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SOBOLEV ORTHOGONAL POLYNOMIALS:
INTERPOLATION AND APPROXIMATION  *

ESTHER M. GARGA-CABALLEROT, TERESA E. EEREZ, AND MIGUEL A. PINARY

Abstract. In this paper, we study orthogonal polynomials with respect to the bilinear form

g(co)
gler) (V) (V)
(f:9)s = (f(co); fler)s .-, flen—1))A : + (u, £ gV),
glen-1)
whereu is a quasi-definite (or regular) linear functional on the linear sffagfereal polynomials¢o, c1,...,en—1

are distinct real number$ is a positive integer number, addis arealNV x N matrix such that each of its principal
submatrices are nonsingular. We show a connection between these non-standard orthogonal polynomials and some
standard problems in the theory of interpolation and approximation.
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1. Introduction. During the past few years, orthogonal polynomials with respect to an
inner product involving derivatives (so—called Sobolev orthogonal polynomials) have been the
object of increasing number of works (see, for instance [1], [5], [6], [4], [7], [8]). Recurrence
relations, asymptotics, algebraic, differentiation properties and zeros for various families of
polynomials have been studied. In this paper we study a connection between a particular case
of non—standard orthogonal polynomials and standard problems in the theory of interpolation
and approximation.

In Section 2, we give a description of the monic polynom{als, },, which are orthogo-
nal with respect to

(L1)  (f.9)s = (f(co)s fler)s- .-, flen—1))A : + (u, fM g,
glen-1)

whereu is a regular (or quasi-definite) linear functional on the linear spragkreal poly-
nomials,cy, c1, ..., cny—1 are distinct real numbergy is a positive integer, and is a real
N x N matrix such that each of its principal submatrices are nonsingular{ Bg},, be
the monic polynomials orthogonal with respect to the functianalf n > N, we have
Qulc;) =0, i=0,1,...,N—1,andQ(z) = iy Pon (), while {Qn,})=' are
orthogonal with respect to the discrete part of the symmetric bilinear form (1.1).

In Section 3, we give some examples of monic orthogonal polynomial sequences (in
short MOPS) which are orthogonal with respect to the bilinear form (1.1), using the Laguerre
and Jacobi linear functionals.
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In Section 4, we show that the MOPS with respect to (1.1) can be expressed as the inter-
polation error of anV—th primitive of { P,_x }»>n~, Where{P, }, is the MOPS associated
with the regular linear functionad.

The final section of this paper is devoted to establish the relation between this kind of
discrete—continuous Sobolev orthogonality and a problem of simultaneous polynomial inter-
polation and approximation, in the case when (1.1) is an inner product.

2. The Sobolev discrete—continuous bilinear form.Let P be the linear space of real
polynomialsu a regular linear functional an(see [2]),N a positive integer number, and
a quasi-definite, symmetric and real matrix, that is, a symmetric and real matrix such that all
its principal minors are different from zero. The expression

g(co)
9ler) (N) /(M)
(21) (fag)s = (f(c())af(cl)a'"7f(cN71))A : +<U,f g >7
glen-1)
wherecy, c1, . .., cy—1 are distinct real numbers, defines a symmetric bilinear form.on

Since expression (2.1) involves derivatives, this bilinear form is non-standard, and by
analogy with the usual terminology we call itléscrete—continuous Sobolev bilinear form
Let

N-1
wn(x) = H (x — ¢i).
i=0

In the linear space of real polynomials, we can consider the basis given by

B = (@)} s, vor o7}y

where
No1o
Iy = ja :07]-; 7N_17
w=T1 =2

are Lagrange polynomials.
Forn < N — 1, the associated Gram matr,, is given by then-th order principal
submatrix of the matriXA.. Forn > N, the associated Gram matrix is given by

A 0
G'IL_( 0 anN )7

whereB,, _y is the Gram matrix associated with the quasi-definite linear functioimathe
basisB = { D™ [wy (z)27],j > 0}. In both casesG,, is quasi-definite and therefore, the
discrete—continuous Sobolev bilinear form (2.1) is quasi-definite. Thus, we can assure the
existence of a sequence of monic polynomials, denotedhy} ., which is orthogonal with
respect to (2.1). These polynomials will be calfobolev orthogonal polynomials

THEOREM2.1. Let{Q, }, be the MOPS with respect to the Sobolev discrete—continuous
form (2.1) and le{ P, },, be the MOPS associated with the regular linear functianal
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i) The polynomiald Q. ﬁ)’;ol are orthogonal with respect to the discrete bilinear form

Q(Co)
g(cr)
(22) (fag)D = (f(co)af(cl)v"'7f(CN—1))A : )
glen—-1)
i) If n > N, then
(2.3) Qulci) =0, i=0,1,...,N—1,
!
(2.4) QM (x) = ﬁpn,]v(x).

