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EVALUATION OF ASSOCIATED LEGENDRE FUNCTIONS OFF THE CUT AND
PARABOLIC CYLINDER FUNCTIONS ∗

JAVIER SEGURA†‡ AND AMPARO GIL †§

Abstract. We review a set of algorithms to evaluate associated Legendre functions off the cut; in particular, we
consider prolate spheroidal, oblate spheroidal and toroidal harmonics. A similar scheme can be applied to other fam-
ilies of special functions like Bessel and parabolic cylinder functions; we will describe the corresponding algorithm
for the evaluation of parabolic cylinder functions.
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1. Introduction. The evaluation of associated Legendre (ALF) and parabolic cylinder
functions (PCF) is a matter of relevance because these functions appear in the solution of
Dirichlet problems in different geometries [12]. Then, they show up in a vast number of
applications [12, 8, 9] in different fields such as, for instance, lattice field theory[5], ther-
monuclear fusion[16], biology [10] or cristallography[18].

Recently, a series of codes to evaluate ALF[8, 9, 24] and PCF[23] have been developed,
filling a considerable gap in numerical libraries.

For associated Legendre functions off the cut there was no available routine; only
Gautschi [6], in 1965, presented a set of algorithms in ALGOL60 to evaluate them. Our
approach is similar to Gautschi’s: Legendre functions off the cut satisfy three term recur-
rence relations, being one of the independent solutions a minimal solution [28, 7]. However,
our code has some important differences from Gautschi’s which, in fact, allows it to be more
accurate and valid for a larger range of the parameters [24].

Other examples of families of real functions of real variable satisfying three term re-
currences with a minimal solution are Bessel and Modified Bessel functions and parabolic
cylinder functions.

Bessel functions have been broadly discussed in the literature and many algorithms with
different characteristics exist [19, 2, 27, 26, 22]. But there was a considerable lack of numer-
ical algorithms for PCF: there was only one published program to evaluate PCFs [25], which
as we discussed [23], has serious problems. Different approaches to the evaluation of PCFs
can be found in [11, 20, 15, 21].

ALFs, PCFs and Bessel functions are classical in the sense that all standard books on spe-
cial functions [1, 12, 28] devote at least a chapter to them. In addition, the task of developing
numerical methods to evaluate the classical special functions has gained renewed interest due
to the ongoing program to revise the Abramowitz& Stegun Handbook on Mathematical func-
tions [14]. A comprehensive numerical library to generate values for all functions described
in such revised version is intended to be built.

2. Legendre and parabolic cylinder functions: definition and properties.

2.1. Associated Legendre functions off the cut.The associated Legendre functions
Pm

ν (z) andQm
ν (z) [1] are solutions of the differential equation
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(1 − z2)u′′ − 2zu′ +
[
ν(ν + 1) − m2

1 − z2

]
u = 0,(2.1)

where, in most practical situations,m is a nonnegative integer.
From now on we will consider associated Legendre functions withz outside the interval

[−1, 1], that is, associated Legendre functions off the cut. For the evaluation of associated
Legendre functions on the cut, see [17].

The recurrence relations satisfied by the associated Legendre functions off the cut (ALF),
both over degreesν’s and ordersm’s are

(ν − m + 1)P m
ν+1(z) − (2ν + 1)zPm

ν (z) + (ν + m)Pm
ν−1(z) = 0,(2.2)

P m+1
ν (z) +

2mz

(z2 − 1)1/2
Pm

ν (z) − (ν − m + 1)(ν + m)Pm−1
ν = 0,(2.3)

where the same relations apply for theQ’s.
The Wronskian relation betweenP ’s andQ’s is

W (P m
ν (z), Qm

ν (z)) =
Γ(ν + m + 1)
Γ(ν − m + 1)

(−1)m

1 − z2 .(2.4)

From which follow two useful relations between consecutive degrees (eq.(5)) and orders
(eq.(6))

P m
ν (z)Qm

ν−1(z) − Pm
ν−1(z)Qm

ν (z) =
Γ(ν + m)

