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Abstract

New inequalities are obtained by means of the quadrature formu-

lae. The results of [5] are extended.
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In [1] we have studied two procedures of using the quadrature formulae

in obtaining inequalities. In this paper we obtain new inequalities by these

methods.

I. Let w : [a, b] → (0,∞) be a weight function.
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Proposition 1. For each polynomial p2m(x) ≥ 0, x ∈ [a, b] of the degree

2m and with dominant coefficient equal 1, the inequality

b∫

a

w(x)p2m(x)dx ≥ 1

a2
m

b∫

a

w(x)Q2
m(x)dx(1)

is valid, with equality only if

p2m(x) =
1

a2
m

Q2
m,

where Qm(x) is the polynomial of degree m, with the dominant coefficient

am, out of the system of orthogonal polynomials on the interval [a, b] refering

to the weight w(x).

Proof. The validity of Proposition 1 is obtained from the Gauss quadrature

formula (see [2], [3]):

b∫

a

w(x)f(x)dx =
m∑

i=1

Aif(xi) + R2m−1(f),

in which the coefficients Ai, i = 1,m, are positive and the remainder is given

by

R2m−1(f) =
1

(2m)!
· 1

a2
m

f (2m)(c)

b∫

a

w(x)Q2
m(x)dx, c ∈ (a, b).

Remark 1. For w(x) = (1 − x)α(1 + x)β, x ∈ (−1, 1), α > −1, β > −1,

from (1) it results the inequality given by F. Locher in [5].

Remark 2. For w(x) = xαe−x, x ∈ (0, +∞), α > −1, we obtain the

Proposition 5 from [1].
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Remark 3. If w(x) = e−x2
, x ∈ (−∞, +∞), then for each polynomial

p2m(x) ≥ 0, x ∈ (−∞, +∞), of degree 2m and with the dominant coeffici-

ent equal to 1, the inequality

+∞∫

−∞

e−x2

p2m(x)dx ≥ m!
√

π

2m ,

is valid, with equality only if

p2m(x) =
1

22m H2
m(x),

where Hm(x) is the Hermite polynomial.

II. The Gauss-Kronrad quadrature formula for the Legendre weight

function, w(x) = 1, on [−1, 1], has the form

1∫

−1

f(x)dx =
n+1∑
i=1

Aif(xi) +
n∑

j=1

Bjf(aj) + Rn(f),(2)

where aj, j = 1, n, are the zeros of the n-th degree Legendre polynomial,

Pn(x), and the xi, Ai, i = 1, n + 1, Bj, j = 1, n, are chosen such (2) has

maximum degree of exactness (3n + 1 for n or 3n + 2 if n is odd). It is

known that the xi are simple, all contained in the interval (-1, 1) and they

interlace with aj, that is

xn+1 < an < xn < ... < x3 < a2 < x2 < a1 < x1(3)

(see [7] - [9]). Moreover, all coefficients of (2) are positive (the positivity of

the Ai is equivalent to the interlacing property (3); see[5]).

Let us f ∈ C(3n+2)[−1, 1] and n even, then

Rn(t) =
(n!)2

2n(3n + 2)!(2n)!

1∫

−1

Pn(x)w2
n+1(x)f

(3n+2)
(cx) dx, cx ∈ (−1, 1),
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where wn+1(x) =
n+1∏
i=1

(x − xi) and it satisfies the following orthogonality

relation
1∫

−1

pn(x)wn+1(x)xkdx = 0, k = 0, n.

When n is odd, if we assume f ∈ C3n+3[−1, 1], then

Rn(t) =
(n!)2

2n(3n + 3)!(2n)!

1∫

−1

Pn(x)w2
n+1(x)f (3n+3)(cx)dx, cx ∈ (−1, 1), (see [7]).

Now we obtain:

Proposition 2. If n is even, then for each polynomial p3n+2(x) ≥ 0,

x ∈ [−1, 1], of degree 3n + 2 and with the dominant coefficient equal 1,

the inequality

1∫

−1

p3n+2(x)dx ≥ (n!)2

2n(2n)!

1∫

−1

Pn(x)w2
n+1(x)dx

is valid.

III. Let,s consider the Euler,s quadrature formula (see [2], [4])

b∫

a

f(x)dx =
b− a

2
[f(a) + f(b)]+(4)

+
n−1∑
i=1

(b− a)2i

(2i)!
B2i[f

(2i−1)(a)− f (2i−1)(b)] + R(f),

with

R(f) = −(b− a)2n+1B2n

(2n)!
f (2n)(c), c ∈ (a, b)(5)
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where B2j, j = 1, n, are the Bernoulli numbers. If f ∈ c(2n)[a, b], with

f (2n)(x) ≥ 0 for any x ∈ [a, b], and B2n > 0, then from (4) and (5) we

obtain the inequality

b∫

a

f(x)dx ≤ b− a

2
[f(a)+f(b)]+

n−1∑
i=1

(b− a)2i

(2i)!
B2i[f

(2i−1)(a)−f (2i−1)(b)].(6)

If B2n < 0, then we have the inequality

b∫

a

f(x)dx ≥ b− a

2
[f(a)+f(b)]+

n∑
i=1

(b− a)2i

(2i)!
B2i[f

(2i−1)(a)−f (2i−1)(b)].(7)

For f (2n)(n) ≤ 0 on [a, b], the inequality (6) and (7) reverse the order.

The inequalities (6) and (7) generalize the results from [1].

If in (6) we insert f(x) = 1/x, x ∈ [a, b], 0 < a < b, then we find the

inequality

ln
b

a
<

b2 − a2

2ab
.

From here, for a = 1, b = 1 + x, x > 0, it results

ln(1 + x) <
x(x + 2)

2(x + 1)
.
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Tehnică, 1957.

[5] Locher, F., Pozitivitat bei Quadraturformeln Habilitationsschrift,

im Fachbereich Mathematik der Eberhard - Karls, Universität zu
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