Proof. i) If 0 < n,m < N, thenQSLN)(a:) =iV (z) = 0, and obviously

Qm,(CO)
Qm,(cl)
(Qn7 Qm)S = (Qn7 Qm)D = (Qn(60)7 Qn(cl)a cee aQn(CN—l))A .
Qm(CN—l)
i) For n > N, from the orthogonality of the polynomié},,, we deduce
li(co)
li(er)
0= (Qn,li)s = (Qn,li)p = (Qn(co),Qnlc1),...,Qnlcn-1))A :
l?,(CN—l)

= (Qnlc0), @uler)s- . Qulen—)A | 1 ],

for0 < ¢ < N — 1. Thus, the vector

(Qn(CO)v Qn(cl)v R Qn(cNfl))v

is the only solution of a homogeneous linear system uNtlequations andV unknowns,
whose coefficient matriA is regular. We conclude th&,,(¢;) =0, ¢=0,1,...,N —1,
i.e., @, contains the factofz — cp)(z —c1) -+ - (x — en—1).

In this way, ifn,m > N,

(Qna Qm)S = <U7 Q%N)ngjlv)> = ];Jn(sn,m; I;n 7£ 0.

*

Thus, the ponnomiaI{:QﬁlN)}nzN are orthogonal with respect to the linear functiomand
equality (2.4) follows from a simple inspection of the leading coefficidmhts.

Conversely, we are going to show that a system of monic polynofiialg,, satisfying
equations (2.3) and (2.4) is orthogonal with respect to some discrete—continuous Sobolev
form like (2.1). This result could be considereffavard-type theorem
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THEOREM2.2. Let {P, },, be the MOPS associated with a regular linear functional
andN > 1 be a given integer. LetQ,, },, be a sequence of monic polynomials satisfying
i)deg@Q, =n, n=0,1,...,

i) Qn(c;) =0, 0<i<N-1, n>N,
i) Q4 () = 2 Paon (), n > N.

Then, there exists a quasi-definite and symmetric real matriof order V, such that
{Q.}n is the monic orthogonal polynomial sequence associated with the Sobolev bilinear
form defined by (2.1).

Proof. Obviously the polynomialp,,, with n > N, is orthogonal to every polynomial of
degree less than or equakbte- 1 with respect to a Sobolev bilinear form like (2.1), containing
an arbitrary matridA in the discrete part and the functionain the second part.

Next, we will show that we can recover the matex from the NV first polynomials
Qr, k=0,1,...,N — 1.

Introduce

Qn_1(c0) Quor(c) .. Qnoi(en_1)

The matrixQ is regular since the system of linearly independent polynonﬁ@,s}nNgo1
satisfies the Haar condition (see [3]).
Let D be a diagonal regular matrix. Define

A=Q'D@Q "
ObviouslyA is symmetric and quasi-definite and since
QAQ" =D,
the polynomialsQo, Q1, ..., Qn_1 are orthogonal with respect to the bilinear form (2.1),

with the matrixA in the discrete part. Moreover, the diagonal entrieBafre(Qy, Q1) s for
k=0,1,...,N—-1.0

REMARK. Observe that the matriX is not unique, because its construction depends on
the arbitrary regular matrilo.

3. Examples.

3.1. Laguerre case.Let o € R, and introduce the monic generalized Laguerre polyno-
mials, cf. [8, p. 102],

n—7>

L) (z) = (=1)"n! zn:fmc(—l)jj! < nta > @, n>0,
j=0

where( Z ) denotes the generalized binomial coefficient

(Z>_(a—]]zl+1)k

and(b), denotes th€ochhammer’s symbdefined by
b)o=1,0)n=00b+1)...(b+n—-1), beR, n>0.
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When « is not a negative integer, Laguerre polynomials are orthogonal with respect to a
regular linear functionak(®). This linear functional is positive definite far > —1.
We know that the derivatives of Laguerre polynomials are again Laguerre polynomials

d .
—L(@) =LV @), n> L

Let{@.}. be the sequence of monic polynomials given by

(3.1) Qu(z) =LNM(z), n=0,1,...,N—1,

N-1
(32) Qn(z) = L7V (a ZL li(z), n>N,

=

wherel;(z), i = 0...N — 1, are the Lagrange polynomials. It follows from Theorem 2.2
that the sequenc),, } ., is orthogonal with respect to the Sobolev bilinear form

