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CREATION AND ANNIHILATION OPERATORS FOR ORTHOGONAL
POLYNOMIALS OF CONTINUOUS AND DISCRETE VARIABLES *

MIGUEL LORENTEf

Abstract. We develop general expressions for the raising and lowering operators that belong to the orthogonal
polynomials of hypergeometric type with discrete and continuous variable. We construct the creation and annihila-
tion operators that correspond to the normalized polynomials and study their algebraic properties in the case of the
Kravchuk/Hermite Meixner/Laguerre polynomials.
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1. Introduction. Ina previous paper [5] we developed a method to construct raising and
lowering operators for the Kravchuk polynomials of a discrete variable, using the properties
of Wigner functions, and to calculate the continuous limit to the creation and annihilation
operators for the solutions of the quantum harmonic oscillator.

In this contribution we apply the same method to other orthogonal polynomials of dis-
crete and continuous variable. We give general formulas for all orthogonal polynomials of
hypergeometric type [7]: difference/differential equations, recurrence relations, raising and
lowering operators.

With the help of standard values we calculate these equations for the normalized func-
tions of Kravchuk-Wigner and Meixner-Laguerre polynomials, and we construct the corre-
sponding creation and annihilation operators.

The motivation for this work is the comparison of the study of the Sturm-Liouville prob-
lem in continuous case with the discrete case, in particular, the connection between the eigen-
functions and the creation and annihilation operators [1] [8]. This approach is becoming very
important in the lattice formulation of field theories, where the physical properties of the
model are analyzed in the lattice before the continuous limit is taken [6].

2. Basic relations between orthogonal polynomials of continuous and discrete vari-
able. A polynomial of hypergeometric type of continuous variable satisfies the following
fundamentals equations:

1. Differential equation:

(21) Cl ‘o (S) y”n (S) +7 (S) yln (S) + )‘" Yn (S) = 0’

whereo (s) andr (s) are polynomials of at most second and first degree, respectively,and
is a constant. This differential equation can be written in the form of an eigenvalue equation

(0 ()P ()Y (5)) + Xap () yn (5) =0,

wherep (s) is the weight function satisfyingr (s) p (s)) = 7 (s) p (s) and\, = —n (7' + 2520").
2. Orthogonality relations:

b
/ U (5) U (5) p (5) ds = Gpmd?

with d,, some normalization constant,

*Received November 1, 1998. Accepted for publicaton December 1, 1999. Recommended by FaMarcell’
tDepartamento dei§ica, Universidad de Oviedo, 33007 Oviedo, Spain. This work was partially supported by
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3. Three term recurrence relations:

(2.2) C2 :sy, (5) = OnlYn+1 (5) + Bnn (5) + nYn—1 (5)

whereay,, 5., v, are constants.
4. Raising and lowering operators:

23) 03 (5) 4 (5) = 22 |7 (930 (5) = g (9]
where
Tn (8) = 7(s) + no’ (s)
A2n
=7 +no" = —%2—_:.
We can modify formula (C3) to a more suitable form. From
n—1 ) 1 .
an :Bnkl;[0 (T +§(n—|—k—1)o ) , ag = By,
we can prove the identity
0 _ O _ Bn (7' + 2520") _ 20(2n+ 1)\ Ba
" angr Bupr (T 210") (7 4+ n0”)  Aendeng1 1 Buga

that when used in (C3) gives the simplified version

A 2n+1
N Aznt1

(2.4) C3:o (5) yln (5) = Tn (5) Un (8) — Q_ﬁanyn—kl (5) .

Then using the recurrence relations (C2) gives

, )\n 2n+1 /\271,
2. 4: = _— n — — Bn n
@5 Clio()v(8) = |~ (s) — G (5= )| v (o)
)\Qn
271 TnYn—1 (5) .

Formulas (C3) and (C4) can be used to calculate solutions of the differential equations.
In fact, if we putn = 0 in (C4) we get a differential equation whose solutiopgés). Taking
this value in (C3) we obtain by iteration all the polynomials satisfying (C1).
We can implement these formulas in the discrete case. A polynomial of hypergeometric
type of discrete variable satisfies the following fundamental equations.
1. Difference equation:

(2.6) D1 :o (z) AVy, (z) + 7 () Ayn () + Apyn () =0,

whereo () andr (z) are polynomial of at most second and first degree, respectively, and the
forward (backward) difference operators are

Af(x)=fl@e+1)=f(s) , Vf(x)=f(2)-f(z-1).
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This difference equation can be written in the form of an eigenvalue equation

