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Abstract

Spline functions have proved to be very useful in numerical anal-

ysis, in numerical treatment of differential, integral and partial dif-

ferential equations, in statistics, and have found applications in sci-

ence, engineering, economics, biology, medicine, etc. It is well known

that interpolating polynomial splines can be derived as the solution

of certain variational problems. This paper presents a variational

approach to spline interpolation. By considering quite general vari-

ational problems in abstract Hilbert spaces setting, we derive the

concept of ”abstract splines”. The aim of this paper is to present

a sequence of theorems and results starting with Holladay’s classical

results concerning the variational property of natural cubic splines

and culminating in some general variational approach in abstract

splines results.
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1 Introduction

It is more than 50 years since I. J. Schoenberg ([45], 1946) introduced

”spline functions” to the mathematical literature. Since then, splines, have

proved to be enormously important in brance of mathematics such as ap-

proximation theory, numerical analysis, numerical treatment of differential,

integral and partial differential equations, and statistics. Also, they have

become useful tools in field of applications, especially CAGD in manufac-

turing, in animation, in tomography, even in surgery.

Our aim is to draw attention to a variational approach to spline functions

and to underline how a beautiful theory has evolved from a simple classical

interpolation problem. As we will show, the variational approach gives a

new way of thinking about splines and opens up directions for theoretical

developments and new applications.

Despite of so many results, this topics is not mentioned in many relevant

texts on numerical analysis or approximation theory: even books on splines

tend to mention the variational approach only tangentially or not at all.

Even though, there are recently published a few papers which underline

the variational aspects of splines, and we mention the papers of Champion,

Lenard and Mills ([17], 2000, [16], 1996) and of Beshaev and Vasilenko ([11],

1993).

The plan of this paper contains the following sections:

1. Preliminaries, definitions and usual notations.

2. Development of variational approach to splines.

3. Abstract splines.

4. Conclusion and comments.
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The theorems and results of increasing generality or complexity which culmi-

nate in some general and elegant abstract results are not necessarily chrono-

logical.

2 Preliminaries

Notations:

R – the set of real numbers

I : [a, b] ⊂ R
Pm := {p ∈ R→ R, p is real polynomial of degree ≤ m, m ∈ N}
Hm(I) := {x : I → R, x(m−1) abs. cont. on I, x(m) ∈ L2(I),

m ∈ N, given}
If we define an inner product on Hm(I) by

(x1, x2) :=

∫

I

m∑
j=0

x
(j)
1 (t)x

(j)
2 (t)dt

then Hm(I) becomes a Hilbert space.

If X is a linear space, then θX will denote the zero element of X.

Definition 1. Let a = t0 < t1 < . . . < tn < tn+1 = b be a partition of I.

The function s : I → R is a polynomial spline of degree m with respect to

this partition if

• s ∈ Cm−1(I)

• for each i ∈ {0, 1, . . . , n}, s|[ti,ti+j ] ∈ Pm

The interior points {t1, t2, . . . , tn} are known as ”knots”.
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Natural cubic splines

Suppose that t1 < t2 < . . . < tn and {z1, z2, . . . , zn} ⊂ R are given.

The classical problem of interpolation is to find a ”nice” function Φ which

interpolates the data point (ti, zi), 1 ≤ i ≤ n, that is:

Φ(ti) = zi, 1 ≤ i ≤ n

Classical approaches developed by Lagrange, Hermite, Cauchy and oth-

ers rely on choosing Φ to be some suitable polynomial. But are there

better functions for solving this interpolation problem? The first answer to

this question can be found in a result which was proved by Holladay [27] in

1957.

Theorem 1. (Holladay, 1957) If

• X := H2(I),

• a ≤ t1 < . . . < tn ≤ b; n ≥ 2,

• {z1, z2, . . . , zn} ⊂ R, and

• In := {x ∈ X : x(ti) = zi, 1 ≤ i ≤ n},

then exists a unique σ ∈ In such that

∫

I

[σ(2)(t)]2dt = min

{∫

I

[x(2)(t)]2dt : x ∈ In

}
(1)

Furthermore,

• σ ∈ C2(I),

• σ|[ti,ti+1] ∈ P3 for 1 ≤ i ≤ n− 1,
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• σ|[a,t1] ∈ P1 and σ|[tn,b] ∈ P1.