9(co)
g(er) (@) £(N) (V)
(fvg)s_(f(c()) f(cl)a'--af(CN—l))A : +<U’ 7f g >7
glen-1)
wherecg, c1, . . ., cy_1 are distinct real numbers and the matAixis given by
A=Q'D@Q ),
Q is the matrix of Laguerre ponnomia{sLEf"N) ﬁ)’;ol evaluated atg, cq,...,cn_1, i.€.,

Q= (L M(e)

andD is an arbitrary regular diagonal matrix.

i,n=0,...,N—1

3.2. Jacobi caseFor « andg real numbers, the generalized Jacobi polynomials can be
defined by means of their explicit representation

n n—m m
(@,8) . n+ o n+ g z—1 Tz +1
P (m)z< m ><n_m 5 . , >0,

m=0

see [8, p. 68].

Whena andg are nonnegative integers, Jacobi polynomials are orthogonal with respect
to a regular linear functional(®-?), This linear functional is positive definite far, 3 > —1.

Let 155,“’5)(3:), n > 0, be monic Jacobi polynomials. We know that the derivatives of
Jacobi polynomials are again Jacobi polynomials

d - (o
P P(@) =nP27 (@), nz 1.

Let {@.}. be the sequence of monic polynomials given by

(3.3) Qn(z) = P~ NIN(g) n=0,1,...,N -1,

(3.4) Qu(z) = P NA=N) (5 Z (@=NB=N)(c)l;(z), n >N,

s
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wherea, 5 anda + 5 — 2N + 1 are not negative integers. It follows from Theorem 2.2 that
the sequencéQ,, },, is orthogonal with respect to the Sobolev bilinear form

g(co)
9ler) (@,8) ¢(N) 4(N)
(fag)S:(f(CO)af(Cl)a'"7.f(CN—1))A : +<U’ ’ af g >’
glen-1)
wherecy, c1, . . ., cy_1 are distinct real numbers and the matAixs given by
A=Q'DQ ",

where
Q= (PE=N(e)))

andD is an arbitrary regular diagonal matrix.

i,n=0,...,N—1

REMARK. Jacobi polynomialqﬁy(fl”l)}nzg contain forn > 2, the factorz? — 1.
Therefore, fora = 6 =1, N = 2andc¢y = 1, ¢; = —1, Theorem (2.2) provides Sobolev
orthogonality for these polynomials (see [6]).

4. Sobolev Orthogonal Polynomials and Interpolation.Let {Q.,,},, be the MOPS
with respect to the Sobolev discrete—continuous form (2.1) anfdAg},, be the MOPS as-
sociated with the regular linear functional Then the polynomial§$@., },, can be expressed
as the interpolation error of &—th primitive of { P,_n } >~

THEOREM4.1. Let the MOPS Q,, },, and{ P, } be defined as above, and legR,,} ,>n
be a sequence d¥-th monic primitives of the polynomia{s®,_ x }n>n. Then

N—-1
Qn(x) = Ryplco,c1,-..,cN=1,7] H (x—¢), n>N,
=0
whereR,,[co,c1,...,cn-1,2], n > N, denotes the usual divided difference.

Proof. Integrating in (2.4)V times, we obtain
N-—-1
Qn(z) = Ru(2) + Y _ Aili(z), n>N,
=0

wherel;(x), i =0,..., N — 1, are the Lagrange polynomials. Using (2.3), we deduce
Ai:—Rn(Ci), ZZO,,N—].

Hence

N-1

Qn(x) = Rn(z) = Y Ru(ci)li(z), n>N,

1=

i.e., forn > N, Q,(x) forn > N is the error of interpolation of the polynomi&}, (x) at
co,C1,---,cn—1 (See [10], p. 49), and therefore

N

Qn(x) = Ryplco,c1y. .. CN-1,2] H (x —¢), nmn>N,
i=0

Ju
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whereR,[co, c1,...,en—1,2], n > N,are the divided differences.

