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AN ITERATIVE METHOD FOR COMPUTING THE EIGENVALUES OF SECOND
KIND FREDHOLM OPERATORS AND APPLICATIONS ∗

P. NATALINI †, S. NOSCHESE‡, AND P.E. RICCI§

Abstract. An inverse iteration method is used to approximate the eigenvalues of second kind Fredholm opera-
tors. Numerical examples are given.
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1. Introduction. Let K(x, y) ∈ L2(Q), Q := I × I (I = [a, b]), and consider the
second kind homogeneous Fredholm integral equation

φ(x) − λ

∫
I

K(x, y)φ(y)dy = 0,(1.1)

whereλ ∈ C is a complex parameter.
By introducing the operatorK : L2(I) → L2(I), defined by

Kφ =
∫

I

K(x, y)φ(y)dy,(1.2)

and the identity operatorI, (1.1) becomes

(I − λK)φ = 0.(1.3)

It is well known that (1.1) admits at most a denumerable set of nonvanishing character-
istic values which do not accumulate to finite points. Writing (1.1)

(K − µI)φ = 0, (µ = λ−1),(1.4)

or equivalently as

Kφ = µφ,(1.5)

one can, therefore, order the eigenvalues of the operatorK with respect to their modulus in a
decreasing sequence:

0 ≤ . . . ≤ |µ3| ≤ |µ2| ≤ |µ1|.
In the particular case of symmetric or Hermitian positive operators (K(x, y) = K(y, x)

or K(x, y) = K(y, x), (Kφ, φ) > 0 if φ 6= 0 andφ ∈ L2(0, 1) ), the eigenvalues always
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Moro, 2, 00185 – Roma.(riccip@axrma.uniroma1.it) , Fax: (396) - 44701007.

128



ETNA
Kent State University 
etna@mcs.kent.edu

An iterative method for the eigenvalues of Fredoholm operators 129

exist, and in the last formula the modulus symbols can be avoided, since the eigenvalues are
real and positive:

0 < . . . ≤ µ3 ≤ µ2 ≤ µ1.(1.6)

We will limit ourselves to this last case, since this is the most important case in physical
applications.

In this case it is well known that by using the Rayleigh-Ritz method (see, for example,
[5]), for everyn ∈ N, we can find lower bound approximations for the eigenvalues (1.6). By
using theorthogonal invariants method, due to G. Fichera, corresponding upper bounds for
the same eigenvalues can always be computed. These two methods can be used in a general
abstract framework, namely, they can be applied to any positive definite compact operator.

The orthogonal invariants method is sometimes computationally very expensive, so we
developed simpler iterative method to approximate the eigenvalues when the Rayleigh-Ritz
approximations have been computed.

This can be done by using theinverse iteration method, described in [1], which will
be summarized in section 3. We note, however, that this method does not ensure monotone
convergence of the iterations, while the method of Fichera produces monotone convergence, it
is sometimes a cumbersome approach the eigenvalues approximation problem. In our opinion
the inverse iteration method could be applied to more general situations, but for the sake of
simplicity, we will limit ourselves to the above mentioned case of a second kind Fredholm
operator.

In section 2 we will give, for completeness, a simple sketch of results of the Rayeigh-Ritz
and Fichera theories.

In section 3 we will present the above-mentioned inverse iteration method. This method
has been tested in different cases, and in particular in a very difficult one, connected with the
computation of the eigenvalues of a kernel considered by A.M. Ostrowski (see [10], [6], [7],
[9]).

A priori bounds for the absolute error are given using the Aronszajn Theorem.

2. The Rayleigh-Ritz and orthogonal invariants methods.Let{vk}k∈N be a com-
plete system of linearly independent vectors in a Hilbert spaceH, putVν := span{v1, v2, . . . , vν},
denote byPν the orthogonal projector,Pν : H → Vν , and consider a positive definite Her-
mitian operatorT : H → H and the corresponding eigenvalue problem

Tφ = µφ.(2.1)

PROPOSITION1. (Rayleigh-Ritz).Consider the positive eigenvalues

µ
(ν)
1 ≥ µ

(ν)
2 ≥ . . . ≥ µ(ν)

ν(2.2)

of the operatorPνTPν . Then the following hold:
1. The positive eigenvalues (2.2) ofPνTPν are obtained by solving the equation:

det{(Tvj, vh) − µ(vj , vh)} = 0, j, h = 1, . . . , ν,

(µ = 0 is always an eigenvalue ofPνTPν).
2. For any fixedk and for anyν ≥ k the following inequalities hold true

µ
(ν)
k ≤ µ

(ν+1)
k ≤ µk.
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3. The limit condition is valid

lim
ν→∞µ

(ν)
k = µk.