From (1) we conclude that σ is an optimal interpolating function – ”op-

timal”, in the sense that it minimize the functional

∫

I

[x(2)(t)]2dt over all

functions in In. The theorem goes on to state that σ is a cubic spline func-

tion in the meaning of Schoenberg definition (1946). As σ is linear outside

[t1, tn] it is called ”natural cubic spline”.

So, in a technical sense, we have found functions which are better than

polynomials for solving the interpolation problem. Holladay’s theorem is

most surprising not only because its proof is quite elementary, relying on

nothing more complicated than integration by parts, but it shows the in-

trinsec aspect of splines as solution of a variational problem (1) that has

been a starting point to develop a variational approach to splines.

It is natural to ask: ”Why would one choose to minimize

∫

I

[x(2)(t)]2dt?”

For three reasons:

i) The curvature of function σ is σ(2)/(1+σ′2)3/2 and so the natural cubic

spline is the best in the sense that it approximates the interpolating

function with minimum total curvature if σ′ is small.

ii) The second justification is that the natural cubic spline approximates

the solution of a problem in physics, in which a uniform, thin, elastic,

linear bar is deformed to interpolate the knots specified in absence of

external forces. This shape of such a bar is governed by a minimum

energy in this case minimum elastic potential energy. The first order

approximation to this energy is proportional to the functional (1).

Hence the term natural spline is borrowed the term ”spline” from the
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drafting instrument also known as a spline.

iii) When presented with a set of data points (ti, zi), 1 ≤ i ≤ n, a statis-

tician can find a regression line which is the line of best fit in the

least squares sense. This line is close to the data points Holladay’s

theorem shows that σ minimizes

∫

I

[x(2)(t)]2dt while still interpolating

the data. We could say that σ is an interpolating function which is

”close to a straight lines” in that it minimizes this integral.

Thus, linear regression gives us

a straight line passing close to the points

whereas Holladay’s result gives a curve σ which is

close to a straight line but passing through the points.

3 More splines

As we shall see, the Holladay’s theorem was the starting point in devel-

oping the variational approach to splines. In what follows we shall describe

a few of the many important generalizations and extensions of Holladay’s

theorem.

Dm-splines

The next step was taken in 1963 by Carl de Boor [13] with the following

result.

Theorem 2. (C. de Boor, 1963) If

• X := Hm(I),
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• a ≤ t1 < t2 < . . . < tn ≤ b; n ≥ m,

• {z1, z2, . . . , zn} ⊂ R and

• In := {x ∈ X : x(ti) = zi, 1 ≤ i ≤ n}

then exists a unique σ ∈ In such that

∫

I

[σ(m)(t)]2dt = min

{∫

I

[x(m)(t)]2dt : x ∈ In

}

Furthermore,

• σ ∈ C2m−2(I),

• σ|[ti,ti+1] ∈ P2m−1, 1 ≤ i ≤ n− 1, and

• σ|[a,t1] ∈ Pm−1 and σ|[tn,b] ∈ Pm−1.

The function σ was called Dm-spline because it minimizes

∫

I

(Dmx)2dt,

as x varies over In. The function σ is called the interpolating natural

spline function of odd degree.

Clearly if we let m = 2 in de Boor result, then we obtain Holladay result.

For the even degree splines, such result was given by P. Blaga and G. Micula

in 1993 [38].

Trigonometric splines

In 1964, Schoenberg [46] changed the setting of the interpolation prob-

lem from the interval [a, b] to the unit circle: that is, from a non-periodic

setting to a periodic setting.
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Similarly, let Hk
2π([0, 2π)) denote the following space of 2π-periodic func-

tions:

Hk
2π([0, 2π)) := {x : [0, 2π) → R : x− 2π − periodic,

x(k−1) abs. cont. on [0, 2π), x(k) ∈ L2
2π([0, 2π))}.