REMARK. In section 3 we observe th&,, n > 0, given by (3.1) and (3.2), is

the interpolation error of Laguerre polynomieﬂé‘*‘m atcg,c1,...,cy—1. Analogously
Qn, n > 0, given by (3.3) and (3.4), is the interpolation error of Jacobi polynomials
(a—N,—N)
P atcg,c1,...,CN—1-
THEOREM 4.2. Let {R,}, be a sequence of monic polynomials such thatR, =
n, n=0,1,..., andlet{Q,}, be the sequence of polynomials determined by

(4.2) Qn(z) = Rp(z), n=0,1,...,N—1,
and let
N-1
(4.2) Qn(z) = Ru(2) = Y Ru(ci)li(z), n >N,
i=
wherecy, ¢4, . .., cny—1 are distinct real numbers.

If {R&N)}@N is an orthogonal polynomial sequence with respect to some regular linear
functionalu, then there exists a quasi-definite and symmetric real matriaf order NV, such
that {Q, }»>n is the MOPS associated with the Sobolev bilinear form defined by (2.1).

Proof. By (4.1) and (4.2) we hawéeg @),, = deg R,, = n, and forn > N we have

N—-1 N—-1

Qn(¢j) = Ru(c;) = > Rulc)li(e;) = Ra(es) = > Rulei)dyy = 0.

1= i=
Moreover,

n!

QM (x) = RN (z) = o)

P,_n(z), n>N,

where{P, },, is the MOPS associated with
From Theorem (2.2) it follows thaf@,,}, is the MOPS with respect to the bilinear form
defined by (2.1), where

A=R'DRH

Ry(co) Ry(c1) Ro(en—-1)
R (co) Ri(c1) Ri(en—-1)
R = )
RN7.1(00) RN7.1(C1) . RN71(.CN71)
Qo(co) Qo(c1) .. Qolen-—1)
Q1(co) Qi(e1) ... Qilen-1)

. . . Y

Qv_1(co) Qnor(c) .. Qnoilen—i)

andD is an arbitrary regular diagonal matriX.
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5. Sobolev Orthogonal Polynomials and Approximation. This kind of discrete—
continuous Sobolev orthogonality can be related to simultaneous polynomial interpolation
and approximation when (2.1) is an inner product. Assumeutt@positive definite and that
A is a positive definite, symmetric and real matrix. Simde positive definite, there exists a
positive definite Borel measuyesatisfying

(w.f) = [ f@)du(o)
R
(see [2, p. 57]), and the discrete—continuous Sobolev inner product (2.1) can be written as
9(co)
9ler) (V) (1))
60 ()5 = (o) flen)ow fex-)A| T [+ [ M@ @)duto)
glen-1)
Let I the convex hull of the set supp) U {¢;}¥;*, and introduce the Sobolev space

W Ldy)={f:1—® fec"N NI, f™NMeLl(I)}

Define the normf|s = /(f, f)s in WL, du]; thusWV (I, du] becomes a normed
linear space (see [3], p. 160). This space is strictly convex (see [3], p. 141). Therefore the
problem of best approximation i3¥ I, du] has a unique solution.

We want to compute the best approximatioryof W3V [I, dyu] related top,,. It is well
know thatv € P, is the best approximation of € W [I,dy] if and only if f — v is
orthogonal tae,,.

THEOREM 5.1. Let f € WV[I,du]. The best approximation of in (P,,, (-,-)s) is
the N—th primitive of the best approximation ¢f™) in (P, dp) that interpolatesf at
CoyCly.-.yCN—1-

Proof. Letw be the best approximation gtV in (P,,_n, du). Letv be theN—th order
primitive of w that interpolateg atcg, c1, ..., cn—1. Therefore

(F=va)s = (= vea)p + [ (%) o)V
= (F=vp+ [(FM = wadp=0. Vaer,.
Thus,v is the best approximation ¢fin (., (-,)s). O
Let{Q.}. be the MOPS with respect to the Sobolev discrete—continuous inner product

(5.1). Letv be the best approximation gfc WV [I,du] in (P,, (-,-)s).
We know that

_ . (vaz)S )
P on

(f,Qi)s
| Qi lI%

THEOREMb.2. Let{@, }, andv be defined as above.

where are the Fourier coefficients of
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i)If n <N —1,then

n

Z \Qz ||2 Qi

ii) If n > N, then

1

(it — N uf( )P N)
Z \@Zn? Q”Z WPy

i= )T i—N

REMARK. We observe that the coefficients

<U, f(N)P'LfN>
<U7P12—N>

are the Fourier coefficients of the best approximatiofi®f in (P, _x, du).
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