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ORTHOGONAL POLYNOMIALS AND QUADRATURE *

WALTER GAUTSCHIT

Abstract. Various concepts of orthogonality on the real line are reviewed that arise in connection with quadra-
ture rules. Orthogonality relative to a positive measure and Gauss-type quadrature rules are classical. More recent
types of orthogonality include orthogonality relative to a sign-variable measure, which arises in connection with
Gauss-Kronrod quadrature, and power (or implicit) orthogonality encountered am-Typé quadratures. Relevant
guestions of numerical computation are also considered.
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1. Introduction. Orthogonality concepts arise naturally in connection with numerical
quadrature, when one tries to optimize the degree of precision. The classical example is the
Gaussian quadrature rule, which maximizes the (polynomial) degree of exactness. Closely
related quadrature rules are those of Radau and Lobatto, where one or two nodes are pre-
scribed. In Gauss-Kronrod rules about half of the nodes are prescribed, all within the support
of the integration measure, which gives rise to orthogonality relative to a sign-variable mea-
sure. Quadrature rules with multiple nodes lead naturally to power (or implicit) orthogonality.
The classical example here is the @nmjuadrature rule.

In the following, these interrelations between orthogonal polynomials and quadrature
rules, as well as relevant computational algorithms, are discussed in more detail.

2. Quadrature rules and orthogonality. We begin with the simplest kind of quadrature
rule,

(2.1) /f t)dA(t ZA f(1) + Ru(f),

where the integral of a functiofi relative to some (in general positive) measudpeis ap-
proximated by a finite sum involving values of f at suitably selected distinct nodes.
The respective error i®,,(f). The support of the measure is usually a finite interval, a half-
infinite interval, or the whole real lin&, but could also be a finite or infinite collection of
mutually distinct intervals or points.

The formula (2.1) is said to have polynomial degree of exactiiéss

(2.2) R,.(f)=0 forall f € Py,

whereP; denotes the set of polynomials of degreel. Interpolatory formulae (or Newton-
Cotes formulae) are those having degiee n — 1. They are precisely the quadrature rules
obtained by replacing in (2.1) by its Lagrange polynomial of degreen — 1 interpolating

f atthe nodes, . We denote by

n

(2.3) wa(t) = [J(t=7)

v=1
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the node polynomial associated with the rule (2.1), i.e., the monic polynomial of degree
having the nodes, as its zeros.

We see that, given the nodesr,,, we can always achieve degree of exactnessl. A
natural question is how to select the nodgand weights\,, to do better. This is answered
by the following theorem.

THEOREMZ2.1. The quadrature rul¢2.1)has degree of exactnegs=n—1+k, k > 0,
if and only if both of the following conditions are satisfied:

(a)the formula(2.1)is interpolatory;

(b) the node polynomial,, satisfies

(2.4) / wn(O)pt)dA(t) =0 forallp € Pp_;.
R

It is difficult to trace the origin of this theorem, but Jacobi [11] must have been aware of
it.

We remark that: = 0 corresponds to the Newton-Cotes formula, which requires no
condition other than being interpolatory. The requirement (2.4), accordingly, is empty. If
k > 0, the condition (2.4) is a condition that involves only the nogesf (2.1); it imposes
exactly &k nonlinear constraints on them, in fact, orthogonality (relative to the mealsgre
of the node polynomial,, to the space of all polynomials of degreek — 1. Once a set
of nodesr, has been determined that satisfies this constraint, the condition (a) then uniquely
determines the weights, in (2.1), for example, as the solution of the linear (Vandermonde)
system of equations.,,_, A\, 7/’ = [, t*dA(t), p=0,1,...,n — 1.

2.1. The Gaussian quadrature rule.If the measurel) is positive, therk < n, since
otherwise (2.4) would have to hold féar = n + 1, implying thatw,, is orthogonal to all
polynomials of degreec n, hence, in particular, orthogonal to itself, which is impossible.
Thus,k = n is optimal, in which case,, is orthogonal to all polynomials of lower degree,
i.e., wy, is the (monic) orthogonal polynomial of degreerelative to the measuré\. We
express this by writing

(2.5) Wi (t) = mp (t; dN).