Alo (z) p () Vyn ()] + Ap (2) yn (7) = 0,

wherep () is the weight function satisfying

Ao (z)p(x)] =7 (x)p(x),
and

An = —nAT (z) — @A%— (x) = —n <T/ n ”T_lgn)

is the eigenvalue corresponding to the functigrix).
2. Orthogonality relations:
The polynomialP,, (x) of hypergeometric type satisfy the following orthogonal relations:

b—1
Y Pu(@) P (@) p(2) = dibn,

2e =a

whered,,,, is the Kronecker symbol andl, is some normalization constant.
3. Three term recurrence relation:

2.7) D2 :xP, (2) = anPri1 (€) + BuPr () + vnPo-1 (2)

with a,, B, v, SOMe constants.
4. Raising and lowering operators:

(2.8) D3:0(z) VPR, (z) = )\7 Tn (8) Py (x) — ﬁpn+1 (z)],

nt'y Bn+1

where

Th(s)=7(x+n)+o(x+n)—o(x)
AT, (s) = AT (z) + nlA?0 (1)

~ Aonya

2n+1
because (x) andr (x) are functions of at most second and first degree, respectively.

We can modify formula (D3) as we did in the continuous case with the help of the iden-
tities

or ' = T 4+no’(z) =

n—1
1
an, = Bp, H <T'+§(n—|—k—1)a”) ,a9 = By, and

k=0
an, 2n 2n+1) n B,
an = = — e —
An+41 /\271, )\2n+1 )\n Bn+1

Introducing these identities in (D3) gives a more simplified version

2.9 D3:0(2) VP, () = —%(2;2711)% () Py (x) — ;—Z’anpnﬂ ().
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This expression defines the raising operatyr.; (x) in terms of the backward difference
operator.

From this expression we can derive another lowering operator in terms of the forward
difference operator. We substitute the oper&ian (D3) by its equivalent difference operator
V = A— AV, and then we introduce the difference equation (D1) and the recurrence relation
(D2) obtaining

oqgy DH @ FT@) AR (2)=
(2.10) { 2o 2ntl e (z) — N, — 322a 4+ 3228, | Py (@) + 329, Pat.

n Aapt1 2n 2n

The advantage of expressions (D3) and (D4) is that all the coefficients are tabulated.

As in the continuous case, from (D4), putting= 0 givesP, (x), and inserting this value
in (D3) gives the solutions of (D1). Using the orthogonal polynomials of hypergeometric type
we can construct the corresponding normalized functions (up to a phase factor)

U () = dy, ' p () Py (2

that satisfy equivalent relations and we denote them (ND1), (ND2), (ND3), (ND4) in the
discrete case and (NC1), (NC2), (NC3), (NC4) in the continuous case. For instance, (NC1)
becomes

o()7/(s) + o/ () (s) = p(s) (o<s> (p(s)é)'>'wn<s> + Antbn(s) = 0,

which corresponds to a self-adjoint operator of Sturm-Liouville type.

3. The Hermite and Kravchuk polynomials. We apply the results of section 2 to some
orthogonal polynomials of continuous and discrete variables and to their corresponding nor-
malized functions.

For the Hermite polynomial&,, (s) we have

(3.2) Cl1:H", (s) — 25H'n (s) +2nH (s) =0,
(3.2) C2:sHp (s) = 5 Hni1 (s) + nHn—1 (),

(3.3) C3 :Hypy (5) = 2an (s)— H', (s), and
(3.4) C4 Hy 1 (s) = %H (s).

Introducing the orthonormalized functions

U () = (2"nlvm) P2 H, (5)

we get

(3.5) NC1 ", (s) 4+ (2n+ 1 — s*) ¢y, (s) =0,

(3.6) NC2 251, (s) = /2 (n+ 1) ww )+\/_wn 1 (s),
8.7 NC3 :vn+ 1,41 (s 7( > , and
(38) NC4 Z\/E’L/)n_l ( ) = 7 ( ) wn( )
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(NC1) describes the quantum harmonic oscillator, and equations (NC3) and (NC4) result
from the introduction of the familiar creation and annihilation operator

a+ L S_i a:i S+i
V2 ds)’ /2 ds)’

From (NC4) withn = 0 we obtainyy (s) and inserting this value in (NC3) we obtain by
iteration the solutions of the harmonic oscillator

b (5) = ﬁ(cﬁ)"wo (s).

In the discrete case we develop the Kravchuk polynonki%)s(x, N) withz =0,1,2,---
N — 1using

o(x) = x;
T(x)=(Np—=2a)/q; 7o (x) =(Np—2x—n)/q +n;
An =1/g;

an=n+1/q¢ Bp=n+p(N —2n); v, =pg(N —n+1).

