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A note on the equation (x + y + z)2 = xyz

Titu Andreescu

Abstract

Generally, integer solutions to equations of three or more variables

are given in various parametric forms (see [3]). In [2] it is proved that

the diophantine equation x + y + z = xyz has solutions in the units

of the quadratic field Q(
√

d) if and only if d = −1, 2, or 5 and in

these cases all solutions are also given. The problem of finding all of

its solutions remains open. In this paper we will construct different

families of infinite positive integer solutions to the equation:

(x + y + z)2 = xyz(1)

We will indicate a general method of generating such families of

solutions by using the theory of Pell‘s equations. It seems that the

problem of finding all solutions to equation (1) is a difficult one and

it is still open.
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1 Solutions of the equation Ax2 −By2 = C

We will present a general method for solving the equation

Ax2 −By2 = C(2)

In the special case C = 1, the equation (2) was studied in [1].

Theorem 1. Let A, B be positive integers such that AB is not a perfect

square and let C be a nonzero integer. If the equations u2−ABv2 = C and

Aq2 − Bt2 = 1 are solvable, then (2) is also solvable and all its solutions

(x, y) are given by

x = q0u + Bt0v, y = t0u + Aq0v(3)

where (u, v) is any solution to the above general Pell,s equation and (s0, t0)

is the minimal solution to Aq2 −Bt2 = 1.

Proof. We have

Ax2 −By2 = A(q0u + Bt0v)2 −B(t0u + Aq0v)2 =

= (Aq2
0 −Bt0)

2(u2 − ABv2) = 1 · C = C.

It follows that (x, y), given in (3), is a solution to the equation (2).

Conversely, let (x, y) be a solution to (2), and let (q0, t0) be the minimal

solution to the equation Aq2 − Bt2 = 1. Then (u, v), where

u = Ax0x − Bt0y and v = −t0x + q0y is a solution to the general Pell,s

equation u2 − ABv2 = C. Solving the above system of linear equations

with unknowns x and y yields x = q0u+Bt0v and y = t0u+Aq0v, i.e. (x, y)

has the form (3).
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Remark 1. Consider the three diophantine equations in the Theorem:

(I) Ax2 −By2 = C

(II) u2 − ABv2 = C

(III) Aq2 −Bt2 = 1.

The following implications are true:

(II) and (III) are solvable then (I) is solvable

(I) and (III) are solvable then (II) is solvable

(I) and (II) are solvable and there exist solutions (x, y) and (u, v) such

that
ux−Bvy

C
and

−Avx + uy

C

are both integers then (III) is solvable.

The first implication was proved in the above Theorem.

For the second implication, if (x, y) and (q, t) are solutions to (I) and

(II), respectively, then (u, v), with u = Aqx − Bty and v = −tx + qy is a

solution to (II). Moreover, each solution to (II) is of the above form. Indeed,

if (u, v) is an arbitrary solution to (II), then (x, y), where x = qu+Btv and

y = tu + Aqv is a solution to (I). Thus, solving the above system of linear

equation in u, v, it follows that u = Aqx−Bt and v = −tx + qy.

In order to prove the third implication, let (x, y) and (u, v) be a solution

to (I) and (II), respectively, for which

ux−Bvy

c
and

−Avx + uy

C
∈ Z.

Then (q, t) is a solution to (II).

In what follows, we are not interested in finding all solutions to the

equation (2) that will arise. A family of solutions to such equations can
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be generated in the following way: if (x0, y0) is a solution to the equa-

tion (2) and (rm, sm)m ≥ 1 is the general solution to its Pell,s resolvent

r2 − ABs2 = 1, then (xm, ym)m ≥ 1, where

xm = x0um, ym = y0um + Ax0vm(4)

are also solutions to the equations (2). The proof is similar to the one in

the first part of the Theorem,s proof.

2 Four families of solutions to the equation

(1)

Recall that D > 0 is not a square, then the Pell,s equation r2 −Ds2 = 1 is

solvable and all of its solutions are given by

rm + sm

√
D = (r1 + s1

√
D)m, m ≥ 1,(5)

where (r1, s1) is its minimal nontrivial solution.

We start by performing the transformations

x =
u + v

2
+ a, y =

u− v

2
+ a, z = b(6)

where a and b are nonzero integer parameters that will be determined in a

convenient manner. The equation becomes

(u + 2a + b)2 =
b

4
(u2 − v2) + abu + a2b.

Imposing the conditions 2(2a+b) = ab and b(b−4) > 0 yield the general

Pell,s equation

(b− 4)u2 − bv2 = 4[(2a + b)2 − a2b].(7)
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The imposed conditions are equivalent to (a − 2)(b − 4) = 8, b < 0 or

b > 4. A simple case analysis shows that the only pairs of positive integers

(a, b) satisfying them are: (3, 12), (4, 8), (6, 6), (10, 5).

The following table contains the general Pell,s equations (7) correspond-

ing to the above pairs (a, b), their Pell,s resolvents, both equations with

their fundamental solutions.

By using the formula (4) we obtain the following sequences of solutions

to the e equations (7):

u(1)
m = 18r(1)

m + 36s(1)
m , v(1)

m = 12r(1)
m + 36s(1)

m

where r
(1)
m + s

(1)
m

√
6 = (5 + 2

√
6)m, m ≥ 1;

u(2)
m = 16r(2)

m + 16s(2)
m , v(2)

m = 8r(2)
m + 16s(2)

m

where r
(2)
m + s

(2)
m

√
2 = (3 + 2

√
2)m, m ≥ 1;

u(3)
m = 18r(3)

m + 18s(3)
m , v(3)

m = 6r(3)
m + 18s(3)

m

where r
(3)
m + s

(3)
m

√
3 = (2 +

√
3)m, m ≥ 1;

u(4)
m = 25r(4)

m + 25s(4)
m , v(4)

m = 5r(4)
m + 25s(4)

m
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where r
(4)
m + s

(4)
m

√
5 = (9 + 4

√
5)m, m ≥ 1.

Formulas (6) yield following four families of nonzero integer solutions to

equation (1):

x
(1)
m = 15r

(1)
m + 36s

(1)
m + 3, y

(1)
m = 3r

(1)
m + 3, z

(1)
m = 12, m ≥ 1

x
(2)
m = 12r

(2)
m + 16s

(2)
m + 4, y

(2)
m = 4r

(2)
m + 4, z

(2)
m = 8, m ≥ 1

x
(3)
m = 12r

(3)
m + 18s

(3)
m + 6, y

(3)
m = 6r

(3)
m + 6, z

(3)
m = 6, m ≥ 1

x
(4)
m = 15r

(4)
m + 25s

(4)
m + 10, y

(4)
m = 10r

(4)
m + 10, z

(4)
m = 5, m ≥ 1.
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