The interpolatory quadrature rule
2.6) [ 106 = Y869 + RS
v=1

corresponding to this node polynomial is precisely the Gaussian quadrature rule for the mea-
sured). It was discovered by Gauss in 1814 ([4]) in the special case of the Lebesgue measure
dA(t) = dt on[—1,1]. For generall), its nodes are the zeros of the orthogonal polynomial
m(-;d\), and its weights\,,, the so-called Christoffel numbers, are obtainable by interpo-
lation as above. (See, however, Theorem 3.1 below.)

2.2. The Gauss-Radau quadrature rule.If the support ofd)\ is bounded from one
side, say from the left, it is sometimes convenient to take inf suppd\ as one of the
nodes, say; = a. According to Theorem 2.1, this reduces the degree of freedom by one,
and the maximum possible valueofs k = n — 1. If we write w,,(t) = w,—1(¢)(t — a), the
polynomialw,,_; having the remaining nodes as its zeros must be orthogonal to all lower-
degree polynomials relative to the measdikg (t) = (t — a)d\(t), i.e.,

(27) anl(t) = Tn—1 (tv d>\a)~
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The corresponding interpolatory quadrature rule,
(2.8) [ 1 =t Z NEF(EE) + RE(D).
R

is called the Gauss-Radau rule tby (Radau [19]).

There is an analogous rule in the case sup suppi\ < oo, with, say,r,, = b. Indeed,
both rules make sense also in the case inf suppd\ resp. b > sup suppiA. They are
special cases of a quadrature rule already considered by Christoffel in 1858 ([3]).

2.3. The Gauss-Lobatto quadrature rule. If the support ofd) is bounded from both
sides, we may take, = a < inf suppd)\ andr,, = b > sup suppl, thereby restricting the
degree of freedom once more. The optimal quadrature rule becomes the Gauss-Lobatto rule
for d\ ([15)),

n—1
(2.9) /R FOANE) = MEFla) + S0 AEF(rE) + AL F(B) + RE(F),

whose interior nodes, are the zeros of
(2.10) Tn—2(;dXap), drgp = (t —a)(b—t)dA(1).

It, too, is a special case of the Christoffel quadrature rule, which has an arbitrary number of
prescribed nodes outside or on the boundary of the suppdst.of

2.4. The Gauss-Kronrod rule. This quadrature rule has also prescribed nodes, but they
all are in the interior of the support @f\, and it therefore transcends the class of Christoffel
quadrature rules. In trying to estimate the error of the Gauss quadrature rule, Kronrod in 1964
([12], [13]) indeed constructed@n + 1)-point quadrature rule of maximum algebraic degree
of exactness that hasprescribed nodes — theGauss nodes — in addition ton + 1 free
nodes. It thus has the form

n n+1
(2.11) / F)dA(t) = AK FED D NEFE) + RE().
R v= p=1
Here, the node polynomial is
n+1
(212) w2n+1(t) - ﬂ—n(t d>‘) n+1( ) ’/T:,-l—l(t) = H(t - 7—/5()7

p=1
and, according to Theorem 2.1 withreplaced by2n + 1, the quadrature rule (2.11) has
degree of exactnesls= 2n + k if and only if (2.11) is interpolatory and

/ Ty (Op()m(t: dN)AA(E) = 0 forall p e Py,
R

The optimal value of: is k = n + 1, in which caser;, , | is orthogonal to all polynomials of
lower degree, i.e.,

(2.13) 1 (t) = Tng1(t; madX).

Thatis,n;; , , is the (monic) polynomial of degree+- 1 orthogonal relative to the oscillating
measurel\;, (t) = 7, (t; d)\)dA(t). While ;. | always exists uniquely, there is no assurance
that all its zeros are inside the supportidf or even real (cf. [5]).
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3. Computation of Gauss-type quadrature rules. All quadrature rules introduced in
§2 can be computed via eigenvalues and eigenvectors of a symmetric tridiagonal matrix. Part
or all of this matrix is made up of the coefficients in the three-term recurrence relation satisfied
by the (monic) orthogonal polynomiats. (- ) = 7 (- ; d)) relative to the (positive) measure
d\,

7Tk’+1(t) = (t - ak’)ﬂ-k’(t) - ﬁk’ﬂ-k’—l(t)) k= 07 1527 cees N — 17

(3.1) Ta(t) =0, mo(t) =1,

whereay, = oy, (d\) € R, B = Br(dX) > 0 depend orlA andy = [;, dA(t) by convention.
The tridiagonal matrices involved are, respectively, the Jacobi, the Jacobi-Radau, the Jacobi-
Lobatto, and the Jacobi-Kronrod matrix.