Inserting these values in the fundamental formulas we get

(39) Dl:p(N—-z)kp(xz+1)+pn+ax—N)+q(n—2a)]k,(x)
+qzk, (x —1) =0,
(3.10) D2: 2k, (z)=(n+1) kpt1 () +[n+p (N — 2n)] ky, (z)
1pg (N =1+ 1) by () =0,
(3.11) D3: (n+ 1) kpy1 (2) =p(x+n—N)ky (x) + grk, (x — 1), and
(312) D4:g(N—n+ 1) kp_1(x)=(x+n—N)k, (z) + (N —2)k, (z+1).

For the normalized functions we use the Wigner functions, that appear in the representation
of the rotation groupd’__, (3)

mm/

)" (8) = d p (0)k® (2, N)

with N:2j,m:j—n,m’=j—x,p=sin2§, q:c082§
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After substitution we get

ND1:/pg(N =) (x+ D)d)_,, ;. 1 (B)+

(3.13)

(3.14)

(3.15)

(3.16)

The last four equations can be written down in terms of the new paranjeterg/2 ,

. ;.
J—n, m=7]—-,

(3.17)

(3.18)

(3.19)

(3.20)

+(p(N—ar—n>+q<x—n>)d” (8) +

j—mn, j—x
+ pqx —(E+1 jn] z+1 ﬂ):07

ND2: [-p(N —z —n) — q(n — 2)] &’ +

j—mn, j—x
+\/pq n+1)(N—n)d§ n-t, j—z (B) +
pqn —71+1 ] n+l, j—x 5):07

ND3:\/pq (n+ D) (N=—n)d_, , ;. (B)=

:p(N—J?—TL)dg n, j— x(ﬁ)+

pgr (N —x + 1)d and

j n, j—z+1°

ND4 : y/pgn (N —n+1) jn+1]xﬁ):

ND1

ND2:

ND3:

ND4 :

:p(N—iL'—n)dg n] x(5)+

p=sin?4/2, q=cos’3/2, \/p_:%sinﬁz

:\/(j+m/)(j_m +1)dmm/ 1(6)+

+sir? 3 [m —m/ cos B3] dfn e (B) +

+\/J_ ]+m +1)dmm+1(ﬁ):05
\/(j+m)(J_m+1)dm L (B) =
_Sir?ﬁ[m —m cos (]d}, .. (B)+

ésinwg Fm)G-m 1>dz’n,1,m, (5) =

= sinQ§ (m—i—m)din me (B) +

—Slllﬂ\/J— ) (G +m/ +1)dmm+1(ﬁ)’and

—smﬁ\/j— )G +m+1)d, 1w (B) =

:sin2§(m+m)dinm, (B) +

3 sin By ) G =m0+ Dy (8).

107

m =

Note that (ND1) and (ND2) are equivalentif we interchange- m’ and take in account
the general property of Wigner functions

& (B) = (=1, (B)
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The same property of duality applies to (ND3) and (ND4).
In [5] we constructed creation and annihilation operators with the help of (ND3) and
(ND4)

At = f GrmG-m+1) , A—E%Q_j G=mGrmsD

that together withd? = ijm, when apply to the spherical functiok,,, satisfy theSO(3)
algebra
[A=,AT] =24° | [AF A" = +A*

Using the connection between the Wigner functions and the solutions of the quantum
harmonic oscillator we proved [5] the limit relations
(ND3) — (NC3) , (ND4) — (NC4).

Similar results have been obtained by Bijker, et al. [4] for the connection between the
su(2) algebra and the one dimensional anharmonic (Morse) oscillator, and by Atakishiev [1]
for the lattice implementation of the quantum harmonic oscillator.

3.1. The Laguerre and Meixner polynomials. Using the general formulas of section
2, we get for the Laguerre polynomidl§ (s) of continuous variable
(B21) Cil:sL',(s)+(1+a—s)L'y(s)+nLy,(s)=0,
(322) C2:(n+1)Lpy1(s)+(n+8)Ln_1(s)=0Cn+a+1—s)L,(s),
(3.23) C3:sL',(s)=—(1+a—s)L,(s)+ (n+1)L,1(s), and
(3.24) C4:sL',,(s)=2nL,(s) —(n+a)L,_1(s).

For the normalized Laguerre functions

n!

—s/2 oz/QL(x
I‘(a—i—n—i—l)e s n(3)

Y (s) =

we obtain the following differential equation, recurrence relations and expressions for the
raising and lowering operators:
1
(3.25) NC1 : 829! (s) + sy, (s) + 3 [—s® —a® +as+s] ¥, (s) +
snipn (s) =0,

(3.26) NC2:/(n+1) (n+a+ g1 (s) + Vn(n+a)n_1(s
:(2TL+04+1—S) n(s)v

(3.27) NC3:/(n4+1)(n+a+ D) (s)
= %(2n+a+2—s)wn(s)+sw;(s), and

(3.28) NC4 : v/n(n+a)h,_1(s) = % (2n+a —s) — sy, (s).

