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QUADRATURE FORMULAS FOR RATIONAL FUNCTIONS ∗

F. CALA RODRIGUEZ†, P. GONZALEZ–VERA‡, AND M. JIMENEZ PAIZ‡

Abstract. Let ω be an L1-integrable function on[−1, 1] and let us denote

Iω(f) =

∫ 1

−1

f(x)ω(x)dx,

wheref is any bounded integrable function with respect to the weight functionω. We consider rational interpolatory
quadrature formulas (RIQFs) where all the poles are preassigned and the interpolation is carried out along a table of

points contained inC \ [−1, 1].
The main purpose of this paper is the study of the convergence of the RIQFs toIω(f).

Key words. weight functions, interpolatory quadrature formulas, orthogonal polynomials, multipoint Pad´e–type
approximants.

AMS subject classifications.41A21, 42C05, 30E10.

1. Introduction. This work is mainly concerned with the estimation of the integral

Iω(f) =
∫ 1

−1

f(x)ω(x)dx,(1.1)

whereω(x) is an L1–integrable function (possibly complex) on[−1, 1] andf is a bounded
complex valued function. The existence of the integralIω(f) should be understood in the
sense that the real and imaginary parts off(x)ω(x) are Riemann integrable functions on
[−1, 1], either properly or improperly. We propose approximations of the form

In(f) =
n∑

j=1

Aj,nf(xj,n)(1.2)

which we will refer to as ann–point quadrature formula with coefficients or weights{Aj,n}
and nodes{xj,n}. As it is well known, the key question in this context is how to choose the
nodes and weights so thatIn(f) turns out to be a “good” estimation ofIω(f).

Classical theory is based on the fact of the density of the spaceΠ of all polynomials in
the classC([−1, 1]) of the continuous functions. Assuming that the integrals

ck =

1∫
−1

xkω(x)dx, k = 0, 1, ...,

exist and are easily computable, when replacingf(x) in (1.1) by a certain polynomialP (x),
Iω(P ) will provide us with an approximation forIω(f).

Concerning the choice of the polynomialP (x), many techniques have been developed
in the last decades making use of interpolating polynomials. More precisely, givenn-distinct
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nodes{xj,n} on [−1, 1], letPn−1(f ; x) denote the interpolating polynomial of degree at most
n − 1 to the functionf at these nodes, i.e.,

Pn−1(f ; x) =
n∑

j=1

lj,n(x)f(xj,n) (Lagrange Formula)(1.3)

wherelj,n ∈ Πn−1 (space of polynomials of degree at mostn − 1), satisfies

lj,n(xk,n) = δj,k =
{

1 if j = k
0 if j 6= k.

We see thatIω(Pn−1(f, .)) provides us with a quadrature formula of the form (1.2) with
Aj,n = Iω(lj,n), j = 1, 2, ..., n. In(f) is called ann-point interpolatory quadrature formula
and clearly integrates exactly any polynomialP in Πn−1, i.e.,

Iω(P ) = In(P ), ∀P ∈ Πn−1.(1.4)

An important aspect in this framework is the problem of the convergence. That is, how
to choose the nodes{xj,n}n

j=1, n = 1, 2, ... so that the resulting interpolatory quadrature
formula sequence{In(f)} converges toIω(f), with f belonging to a class of functions “as
large as possible”.

Many contributions have been given in the last two decades. For the sake of completeness
we shall state a result by Sloan and Smith (see [12]), culminating a series of previous works
of these authors (see e.g. [13] and [14]).

THEOREM 1.1. Letβ(x) be a real and L1-integrable function on[−1, 1] andω(x) be a
weight function on[−1, 1] (ω(x) ≥ 0) such that

∫ 1

−1

|β(x)|2
ω(x)

dx < +∞.

Let {xj,n}, j = 1, 2, . . . , n, n ∈ N be the zeros of thenth-monic orthogonal polynomial
with respect toω(x) on [−1, 1], and

In(f) =
n∑

j=1

Aj,nf(xj,n),

then-point interpolatory quadrature formula at the nodes{xj,n}. Then

lim
n→∞ In(f) = Iβ(f),

for all real-valued bounded functionf(x) on [−1, 1] such that the integral

Iβ(f) =
∫ 1

−1

f(x)β(x)dx

exists.
In this work, we propose to make use of quadrature formula (1.2), integrating exactly

rational functions with prescribed poles outside[−1, 1]. Observe that polynomials can be
considered as rational functions with all the poles at infinity.