3.1. The Gauss quadrature rule. The Jacobi matrix of ordert is defined by

a0 VP 0
VB . VB
(3.2 J¢ = JCd\) = ' '
' ' 57171
0 ﬁnfl Qp—1

The Gauss formula (2.6) can be obtained in terms of the eigenvalues and eigenvegfors of
according to the following theorem.

THEOREM 3.1. (Golub and Welsch [10]yhe Gauss nodes’ are the eigenvalues of
J&, and the Gauss weightg; are given by

n?

(33) >‘Lcj :50[11’5,1]27 V= 1,2,...,71,

whereu$ is the normalized eigenvector of corresponding to the eigenvalug’ (i.e.,
[uS]Tug = 1) anduS) its first component.

Thus, to compute the nodes and weights of the Gauss formula, it suffices to compute
the eigenvalues and first components of the eigenvectors of the Jacobi dfatrifficient
methods for this, such as the QR algorithm, are well known (see, e.g., Parlett [18]). Since the
first componentaf’1 of u$ are easily seen to be nonzero, the positivity of the Gauss rule can
be read off from (3.3).

3.2. The Gauss-Radau formula.We replace: by n+ 1 in (2.8) so as to have interior
nodes,

(3.4) /Rf (D) = A f(a) + D NS () + Ryl (6),

R§+1(P2n) =0.

The Jacobi-Radau matrix of order+- 1 is then defined by

I (dN) | VBren
(3.5) Jfﬂ = Jfﬂ(d)\) = { 5n€£ I osz )
whereJ%(d)\) is asin (3.2)¢l = [0,0,...,1] is thenth coordinate vector ii", and
(3.6) off = a— g, 2=

n(a) ’
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with 7, (- ) = m(-; d)\) as before. One then has the following theorem analogous to Theo-
rem 3.1.
THEOREM 3.2. (Golub [9])The Gauss-Radau node§ = a, 7f%,...,7.F in (3.4)are

the eigenvalues of, ;, and the Gauss-Radau weight§ are given by
(3.7) /\fzﬁo[uﬁl]Q, v=0,1,2,...,n,
whereu? is the normalized eigenvector dﬁﬂ corresponding to the eigenvalug® (i.e.,

[uf]Tull = 1) anduf, its first component.

v

As previously for the Gauss formula, the QR algorithm, now appliedto, is again
the method of choice to compute Gauss-Radau formulae. Their positivity follows from (3.7).
Theorem 3.2 remains in forcedf < inf suppdA. If the right end pointis the prescribed node,
Tf+1 = b, orif Tff“ = b > sup suppi), a theorem analogous to Theorem 3.2 holds with
obvious changes.

3.3. The Gauss-Lobatto formula. We now replace: by n 4+ 2 in (2.9) and write the
Gauss-Lobatto formula in the form

/R FANE) = Nf(@) + 5L F(E) + AL £(b) + RE, 4 (f),
v=1

Rr€+2 (]P2n+1) =0.
The Jacobi-Lobatto matrix of order+ 2 is defined by

JC@N) | VBaen 0
(3.9) JE = JEdN) = | VBuen | an \/ B |,

n
T /L L
0 n+1 an-{—l

with JG (d)\) ande,, as before, and%_ ,, 3%, | the solution of the 22 linear system

(3.8)

(3.10) Tny1(a) mn(a) } { i ] _ { ampi1(a) } .

Tn+1(b) (D) #4-1 btp+1 (b)

We now have
THEOREM3.3. (Golub [9])The Gauss-Lobatto nodeg = a, 7, ..., 7, 7k, = bin

y In

(3.8)are the eigenvalues d[,§+2, and the Gauss-Lobatto weight$ are given by
(3.11) A= Boluly)?, v=0,1,2,...,n,n+1,

whereu” is the normalized eigenvector dﬁﬁ corresponding to the eigenvalug (i.e.,
[ul]Tul = 1) andul, its first component.