Γ(ν − m + 1)
(−1)m,(2.5)

P m
ν (z)Qm+1

ν (z) − Pm+1
ν (z)Qm

ν (z) =
Γ(ν + m + 1)
Γ(ν − m + 1)

(−1)m√
z2 − 1

.(2.6)

For half-integer degreesν ≡ n − 1/2 , n = 0, 1, 2, ... and real argumentsz ≡ x > 1,
the functions{P m

n−1/2(x), Qm
n−1/2(x)} are calledtoroidal harmonics. Whenν is an integer

ν ≡ n = 0, 1, 2, ... and for real argumentsx > 1, the functions{Pm
n (x), Qm

n (x)} are
calledprolate spheroidal harmonics, while, for purely imaginary arguments, the functions
{P m

n (ix), Qm
n (ix)} with x > 0 are known asoblate spheroidal harmonics.

Both prolate spheroidal and toroidal harmonics are real functions of the real variablex.
The oblate spheroidal harmonics{Pm

n (ix), Qm
n (ix)} can be real or imaginary valued for real

x; however, the new set of functions{Rm
n (x), T m

n (x)} x > 0, n ≥ 0 defined by

Rm
n (x) = exp(−iπn

2 )Pm
n (ix),

T m
n (x) = iexp(iπn

2 )Qm
n (ix)

(2.7)

are real functions of the real variablex, and more convenient for numerical evaluation. From
now on, we will refer toRm

n (x) andT m
n (x) asoblate spheroidal harmonics(OSH) of the first

and second kinds respectively. Reference [9] is the first one to provide a numerical algorithm
to compute OSHs.



ETNA
Kent State University 
etna@mcs.kent.edu

J. Segura and A. Gil 139

2.2. Parabolic cylinder functions. The parabolic cylinder functionsV (a, x) and
U(a, x) [1] are solutions of the differential equation

y′′ − (a +
1
4
x2)y = 0 .(2.8)

TheV s andUs satisfy the following recurrence relations:

V (a + 1, x) = xV (a, x) + (a − 1/2)V (a − 1, x),(2.9)

U(a − 1, x) = xU(a, x) + (a + 1/2)U(a + 1, x).(2.10)

The Wronskian relation betweenV ’s andU ’s is

W{U(a, x), V (a, x)} =
√

2/π(2.11)

from which it follows that

(a − 1/2)U(a, x)V (a − 1, x) + U(a − 1, x)V (a, x) =

√
2
π

.(2.12)

3. Recurrence relations and stability. Both associated Legendre{P, Q} and parabolic
cylinder functions{U, V } have two common characteristics: they satisfy three-term recur-
rence relations and one of the solutions is minimal.

A three term recurrence relation

yk+1 + akyk + bkyk−1 = 0(3.1)

is said to admit a minimal solution when there exist two linearly independent solutions
y↓

k, y↑
k such that

lim
k→∞

y↓
k

y↑
k

= 0;(3.2)

the solutiony↓
k is called minimal solution (which is unique) whiley↑

k is a dominant solution.
The recurrence relation should be applied backwards to evaluate the minimal solution, and
never forward, since any small rounding error would introduce a dominant component. On the
other hand, the recurrence relation has to be applied forward to calculate dominant solutions.

Important results are provided by Perron’s [28, 19] and Pincherle’s[3, 19] theorems: Per-
ron’s theorem helps in studying the stability of recurrences and the existence of a minimal
solution. On the other hand, Pincherle’s theorem guarantees the existence of a continued
fraction (CF) for the ratio of consecutive minimal solutionsy↓

k/y↓
k−1 and gives a prescription

to estimate the speed of convergence of the resulting CF; in case the recurrence (3.1) admits
minimal solution Pincherle’s theorem states that the ratio can be evaluated in the form:
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y↓
k/y↓

k−1 = − bk

ak−
bk+1

ak+1− ...(3.3)

It is easy to check thatQm
ν is the minimal solution of the three term recurrence relation

(2.2) whilePm
ν is a dominant solution. Correspondingly, for oblate spheroidal harmonics,

the minimal solution isT m
n and the dominant one isRm

n . The character of the functionsQm
ν ,

P m
ν changes if one consider the recurrence relation given by eq.(2.3):Pm

ν is the minimal
solution whileQm

ν is a dominant one. Notice that, in caseν is integer, becausePm
n = 0

whenm > n andn, m are integers, the CF (3.3) for the ratioPm
n−1/Pm−1

n becomes a finite
continued fraction.