The main aim will be to prove a similar result to Theorem 1.1 for rational interpola-
tory quadratures formulas (RIQFs), where orthogonal polynomials with respect to a varying
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weight function will play a fundamental role. In this respect this work can be considered as
a continuation of the paper by Gonz´alez-Vera, et al.(see [8]), where the convergence of this
type of quadrature exactly integrating rational functions with prescribed poles, was proved
for the class of continuous functions satisfying a certain Lipschitz condition, and it can be
also considered as a continuation of the paper written by Cala Rodr´ıguez and L´opez Lago-
masino (see [3]) where they proved convergence (exact rate of convergence) of this type of
interpolating quadrature formulas approximating Markov-type analytic functions.

The common contribution in those papers ([3] and [8]) was to display the connection be-
tween Multipoint Pad´e–type Approximants and Interpolating Quadrature Formulas. Here, we
start from a “purely” numerical integration point of view and, as an immediate consequence
of this approach, a known result about uniform convergence for Multipoint Pad´e–type Ap-
proximants will be easily deduced.

2. Preliminary results. Let α̂ = {αj,n : j = 1, 2, ..., n, n = 1, 2, ...} be compactly
contained inC \ [−1, 1], i.e., such that

d(α̂; [−1, 1]) = min dist[αj,n; [−1, +1]] = δ > 0.(2.1)

In the sequel, we shall refer to this property as the “δ-condition”forα̂. Set

πn(x) =
n∏

j=1

(x − αj,n).

In what follows, we need to introduce the following spaces of rational functions. For each
n ∈ N, define

L2n =
{

P (x)
|πn(x)|2 : P ∈ Π2n−1

}
and Rn =

{
P (x)
πn(x)

: P ∈ Πn−1

}

Let ω(x) be a given weight function on[−1, 1] and consider the function

ωn(x) =
ω(x)

|πn(x)|2 ≥ 0, ∀x ∈ [−1, 1].(2.2)

LetQn(x) be thenth-orthogonal polynomial with respect toωn(x) on[−1, 1] and let{xj,n}n
j=1

be then zeros ofQn(x). Then, positive numbers̃λ1,n, λ̃2,n, . . . , λ̃n,n exist such that

∫ 1

−1

f(x)ωn(x)dx =
n∑

j=1

λ̃j,nf(xj,n), ∀f ∈ Π2n−1(2.3)

TakeR ∈ L2n. ThenR(x) =
P (x)

|πn(x)|2 P ∈ Π2n−1 and one has

∫ 1

−1

R(x)ω(x)dx =

1∫
−1

P (x)ωn(x)dx =
n∑

j=1

λ̃j,nP (xj,n) =
n∑

j=1

λj,nR(xj,n) = Ĩn(R),

whereλj,n = λ̃j,n|πn(xj,n)|2 > 0. Thus, ann-point quadrature formula, with positive
coefficients or weights, which is exact inL2n, has been defined. We will refer to it as the
n-point Gauss formula forL2n. Now, we give the following result of uniform boundness for
the coefficients of this quadrature formulas.
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LEMMA 2.1. Under the conditions above, a positive constantM exists such that

n∑
j=1

λj,n ≤ M, n ≥ 1.

REMARK 1. In case that̂α is a Newtonian table, i.e.,

α̂ = {αj,n = αj,k, 1 ≤ j ≤ k, k = 1, . . . , n, and n ∈ Z+}

contained inC \ [−1, 1], condition (2.1) can be omitted in order to prove Lemma2.1.
Proceeding as in [10, Theorem 1, p. 101], and making use of Theorem 1.1 in [7], we can

now give a characterization theorem for these quadrature formulas.
THEOREM 2.2. A quadrature formula of the type

Ĩn(f) =
n∑

j=1

λj,nf(xj,n)

is exact inL2n, if and only if,
(i) In(f) is exact inRn, and
(ii) for eachn ∈ N, {xj,n}n

j=1 are the zeros of thenth-orthogonal polynomialQn(x)
with respect to functionωn(x) given by(2.2).

These Gauss formulas can be obtained in the same way as Markov’s for the polyno-
mial case (see e.g. [11] and references found therein), integrating the rational interpolation
functionR2n ∈ L2n, which is the solution of the Hermite interpolation problem:

R2n(f ; xj,n) = f(xj,n)
R′

2n(f ; xj,n) = f ′(xj,n)

}
j = 1, 2, ..., n

where{xj,n}n
j=1 aren distinct nodes in[−1, 1] andf is a differentiable function on[−1, 1].

