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Abstract

In this paper one studies some quadrature formulas from the ef-

ficiency point of view, in the class of optimal quadrature formulas

attached to some given quadratures.

2000 Mathematical Subject Classification: 68Q25

1 Introduction

In this paper one consider two types of optimal quadrature formulas families

(with respect to the error) attached to some given quadrature formulas,

obtained in [1], for the class W 1
L2

(M ; 0, 1). For each family, one shows

that the optimal quadrature formula with the degree of exactness 1 has the

highest efficiency.

First we present the necessary concepts.

47



48 Monica Hossu

2 Preliminaries

Let X = L[a, b], X0 ⊆ X and S : X0 → R the integration operator defined

by

S(f) =

b∫

a

f(x)dx

One considers a quadrature formula of the following form

S(f) = Qn(f) + Rn(f),(1)

where

Qn(f) =
n∑

k=0

Akf(xk),

and Rn(f) is the remainder term.

We suppose that the information operator I : X0 → Rn+1 has the form

I(f) = (f(x0), ..., f(xn)), xk ∈ [a, b], k = 0, n, with xi 6= xk for i 6= k. I(f)

is called the information of f. Also we suppose that the set of primitive

operations is represented by R = {+,−, ∗, /}.
We denote by α the algorithm that computes the term Qn(f),

α : I(X0) → R and by A(S, I) the set of all such algorithms that solve

the problem (X0, S) with the information I.

In order to get an ε-approximation of the solution of an integration

problem, the information operator I must be ε-admissible andR-admissible.

I is ε-admissible if the information radius r(S, I) < ε, where r(S, I) =

sup
f∈X0

rad (U(f)), with U(f) = {S(f̃)|I(f̃) = I(f)} the set of all solutions

of functions with the same information. I is an admissible information

operator with respect to R if I(f) can be computed for all f ∈ X0, with

a finite number of operations from R (taking into account that some of
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the operations can be applied several times). Also the algorithm α must

be ε-admissible and R-admissible. The algorithm α is ε-admissible if the

error e(S, I, α) ≤ ε, where e(S, I, α) = sup
f∈X0

|Rn(f)|. The algorithm α is

called R-admissible if α(I(f)) can be computed for all f ∈ X0, with a finite

number of operations from R, and some of them may be repeated.

Suppose that the information operator I is ε-admissible andR-admissible.

One denotes by A(S, I, ε) the set of all algorithms L ∈ A(S, I) which are

ε-admissible and R-admissible. Let r1, ..., rm ∈ R be the necessary opera-

tions to compute I(f), f ∈ X0. The value

CPE(I(f)) =
m∑

i=1

piCP (ri),

where pi is the performing number of the operation ri and CP (ri) is the

complexity of the operation ri, is called the complexity of the informa-

tion I(f). The value

CPE(I) = sup
f∈X0

CPE(I(f))

is called the information complexity.

Also, let ρ1, ..., ρs ∈ R be the necessary operations to compute α(I(f)).

The value

CPC(α(I(f))) =
s∑

j=1

qjCP (ρj),

where qj is the performing number of the operation ρj and CP (ρj) is the

complexity of ρj, is called the combinatorial complexity of the algo-

rithm α for the function f ∈ X0. The value

CPC(α) = sup
f∈X0

CPC(α(I(f)))

is called the combinatorial complexity of the algorithm α.
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Finally, the value CPA(S, I, α) (briefly CPA(α)), defined by

CPA(α) = CPE(I) + CPC(α),

is called the analytic complexity of the algorithm α for the integration

problem (X0, S) with the information I, or the analytic complexity of

the quadrature formula (1).

The number p, p = p(α), with the property that

lim
h→0

e(S, I, α)

hp = k, k 6= 0,

where k is a constant, is called the order of approximation of the

algorithm α. The value

E(S, I, α) =
log2 p(α)

CPA(α)
(2)

is called the efficiency of the algorithm α, or the efficiency of the

quadrature formula (1).

Both the analytic complexity and the efficiency represent criteria to

compare the quadrature formulas.

3 The efficiency of some optimal quadrature

formulas attached to some given quadra-

tures

Let X = L[0, 1], X0 ⊂ X, the integral operator S(f) =
1∫
0

f(x)dx and the

quadrature formula

1∫

0

f(x)dx =
n−1∑

k=0

Akf(xk) + Rn(f),(3)
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with the exact evaluation of the remainder term

Rn(L[0, 1], Ak, xk) = sup
f∈L[0,1]

|Rn(f)|.

The following formula is called an optimal quadrature formula (with

respect to the error) attached to the quadrature formula (3) for the class

L[0, 1]:
1∫

0

f(x)dx =
n−1∑

k=0

Akf(xk) +
m−1∑
i=0

Bif(yi) + Rm(f),(4)

where

sup
f∈L[0,1]

|Rm(f)| is minimum.

We denote by α the algorithm that computes the term

n−1∑

k=0

Akf(xk) +
m−1∑
i=0

Bif(yi).