Also Gauss-Lobatto formulae are therefore computable by the QR algorithm, now ap-
plied to J§+2, and by (3.11) we still have positivity of the quadrature rule. Theorem 3.3

holds without change far < inf suppd\ andb > sup suppi\.

3.4. The Gauss-Kronrod formula. It has only recently been discovered by Laurie that
an eigenvalue/eigenvector characterization similar to those in Theorems 3.1-3.3 holds also
for the Gauss-Kronrod rule (2.11). The Jacobi-Kronrod matrix of o2def 1 now has the
form

Jg V Bnen 0
(3.12) JE = JE (AN = | /Bael o, VBnirel |,
0 \/ﬁn+161 J;:
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wheree! = [1,0,...,0] € R* andJ* is a real symmetric tridiagonal matrix which has
different forms depending on whetheiis odd or even:

(3.13) J* l J’?+11(3n*1)/2 ‘ Ban+1)/26(n—1)/2 ]

’ nodd — - ’
By | Toninzn

(3.14) .- J§+1:3n/2 ‘ Blanta)/26n/2

neven — ; T
\/ ﬁ(3n+2)/26n/2

Here, JS_ is the principal minor matrix of the (infinite) Jacobi matri¥ having diago-

? ¥ pq A L A
nal elementsy,, apyi1, ..., aq, andJC‘ are symmetric tridiagonal matrices, and

(3n+2)/2]:2n
Bi3n12)/2 @n element yet to be determined.

THEOREM3.4. (Laurie [14])Let A} > 0 and %" > 0in (2.11) ThenJ; in (3.12)has
the same eigenvalues d§'. Moreover, the nodes” and 7 are the eigenvalues ofj;, ., ;,
and the Gauss-Kronrod weights are given by

J(>.<3n+2)/2:2n

K K 12 K K 2
(315) )‘u = ﬁ()[uy,l] y V= ]-a ERRERL2 A:, = 50[uu+n,1] y b= 1; s M + ]-a
w_hereu{ﬂ uf, ..., uf , are the normalized eigenvectors &f, , corresponding to the
eigenvalues{, ... .75, ..., 7%, anduf), uf,, ... uf, | | their first components.

Conversely, if the eigenvalues.ff and.J* are the same, thef2.11)exists with real

nodes and positive weights.

We remark that according to a result of Monegato [16] the positivib){fﬁ? implies the
reality of the Kronrod nodesf and their interlacing with the Gauss nodés

Once the trailing tridiagonal blocks in (3.13), (3.14), a@EgnJrz)/Q if n is even, are
known, the Gauss-Kronrod formula can be computed in much the same way as the Gauss
formula in terms of eigenvalues and eigenvectors of the symmetric tridiagonal mg;w.
This in fact is the way Laurie’s algorithm proceeds. Note, however, that when the npdes
are already known, there is a certain redundancy in this algorithm in as much as these Gauss
nodes are recomputed along with the Kronrod nogfésThis redundancy is eliminated in a
more recent algorithm of Calvetti, Golub, Gragg, and Reichel, which bypasses the computa-
tion of the trailing block in (3.12) and focuses directly onto the Kronrod nodes and weights
of the Gauss-Kronrod formula.

3.4.1. Laurie’s algorithm. ([14]) Assume that the hypotheses of Theorem 3.4 are ful-
filled. Let, as before{m }7_, denote the (monic) polynomials belonging to the Jacobi matrix
J&(d)), and thus orthogonal with respect to the measileand let{}; }?_, be the (monic)
orthogonal polynomials belonging to the matrf¥ in (3.12) and measuréy™ (in general
unknown). Define “mixed” moments by

(3.16) Okt = (T, ) dpe

where( -, - )4+ is the inner product relative to the measdre’. Although the measuréy*
is unknown, a few things about the momemnis, are known. For example,

(3.17) ope =0 foré <k,
which is an immediate consequence of orthogonality. Also,

(3.18) opn =0 fork <n,
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again by orthogonality, since, = = by Theorem 3.4. It is easy, moreover, to derive the
recurrence relation

