New inequalities obtained by means of quadrature formulae

Dumitru Acu

Dedicated to Professor D. D. Stancu on his 75th birthday.

Abstract

New inequalities are obtained by means of the quadrature formulae. The results of [5] are extended.

2000 Mathematical Subject Classification: 26D15, 65D32

In [1] we have studied two procedures of using the quadrature formulae in obtaining inequalities. In this paper we obtain new inequalities by these methods.
I. Let $w:[a, b] \rightarrow(0, \infty)$ be a weight function.

Proposition 1. For each polynomial $p_{2 m}(x) \geq 0, x \in[a, b]$ of the degree $2 m$ and with dominant coefficient equal 1, the inequality

$$
\begin{equation*}
\int_{a}^{b} w(x) p_{2 m}(x) d x \geq \frac{1}{a_{m}^{2}} \int_{a}^{b} w(x) Q_{m}^{2}(x) d x \tag{1}
\end{equation*}
$$

is valid, with equality only if

$$
p_{2 m}(x)=\frac{1}{a_{m}^{2}} Q_{m}^{2},
$$

where $Q_{m}(x)$ is the polynomial of degree m, with the dominant coefficient a_{m}, out of the system of orthogonal polynomials on the interval $[a, b]$ refering to the weight $w(x)$.

Proof. The validity of Proposition 1 is obtained from the Gauss quadrature formula (see [2], [3]):

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=1}^{m} A_{i} f\left(x_{i}\right)+R_{2 m-1}(f)
$$

in which the coefficients $A_{i}, i=\overline{1, m}$, are positive and the remainder is given by

$$
R_{2 m-1}(f)=\frac{1}{(2 m)!} \cdot \frac{1}{a_{m}^{2}} f^{(2 m)}(c) \int_{a}^{b} w(x) Q_{m}^{2}(x) d x, c \in(a, b)
$$

Remark 1. For $w(x)=(1-x)^{\alpha}(1+x)^{\beta}, x \in(-1,1), \alpha>-1, \beta>-1$, from (1) it results the inequality given by F. Locher in [5].

Remark 2. For $w(x)=x^{\alpha} e^{-x}, x \in(0,+\infty), \alpha>-1$, we obtain the Proposition 5 from [1].

Remark 3. If $w(x)=e^{-x^{2}}, x \in(-\infty,+\infty)$, then for each polynomial $p_{2 m}(x) \geq 0, x \in(-\infty,+\infty)$, of degree $2 m$ and with the dominant coefficient equal to 1 , the inequality

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} p_{2 m}(x) d x \geq \frac{m!\sqrt{\pi}}{2^{m}}
$$

is valid, with equality only if

$$
p_{2 m}(x)=\frac{1}{2^{2 m}} H_{m}^{2}(x)
$$

where $H_{m}(x)$ is the Hermite polynomial.
II. The Gauss-Kronrad quadrature formula for the Legendre weight function, $w(x)=1$, on $[-1,1]$, has the form

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{n+1} A_{i} f\left(x_{i}\right)+\sum_{j=1}^{n} B_{j} f\left(a_{j}\right)+R_{n}(f), \tag{2}
\end{equation*}
$$

where $a_{j}, j=\overline{1, n}$, are the zeros of the n -th degree Legendre polynomial, $P_{n}(x)$, and the $x_{i}, A_{i}, i=\overline{1, n+1}, B_{j}, j=\overline{1, n}$, are chosen such (2) has maximum degree of exactness $(3 n+1$ for n or $3 n+2$ if n is odd). It is known that the x_{i} are simple, all contained in the interval $(-1,1)$ and they interlace with a_{j}, that is

$$
\begin{equation*}
x_{n+1}<a_{n}<x_{n}<\ldots<x_{3}<a_{2}<x_{2}<a_{1}<x_{1} \tag{3}
\end{equation*}
$$

(see [7] - [9]). Moreover, all coefficients of (2) are positive (the positivity of the A_{i} is equivalent to the interlacing property (3); see[5]).

