
] L]
8 9 10 11 4 5 6
7
@ @ o [ @
4 5 6 7 2 3 0 1
] @ o @ @ o
0 1 2 3 0 1 2 3
L o ] o @
(@ (b)

FiG. 5.1.16-COL pattern (a) and PAR pattern (b) for a two-dimensional grid.

The N2COL ordering is based on coloring a square blockpfx N.. grid points with
N2 colors assigned in natural order. By repeating this coloring “tile” so as to cover the entire
grid, we obtain theV>COL ordering. Figure 5.1 (a) shows the coloring tile i8¢ = 4.
The resulting matrix structure is called.&-colored matrixsee [18]. TheéV2COL ordering
is generalized to 3D domains as follows. clfs the color of the grid pointi, j, k), then
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N2 — 1 — cis the color of the grid pointi, j,k + 1), where0 < ¢ < N, — 1,1 < i < ng,
1<j<ny, 1<k <n,.

The PAR ordering is based on an 8-coloring scheme obtained by using the coloring
pattern shown in Figure 5.1 (b) to cover the entire grid. This pattern induces an ordering for
which the permuted matrid = PAPT has the following properties:

e A has the diagonal blocks diagonal;
e The ILU(1) factors of4 still have the diagonal blocks diagonal. In other words, no
edge between nodes of the same color is introduced in the factorization.

The matrix pattern obtained by applying the PAR ordering to the matrix induced by a
5-point stencil discretization on & 8 grid is shown in Figure 5.2; the pattern of the ILU(1)
factorization for this order is shown in Figure 5.3. Notice that the ILU(1) preconditioner has
8 diagonal blocks, four blocks of dimension 12, and four of dimension 4, each of them having
all the off-diagonal entries zero.

In general, for a rectangular grid witN' nodes, the degree of parallelism of the PAR
preconditioner ig)(NN/12); this arises from using colors 5 to 8 once for each 12-node sub-
grid. The PAR coloring can also be generalized to 3D domains, leading to a 16-color pattern,
as shown in Figure 5.4.

The PAR coloring can be easily generalized to an arbitrary mesh topology, in which
case at mos#? colors suffice, wherd is the degree of the adjacency gragh Indeed, the
PAR coloring can be defined by the property that any two verticésdonnected by a path
of length at most two have different colors. Thus, a PAR-type coloring for ILU(1) is any
coloring of the graph of42. Incidentally this shows that, in general, the PAR ordering for
ILU(1) is not unique, since there exists more than one coloring of the gra@ii4f). More
generally, any coloring of the graph df* yields a PAR-type coloring for ILU).

FI1G. 5.2.Matrix Pattern induced by the PAR orderirg),x 8 grid.
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FIG. 5.3.1LU(1) preconditioner pattern for the PAR ordering,x 8 grid.
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FIG. 5.4.PAR pattern for a three-dimensional grid.

In the following two subsections we give numerical results for Problems 1 and 2. We
abbreviate the reordering-preconditioner combination by the name of the reordering method
separated by a dot from the name of the preconditioner; for instance, PAR.ILU1 denotes the
parallel coloring combined with ILU(1) preconditioning. For Problem 1, the linear solver
is CG, while for Problem 2 it is Bi-CGSTAB; we have also tested Transpose-Free QMR
(see [10]) and obtained results very close to those for Bi-CGSTAB. Bold fonts are used to
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indicate the best iteration counts and times for all parallel reorderings, i.e., excluding NO, the
performance of which is given for the purpose of comparing the best parallel reordering with
NO. A 1 indicates failure to converge in 5000 iterations.

5.2. Experiments for Poisson’s equation.Tables 5.1 and 5.2 show the number of iter-
ations and the execution times for Problem 1, for 2D and 3D domain, respectively.