(3.19) Okt+1 — Ohyi1,e — (O — )0k — Brok—1,0 — Beoke—1 =0,

where{a;}}}Z; are the diagonal elements @f and{,/5; }}_| the elements on the side di-
agonals, whilga,};—, {\/B:} ;= are the analogous elementskf. Some of the elements

og, B are known according to the structure of the matrices in (3.13) and (3.14). Indeed, if
we assume for definiteness thais odd, then

(320) Ot;; = Op+1+k for k S (TL - 3)/2, 6;: = ﬁn+1+k for k S (TL - 1)/2

Using the facts thato,o = [, du*(t) = 35 = Bny1ando_1, =0forl=0,1,...,n—
1,00,-1 = 0,andog —2 = op,—1 = 0fork =1,2,...,(n —1)/2, one can solve (3.19)
for o, ¢+1 and compute the entries, ¢ in the triangular array indicated by black dots in Fig.
3.1 (drawn forn = 7), since then; and g}, required are known by (3.20) except for the top
element in the triangle. For this element thigfor &k = (n — 1)/2 is not yet known, but, by
good fortune, it multiplies the element,, _1) /2 (n—3)/2, Which is zero by (3.17). This mode
of recursion from left to right has already been used by Salzer [21] in another context.

k

N
n-1 —» X [©
X X O
0 X X X O
0 0@ XX X X O
n32— 0 0 @ @ o X X O
0 0 o o @ ¢ @ X O

. S S S e S S ¢

)ooooooT
n

FiG. 3.1.Computation of the mixed moments

At this point, one can switch to a recursion from bottom up, using the recurrence relation
(3.19) solved fob41,¢. This computes all entries indicated by a cross in Fig. 3.1, proceeding
from the very bottom to the very top of the array. For e&ahith (n — 1)/2 < k <n —1,
the entries in Fig. 3.1 surrounded by boxes are those used to compute the as yet umknown
B, according to

Ok k+1 Ok—1,k Ok.k
(3.21) ap = oy + R —, B =—"—
Ok.k Ok—1,k—1 Ok—1,k—1

This is the way Sack and Donovan [20] proceeded to generate modified moments in the
modified Chebyshev algorithm (cf. [65.2]). In the present case, crucial use is made of the
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property (3.18) of mixed moments, which provides the zero boundary values at the right edge
of theo-tableau. Once in possession of all tig 5} required to computd;;, one proceeds
as described earlier.

3.4.2. The algorithm of Calvetti, Golub, Gragg, and Reichel.([2]) Here we assume
for simplicity thatn is even. There is a similar, though slightly more complicated, algorithm
whenn is odd.

The symmetric tridiagonal matrix® in (3.12) determines its own set of orthogonal poly-
nomials, in particular, an-point Gauss quadrature rule relative to some (unknown) measure
dp*. Since by Theorem 3.4 the eigenvaluesjjfare the same as those &f, the Gauss
rule in question has node$§’ and certain positive weighjs;, v = 1,2, ..., n. Likewise, the

(known) matrifoJrl:Sn/2 of ordern /2 in (3.14) determines another Gauss rule whose nodes

and weights we denote respectivelyfyand,., s = 1,2, ... ,n/2. Letv = [v1,va, ..., Uy)
andv* = [v},v3,...,v}] be the matrices of normalized eigenvectorgffand.J;, respec-
tively. The algorithm requires thiast components; ,,,va ., ..., v, » Of the eigenvectors
v1,v2, ..., v, and thefirstcomponentsy ;,v3 4, ..., v;, ; of the eigenvectorsy, v3, ..., v;,.
The latter, according to Theorem 3.1, are related to the Gauss weigliig means of the
relation

(3.22) Bolvpal* =y, v=1,2,....m,

and can therefore be computed as the positive square rop}y 6. It can be easily shown,
on the other hand, that the weights are computable with the help of the second Gauss rule
above as

n/2
(323) /’[/lt = ZEV(%H)S‘Ha V= 1) 27 RN
k=1

where ¢, are the elementary Lagrange polynomials associated with the ndtes’,

G
ey Ty s

With these auxiliary quantities computed, the remainder of the algorithm consists of the
consolidation phase of a divide-and-conquer algorithm due to Borges and Gragg ([1]). The
spectral decomposition of} is