Theorem 3. (Schoenberg, 1964) If

• X := H2m+1
2π ([0, 2π))

• 0 ≤ t1 < t2 < . . . < tn < 2π, n > 2m + 1

• {z1, z2, . . . , zn} ⊂ R and

• T : X → L2
2π([0, 2π)), where T := D(D2 + 12) . . . (D2 + m2),

then exists a unique σ ∈ In such that

∫ 2π

0

[T (σ)(t)]2dt = min

{∫ 2π

0

[T (x)(t)]2dt : x ∈ In

}
.

The optimal interpolating function σ is called the trigonometric

spline. Schoenberg defined a trigonometric spline as a smooth function

which in a particular piecewise trigonometric polynomial manner. He shows

that trigonometric splines, so defined, provide the solution of this variational

problem.

Note that the differential operator T has as KerT all the trigonometric

polynomials of order m, that is, of the form:

x(t) = a0 +
m∑

j=1

(aj cos jt + bj sin jt).
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g-splines

Just over 200 years ago in 1870 Lagrange has constructed the polyno-

mial of minimal degree such that the polynomial assumed prescribed values

at given nodes and the derivatives of certain orders of the polynomial also

assumed prescribed values at the nodes.

In 1968, Schoenberg [47] extended the idea of Hermite for splines. To

specify that the orders of the derivatives specified may vary from node to

node we introduce an incidence matrix E. As usual, let I := [a, b] be an

interval partitioned by the nodes a ≤ t1 < t2 < . . . < tn ≤ b. Let l be the

maximum of the orders of the derivatives to be specified at the nodes. The

incidence matrix E is defined by:

E := (e(i, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ l) =: (e(i, j))

where each e(i, j) is 0 or 1. Assume also that each row of E and the last

column of E contain a 1.

Definition 2. If m ≥ 1 is an integer, we will say that the incidence

matrix E = (e(i, j)) is m-poised with respect to t1 < t2 < . . . < tn if

• P ∈ Pm−1 and

• e(i, j) = 1 ⇒ P (j)(ti) = 0

together imply that P ≡ 0.

Now we can state Schoenberg’s result.

Theorem 4. (Schoenberg, 1968) If

• X := Hm(I)



30 Gheorghe Micula

• a ≤ t1 < t2 < . . . < tn ≤ b

• E is an m-poised incidence matrix of dimension n× (l + 1)

• l < m ≤ ∑
i

∑
j e(i, j)

• {zij : e(i, j) = 1} ⊂ R and

• In := {x ∈ X : x(j)(ti) = zij if e(i, j) = 1}

then exists a unique σ ∈ In such that

∫

I

[σ(m)(t)]2dt = min

{∫

I

[x(m)(t)]2dt : x ∈ In

}

Schoenberg called the function σ as g-spline from ”generalized-splines”.

Better may have been H-splines after Hermite or HB-splines after Hermite

and Birkhoff.

Again, Schoenberg has defined g-splines as smooth piecewise polynomi-

als where the smoothness is governed by E and then he proved that g-splines

solves the above variational problem.

L-Splines

In 1967, Schultz and Varga [48] gave a major extension of the Dm-

splines. Instead of the m-order derivative, operator Dm they considered a

linear differential operator L creating a theory of so called L-splines. We

shall state only one simple consequence of the many results of Schultz and

Varga.

Theorem 5. (Schultz and Varga, 1967)
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• X := Hm(I)

• a ≤ t1 < t2 < . . . < tn ≤ b; n ≥ m

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : x(ti) = zi, 1 ≤ i ≤ n}

• L : X → L2(I), so that L[x](t) :=
m∑

j=0

aj(t)D
jx(t), where aj ∈ Cj(I),

0 ≤ j ≤ m, and exists ω > 0 such that am(t) ≥ ω > 0 on I and

• L has Pólya’s property W on I

then exists a unique σ ∈ In such that

∫

I

[L[σ](t)]2dt = min

{∫

I

[L[x](t)]2dt : x ∈ In

}

Clearly complexity is increasing with generality.