For prolate and oblate spheroidal harmonics we always assumen ≥ m; the recurrence
overn starting withn = m andn = m + 1 will be enough for their evaluation. However, the
evaluation of TH, needs both recurrences (overm andn).

In the case of parabolic cylinder functions, one can easily establish the character ofU ’s
as the minimal solution of recurrence (2.10) and the character ofV s as a dominant one of
(2.9). We have focused our attention on integer and half-integer values of the ordera and
non-negative argumentsx which are the cases of greatest applicability.

4. Numerical evaluation of ALF and PCF. The numerical evaluation of PSH, OSH
and PCF follow a similar scheme and the procedure can be described in terms of a single ba-
sic algorithm. The main differences are in the evaluation of the starting values to “feed” the
recurrences, the study of the convergence of the continued fraction (and substitution when-
ever it converges slowly) and the handling of possible numerical overflows. For issues of
convergence of the CFs and control of overflows, we refer to [8, 9, 23, 24]. We describe the
basic algorithm and the evaluation of the starting values. Also, we will explicitly show the
resulting algorithm for OSH.

The algorithms for the evaluation of TH are considerably more involved. In this case,
both recurrences have to be combined in the algorithm. We will present one of the three
algorithms described in ref. [24]

4.1. Basic algorithm. The main ingredients of our algorithms are the character of the
functions as minimal or dominant solutions of a three term recurrence relation and the Wron-
skian relating both solutions. Essentially the procedure can be described as follows: Given a
three term recurrence relation

yk+1 + akyk + bkyk−1 = 0, k ≥ 1(4.1)

with y↓
k the minimal solution andy↑

k a dominant one, and considering

y↓
ky↑

k−1 + ck(x)y↓
k−1y

↑
k = dk(x)(4.2)

the Wronskian relating both solutions, the following steps are considered to evaluate the set
{y↑

k , y↓
k , k = 0, 1, ...K}:

© Evaluatey↑
0 , y↑

1 .
© Use forward recurrence to obtain the set{y↑

0 , y
↑
1 , ..., y↑

K}.

© Combine y↓
K/y↓

K−1 = − bK
aK−

bK+1
aK+1− ... with the Wronskian relation (4.2) and

y↑
K , y↑

K−1 to gety↓
K , y↓

K−1.
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© Use backward recurrence to obtain{y↓
K , y↓

K−1, ..., y
↓
0}.

Some interesting features of the algorithm described are: first, unlike Miller’s method,
no renormalization has to be carried out. This is important in order to have a good control
of accuracy and overflows. Second, both dominant and minimal solutions can be obtained at
the same time; this feature is of interest when both solutions are needed, as happens when
solving Dirichlet problems.

The basic ingredient in Gautschi’s codes for PSH and TH was also the application of
recurrence relations. However, although the underlying theory is the same as in Gautschi’s
codes, our approach leads to algorithms valid for larger ranges of the parameters, much faster
when several orders/degrees are needed, and with higher precision [24].

On the other hand, surprisingly, recurrence relations where rarely used for PCF and the
associated continued fraction and, useful as it is, was not considered in [11, 20, 15, 21]. Our
code for PCFs, as we discussed in [23], solves the problems of Taubmann’s code [25] and
enlarges considerably the ranges of parameters.