Following this procedure, error formulas can be derived by integrating the interpolation error
(see [11] and [7]).

Assuming that̂α satisfies theδ–condition, the class of rational functionsR = ∪n∈NRn

is dense inC[−1, 1] ([8, Theorem 4]. Thus, a theorem on convergence of Gauss quadrature
formulas inL2n can be proved in an analogous way to the polynomial case. We give only a
sketch of its proof.

THEOREM 2.3. The sequence{Ĩn(f)} of Gauss quadrature formulas forL2n, n =
1, 2, . . ., converges to

Iω(f) =
∫ 1

−1

f(x)ω(x)dx,

for any bounded Riemann integrable function on[−1, 1].
Proof. Takef ∈ C([−1, 1]). Now, since a positive constantK exists such that

n∑
j=1

|λj,n| =
n∑

j=1

λj,n ≤ K,

and by the density of the classR in C([−1, 1]), it follows that

lim
n→∞ In(f) = Iω(f).
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Convergence in the class of the bounded Riemann integrable functions is a consequence of
the fact thatλj,n > 0, j = 1, 2, . . . , n, n ∈ N ([6, pp. 127–129]).

We state two lemmas that will be useful in the next section. The former can be found in
[15, Theorem 1.5.4].

LEMMA 2.4. Letω be a weight function on[−1, 1] with∫ 1

−1

ω(x)dx < +∞,

and letf be a real-valued and bounded function on[−1, 1] such that the Riemann integral∫ 1

−1

f(x)ω(x)dx

exists. Then, for anyε > 0, there exist polynomialsp andP such that∫ 1

−1

[P (x) − p(x)]ω(x)dx < ε,

and−M − ε ≤ p(x) ≤ f(x) ≤ P (x) ≤ M + ε, ∀x ∈ [−1, 1] with

M = max

{∣∣∣∣ inf
x∈[−1,1]

f(x)
∣∣∣∣ ,

∣∣∣∣∣ sup
x∈[−1,1]

f(x)

∣∣∣∣∣
}

.

We will state a similar result for rational functions. Letα̂ = ∪n∈Nα̂n ⊂ C \ [−1, 1], with
α̂n = {αj,n ∈ C \ [−1, 1], j = 1, 2, . . . , n}, satisfy theδ–condition (2.1) and furthermore,
assume that for eachn ∈ N, there existsm = m(n), with 1 ≤ m ≤ n, such thatαm,n ∈ α̂n

satisfies|<(αm,n)| > 1.
LEMMA 2.5. Letω be a given weight function on[−1, 1] with∫ 1

−1

ω(x)dx < +∞,

and letf be a complex bounded function on[−1, 1] such that the integral∫ 1

−1

f(x)ω(x)dx

exists. Then, for anyε > 0, there existsR ∈ R satisfying∫ 1

−1

|f(x) − R(x)|ω(x)dx < ε,

and

|f(x) − R(x)| ≤ 2(M + ε),

whereM is a positive constant depending onf .
Proof. We can writef(x) = f1(x)+if2(x) wherefj (j = 1, 2) are bounded real–valued

functions on[−1, 1] such that
∫ 1

−1
fj(x)ω(x)dx exists forj = 1, 2. By using Lemma 2.4,

polynomialsp1, p2, P1 andP2 exist such that forj = 1, 2 and anyε′ > 0, we have

−Mj − ε′ ≤ pj(x) ≤ fj(x) ≤ Pj(x) ≤ Mj + ε′, ∀x ∈ [−1, 1],(2.4)
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with

Mj = max

{∣∣∣∣ inf
x∈[−1,1]

fj(x)
∣∣∣∣ ,

∣∣∣∣∣ sup
x∈[−1,1]

fj(x)

∣∣∣∣∣
}

,

and ∫ 1

−1

[Pj(x) − pj(x)]ω(x)dx < ε′.(2.5)