We note that L has Pólya’s property W on I if L[x] = 0 has m solutions

x1, x2, . . . , xm such that, for all t ∈ I and for all k ∈ {1, 2, . . . , m}

det




x1(t) x2(t) . . . xm(t)

Dx1(t) Dx2(t) . . . Dxm(t)

. . . . . . . . . . . .

Dk−1x1(t) Dk−1x2(t) . . . Dk−1xm(t)



6= 0.

The relevance of Pólya’s property W is contained in the following sen-

tence. To say that L has Pólya’s property W on I implies that, if L[x] = 0

and x has m or more zeros on I, then x ≡ 0.

The optimal function σ is known as an L-spline.
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If L ≡ Dm we obtain the Dm-spline: so this is a major extension of

previously stated results.

Schultz and Varga have defined an L-spline to be a smooth function

constructed in a piecewise manner, where each piece is a solution of the

differential equation L∗Lx = 0 where L∗ is the formal adjoint of the operator

L.

A consequence of their paper is that L-spline provide a solution of the

above variational problem.

Remark.

- The result of Schultz and Varga was proved in 1964 by Ahlberg, Nilson

and Walsh [2]. They called σ a ”generalized splines”.

- The above result also follows from a paper of de Boor and Lynch [15]

published in 1966.

- Perhaps the first paper along these lines of replacing the operator Dm

by a more general differential operator was given by Greville [25] also

in 1964. Unfortunately this often cited technical report was never

published. Greville illustrates his method with an application to the

classical numerical problem of interpolating mortality tables. Schultz

and Varga applied their ideas to the numerical analysis of nonlinear

two-point boundary value problems.

- Prenter [42] and Micula [39] are two of the few text books which touch

this topic.
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Lg-Splines

Schoenberg extended the concept of Dm-splines to allow interpolation

conditions of the Hermite type: this leads to g-splines. Schultz and Varga

(and others) extended the concept of Dm-spline in a different direction by

replacing the differential operator Dm by a more general operator: this leads

to L-splines. The question is if one could combine both these extensions. In

1969 Jerome and Schumaker [31] combined these two extensions together

in a very effective manner. One of their results is the following:

Theorem 6. (Jerome and Schumaker, 1969) If

• X := Hm(I)

• {λ1, λ2, . . . , λn} is a set of linearly independent, continuous linear

functionals on X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi(x) = zi, 1 ≤ i ≤ n}

• L : X → L2(I) so that

L[x](t) =
m∑

j=0

aj(t)D
jx(t),

aj ∈ Cj(I), 0 ≤ j ≤ m, and exists ω > 0 such that am(t) ≥ ω >

0 on I and

• kerL ∩ {x ∈ X : λi(x) = 0, 1 ≤ i ≤ n} = {θX}

then exists a unique σ ∈ In such that
∫

I

[L[σ](t)]2dt = min

{∫

I

[L[x](t)]2dt : x ∈ In

}
.
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The optimal function σ is called the Lg-spline. The hypothesis about

Pólya’s property W in Theorem 5 has with the more functional-analytic

flavour. Jerome and Schumaker allow interpolation conditions for the more

general form λi(x) = zi, 1 ≤ i ≤ n, where λi (1 ≤ i ≤ n) are continuous

linear functionals on X. This idea could cover also others conditions like∫ ti+1

ti

x(t)dt = zi, 1 ≤ i ≤ n. We note also that they replace the conditions

λi(x) = zi by zi ≤ λi(x) ≤ zi, where zi and zi (i = 1, 2, . . . , n) are given

real numbers with zi ≤ zi.

pLg-Splines

For 1 < p < ∞ we define the space Hm(Ip) of functions by:

Hm,p(I) := {x : I → R : x(m−1) abs. cont., x(m) ∈ Lp(I)}

With a norm on Hm,p(I) defined by:

‖x‖m,p :=
m∑

j=0

|x(j)(a)|+
(∫

I

|x(m)(t)|pdt

)1/p

the Hm,p(I) is a Hilbert space.