Let us $f \in C^{(3 n+2)}[-1,1]$ and n even, then

$$
R_{n}(t)=\frac{(n!)^{2}}{2^{n}(3 n+2)!(2 n)!} \int_{-1}^{1} P_{n}(x) w_{n+1}^{2}(x) f_{\left(c_{x}\right)}^{(3 n+2)} d x, c_{x} \in(-1,1)
$$

where $w_{n+1}(x)=\prod_{i=1}^{n+1}\left(x-x_{i}\right)$ and it satisfies the following orthogonality relation

$$
\int_{-1}^{1} p_{n}(x) w_{n+1}(x) x^{k} d x=0, k=\overline{0, n}
$$

When n is odd, if we assume $f \in C^{3 n+3}[-1,1]$, then
$R_{n}(t)=\frac{(n!)^{2}}{2^{n}(3 n+3)!(2 n)!} \int_{-1}^{1} P_{n}(x) w_{n+1}^{2}(x) f^{(3 n+3)}\left(c_{x}\right) d x, c_{x} \in(-1,1),($ see $[7])$.
Now we obtain:

Proposition 2. If n is even, then for each polynomial $p_{3 n+2}(x) \geq 0$, $x \in[-1,1]$, of degree $3 n+2$ and with the dominant coefficient equal 1, the inequality

$$
\int_{-1}^{1} p_{3 n+2}(x) d x \geq \frac{(n!)^{2}}{2^{n}(2 n)!} \int_{-1}^{1} P_{n}(x) w_{n+1}^{2}(x) d x
$$

is valid.
III. Let's consider the Euler's quadrature formula (see [2], [4])

$$
\begin{gather*}
\int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]+ \tag{4}\\
+\sum_{i=1}^{n-1} \frac{(b-a)^{2 i}}{(2 i)!} B_{2 i}\left[f^{(2 i-1)}(a)-f^{(2 i-1)}(b)\right]+R(f)
\end{gather*}
$$

with

$$
\begin{equation*}
R(f)=-\frac{(b-a)^{2 n+1} B_{2 n}}{(2 n)!} f^{(2 n)}(c), c \in(a, b) \tag{5}
\end{equation*}
$$

where $B_{2 j}, j=\overline{1, n}$, are the Bernoulli numbers. If $f \in c^{(2 n)}[a, b]$, with $f^{(2 n)}(x) \geq 0$ for any $x \in[a, b]$, and $B_{2 n}>0$, then from (4) and (5) we obtain the inequality
(6) $\int_{a}^{b} f(x) d x \leq \frac{b-a}{2}[f(a)+f(b)]+\sum_{i=1}^{n-1} \frac{(b-a)^{2 i}}{(2 i)!} B_{2 i}\left[f^{(2 i-1)}(a)-f^{(2 i-1)}(b)\right]$.

If $B_{2 n}<0$, then we have the inequality
(7) $\int_{a}^{b} f(x) d x \geq \frac{b-a}{2}[f(a)+f(b)]+\sum_{i=1}^{n} \frac{(b-a)^{2 i}}{(2 i)!} B_{2 i}\left[f^{(2 i-1)}(a)-f^{(2 i-1)}(b)\right]$.

For $f^{(2 n)}(n) \leq 0$ on $[a, b]$, the inequality (6) and (7) reverse the order.
The inequalities (6) and (7) generalize the results from [1].
If in (6) we insert $f(x)=1 / x, x \in[a, b], 0<a<b$, then we find the inequality

$$
\ln \frac{b}{a}<\frac{b^{2}-a^{2}}{2 a b}
$$

From here, for $a=1, b=1+x, x>0$, it results

$$
\ln (1+x)<\frac{x(x+2)}{2(x+1)}
$$

References

[1] Acu, D., The use of quadrature formulae in obtaining inequalities, Studia Uinv. Babeş - Bolyai, Mathematica, XXXV, 4, 1990, 25-33.
[2] Engels, H., Numerical Quadrature and Cubature, Academic Press, 1980.
[3] Ghizzetti, A.; Ossicini, A., Quadrature Formulae, Akad. Verlag, Berlin, 1970.
[4] Ionescu, D. V., Numerical quadrature (in Romanian), Bucureşti, Ed. Tehnică, 1957.
[5] Locher, F., Pozitivitat bei Quadraturformeln Habilitationsschrift, im Fachbereich Mathematik der Eberhard - Karls, Universität zu Tübingen, 1972.
[6] Monegato, G., Positivity of the weights of extended Gauss-Legendre quadrature rules, Math. Comp., V. 32, No. 141, 1978, 243-245.
[7] Monegato, G., Some Remarks on the Construction of Extended Gaussian Quadrature Rules, Math. Comp., V. 32, N0. 141, 1978, 247-252.
[8] Notaris, S. E., An algebraic and numerical study of Gauss - Kronrod quadrature formulae, Ph. D Thesis, Purdue University, 1988.
[9] Szegö, G., Über gewise orthogonale Polynome, die zu einer oszillierenden Beleg ungsfunktion gehören, Math. Ann, V. 110, 501-513, [Collected Papers (R. Askey, ed.), Vol. 2, 1935, 245-257].

Department of Mathematics
"Lucian Blaga" University of Sibiu
Str. Dr. I. Raţiu, nr. 5-7
550012 Sibiu, Romania.
E-mail address: depmath@ulbsibiu.ro