TABLE 5.1
Iterations (1) and Times (T) for PAR, RB, an? COL order, Problem 1, 2D

Ord.prec N =322 N =647 | N =128 N = 2562 N = 3002
T T T T TT T T7TTT©™ O 7 1TIT™
NO.ICO 21 [ 013][ 34 ] 061 57 3.72 ] 109 | 28.07 ]| 126 | 44.90

PAR.IC1 19| 015 31| 0.77 || 52 | 4.43 | 100 | 32.95 | 116 | 52.78
PAR.ICO 26| 017 || 42| 0.73 || 72 | 477 || 139 | 37.26 || 161 | 57.80
RB.ICO 251 014 || 48 | 0.82 || 94 | 5.88 || 183 | 49.23 || 214 | 74.90
4COL.ICO 26| 015 47| 080 || 80 | 5.20 || 156 | 40.66 || 182 | 63.82
16COL.ICO || 24 | 0.16 || 40 | 0.71 || 67 | 4.47 || 129 | 35.92 || 151 | 57.31
64COL.ICO || 23 | 0.13 || 37 | 0.66 || 62 | 4.19 || 120 | 32.02 || 139 | 50.05

TABLE 5.2
Iterations (1) and Times (T) for PAR, RB, atéf COL order, Problem 1, 3D

Ord.prec N =123 N =163 N =323 N =403
T T rrTrrTTqr T
NO.ICO 11 [ 0.13] 14 ] 034 23] 406 [] 28 | 9.47

PAR.IC1 10 | 0.20 || 12 | 0.53 || 20 | 6.36 || 24 | 13.50
PAR.ICO 13| 017 || 16 | 0.37 || 27 | 475 || 30 | 10.22
RB.ICO 12| 0.14 || 16 | 0.39 || 31| 5.03 || 38 | 11.88
4COL.ICO 13| 014 | 17 | 046 || 30 | 5.06 || 37 | 11.96
16COL.ICO || 12 | 0.13 || 15 | 0.38 || 28 | 4.83 || 34 | 11.10
64COL.ICO || 13| 0.15 || 15| 036 || 27 | 464 || 32 | 10.40

As expected, MCLs give more iterations than NO. However, the larger the number of
colors, the smaller the convergence penalty for MCL, so that 64COL is the MCL with the
smallest execution time or nearly so. Of course, using more colors decreases the DOP of the
preconditioner.

The results for the PAR ordering are interesting. For the 2D case, PAR.IC1 provides
good rate of convergence and serial timings close to those obtained with NO. In the 3D case,
with the exception of the smallest problem = 123, PAR.ICO is attractive in view of its
good convergence rate and DOP.

While PAR.IC1 has the best convergence rate, RB has the highest DOP. On platforms
with a small numbers of processors, PAR is expected to be competitive. On the other hand,
when the parallel performance is at a premium, modest over-coloring, e.g., using four colors,
gives a good convergence-parallelism tradeoff. Excessive multicoloring, e.g., 64COL does
not seem to be competitive, because of the limited DOP.

5.3. Experiments for convection-diffusion equation. Tables 5.3 and 5.4 show the
number of iterations and timing for Problem 3, for 2D and 3D domain, respectively, and
increasing convection and problem size. We recall that for fixddcreasing the problem
size decreases the relative size of the skew-symmetric part of the matrix, since convection is
a first-order term. Also, the matrix tends to become more diagonally dominant.

For a sequential implementation of the ILU(0) preconditioner, NO may be the best or-
dering for problems with small convection, e.g.,= 1/100. For problems with moder-
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TABLE 5.3
Iterations (1) and Times (T) for PAR, RB, and? COL order, Problem 2, 2D

Number of unknowns

Ord.Prec N = 642 N = 1287 N = 2562 N = 3002
g1 Fr'T T rvrT T rvr T Q71T
NO.ILUO 8 [ 023 32 [ 330 || 89 | 39.10 || 106 | 63.45
PAR.ILUI 20 | 0.69 || 45 | 5.80 96 | 55.24 || 113 | 88.03
PAR.ILUO 30 | 0.80 | 63 | 6.50 || 129 | 58.94 || 155 | 96.78
100 | RB.ILUO 59 | 1.52 || 106 | 10.71 || 204 | 92.14 || 239 | 141.5