In 1978 Copley and Schumaker [12] established the following result:

Theorem 7. (Copley and Schumaker, 1978) If

• X := Hm,p(I), p > 1

• {λ1, λ2, . . . , λn} is a set of linearly independent continuous linear func-

tionals on X

• {z1, z2, . . . , zn} ⊂ R
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• In := {x ∈ X : λi(x) = zi, 1 ≤ i ≤ n} 6= ∅

• L : X → Lp(I) so that

L[x](t) =
m∑

j=0

aj(t)D
jx(t),

aj ∈ Cj(I), 0 ≤ j ≤ m and exists ω > 0 such that am(t) ≥ ω > 0 on

I, and

• kerL ∩ {x ∈ X : λi(x) = 0, 1 ≤ i ≤ n} = {θX}

then exists a unique σ ∈ In such that:
∫

I

|L[σ](t)|pdt = min

{∫

I

|L[x](t)|pdt : x ∈ In

}
.

The optimal function σ is called a pLg-spline. For the first time, in

this paper Copley and Schumaker have defined a pLg-spline to be a solution

of the variational interpolation problem. One of the main problems that

they investigated is to determine the structure of such splines. Can they

be constructed in a piecewise manner? The complexity of their answer

compensates the simplicity of their definition on a pLg-spline. In fact,

Copley and Schumaker investigated more general interpolation problems.

For example, they consider sets of linear functionals {λα : α ∈ A} where the

index set A may be infinite, and also many extremly important examples.

Vector-valued Lg-Splines

The following extension have come from researches in electrical engi-

neering. In 1979 Sidhu and Weinert [49] consider the problem of simultane-
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ous interpolation, that is, a method by which one could interpolate several

functions at once.

Theorem 8. (Sidhu and Weinert, 1979)

• r ≥ 1, n1 ≥ 0, . . . , nr ≥ 0 are fixed integers

• X := Hn1(I)×Hn2(I)× . . .×Hnr(I)

• {λ1, λ2, . . . , λn} is a set of linearly independent continuous linear func-

tionals on X

• {z1, z2, . . . , zn} ⊂ R

• In := {x ∈ X : λi(x) = zi, 1 ≤ i ≤ n}

• L : X → L2(I)× . . .× L2(I) (an r-fold product), where

L[x](t) :=

(
r∑

j=1

Lij[xj](t) : i = 1, 2, . . . , r

)′

,

Lij :=

nj∑

k=0

aijk(t)D
k; aijnj

= δij; aijk ∈ Ck(I), 0 ≤ k ≤ nj, and

• kerL ∩ {x ∈ X : λi(x) = 0, 1 ≤ i ≤ n} = {θX}

then exists a unique σ ∈ X such that:
∫

I

(L[σ](t))′L[σ](t)dt = min

{∫

I

(L[x](t))′L[x](t)dt : x ∈ In

}
.

(Here A′ indicates the transpose of the matrix or vector A.)

The optimal interpolating vector σ is known as a vector-valued Lg-

spline. The authors have defined a vector-valued Lg-spline to be the solu-

tion of a variational interpolation problem, proved the existence-uniqueness
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theorem and then discussed an algorithm for calculating such splines in the

special case that the functional λi are of extended Hermite-Birkhoff type.

Thin plate splines

So far we have been considering the problem of interpolating functions

of a single variable. In 1976, Jean Duchon [20] developed a variational

approach to interpolating functions of several variables. We will state his

result only for functions of two variables. We denote an arbitrary element

of R2 by t = (ξ1, ξ2), ‖t‖2 := ξ2
1 + ξ2

2 and the set of linear polynomials by:

P1 := {p1(t) = a0 + a1ξ1 + a2ξ2 : {a0, a1, a2} ⊂ R}

Theorem 9. (Duchon, 1976) If

• X := H2(R2),

• {t1, t2, . . . , tn} ⊂ R2 such that if p1 ∈ P1 and p1(t1) = . . . = p1(tn) = 0,

then p1 ≡ 0,

• {z1, z2, . . . , zn} ⊂ R,

• In := {x ∈ X : x(ti) = zi, 1 ≤ i ≤ n} and

• J : X → R such that

J(x) :=

∫∫

R2

[(
∂2x

∂ξ2
1

)
+ 2

(
∂2x

∂ξ1∂ξ2

)2

+

(
∂2x

∂ξ2
2

)]
dξ1dξ2

then exists a unique σ ∈ In such that

J(σ) = min{J(x) : x ∈ In}.
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Furthermore, for all t ∈ R2

σ(t) =
n∑

j=1

µi‖t− ti‖2 ln ‖t− ti‖+ p1(t)

where p1 ∈ P1 and for all q ∈ P1),

(
n∑

i=1

µiq(ti) = 0

)
.

The optimal function σ is known as a ”thin plate spline”. The dra-

matic aspect of this result is the form of the spline σ: it is a piecewise

polynomial function.

This two-dimensional result appeared almost 20 years after Holla-

day’s one-dimensional result. The delay is not so surprising. Holladay’s

proof involves nothing more complicated than integration by parts whereas

Duchon’s paper uses tempered distribution, Radon measure and other tools

from functional analysis.

Remarks.

i) A more elementary approach to Duchon’s result is outlined in Powell

[41].

ii) Duchon was not the first person to investigate the multivariate prob-

lem. In 1972 the work of two aircraft engineers Harder and Desmarais

[26] approached this problem from an applied point of view. In 1974

Fisher and Jerome [21] addressed the multivariate problem. In 1970, J.

Thoman [51] in his doctoral thesis considered a variational approach to

interpolation on a rectangle or on a disk in R2. The book by Ahlberg,

Nilson and Walsh [3] also deals with multivariate problems, but from

a point of view which is essentially univariate.
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Yet more splines

The overture of splines could be continued. There are other many

splines associated with some variational interpolation problems and for each

case we could state a theorem similar to those above. We shall only nomi-

nate they:

Λ-splines (1972, Jerome and Pierce [30])

LMg-splines (1979, R. J. P. de Figueiredo [18])

ARMA-splines (1979, Weinert, Sesai and Sidhu [56])

Spherical splines (1981, Freeden, Scheiner and Franke [22])

PDLg-splines (1990, R. J. P. de Figueiredo and Chen [19])

Polyharmonic splines (1990, C. Rabut [43])

Vector splines (1991, Amodei and Benbourhin [5])

Hyperspherical splines (1994, Taijeron, Gibson and Chandler [50]).

4 Abstract splines

The statements of the above theorems were becoming quite long and

complicated. But, there is a general abstract result which captures the

essence of most of them. The following result is attributed to M. Atteia [8],

[9] and it relates to following diagram:

X
T - Y

Z

A

?
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Theorem 10. (Atteia, 1992) If

• X, Y, Z are Hilbert spaces,

• T, A are continuous linear surjections,

• z ∈ Z

• kerT + kerA is closed in X,

• kerT ∩ kerA = {θX} and

• I(z) = {x ∈ X : Ax = z}

then exists a unique σ ∈ I(z) such that:

‖Tσ‖Y = min{‖Tx‖Y : x ∈ I(z)}

The optimal σ is known as a variational interpolating spline.

To illustrate that this theorem reflects the essence of the most above

results, let us see how it generalizes Theorem 1 of Holladay. Put X = H2(I),

Y = L2(I), Z = Rn, Tx := x(2), Ax := (x(t1), x(t2), . . . , x(tn)). All the

hypotheses of Atteia’s theorem are satisfied. Atteia’s theorem does not

cover all the above results, e.g. Theorem 7 which deals with pLg-splines.

- An equivalent result to Atteia’s theorem is found in the often cited,

but unfortunately never published, report by Golomb [23] in 1967.

- The essential ideas also can be found in Anselone and Laurent [6] in

1968 and in the classic book by Laurent [33], entitled Approximation

et Optimisation (Herman, Paris, 1972).
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There are important remarks to be made about this theorem.