The first equation, divided by, corresponds to the self-adjoint operator of the Sturm-Liouville

lwhere we identifyd+ = /544727‘7_’ A~ = /sqrt2] J4, Ag = —JZ
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problem for the normalized Laguerre functions.
The last two equations can be considered the creation and annihilation operators for the
normalized Laguerre function. In fact, from (NC4) with n=0 we obtafh And from (NC3)

we easily obtain
1 n
a — A+ (y,
Ur (s) ICESIR (A7)

where

At n(s) = V(n+ 1) (n+ a+ 1)dui(s)
A” wn =\Vvn n+a wn 1

The Laguerre creation operator was given by Szafraniec [9]. His formula is equivalent to ours
if we substitute (NC1) in (NC3).

Now we take the Meixner polynomials) (x) of discrete variable:, and apply the
general expressions of section 2:

(3.29) Dl:p(+y)my,(z+D)+(x—-1)m,(x—-1)+
[—p(x+n+7)+n—alm,(z) =0,

(3.30) D2: umpi1 (2) +n(n+v—1)mp_1 ()
=[z(p—1)+n+pm+)]m(r),

(3.31) D3 : pmpy1 () = p(x +n+7)mp () — zmy, (. — 1), and

(3.32) Di:n(n+~y—1)my_1(x)

=p(@+n+y)my(z) —ply+a)m,(z+1).

For the normalized Meixner polynomials

o Jpr=p) | pT(y42)
A“)“”‘V ), ¢r@+nrwf”“”

we have the following difference, recurrence equations and raising/lowering operators:

(3.33) NDl:vpu(y+z)(z+ )My (z+ 1)+ Vpx(z+~v—1)M,(z—1) —
[ (2 + 1+ 7) =t 2] My (2) = 0,

(3.34) ND2: /u(y+n)(n+ )My (x) + /un(n+v—1)M,_; (z) —
[w(x+n+y)—z+n]M,(z) =0,

(3.35) ND3: /u(y+n)(n+1)Muy1 (x) = p(z+n+v) M, (z) -
/w(x—l—'y—l)Mn(a:—l),and

(3.36) ND4:+/un(n+~v—1)M,_1( w(z+n+v) M, (z) —
Vil(y+z)(z+ )M, ( x—f—l .

As in the case of Wigner functions there exists for the Meixner normalized functions a duality
between(D1) « (D2) and (D3) « (D4) after interchanging < n.

The last two equations can be consider the creation and annihilation operators for the
normalized Meixner functions:

(3.37) ND3: AY M, (z) = /(v +n) (n+ 1) M, 14 (m)

(3.38) ND4 : A~ M, (z) = /pn (n + 7 — D)My_1 (

n (
)
(
)=
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From A~ M, () = 0 and (ND4) we obtair/, (z) and using this value in (ND3) we get

Ma (@) = W (A*)" Mo (a).

The operatorsi™, A~ are adjoint conjugate of each other, and together with
A% = p(2n+7)
they close thewu(1, 1) algebra
[AT,A7] =A% | [AF A% = £2uA*.
Finally, from the limit relation between the Meixner and Laguerre polynomials

1
- (a+1,1=h) [ 2 a
n'm (h) h—0 Ly (s)

the limit relation between the corresponding normalized functions

_ S
M7(1,a+171 ") (E) ﬁ ’L/)n( )

can be established along with the limit of the recurrence relations
(ND2) — (NC2).

The Meixner polynomials of discrete variable can be used in the solutions of the three dimen-
sional harmonic oscillator in connection with the energy eigenvalues [3, formula (5.10)].

The Laguerre-Meixner creation and annihilation operators were presented by F.H. Szafraniec
at Workshop on Orthogonal Polynomials in Mathematical Physics, June 24-26, 1996, Uni-
versidad Carlos Il de Madrid, Leganes, Spain, (but not published).

Atakishiyev has given recently [2] the Hamiltonian and the creation and annihilation
operators for the Meixner oscillator. In fact, his formula (43) and (60) are equivalent to our
(ND1), (ND3), (ND4) for the normalized Meixner functions. They satisfy the sanié, 1)
algebra if we identifyA* «— K,, A~ « K_, A" « — K.

The Laguerre polynomials of continuous variable are used in the models for the hydrogen
atom, but with different weight function in the orthogonality relations [3, formula (5.10)].
The wave equation for the hydrogen atom can be considered as the differential equation of
the Sturm-Liouville problem for the Laguerre functions

l/)n(s) 2l+1 \/pl—LQIJrl

where

pr(s) = ols)p(s) = 22",

In fact, after substitution of,,(s) in (C1) for the Laguerre polynomials we get

81(5) ~ ()] (o) nls) + (1= D50 (s) =0

which corresponds to a self-adjoint operator, from which orthogonality relations, for)
with weight functions—! can be obtained.
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