(3.24) Jr = U*DT[U*]T, D, = diag(ﬁG, TQG, ... ,Tf).
Define

v 0 0
(3.25) V=01 0 |,

0 0 wo*

a matrix of ordeRn + 1. We then have from (3.12) that

D, =M BowTe, 0
(3.26) VT(Jg 1 —ADV = Brelv n — A VBnirefve |,

0 \/ﬁn_H[U*]Tel DT — A

where the matrix on the right is a diagonal matrix plus a Swiss cross containing the elements
of e'v andeTv* previously computed. By orthogonal similarity transformations involving
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a permutation and a sequence of Givens rotations, the matrix in (3.26) can be reduced to the
form

D, — M | 0 0

(3.27) VIS = M)V = 0 ‘ D, — M c :
0

whereV is the transformed matrik andc a vector containing the entries in positions- 1

to 2n of the transformed vectdy/B,el v, /Bnr1el v*, a,]. Itis now evident from (3.27)
that one set of eigenvalues df;,, | is {7, 75,...,7¢}. The remaining eigenvalues are
those of the trailing block in (3.27). To compute them, observe that

T

D, — ) c B
c on— N |

I 0 D, — ) c
(D — M)t 1] [ o7 —f(\) |7

where in terms of the componenisof ¢,

n 2
(3.28) FO) = )\—an—kZTGci”_/\.

v=1 VY

Thus, the remaining eigenvaluesHf, , , are the zeros of (\), which can be seen to interlace
with the nodes¢'. The first components of the normalized eigenvectdrsus, ..., uf, .,
needed according to Theorem 3.4 are also computable from the columh®pkeeping
track of the orthogonal transformations.

4. Quadrature rules with multiple nodes. We now consider quadrature rules of the
form

n r—1

(4.1) [ 5000 = 3N 1) + R,

v=1 p=0

where eachr, is a node of multiplicityr. The underlying interpolation process is the one
of Hermite, which is exact for polynomials of degrger - n — 1. We therefore call (4.1)
interpolatory if it has degree of exactness= r - n — 1. As before, the node polynomial is
defined by

n

(4.2) wn(t) = H(t - TV)'

v=1

In analogy to Theorem 2.1, we now have the following theorem.

THEOREM 4.1. The quadrature rulé4.1) has degree of exactnegs=r -n — 1 + k,
k > 0, if and only if both of the following conditions are satisfied:

(a)the formula(4.1)is interpolatory;

(b) the node polynomial,, satisfies

(4.3) /R[wn(t)]rp(t)d)\(t) =0 forallpePy_;.

The caseé: = 0 corresponds to the Newton-Cotes-Hermite formula, which requires no
extra condition beyond that of being interpolatory.kIf> 0, the condition (b) is again a
condition involving only the nodes,, namely orthogonality of theth power ofw,, to all
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polynomials of degre& k — 1. It is immediately clear from (4.3) that for positive measures
d\ the multiplicity » must be an odd integer, since otherwise we could not have orthogonality
of w; to a constant, let alone #®,_;. It is customary, therefore, to write

4.4 r=2s+1, s>0.

It then follows thatk < n, since otherwisé& = n + 1 would imply orthogonality ofw],

to all polynomials of degre& n, in particular, orthogonality ta,,, which, r being odd, is
impossible. Thusi = n is optimal; the corresponding interpolatory quadrature rule is called
the Gauss-Twn rule for the measuré\ ([22]). For it, the polynomialo2s*! is orthogonal

to all polynomials of degree n — 1, the polynomialy,, thus the so-called-orthogonal
polynomial of degree:. There is an extensive theory of these polynomials, for which we
refer to the book of Ghizzetti and Ossicini [§3.9,4.13]. We mention here only the elegant
result of Tuen [22], according to whicl,, is the extremal polynomial of

(4.5) /R [w(®)]?*T2d\(t) = min,

where the minimum is sought among all monic polynomialsf degreen. From this, there
follows in particular the existence and uniqueness of real GausmTormulae, but not
necessarily their positivity. Nevertheless, it has been shown by Ossicini and Rosati [17] that

AP >0,0=1,2,...,n,if p > 0is even.