That is, the Rayleigh-Ritz method always gives lower bounds for the firstν eigenvalues
of the operatorT , and furthermore these lower bounds become closer and closer to the exact
eigenvalues, whenν increases.

The method of the orthogonal invariants was introduced by G. Fichera [4] and [5], and
provides upper bounds for these eigenvalues. In these papers G. Fichera defines a complete
system of orthogonal invariants for a given operatorT as a complete sequence of numbers
which is invariant under the equivalence of operators and by means of whichall the eigenval-
ues ofT can be recovered (completeness).

Such a system must depend only on the eigenvalues ofT which remain unchanged under
unitary equivalence. Theoretically we could consider the system of numbers defined by

In
s (T ) :=

∑
k1<k2<...<ks

[µk1µk2 · · ·µks ]
n
,

for any fixeds (order of the invariant) andn = 1, 2, 3, . . . (degree of the invariant),provided
that all these numbers can be computed independently by the knowledge of the eigenvalues of
T . As a matter of fact G. Fichera proved (see the following Proposition 2) that the knowledge
of the systemIn

s (T ) (s fixed,n = 1, 2, 3, . . .) permits to recover all the eigenvalues ofT .
Let

v1
(ν), v2

(ν), . . . , vν
(ν),

be normalized eigenvectors ofPνTPν corresponding to the eigenvalues (2.2) and set

V(k)
ν := span{v(ν)

1 , . . . , v
(ν)
k−1, v

(ν)
k+1, . . . , v

(ν)
ν }

and letP (k)
ν be the orthogonal projectorP (k)

ν : H → V(k)
ν .

PROPOSITION2. (Fichera)If In
s (T ) < ∞, for any fixedn, s ∈ N and∀k, k ≤ n, put

σ
(ν)
k :=

[
In

s (T ) − In
s (PνTPν)

In
s−1(P

(k)
ν TP

(k)
ν )

+ [µ(ν)
k ]n

] 1
n

Then

σ
(ν)
k ≥ σ

(ν+1)
k ≥ µk,

and the limit condition

lim
ν→∞ σ

(ν)
k = µk

holds.
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In the particular case we considered in section 1, namely, the case of a Hilbert space
H = L2(I), it follows that

∀n, s ∈ N, In
s (T ) < ∞ iff T nϕ =

∫
I
K(x, y)ϕ(y)dy,

where K(x, y) =
∫

I
H(x, z)H(z, y)dz, H(x, y) = H(y, x) ∈ L2[Q].

Then the orthogonal invariants can be expressed (see [4]) by the multiple integral

In
s (T ) =

1
s!

∫
I

· · ·
∫

I

f(x1, . . . , xs)dx1 · · ·dxs,

wheref(x1, · · · , xs) denotes the Fredholm determinant

f(x1, x2, · · · , xs) :=

∣∣∣∣∣∣∣∣
K(x1, x1) K(x1, x2) . . . K(x1, xs)
K(x2, x1) K(x2, x2) . . . K(x2, xs)

. . . . . . . . . . . . . . . . . . . . .
K(xs, x1) K(xs, x2) . . . K(xs, xs)

∣∣∣∣∣∣∣∣
.

Note that, at least in this case, the values ofIn
s (T ) are obtained independently of the

eigenvalues ofT , so that the method described in Proposition 2 (i.e. the orthogonal invariants
method) can be applied.

In particular, fors = 1:

In
1 (T ) =

∫
I

K(x, x)dx =
∫ ∫

Q

|H(x, y)|dxdy,

and, fors = 2:

In
2 (T ) =

1
2

∫ ∫
Q

[K(x, x)K(y, y) − |K(x, y)|]dxdy.