4COL.ILUO 39 | 1.03 || 79 8.23 || 159 | 74.12 || 198 | 122.5
16COL.ILUO || 23 | 0.62 | 53 5.58 || 120 | 57.96 || 142 | 89.49
64COL.ILUO 15 | 041 41 435 || 106 | 49.24 || 127 | 78.76

NO.ILUO 34 | 0.88 | 44 4.58 6 3.01 20 | 12.42
PAR.ILUL 27 | 092 || 42 5.48 91 | 5245 104 | 81.27
PAR.ILUO 37 | 1.02 || 49 5.07 125 | 57.16 || 152 | 94.53
500 | RB.ILUO 57 | 1.50 || 106 | 10.87 || 244 | 109.6 || 276 | 163.2

4COL.ILUO 63 | 1.65| 73 7.64 || 169 | 78.44 || 199 | 121.3
16COL.ILUO || 31 | 0.84 | 34 3.69 99 | 47.68 || 116 | 73.19
64COL.ILUO || 29 | 0.80 || 34 3.75 55 | 26.00 || 64 | 40.03

NO.ILUO i f ] i f f i f

PARILUIL 282 [ 881 || 48 | 6.18 || 86 | 49.44 || 101 | 80.68

PAR.ILUO 70 | 1.88 || 57 | 5.89 || 102 | 46.70 || 127 | 79.91
1000 | RB.ILUO 60 | 1.59 || 108 | 10.99 || 213 | 95.45 || 254 | 155.9

4COL.ILUO 123 | 3.21 || 96 | 10.03 || 150 | 69.96 || 180 | 113.9
16COL.ILUO || 64 | 1.70 || 50 5.31 75 | 36.48 || 97 | 60.98
64COL.ILUO || 59 | 1.60 || 78 8.15 || 251 | 117.6 || 115 | 72.23

TABLE 5.4
Iterations (1) and Times (T) for PAR, RB, ané? COL order, Problem 2, 3D.

Number of unknowns

Ord.Prec N =163 N = 323 N =403
g1 17T [T 1T T 17 1T
NO.ILUO 10 0.43 8 3.80 10 [ 8.04
PAR.ILUL 9 0.58 12 | 7.27 15 | 16.84
PAR.ILUO 13 0.53 18 | 6.89 || 24 | 18.02
100 | RB.ILUO 19 0.77 || 36 | 13.37|| 48 | 34.91

4COL.ILUO 18 0.74 21 8.55 26 | 19.52
16COL.ILUO 11 0.46 14 5.64 18 | 14.05
64COL.ILUO 9 0.39 10 4.00 13 | 10.06

NO.ILUO T T 85 | 63.05
PAR.ILUL 95 | 4.73 || 44 | 2314 || 35 | 47.19
PAR.ILUO 56 | 223 || 47 | 1754 | 43 | 31.88
500 | RB.ILUO 56 | 221 || 38 | 14.05| 46 | 32.95

4COL.ILUO 1379 | 55.93 || 138 | 59.26 || 123 | 91.13
16COL.ILUO 98 3.94 57 | 21.84| 45 | 33.55
64COL.ILUO i 1973 || 41 | 1560 | 33 | 24.70

NO.ILUO T T T
PAR.ILUL 4030 | 1948 f 528 | 505.1
PAR.ILUO 157 | 6.08 || 97 | 3591 | 96 | 73.37
1000 | RB.ILUO 74 | 290 || 66 | 24.31| 55 | 40.01
4COL.ILUO t | 1961 t t
16COL.ILUO || 379 | 1401 | ¢t 187 | 138.3
64COL.ILUO || 1300 | 51.27 || + t

ately strong convectiore(= 1/500), NO is typically not competitive (the exception being
N = 2562). For very strong convectios (= 1/1000), NO consistently fails.