The functionsF (x) = p1(x) + ip2(x) andG(x) = P1(x) + iP2(x) are continuous and
complex–valued on[−1, 1]. So, by theδ-condition, there exist sequences{rn} and{Rn} in
R such that

lim
n→∞ rn(x) = F (x) and lim

n→∞Rn(x) = G(x),(2.6)

uniformly on[−1, 1].
Take real and imaginary parts and setrn(x) = rn,1(x)+irn,2(x) andRn(x) = Rn,1(x)+

iRn,2(x). From (2.6) it clearly follows that

lim
n→∞ rn,1(x) = p1(x), lim

n→∞Rn,1(x) = P1(x),

lim
n→∞ rn,2(x) = p2(x), lim

n→∞Rn,2(x) = P2(x),

uniformly on [-1,1]. Therefore, forε′′ > 0, there existsn0 ∈ N such that∀n > n0

rn,1(x) − ε′′ < p1(x) < rn,1(x) + ε′′

Rn,1(x) − ε′′ < P1(x) < Rn,1(x) + ε′′

}
∀x ∈ [−1, 1].(2.7)

Without loss of generality we can assume thatαm = a + ib with a < −1 andb > 0 (αm

such that|<(αm)| > 1). Let ᾱm denotes the complex conjugate ofαm. On the other hand,
the function(x − αm)−1 is obviously inR . Write

1
x − αm

=
x − ᾱm

|x − αm|2 =
x − a

|x − αm|2 + i
b

|x − αm|2 := h1(x) + ih2(x),

wherex − a > 0 (sincea < −1). Set

γ1 = min
x∈[−1,1]

{h1(x)} > 0, and γ2 = max
x∈[−1,1]

{h1(x)} > 0.

Takeε′′ = ε̃γ1 with ε̃ > 0 arbitrary. Then, by (2.7), for allx ∈ [−1, 1],

rn,1(x) − ε̃h1(x) < p1(x) < rn,1(x) + ε̃h1(x)(2.8)

and

Rn,1(x) − ε̃h1(x) < P1(x) < Rn,1(x) + ε̃h1(x).(2.9)

Define now

S1(x) = rn,1(x) − ε̃h1(x), R1(x) = Rn,1(x) + ε̃h1(x), x ∈ [−1, 1].

Then, by (2.4), (2.8) and (2.9), we haveS1(x) ≤ f1(x) ≤ R1(x), ∀x ∈ [−1, 1]. On the other
hand, by (2.7),

S1(x) = rn,1(x) − ε̃h1(x) > p1(x) − ε′′ − ε̃h1(x) ≥ p1(x) − ε′′ − ε̃γ2,
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(recall thatγ2 = maxx∈[−1,1]{h1(x)} > 0). Now, by (2.4),S1(x) ≥ −M1 − ε′ − ε′′ − ε̃γ2

(ε′′ = γ1ε̃). Then,

S1(x) ≥ −M1 − ε′ − (γ1 + γ2)ε̃.

By (2.4) and (2.7),

R1(x) < P1(x) + ε′′ + ε̃h1(x) < M1 + ε′ + ε′′ + ε̃γ2 = M1 + ε′ + (γ1 + γ2)ε̃.

In short, the functionsS1(x) andR1(x) defined above satisfy

−M1 − ε′ − (γ1 + γ2)ε̃ ≤ S1(x) ≤ f1(x) ≤ R1(x) < M1 + ε′ + (γ1 + γ2)ε̃.(2.10)

Similarly, consideringh2(x), it can be deduced for the functionf2(x) that

−M2 − ε′ − (δ1 + δ2)ε̃ ≤ S2(x) ≤ f2(x) ≤ R2(x) < M2 + ε′ + (δ1 + δ2)ε̃,(2.11)

where

S2(x) = rn,2(x) − ε̃h2(x), δ1 = minx∈[−1,1]{h2(x)} > 0,
R2(x) = Rn,2(x) + ε̃h2(x), δ2 = maxx∈[−1,1]{h2(x)} > 0.

Define

S(x) = S1(x) + iS2(x) = [rn,1(x) − ε̃h1(x)] + i[rn,2(x) − ε̃h2(x)]

= rn(x) − ε̃[h1(x) + ih2(x)] = rn(x) − ε̃

x − αm
∈ R.

Similarly

R(x) = R1(x) + iR2(x) = [Rn,1(x) + ε̃h1(x)] + i[Rn,2(x) + ε̃h2(x)]

= Rn(x) + ε̃[h1(x) + ih2(x)] = Rn(x) +
ε̃

x − αm
∈ R.