REMARK 2.1. We insist that, in our opinion, the above mentioned methods give theoret-
ically precise tools for approximating the eigenvalues of a positive definite compact operator
in a Hilbert spaceL2(I), since they permit to control the error of the obtained approximation

of the eigenvalueµk by evaluating the differenceσ(ν)
k − µ

(ν)
k .

However, the use of the orthogonal invariants method leads sometimes to very expensive
compational procedures. In this case, we suggest the use of the iterative method described in
section 3.

3. The inverse iteration method. It is well known that the eigenvalue of maximum
modulus of the operatorK can be computed by using the Kellog method (see [8]). For the
subsequent eigenvalues theinverse iteration method, which we now introduce, is nothing else
than an extension of a classical method for matrices which is known as theWielandt method.

Suppose we know an initial approximationµ̃ of the desired eigenvalueµj , j ≥ 2, such
that

|µ̃ − µj | <
1
2

min
µk 6= µj

k = 1, 2, . . . , ν

|µk − µj |

for a suitable choice of the integerν. In practice the desired eigenvalues will be replaced by
their Raileigh-Ritz approximations, for sufficiently largeν:
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|µ̃ − µ
(ν)
j | <

1
2

min
µ

(ν)
k 6= µ

(ν)
j

k = 1, 2, . . . , ν

|µ(ν)
k − µ

(ν)
j |.(3.1)

¿From (1.5) we have

(K − µ̃I)φ = (µ − µ̃)φ.(3.2)

Consequently, ifµj is an eigenvalue ofK with eigenfunctionφj , thenµj − µ̃ is an
eigenvalue ofK − µ̃I with eigenfunctionφj . By writing (3.2) in the form

(K − µ̃I)−1φ = (µ − µ̃)−1φ,(3.3)

it follows that(µj − µ̃)−1 is an eigenvalue of(K − µ̃I)−1 with the same eigenfunctionφj .
By using condition (3.1), forν sufficiently large, the eigenvalue(µj − µ̃)−1 becomes

the (unique) eigenvalue of maximum modulus for the operator(K − µ̃I)−1. This leads
to the possibility to apply the Kellog method in order to approximate(µj − µ̃)−1, and a
corresponding eigenfunction. This can be done in the usual way, starting from an arbitrary
functionω0 (which theoretically should not be orthogonal to the eigenspace associated with
(µj − µ̃)−1), and defining the sequence

ωn+1 := (K − µ̃I)−1ωn, (n = 0, 1, 2, . . .).

Then (see [8]):

limn→∞
||ωn+1||2
||ωn||2 = (µj − µ̃)−1,(3.4)

limn→∞
ω2n

||ω2n||2 = ±φj .(3.5)

After computing the eigenvalueξj := (µj − µ̃)−1 to the prescribed accuracy (see section
4), one finds

µj =
1
ξj

+ µ̃,

so that, by recallingµ = λ−1(µ̃ =: λ̃−1), we obtain, for the characteristic values of the
kernel, the expressions

λj =
λ̃ξj

λ̃ + ξj

.

It is important to note that (as in the finite dimensional case) we can avoid the determi-
nation of the inverse operator(K − µ̃I)−1, since the equation

ωn+1 = (K − µ̃I)−1ωn
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is equivalent to

(K − µ̃I)ωn+1 = ωn.(3.6)

However, this leads to the necessity to solve numerically, at each step, a Fredholm in-
tegral equation of the first kind. This can be done by using different methods (see [2],[3]),
namely, we could use, for example, the Fast Galerkin method, or the Nystr¨om method. The
latter method was used in our calculations, since it turned out to be very simple and efficient
both with respect to time and number of iterations. In applying the Nystr¨om method we used
the modified Gauss-Legendre quadrature formula with at most 60 nodes.

4. Error estimate and prescribed accuracy.The rate of convergence of the method is
given by the formula:

||ωn||2
||ω0||2 = O [(µ′(µj − µ̃))n] ,

whereµ′ 6= (µj − µ̃)−1 denotes a suitable eigenvalue of(K − µ̃I)−1 (see [12]).
As a matter of fact, from the numerical point of view, the use of Nystr¨om method in the

solution of equation (3.6) is substantially equivalent to the substitution of the original kernel
K(x, y) by an approximating kernel̃K(x, y) given by a suitably defined two-dimensional
step function (that is, instead of the original operator, we consider an approximating finite
dimensional operator given by a suitable matrix).