1. The role of the condition about kerT + kerA is to ensure the exis-

tence of σ whereas the role of the condition kerT ∩ kerA is to ensure

the uniqueness of σ. This separation was made clear by Jerome and

Schumaker [31] in 1969.

2. The challenge of any abstract theory is to generalize a wide variety

of particular cases, and simultaneously, preserve as much of the detail

as possible. To a large extent, Atteia and others have, over many

years, being doing this in the case that X is a reproducing kernel

Hilbert space. Details of this theory can be found in the excellent

monographs of Atteia ([9], 1992) and Bezhaev and Vasilenko ([11],

1993). The origins of this program can be found in 1959 paper by

Golomb and Weinberger [24], in Ph. Thesis of Atteia ([8], 1966) and

in 1966 paper by de Boor and Lynch [15].

3. The above general theorem can itself be generalized in many direc-

tions.

One generalization enables us to consider constrained interpolation prob-

lem which are very important in contemporary mathematics. It is due to

Utreras, [52] in 1987 and relates to the following diagram

C ⊂ X
T - Y

z ∈ Z

A

?
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Theorem 11. (Utreras, 1987) If

• X, Y, Z are Hilbert spaces,

• C is a closed, convex subset of X,

• z ∈ Z

• A, T are continuous, linear surjections,

• w ∈ I(C, z) := {x ∈ C : Ax = z}

• kerT + (kerA ∩ (C − w)) is closed in X and

• kerA ∩ kerT = {θX}

then exists a unique σ ∈ I(C, z) such that

‖Tσ‖Y = min{‖Tx‖Y : x ∈ I(C, z)}.

If we put C = X then we obtain Theorem 10 of Atteia. Utreras’ theorem

is useful if, for example, we want to interpolate positive data by positive

functions. In this case we have X = Hm(I) and C is the set of positive

function in X.

Other generalizations have extended Atteia’s theorem to Banach

spaces settings, rather than Hilbert spaces. So that are known the fol-

lowing new splines in Banach spaces:

R-splines (1972, Holmes [29])

M-splines (1972, Lucas [36], 1985 Abraham [1])

Lf-splines (1983, Pai [40])
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Tf-splines (1993, Benbourhim and Gaches [10]).

A key work in the Banach space setting is the 1975 paper of Fischer and

Jerome [21], where the perfect splines are very important in this contex.

5 Conclusions and comments

The book of Laurent ([33], 1972) was perhaps the first book which

emphasized the variational approach to splines.

Atteia’s book ([9], 1992) is the key work in this area, especially for those

interested in functional analysis.

Whaba ([55], 1990) is the first book describing applications of these ideas

(in smoothing rather the interpolation) to statistics.

Bezhaev and Vasilenko ([11], 1993) published in Novosibirsk entitled

”Variational Spline Theory” contains the most abstracts and rigorous results

in this field, but difficult to obtain.

To close this presentation there are three conclusions to be underlined.

1. Splines may be defined as solution of variational problems rather

than functions constructed in some piecewise manner. We have seen

that these variational problems have become increasingly abstract and

hence the concept of ”splines” has became increasingly abstract. This

may not be everyone’s liking, at least, initially. For example, in 1966

in [15] de Boor and Lynch have written: ”in order not to dilute the

notion of spline functions too much, we prefer to follow Greville’s def-

inition of a general spline function” – which is based on a piecewise,

constructive approach. In any case, the variational theory gives us a
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new appreciation of the concept of a ”spline”.

2. The variational approach facilitates a natural, attractive way to ex-

tend the classical theory of interpolating splines, especially to mul-

tivariate situations. The works of Duchon [20] in 1976 and Whaba

[54] in 1981 illustrate this conclusion. More recently, in 1993, de Boor

[14] changing his earlier opinion wrote: ”I am convinced that the varia-

tional approach to splines will play a much greater role in multivariate

spline theory that it did or should have in univariate theory”.

3. The theory of variational splines demonstrates the power of functional

analysis to yield a unified approach to computational problems in

interpolation. As S. Sobolev [34] in 1997, one year before his dead has

been quoted: ”It is impossible to image the theory of computations

with no Banach spaces”.
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