Now, by (2.10) and (2.11), it follows

|f(x) − R(x)| ≤ |f1(x) − R1(x)| + |f2(x) − R2(x)|(2.12)

= (R1(x) − f1(x)) + (R2(x) − f2(x))
< 2[M1 + ε′ + (γ1 + γ2)ε̃] + 2[M2 + ε′ + (δ1 + δ2)ε̃].

On the other hand, by the uniform convergence, we have, forj = 1, 2

lim
n→∞

∫ +1

−1

rn,j(x)ω(x)dx =
∫ +1

−1

pj(x)ω(x)dx, and

lim
n→∞

∫ +1

−1

Rn,j(x)ω(x)dx =
∫ +1

−1

Pj(x)ω(x)dx.

Recalling the notationIω(f) =
∫ +1

−1
f(x)ω(x)dx, for ε′′′ > 0, there existsn1 ∈ N, such that

for anyn > n1,

−ε′′′ + Iω(p1) <Iω(rn,1)< ε′′′ + Iω(p1)
−ε′′′ + Iω(P1) <Iω(Rn,1)< ε′′′ + Iω(P1).
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We have now

Iω(R1 − S1) = Iω(Rn,1 + ε̃h1 − rn,1 + ε̃h1) = Iω(Rn,1) − Iω(rn,1) + 2ε̃Iω(h1),

and

Iω(h1) =
∫ +1

−1

h1(x)ω(x)dx ≤ γ2c0,

with c0 =
∫ +1

−1
ω(x)dx, which can be taken as1. Thus, from (2.5),

Iω(R1 − S1) < Iω(P1) − Iω(p1) + 2(ε′′′ + γ2ε̃) < ε′ + 2(ε′′′ + γ2ε̃).

Similarly, it can be deduced that

Iω(R2 − S2) < ε′ + 2(ε′′′ + δ2ε̃).

This yields

∫ +1

−1

|f(x) − R(x)|ω(x)dx ≤
∫ +1

−1

|f1(x) − R1(x)|ω(x)dx +
∫ +1

−1

|f2(x) − R2(x)|ω(x)dx

=
∫ +1

−1

(R1(x) − f1(x))ω(x)dx +
∫ +1

−1

(R2(x) − f2(x))ω(x)dx

≤ Iω(R1 − S1) + Iω(R2 − S2)
< 2ε′ + 2[ε′′′ + (γ2 + δ2)ε̃].(2.13)

TakingM = M1 + M2, from (2.12) and (2.13), the proof follows.

3. Convergence of interpolatory quadrature formulas. In this section we will be con-
cerned with the estimation of the integral

Iβ(f) =
∫ 1

−1

f(x)β(x)dx,

whereβ(x) is anL1-integrable function (possibly complex) in[−1, 1], i.e.

∫ 1

−1

|β(x)|dx < +∞.

For givenn distinct nodes x1,n, x2,n, x3,n, . . . , xn,n in [−1, 1], there existn coefficients
A1,n, A2,n, . . . , An,n such that

Iβ(f) =
n∑

j=1

Aj,nf(xj,n) := In(f), ∀f ∈ Rn.

Let Rn−1(f, x) be the unique interpolant tof in Rn,

Rn−1(f, xj,n) = f(xj,n), j = 1, 2, . . . , n, n ∈ N.

Settingπk(x) =
∏k

j=1(x− αj,k), k = 1, 2, . . ., and since{π−1
k }n

k=1 is a Chebyshev system
in (−1, 1), existence and uniqueness of such interpolant is guaranteed (see e.g. [5, p. 32]).
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Then, as in the polynomial case (αj,n = ∞, j = 1, 2, . . . , n), it is easily proved (see [10, p.
80]), that

In(f) =
n∑

j=1

Aj,nf(xj,n) = Iβ(Rn−1(f, ·)).

Hence, we will sometimes refer toIn(f) as ann-point interpolatory quadrature formula for
Rn.

Let ω(x) be a given weight function on[−1, 1], (i.e., ω(x) > 0, a.e. on [−1, 1]),
satisfying

∫ 1

−1

|β(x)|2
ω(x)

dx = K2
1 < +∞.

We can establish the following
THEOREM3.1.Letf be a bounded function inL2,ω = {f : [−1, 1] → C :

∫ 1

−1
|f(x)|2ω(x)dx <

∞}. Then,

|Iβ(f) − In(f)| ≤ K1.‖f − Rn−1‖2,ω,

where‖f‖2,ω denotes the weightedL2-norm, i.e.,

‖f‖2,ω =
[∫ 1

−1

|f(x)|2ω(x)dx

] 1
2

.