In order to define this finite dimensional operator, and to discuss the accuracy of our
approximation we introduce some notations.

Let n be the number of nodes in the application of the Nystr¨om method, and denote
by x1, x2, . . . , xn (or y1, y2, . . . , yn) the knots of the modified Gauss-Legendre quadrature
formula on thex (or y) axis, and byw1, w2, . . . , wn the corresponding Christoffel constants.

In the sequel we suppose that the kernel is sufficiently regular inQ := [0, 1]× [0, 1], and
precisely such that the Peano-Jordan measure of the eventual singularities ofK in Q is zero.
These assumptions are natural when dealing with a compact operator.

Divide Q into the sub-squaresQi,j defined by

Qi,j :=

{
(x, y)|

i−1∑
l=1

wl ≤ x <

i∑
l=1

wl;
j−1∑
k=1

wk ≤ y <

j∑
k=1

wk

}
,

assuming
∑i−1

s=1 ws := 0, if i = 1, and recalling that
∑n

s=1 ws = 1. Denote byQ∗
i,j those

particular sub-squares in whichK(x, y) is not bounded, then define

K̃(x, y) =
{

K(xi, yj), if (x, y) ∈ Qi,j

Ki,j, if (x, y) ∈ Q∗
i,j ,

,(4.1)

whereKi,j are such constants that

||K(x, y) − K̃(x, y)||L2(∪i,jQ∗
i,j

) < ε,

whereε denotes an acceptable error tolerance. This condition can always be satisfied provided
thatn is sufficiently large.

Then the numerical computation by using the inverse iteration method yields to approx-
imate the exact eigenvaluesµ̃j , (j = 1, 2, . . . , n) of the kernelK̃(x, y).
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In addition, by using the well known Aronszajn Theorem (see e.g. [5]), it is possible to
find an upper bound for the absolute error|µj − µ̃j |, which is given simply, for everyj, by
the estimate

|µj − µ̃j | ≤ ||K(x, y) − K̃(x, y)||L2(Q).

Then, in order to find an approximatioñµj which is exact, with respect to the corre-
spondingµj , up to the p-th digit, it is sufficient to increasen (and eventually to use adaptive
composite quadrature formulas, increasing the number of knots close to the singularities) in
such a way that the further inequality||K(x, y) − K̃(x, y)||L2(Q) < .5 × 10−p holds true.

This can always be done, and permits to control the error of our approximation, indepen-
dently by the use of the orthogonal invariants method.

5. Computation of the first few eigenvalues of a kernel considered by A.M. Os-
trowski. A.M. Ostrowski [10] considered the problem of finding the maximum valueM of
the functional,∀φ ∈ L2(0, 1):

I(φ) :=
[∫ 1

0

φ2(t)dt

]−1 ∫ 1

0

∫ 1

0

[
1

x − y

∫ x

y

φ(t)dt

]2

dxdy.(5.1)

As a consequence of a theorem by A. Garsia, cited in the same article of A.M. Ostrowski,
the preceding problem can be reduced to the computation of the greatest eigenvalueµ1 of the
positive compact operator, defined inL2(0, 1)

Kφ =
∫ 1

0

K(x, y)φ(y)dy,(5.2)

where

K(x, y) =




2 log x(1−y)
x−y , if 0 ≤ y < x ≤ 1

2 log y(1−x)
y−x , if 0 ≤ x < y ≤ 1.

(5.3)

This problem was solved by G. Fichera and M.A. Sneider in a paper [6]. By a very
accurate computation they have established the inequalities

1.2029315225711 < M = µ1 < 1.202931525733.

They used the classical Rayleigh-Ritz method for the lower bounds, and the orthogonal
invariants method to computing the upper bounds.

The computation of lower bounds forM was considerably simplified by A. Ghizzetti in
[7] by using a basis of modified Legendre polynomials, instead of powers, in the application
of the Rayleigh-Ritz method.