In principle, we only need to evaluate the two starting values for the recurrences. How-
ever, one also needs to take care of possible bad convergence of the CFs (taking into account
Pincherle’s theorem) and to replace the CF by series or asymptotic expansions when needed.
For more details see [23, 24].

Let us now summarize how the evaluation of the starting values is carried in each of the
cases described.

4.2. Evaluation of the starting values for the recurrences.To feed the recurrence
relations we need two starting values, which are evaluated as follows:
© Prolate and oblate spheroidal harmonics:

For prolate and oblate spheroidal harmonics a closed expression can be found for
the initial values:

P m
m (x) = (2m − 1)!!(x2 − 1)m/2 ; Pm

m+1(x) = x(2m + 1)Pm
m (x),(4.3)

Rm
m(x) = (2m − 1)!!(x2 + 1)m/2 ; Rm

m+1(x) = x(2m + 1)Rm
m(x).(4.4)

© Toroidal harmonics:
In this case we use the relation ofQ0

−1/2 andQ1
−1/2 with the elliptic integralsE and

K:

Q0
−1/2(x) =

√
2/(x + 1)K(

√
2/(x + 1)),

Q1
−1/2(x) = −E(

√
2/(x + 1))/

√
2(x − 1),

(4.5)

and we evaluateE andK by means of the Carlson’s duplication theorem[4].
© Parabolic cylinder functions of integer ordera ≥ 0:

For parabolic cylinder functionsV (a, x) with integer values of the parametera, we
consider the relation ofV (0, x) andV (1, x) with the modified Bessel functionsIν

V (0, x) =
√

x

2
(
I−1/4(x2/4) + I1/4(x2/4)

)
(4.6)
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V (1, x) = x3/2

4
(
I−1/4(x2/4) + I1/4(x2/4)

+ I−3/4(x2/4) + I3/4(x2/4)
)
.

(4.7)

To evaluate the Bessel functions we have followed the scheme of reference [19],
complemented with an asymptotic expansion [23] for largex.

© Parabolic cylinder functions of half-integer ordera ≥ 1/2:
In the half-integer case, the expressions for the initial parabolic cylinder functions
are simpler:

V (1/2, x) =

√
2
π

ex2/4 ; V (3/2, x) =

√
2
π

xex2/4.(4.8)

4.3. An explicit example: oblate spheroidal harmonics.As an example of the basic
algorithm, we show the corresponding to the evaluation of oblate spheroidal harmonics:

Let rn(x) = Rm
m+n(x) and tn(x) = T m

m+n(x). The following steps are followed to
evaluate the set{rn, tn, n = 0, ..., N}:
© Evaluater0(x) = (2m − 1)!!(x2 + 1)m/2 > 0 andr1(x) = x(2m + 1)r0(x) ≥ 0.
© Apply the recurrence relation

rn+1 =
1

n + 1
[(2n + 2m + 1)xrn(x) + (n + 2m)rn−1(x)] ≥ 0

(forward) up to a maximum degreen = N .
© Use the Wronskian relation, combined with the CF forHN (x) = tN (x)/tN−1(x) (con-

vergent forx > 0) to obtain

tN−1 =
(2m + N − 1)!

N !
(−1)m 1

rN (x) + HN (x)rN−1(x)
,

tN (x) = tN−1(x)HN (x).

© UsingtN , tN−1 as starting values, the recurrence relation

tn−1(x) =
1

(n + 2m)
[(n + 1)tn+1(x) + (2n + 2m + 1)xtn(x)]

is applied backwards.
Taking into account thatRm

n (x) ≥ 0 , T m
n (x) ≥ 0 ∀x ≥ 0, one can see that no subtrac-

tions take place in applying the forward and the backward recurrences forRm
n (x) andT m

n (x)
respectively. Then, no significant roundoff errors are expected to occur.