Proof. Making use of the Cauchy-Schwarz inequality, we have

|Iβ(f) − In(f)| = |Iβ(f) − Iβ(Rn−1(f, .))| =
∣∣∣∣
∫ 1

−1

(f(x) − Rn−1(f, x))β(x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ 1

−1

(f(x) − Rn−1(f, x))
√

ω(x)
β(x)√
ω(x)

dx

∣∣∣∣∣
≤

(∫ 1

−1

(f(x) − Rn−1(f, x))2ω(x)dx

) 1
2

(∫ 1

−1

|β(x)|2
ω(x)

dx

) 1
2

≤ K1‖f − Rn−1(f, .)‖2,ω.

Thus, we see that theL2,ω convergence of the interpolants at the nodes of the quadrature
implies convergence of the sequence of quadrature formulas. Now, the questions are: How to
find nodes{xj,n} in [−1, 1] such that

lim
n→∞ ‖f − Rn−1(f, .)‖2,ω = 0,

and in which class of functions (as large as possible) does it hold?
As a first answer, we have
THEOREM 3.2. Letf be a complex continuous function on[−1, 1] andω(x) > 0 a.e. on

[−1, 1]. Let{xj,n}n
j=1, n = 1, 2, . . . , denote the zeros ofQn(x), thenth monic orthogonal

polynomial with respect to

ω(x)
|πn(x)|2



ETNA
Kent State University 
etna@mcs.kent.edu

48 Quadrature formulas for rational functions

on [−1, 1]. Then,

lim
n→∞ ‖f − Rn−1(f, ·)‖2,ω = 0.

Proof. Let Tn−1(x) ∈ Rn denote the best minimax rational approximant tof(x), i.e.,

ρn−1(f) := ‖f − Tn−1‖[−1,1] = max
x∈[−1,1]

|f(x) − Tn−1(x)| ≤ ‖f − R‖[−1,1], ∀R ∈ Rn.

Then, we have

‖f − Rn−1(f, ·)‖2,ω = ‖f − Tn−1 + Tn−1 − Rn−1(f, ·)‖2,ω

≤ ‖f − Tn−1‖2,ω + ‖Tn−1 − Rn−1(f, ·)‖2,ω

=
{∫ 1

−1

|f(x) − Tn−1(x)|2ω(x)dx

} 1
2

+
{∫ 1

−1

|Tn−1(x) − Rn−1(f, x)|2ω(x)dx

} 1
2

.

But |Tn−1(x) − Rn−1(f, x)|2 ∈ L2n, sincex is real. Then,

‖f − Rn−1(f, ·)‖2,ω ≤ ρn−1(f).
√

c0 +




n∑
j=1

λj,n|Tn−1(xj,n) − Rn−1(f, xj,n)|2



1
2

≤ ρn−1(f).
√

c0 + ρn−1(f)




n∑
j=1

λj,n




1
2

,

with c0 =
∫ 1

−1 ω(x)dx, that is,

‖f − Rn−1(f, .)‖2,ω ≤ ρn−1(f)



√

c0 +


 n∑

j=1

λj,n




1
2


 .(3.1)

By Lemma 2.1, there exists a constantM such that

n∑
j=1

λj,n ≤ M, ∀n ≥ 1.

Since, (see [8])

lim
n→∞ ρn(f) = 0,

from (3.1) the proof of the theorem follows.
We have immediately the following
COROLLARY 3.3. Letβ be anL1-integrable complex function on[−1, 1] such that

∫ 1

−1

|β(x)|2
ω(x)

dx < +∞.



ETNA
Kent State University 
etna@mcs.kent.edu

F. Cala Rodriguez, P. Gonzalez–Vera, and M. Jimenez Paiz 49

Let In(f) =
∑n

j=1 Aj,nf(xj,n) be then-point interpolatory quadrature formula inRn with

nodes{xj,n}n
j=1 at the zeros ofQn, thenth monic orthogonal polynomial with respect to

ωn(x) =
ω(x)

|πn(x)|2 , x ∈ [−1, 1].