5. Computation of Gauss-Tui&n quadrature rules. (Gautschi and Milovanowi[7])
The computation of the Gauss-aurformula

n 2s

/R FOAAE) = S STADT O (T + RT(f),

v=10=0

(5.1)
Rz (]P)Q(s-‘,-l)n—l) =0,

involves two stages:
(i) The generation of the-orthogonal polynomiat,, = , s, i.e., the polynomiair,, satis-
fying the orthogonality relation

(5.2) /[wn(t)]25+1p(t)d>\(t) =0 forallp e P,,_1;
R

the zeros ofr,, are the desired nodeg in (5.1).
(i) The computation of the weights.”” .
Since the latter stage requires knowledge of the nediesve begin with the computation of
the s-orthogonal polynomiat, .
We reinterpret power orthogonality in (5.2) as ordinary orthogonality with respect to the
measure

(5.3) A s(t) = [mn ()2 dN(t),
which, liked), is also positive,

(5.4) / T (Op()dAns(t) = 0 forallp e By .
R

Since the measutd\,, ; involves the unknownm,,, one also talks aboutimplicit orthogonality.



ETNA

Kent State University
etna@mcs.kent.edu

Orthogonal polynomials and quadrature 75

The measurel)\,, s being positive, it defines a sequeneg(t) = i (t;d\ns), k =
0,1,...,n, of orthogonal polynomials, of which only the last one foe= n is of interest to
us. They satisfy a three-term recurrence relation (3.1), with coefficignts, given by the
well-known inner product formulae

Jo tr(t)dAy s (t)

o = —fRWk O (D) , I}—(Q),l,...,n—l,
T (8)d A, s (1)
(5.5) By = /R dns(t), Br = fﬂﬁrﬁ_l Dds @’
k=1,...,n—1.
This constitutes a system @i nonlinear equations for then coefficientsayg, aq, ...,
an—1;Po,0B1,--.,Bn_1, Which can be written in the form
(5.6) ¢=0, ¢" =[po, 91, P2n-1],

where, in view of (5.3),

b0 = fo — /R 225 (1)dA(E),
(5.7) bop = /R[ﬁyw,%,l(t) — 2O ()N, v=1,...,n— 1,
Bovy1 = /(a,, — )2 ()2 (H)d\(t), v =0,1,...,n — 1.
R

Here, eachr; is to be considered a function efy, ..., ax_1;01,...,0k—1 by virtue of
the three-term recurrence relation (3.1) which it satisfies. Since all integrands in (5.7) are
polynomials of degre& 2(s + 1)n — 1, the integrals in (5.7) can be computed exactly by an
(s + 1)n-point Gaussian quadrature rule relative to the meagiré\ny method for solving
systems of nonlinear equations, such as Newton’s method or quasi-Newton methods, can now
be applied to solve (5.6). (For Newton’s method, in this context, see [7].)

We now turn to the computation of the quadrature weights. Here we note that

wou(t) = (L= 70y TL (¢ = 72y,
(58) pF Y
p=0,1,....255 v=1,....n

are polynomials of degre€ (2s + 1)n — 1, hence, by (5.1)RY(w,,) = 0. This can be
written as

n

(5.9) > Z MWL) = bp,

rkr=10=0
with
(5.10) by, = / W/),V(t)d/\(t)'
R
By virtue of the definition (5.8) ok, .., we haveu,(f’,,)( Ty = 0 for k # v, so that the system
(5.9) breaks up inta separate linear systems for the weigh,&‘é)T, c=0,1,...,2s,
2s
(5.11) S XY () = by, p=0,1,...,25.
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of these systems further simplifies siaxﬁ,jé? (rI') = 0 for p > o. Thatis, for each,

we obtain the upper triangular system

(5.12)

(28) T

W()’V(’T;T) wO,V(Tv ) C"}0,1/ (TI/ ) -| [ )\(VO)T -| bO,V
R W GO B NPV B W
when(rf) | L AT bas.y

The matrix elements can easily be computed by linear recursions (cf. [7]) and the elements

of the

(1]

[2]
(3]
(4]
(3]
(6]
[7]
(8]
(9]
(10]
(11]
(12]
(23]

[14]
(15]

[16]
(17]

(18]

(19]
(20]
[21]

[22]

right-hand vector bis + 1)n-point Gauss quadrature as before.