4.4. A more involved example: toroidal harmonics..The algorithm for toroidal har-
monics (TH) deserves a separate analysis. The main difficulty, compared with OSH and PSH,
concerns the starting point of the algorithm. For TH we do not have closed form expressions
like (4.3), (4.4), which allowed the evaluation of OSH and PSH for fixedm using only recur-
rence (2.2). For TH one needs to use recurrence (2.2) combined with (2.3).
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As commented, theQ’s are minimal and theP ’s dominant for recursion over the degreen
while, for recursion over the orderm, theP ’s are the minimal solution and theQ’s dominant.
This “dual” behavior together with the two associated CF’s and the two Wronskian relations
(2.5) and (2.6) makes it possible to reach any orderm or degreen from two starting and
consecutive values. Using this fact, the algorithm for toroidal harmonics can be summarized
as follows:

The set{P m
n−1/2, Q

m
n−1/2}, n = 0, 1, ..., N + 1, m = 0, 1, ..., M can be generated from:

a) m-recurrence (basic algorithm):
Starting fromQ0

−1/2 andQ1
−1/2, generate{Pm

−1/2, Q
m
−1/2, 0 ≤ m ≤ M}

(for largex better use series forPM
−1/2 instead of the CF).

b) evaluatePM
+1/2 (andPM−1

+1/2 ):

QM
−1/2, H = QM

+1/2/QM
−1/2 → QM

1/2

QM
−1/2, QM

1/2, PM
−1/2 → PM

1/2 (from the Wronskian).
c) m-recurrence (backward):

PM
1/2, PM−1

1/2 → Pm
1/2, 0 ≤ m ≤ M

Then a)+c) givePm
±1/2 with 0 ≤ m ≤ M .

d) n-recurrence (forward):
Pm
−1/2, Pm

+1/2 0 ≤ m ≤ M → Pm
n−1/2 0 ≤ m ≤ M , 0 ≤ n ≤ N .

e) CF + Wronskian to getQ0
N+1/2, Q0

N−1/2 from P 0
N+1/2, P 0

N−1/2.

And similarly we getQ1
N+1/2, Q1

N−1/2.
f) m-recurrence (forward):

Q0
N±1/2, Q1

N±1/2 → Qm
N±1/2, 0 ≤ m ≤ M .

g) n-recurrence (backward):
Qm

N+1/2, Qm
N−1/2, 0 ≤ m ≤ M → Qm

n±1/2, 0 ≤ m ≤ M , 0 ≤ n ≤ N .

This algorithm for toroidal harmonics evaluates and stores in each run first and second
kind toroidal harmonics.

4.5. Numerical tests and CPU times.In all cases, our algorithms have been extensively
tested in order to control the accuracy and CPU times [8, 9, 24]. In the case of slow conver-
gence of the CF, we have replaced it with series or asymptotic expansions. For parabolic
cylinder functions of integer ordersa, we have compared our code with other existing code
by Taubmann [25], concluding that our code [23] clearly supersedes it.

In double precision arithmetic, the codes for PSH and OSH were shown to reach an
accuracy of10−15 in their ranges of validity. For PCF and TH the accuracy was better than
10−12.

In tables 1, 2, 3 and 4 we show the CPU time spent on a HP715/100 computer for
our routines to evaluate prolate spheroidal harmonics (DPROH), oblate spheroidal harmonics
(DOBLH), toroidal harmonics (DTORH3) and parabolic cylinder functions of integer orders
(DINPCF), respectively.

Routine DOBLH uses the algorithm explicitly shown and DPROH use a similar one.
Both routines evaluate, for a fixed orderm, the first and second kind corresponding ALF’s
of ordersn = 0, 1, ..., N (with N chosen at will). Routine DINPCF also uses our basic
algorithm to evaluate integer order PCF’s of the first and second kinds of ordersn = 0, ..., N .
Routine DTORH3 uses the algorithm described in section 4.4.
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x M NMax 103× CPU-t 103× CPU-t
N = NMax N = 10