Then

lim
n→∞ In(f) = Iβ(f),

for any complex functionf continuous on[−1, 1]
Now, making use of Banach-Steinhaus Theorem (see e.g. [10, p. 264]), we have,
COROLLARY 3.4. Under the same conditions as in Corollary3.3, there exists a positive

constantM such that

n∑
j=1

|Aj,n| ≤ M, n = 1, 2, . . .

EXAMPLE 1. (Multipoint Pad́e-type Approximants)
For z ∈ C \ [−1, 1], consider the functionf(x, z) = (z − x)−1 (in the variablex, andz

as a parameter), so that

Iβ(f(·, z)) =
∫ 1

−1

β(x)
z − x

dx = Fβ(z).

We have

In(f(·, z)) =
n∑

j=1

Aj,n

z − xj,n
=

Pn−1(z)
Qn(z)

,

with Qn(z) =
∏n

j=1(z − xj,n) and Pn−1(z) ∈ Πn−1. In order to characterize such
rational functions, it should be recalled that

In(f) = Iβ(Rn−1(f, ·)),
Rn−1(f, ·) being the interpolant inRn at the nodes{xj,n}n

j=1 to f(x).
WriteRn−1(z, x) = Rn−1((z − x)−1, x). We have that

Rn−1(z, x) =
1

z − x

[
1 − Qn(x)

Qn(z)
πn(z)
πn(x)

]
,

which can be easily checked that belongs toRn, and sinceQn(xj,n) = 0, then

Rn−1(z, xj,n) =
1

z − xj,n
, j = 1, 2, . . . , n.

Thus

Pn−1(z)
Qn(z)

= Iβ

[
1

z − x

(
1 − Qn(x)πn(z)

Qn(z)πn(x)

)]
(3.2)

= Fβ(z) − Iβ

[
Qn(x)πn(z)

(z − x)Qn(z)πn(x)

]
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Hence,

Fβ(z) − Pn−1(z)
Qn(z)

= Iβ

[
Qn(x)πn(z)

(z − x)Qn(z)πn(x)

]
(3.3)

=
πn(z)
Qn(z)

∫ 1

−1

Qn(x)
πn(x)

β(x)
z − x

dx.

We see that the rational functionPn−1(z)
Qn(z) (with a prescribed denominator) interpolatesFβ(z)

at the nodes{αj,n}n
j=1. Following [3], we will refer to this rational function as a Multipoint

Pad́e-type Approximant (MPTA) toFβ(z).
REMARK 2. The same expression as in(3.3) for the error was also obtained in[8],

which is basically inspired from[16, p. 186].
By using Corollary 3.4 and the Stieltjes-Vitali Theorem (see e.g. [9, Theorem 15.3.1]),

the following can be proved:
COROLLARY 3.5. The sequence of MPTA{

Pn−1(z)
Qn(z)

}
n∈N

,

defined in(3.2), converges toFβ(z), uniformly on compact subsets ofC \ [−1, 1].
Now, we are in a position to prove the following
THEOREM 3.6. Let Lf

n−1(x) denote the interpolant inRn to the functionf(x) at the
nodes{xj,n}n

j=1 which are the zeros of thenth orthogonal polynomial with respect toωn(x)
on [−1, 1]. Then,

lim
n→∞ ‖Lf

n−1 − f‖2
2,ω = lim

n→∞

∫ +1

−1

|Lf
n−1(x) − f(x)|2ω(x)dx = 0,

for any complex-valued and bounded function on[−1, 1], such that the integral∫ +1

−1 f(x)ω(x)dx, exists.
Proof. We have

‖Lf
n−1 − f‖2

2,ω =
∫ +1

−1

|Lf
n−1(x) − f(x)|2ω(x)dx

= ‖f‖2
2,ω + ‖Lf

n−1‖2
2,ω − 2

∫ +1

−1

<(Lf
n−1(x)f(x))ω(x)dx.

Hence

‖Lf
n−1 − f‖2

2,ω ≤ ‖f‖2
2,ω + ‖Lf

n−1‖2
2,ω + 2Iω(|Lf

n−1||f |).(3.4)

Now, Lf
n−1 ∈ Rn implies that|Lf

n−1|2 ∈ L2n = { P (x)
|πn(x)|2 , P ∈ Π2n−1}, when restricted to

the real line. So ,

‖Lf
n−1‖2

2,ω = Iω(|Lf
n−1|2) =

n∑
j=1

λj,n|Lf
n−1(xj,n)|2 =

n∑
j=1

λj,n|f(xj,n)|2.