On the other hand, for the test cases considered, there is always a multicoloring that
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provides good convergence. Moreover, multicoloring typically outperforms NQ fer
1/500,1/1000, the exceptions being = 1/500, 2D domain,N = 2562,3002. The in-
stability of the ILU(0) preconditioners induced by NO for strongly nonsymmetric problems
has been explained by Elman [8] (see also Benai.[2]) by the ill-conditioning of the back

and forward solves. In these cases, MMD induces an ILU(0) preconditioner that leads to
stable solves; see [2]. Here we find that parallel orderings often have a stabilizing effect on
ILU(O) for convection-dominated problems (see the 3D case,1/1000).

Therefore, we conclude that ILU(0) with a parallel ordering is attractive for convection-
dominated problems, particularly in a parallel environment where MMD would lead to a
preconditioner which does not parallelize well. However, selecting a good multicoloring
method is not straightforward. Out of the 24 test cases considered here, 64COL is the best
choice in 12, RB in 6, 16COL and PAR.ILU1 in 4 (there are two ties). The iteration count for
PAR.ILU1, 64COL, and 16COL decreases when the problem size increases (except for 2D,
N > 256%) for e = 1/500,1/1000. RB has a similar behavior far = 1/1000. This is in
agreement with the fact that @8 increases the problem becomes closer to being diagonally
dominant and symmetric, since we increase the size of the problem by reducing the grid step.

In a parallel implementation the best choice may be either RB or 64COL, depending on
the number of available processors. Specifically, RB may be a better choice if sufficiently
many processors are available, due to the larger DOP. In contrast, 16COL and 64COL (which
result in faster convergence fer= 1/100, 1/500 but have less inherent parallelism) are
attractive when a small number of processors is available.

6. Conclusions. Our numerical experiments show that preconditioners derived from fi-
nite difference matrices reordered with multicoloring strategies can outperform those derived
for the naturally ordered system in a significant number of cases. RB is effective for SPD and
nonsymmetric problems close to being diagonally dominant, provided that we allow some
fill in the incomplete factorization. Even though multicolorings may lead to more Krylov
subspace iterations, they have at least three advantages:

o for mildly nonsymmetric problems, the storage required by the preconditioner is
typically smaller for RB than for NO with the same ILUT preconditioning method,;
e some multicolorings, such as the PAR method, can induce ILU(1) preconditioners
that can be parallelized, unlike NO and RCM;
o for highly nonsymmetric problems, MCLs tend to stabilize the incomplete triangular
factors.
The first advantage is important when memory is at a premium. For large problems, the
time to apply the preconditioner may become a bottleneck for the iterative method. The size
of the preconditioner affects the time through the operation count for preconditioning and,
for large preconditioners, through memory hierarchy effects which lead to expensive LOAD
operations for out-of-cache data. Because RB gives smaller ILUT preconditioners, it is a
viable alternative to NO and RCM.

The effect of red-black ordering on symmetric dual dropping ILU preconditionings is
positive; similarly for the effect on ILUT for moderately nonsymmetric problems.

RB appears to be fairly robust, although less than RCM. RCM also has the desirable
property that its performance improves nearly monotonically & reduced ang is in-
creased in ILUTE, p). Unfortunately, RCM has low DOP and does not lead to a scalable
algorithm.

The numerical results for ASM with 1C(0) or ILU(0O) subdomain solver indicate good
scalability of the method for Poisson’s equation, but poor scalability for convection-
dominated problems. Using a significant overlap, such as four cells, succeeds in reducing
the growth in the iteration count with the number of subdomains, but leads to a large cost
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per iteration which offsets the gain of reduced number of iterations. A multilevel approach
such as a coarse grid correction (two-level strategy) appears to be necessary in order to keep
the number of iterations bounded when the degree of parallelism (number of subdomains)
increases and to keep the operation cost per iter&(av).
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