1.01 5 4393 10.87s 0.27s
50 1983 5.06s 0.16s

1.1 5 1411 3.51s 0.14s
50 709 1.88s 0.15s

10. 5 208 0.54s 0.07s
50 92 0.26s 0.12s

1000. 5 79 0.20s 0.06s
50 14 0.06s 0.11s

Table 1. Subroutine DPROH. CPU times (in10−3 s) for several values ofx andM . The demanded
precision is EPS=10−15. NMax accounts for the maximum order that can be reached for an overflow
1.d+280.

x M NMax 103× CPU-t 103× CPU-t
N = NMax N = 10

0.01 5 60803 153.57s 4.11s
50 15472 46.73s 4.76s

0.1 5 6211 15.48s 0.46s
50 2651 6.87s 0.50s

1. 5 712 1.77s 0.10s
50 365 1.00s 0.15s

10. 5 208 0.51s 0.07s
50 92 0.32s 0.12s

1000. 5 79 0.23s 0.06s
50 14 0.13s 0.12s

Table 2. Subroutine DOBLH. CPU times (in10−3 s) for several values ofx andM . The demanded
precision is EPS=10−15. NMax accounts for the maximum order that can be reached for an overflow
1.d+280.

x 102× CPU-t.
M ≤ 50 ; N ≤ 50

1.1 1.41s
10. 1.43s
100. 1.41s
1000. 1.41s

Table 3. Subroutine DTORH3. CPU times (in 1/100 s) in evaluating{P m
n−1/2, Q

m
n−1/2} for several

values ofx, m = 0, 1, ..., 50 andn = 0, 1, ..., 50. The demanded precision is EPS=10−12.
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NMax 103×CPU-t NMax 103×CPU-t 103×CPU-t
x MODE=0 N = NMax MODE=1 N = NMax N = 10

0.1 276 0.54s 276 0.54s 0.09s
1.0 271 1.63s 271 1.67s 0.12s
2.0 265 0.91s 265 0.88s 0.28s
10. 222 0.46s 230 0.48s 0.13s

1000. 93 0.17s 0.06s

Table 4. Subroutine DINPCF. CPU times (in10−3 s) for several values ofx andN . EPS=10−15.
NMax accounts for the maximum order that can be reached for an overflow 1.d+280.

5. Conclusions.A set of algorithms to evaluate oblate and prolate spheroidal harmon-
ics, toroidal harmonics and parabolic cylinder functions of integer and half-integer orders,
have been described. These functions appear in a large variety of fields. Prolate spheroidal
and oblate spheroidal harmonics appear in the solution of the potential problems for domains
bounded by spheroids while toroidal harmonics appear in domains bounded by tori. On the
other hand, parabolic cylinder functions of integer and half-integer orders are used in statis-
tical thermodynamics, lattice field theory, etc. In spite of their importance, there were very
few codes in the numerical libraries to evaluate them. Our algorithms and the resulting codes
fill this gap.
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[22] J. SEGURA, P. FERNÁNDEZ DE CORDOBA, YU.L. RATIS, A code to evaluate modified Bessel functions

based on the continued fraction method, Comput. Phys. Comm., 105 (1997), p. 263.
[23] J. SEGURA, A. GIL , Parabolic Cylinder Functions of integer and half-integer orders for non-negative argu-

ments. Comput. Phys. Comm., 115 (1998), p. 69.
[24] J. SEGURA, A. GIL , Evaluation of Toroidal Harmonics, submitted for publication in Comput. Phys. Comm.
[25] G. TAUBMANN , Parabolic Cylinder Functions U(n,x) for natural n and positive x, Comput. Phys. Comm., 69

(1992), p. 415.
[26] I.J. THOMPSON, A.R. BARNETT, Coulomb and Bessel functions of complex arguments and order, J. Comput.

Phys., 64 (1986), p. 490.
[27] I.J. THOMPSON, A.R. BARNETT, Modified Bessel functionsIν(z), Kν(z) of real order and complex argu-

ment, to selected accuracy, Comput. Phys. Comm., 47 (1987), p. 245.
[28] N.M. TEMME, Special functions: An introduction to the Classical Functions of Mathematical Physics, Wiley,

1996.