Settingf(x) = f1(x) + if2(x), we have

‖Lf
n−1‖2

2,ω =
n∑

j=1

λj,n[f2
1 (xj,n) + f2

2 (xj,n)].
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Thus

lim
n→∞ ‖Lf

n−1‖2
2,ω = lim

n→∞

n∑
j=1

λj,nf2
1 (xj,n) + lim

n→∞

n∑
j=1

λj,nf2
2 (xj,n)

=
∫ +1

−1

f2
1 (x)ω(x)dx +

∫ +1

−1

f2
2 (x)ω(x)dx

=
∫ +1

−1

|f(x)|2ω(x)dx

= ‖f‖2
2,ω.

On the other hand, by the Cauchy-Schwarz inequality,

{
Iω(|f ||Lf

n−1|)
}2

=
(∫ +1

−1

|f(x)||Lf
n−1(x)|ω(x)dx

)2

≤
(∫ +1

−1

|f(x)|2ω(x)dx

) (∫ +1

−1

|Lf
n−1(x)|2ω(x)dx

)

= ‖f‖2
2,ω · ‖Lf

n−1‖2
2,ω.

Therefore,lim supn→∞ Iω(|f ||Lf
n−1|) ≤ ‖f‖2

2,ω, and by (3.4) it follows that

lim sup
n→∞

Iω(|f − Lf
n−1|2) ≤ 4‖f‖2

2,ω.(3.5)

Now, givenε > 0, by Lemma 2.5, there existsR ∈ R, such that

|f(x) − R(x)| ≤ 2(M + ε), ∀x ∈ [−1, 1],

and ∫ +1

−1

|f(x) − R(x)|ω(x)dx < ε.

Hence,

‖f − R‖2
2,ω =

∫ +1

−1

|f(x) − R(x)|2ω(x)dx

=
∫ +1

−1

|f(x) − R(x)||f(x) − R(x)|ω(x)dx

≤ 2(M + ε)
∫ +1

−1

|f(x) − R(x)|ω(x)dx < 2ε(M + ε).(3.6)

For sufficiently largen, we haveLR
n−1 = R, and we getf − Lf

n−1 = f − R + R − Lf
n−1 =

f −R− (Lf
n−1−LR

n−1) = f −R−Lf−R
n−1 . Hence,‖f −Lf

n−1‖2
2,ω = ‖(f −R)−Lf−R

n−1 ‖2
2,ω

and by (3.5–3.6), it holds that

lim sup
n→∞

‖f − Lf
n−1‖2

2,ω = lim sup
n→∞

‖(f − R) − Lf−R
n−1 ‖2

2,ω

≤ 4‖f − R‖2
2,ω ≤ 8(M + ε)ε.(3.7)

Clearly, from (3.7) the proof follows.
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REMARK 3. The theorem above can be considered as an extension to the rational case
of the famous Erd̈os-Tuŕan result for polynomial interpolation (see[4, pp. 137–138]). Actu-
ally, an earlier rational extension was carried out by Walter Van Assche et al. in[2], under
the restriction that the pointsαj,n are real, distinct and̂α is a Newtonian table, and only
considering continuous functions on[−1, 1].

Finally, making use of Theorem 3.1 and Theorem 3.6, we can state the main result we
referred to in the beginning, (compare with Theorem 1.1).

THEOREM 3.7. Let β be an L1-integrable function on[−1, 1] andω(x) > 0, a.e. on
[−1, 1] be such that

∫ +1

−1

|β(x)|2
ω(x)

dx < +∞.

Let In(f) =
∑n

j=1 Aj,nf(xj,n) be then-point interpolatory quadrature formula inRn,

whose nodes{xj,n}n
j=1, are the zeros ofQn(x), thenth monic orthogonal polynomial with

respect to ω(x)
|πn(x)|2 , x ∈ [−1, 1]. Assume that the tablêα satisfies the same conditions as those

in Lemma2.5. Then,

lim
n→∞ In(f) = Iβ(f) =

∫ +1

−1

f(x)β(x)dx,

for all bounded complex–valued functionf on [−1, 1] such that the integral∫ +1

−1
f(x)β(x)dx exists.
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[15] G. SZEGŐ, Orthogonal Polynomials, 3rd. ed., American Mathematical Society, 1967.
[16] J. L. WALSH, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math.

Soc. Colloq. Publ., Vol. 20, Providence, RI, 1969.