REFERENCES

BORGES C.F.AND GRAGG, W.B. 1993. A parallel divide and conquer algorithm for the generalized real
symmetric definite tridiagonal eigenproblem.Namerical Linear AlgebrdlL. Reichel, A. Ruttan, and
R.S. Varga, eds.), de Gruyter, Berlin, pp. 11-29.

CALVETTI, D., GoLuB, G.H., GRAGG, W.B.,AND REICHEL, L. Computation of Gauss-Kronrod quadra-
ture rules, to appear.

CHRISTOFFEL E.B. 1858.Uber die GauRische Quadratur und eine Verallgemeinerung derséltiReine
Angew. Math. 5561-82. [Ges. Math. Abhandlungen |, 65-87.]

GAuss, C.F. 1814. Methodus nova integralium valores per approximationem inven@owiimentationes
Societatis Regiae Scientarium Gottingensis Recentiorg¥eéke Ill, 163—-196.]

GAUTSCHI, W. 1988. Gauss-Kronrod quadrature — a surveyNtmerical Methods and Approximation
Theory Il (G.V. Milovanovi, ed.), Faculty of Electronic Engineering, Univ. ofd\Nis, pp. 39-66.

GAUTSCHI, W. 1996. Orthogonal polynomials: applications and computatioActa Numerica 199¢A.
Iserles, ed.), Cambridge University Press, Cambridge, pp. 45-119.

GAUTSCHI, W. AND MILOVANOVI C, G.V. 1997.s-orthogonality and construction of Gauss-@nitype
quadrature formulael. Comput. Appl. Math. 8&205-218.

GHIZZETTI, A. AND OSSICINI, A. 1970.Quadrature formulagAcademic Press, New York.

GoLus, G.H. 1973. Some modified matrix eigenvalue proble§isM Rev. 15318-334.

GoLus, G.H.AND WELSCH, J.H. 1969. Calculation of Gauss quadrature ri&sth. Comp. 23221-230.
Loose microfiche suppl. A1-A10.

Jacosl, C.G.J. 1826. Ueber Gaul3s neue Methode, die Werthe der Integtaeungsweise zu finded.
Reine Angew. Math., B01-308.

KRONROD, A.S. 1964. Integration with control of accuracy (Russidmkl. Akad. Nauk SSSR 15283—
286.

KRONROD, A.S. 1964.Nodes and weights for quadrature formulae. Sixteen-place t{Blassian), |zdat.
“Nauka”, Moscow. [Engl. transl.: Consultants Bureau, New York, 1965.]

LAURIE, D.P. 1997. Calculation of Gauss-Kronrod quadrature rifiegh. Comp. 661133-1145.

LoBATTO, R. 1852.Lessen over de Differentiaal- en Integraal-RekeniRart |1. Integraal-RekeningVan
Cleef, The Hague.

MONEGATO, G. 1976. A note on extended Gaussian quadrature Miath. Comp. 30812—-817.

OssICINI, A. AND RosSATI, F. 1978. Sulla convergenza dei funzionali ipergaussidend. Mat. (6) 11
97-108.

PARLETT, B.N. 1980.The symmetric eigenvalue probleRrentice-Hall Ser. Comput. Math., Prentice-Hall,
Englewood Cliffs, NJ. [Corr. repr. i€lassics in Applied Mathematics 281AM, Philadelphia, PA,
1998.]

RADAU, R. 1880.Etude sur les formules d’approximation qui servam@lculer la valeur nuerique d'une
integrale @finie.J. Math. Pures Appl. (3),6283-336.

SACK, R.A. AND DONOVAN, A.F. 1971/72. An algorithm for Gaussian quadrature given modified mo-
ments.Numer. Math. 18465-478.

SALZER, H.E. 1973. A recurrence scheme for converting from one orthogonal expansion into another.
Comm. ACM 16705-707.

TURAN, P. 1950. On the theory of the mechanical quadratiicta Sci. Math. Szeged 120-37. [Collected
Papers 1, 507-514.]