In the above mentioned paper [6] G. Fichera and M.A. Sneider deal with a more general
framework with respect to the problem introduced by A.M. Ostrowski, considered also the
problem of approximating the first few eigenvalues of the same operator (5.2) with kernel
(5.3).

They have found these following results for the first five eigenvaluesµk, k = 1, 2, 3, 4, 5:
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1.202931525711 < µ1 < 1.202931525733
0.729012156602 < µ2 < 0.740766
0.52709392618 < µ3 < 0.54902
0.4135343103 < µ4 < 0.44775
0.3407196076 < µ5 < 0.38842

Table I
In a earlier paper (see [9]), we applied the above mentioned method to obtain the first

few correct digits of the eigenvalues of Table I.
The numerical results for the first five eigenvalues of the kernel (5.3) considered by A.M.

Ostrowski were obtained by using a Turbo C++ program written by S. Delle Monache.
Starting from the secular equations considered by A. Ghizzetti in section 3 of his paper

[7], we found (forn = 19) an equation of order20, whose first five roots, in decreasing order,
are given by

µ̃1 = 1.20293152571347
µ̃2 = 0.72901215660725
µ̃3 = 0.52709392620653
µ̃4 = 0.41353431036983
µ̃5 = 0.34071960754549.

These values improve the Rayleigh-Ritz (lower) approximations of Table I, and can be
considered as initial approximationsµ̃ for the inverse iteration method.

Our results are contained in Table II.

1.20293152571347 < µ1 < 1.209
0.72901215660725 < µ2 < 0.739
0.52709392620653 < µ3 < 0.530
0.41353431036983 < µ4 < 0.414
0.34071960754549 < µ5 < 0.345

Table II
Since we used a simple personal computer for the computation, we chosep = 2, and

consequently we found only the first two correct decimal figures of the eigenvaluesµk, (k =
1, 2, 3, 4, 5) of the given kernel. We want to point out that the very good approximation for
the first eigenvalue which appears in Table I was obtained by G. Fichera and M.A. Sneider by
using an IBM mainframe and 100 digits multiple precision arithmetic for computations, and,
moreover, using the orthogonal invariants method they were able to find only the first correct
decimal figure for the subsequent four eigenvalues of the operatorK.

6. Conclusion and Remarks.The problem of computing the eigenvalues of second
kind Fredholm operators is, in general, a very difficult subject. However, in case of a sym-
metric (or Hermitian) positive definite kernel (more generally for a positive definite compact
operator) the problem can be treated by using the Rayleigh-Ritz method for the lower bound
approximations, and Fichera’s orthogonal invariants method for computing the upper bounds.
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A computationally less expensive method which has been presented here, consists in using
the information given by the Rayleigh-Ritz method for starting with an iterative convergent
procedure for every fixed eigenvalue.

We want to remark that the application of theinverse iteration methodleads to the prob-
lem of solving numerically integral equations of the first kind. Although this problem could
be affected in general by severe ill-conditioning, in case of the symmetric kernels, we found
that this can be done effectively using the classical Nystr¨om method.

Examining the equations used is the application of the Nystr¨om method, one finds that
inverse iterations converge to the exact eigenvalues of an approximating finite dimensional
kernel, which can be found by considering a suitable partition of the integration domain, de-
fined in terms of the Christoffel constants of a Gaussian quadrature formula, and substituting
the original kernel with a two dimensional step function determined by the values ofK(x, y)
on the nodes of the quadrature.

REMARK 6.1. Since discretization approximates a finite number of the eigenvalues of
the kernelK by the corresponding eigenvalues of a symmetric (Hermitian) matrix, it is not
necessary to use the Wielandt method for this computation: more modern and efficient method
can be applied at this stage.

REMARK 6.2. Since an explicit uniform bound for the absolute error can be derived by
using the Aronszajn theorem, it is possible to control the error by the beginning, whereas in the
Fichera’s method the computation of the error can be done only at the end of computation.

The inverse iteration method, discussed above, will be applied in some forthcoming pa-
pers to the approximation of the eigenvalues of some Sturm-Liouville problems from the
mathematical physics for which the transformation of the problem into a second kind Fred-
holm integral equation can be performed by constructing explicitly the Green function (see
e.g. [5]).
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