As we are going to deal with some quadrature formulas for a given

function f ∈ X0, we compute the local analytic complexity

CPA(α(I(f))) = CPE(I(f)) + CPC(α(I(f)))(5)

instead of

CPA(α) = sup
f∈X0

CPA(α(I(f))).

We suppose that in order to obtain the value CPE(I(f)) we have the

same computational complexity of the values f(xk), for every k = 0, n− 1,

denoted by CP (f), i.e.

CP (f(x0)) = CP (f(x1)) = ... = CP (f(xn−1)) = CP (f).

Also, we suppose that CP (−) = CP (+).
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We use the following result [2]:

If the quadrature formula (1) has the degree of exactness r, then its

order of approximation is given by p = r + 2.

We shall consider two particular cases.

3.1. Let X0 = W 1
L2

(M ; 0, 1) = {f : [0, 1] → R, absolute continuous,
(

1∫
0

|f ′(x)|2
)1

2 ≤ M}, and W 1
oL2

(M ; 0, 1) = {f ∈ W 1
L2

(M ; 0, 1), f(0) =

0}. We suppose that (3) is the optimal quadrature formula for the class

W 1
oL2

(M ; 0, 1). D. Acu [1] obtained, for this quadrature formula, the optimal

attached quadrature formula of the form (4), for the class W 1
L2

(M ; 0, 1), i.e.

1∫

0

f(x)dx =
2

2m + 1

n−1∑

k=0

f

(
2k + 2

2n + 1

)
+

a

2
f(0)+

1

2

(
2

2n + 1
− a

)
f(a)+(6)

+Rn(f, a),

with the optimal estimation for the remainder term:

Rn(W 1
L2

(M ; 0, 1); a) =(7)

= M

√
1

3(2n + 1)2 −
(

2

2n + 1
− a

)(
1

2n + 1
− a

2

)
a

2
,

where a is a given constant in the interval
(
0, 2

2n + 1

]
.

For a = 1
2n + 1, from (6) and (7) one obtains [1] the optimal quadrature

formula (M. Levin):

1∫

0

f(x)dx =
2

2n + 1

n−1∑

k=0

f

(
2k + 2

2n + 1

)
+(8)

+
1

2(2n + 1)

[
f(0) + f

(
1

2n + 1

)]
+ Rn

(
f,

1

2n + 1

)
,
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with

Rn

(
W 1

L2
(M ; 0, 1);

1

2n + 1

)
=

M

(2n + 1)
√

3

√
1− 3

4
· 1

2n + 1
.

The quadrature formula (8) has the degree of exactness 1.

The quadrature formula (6) for which the estimation (7) is minimal is

obtained for a = 2
3 · 1

2n + 1, i.e.

1∫

0

f(x)dx =
2

2n + 1

n−1∑

k=0

f

(
2k + 2

2n + 1

)
+(9)

+
1

3(2n + 1)

[
f(0) + 2f

(
2

3
· 1

2n + 1

)]
+ Rn

(
f,

2

3
· 1

2n + 1

)
,

with

Rn

(
W 1

L2
(M ; 0, 1);

2

3
· 1

2n + 1

)
=

M

(2n + 1)
√

3

√
1− 8

9
· 1

2n + 1

We denote by α, α1, respectively α the algorithm which approximates
1∫
0

f(x)dx

according to (6), (8), respectively (9).

By (5) we obtain:

CPA(α(I(f))) = (n+2)CP (f)+ (n+3)CP (+)+ (n+4)CP (∗)+ 2CP (/),

CPA(α1(I(f))) = (n+2)CP (f)+(n+2)CP (+)+(n+3)CP (∗)+2CP (/),

CPA(α(I(f))) = (n+2)CP (f)+ (n+2)CP (+)+ (n+4)CP (∗)+ 2CP (/).

Finally, by (2) we have

E(α(I(f))) =
1

CPA(α(I(f)))
,

E(α1(I(f))) =
log2 3

CPA(α1(I(f)))
,
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E(α(I(f))) =
1

CPA(α(I(f)))
.

One concludes that:

Proposition 3.1. E(α(I(f))) < E(α(I(f))) < E(α1(I(f))).

3.2. We suppose that (3) is the composite trapezoidal quadrature formula.

D. Acu [1] obtained, in this case, the optimal attached quadrature formula,

for the class W 1
L2(M ; 0, 1), i.e.

1∫

0

f(x)dx =
1

n

[
n−1∑

k=1

f

(
k

n

)
+

1

2
f(1)

]
+

a

2
f(0) +

1

2

(
1

n
− a

)
f(a)+(10)

+Rn(f, a),

with the optimal estimation for the remainder term

Rn(W 1
L2(M ; 0, 1); a) =

M

2n
√

3

√
1− 3(1− na)2a,(11)

where a is a fixed constant in the interval
(
0, 1

n

]
.

For a = 1
n , from (10) and (11) one obtains the optimal composite trape-

zoidal quadrature formula

1∫

0

f(x)dx =
1

n

[
f(0) + f(1)

2
+

n−1∑

k=1

f

(
k

n

)]
+ Rn

(
f,

1

n

)
,(12)

with the optimal estimation for the remainder term

Rn

(
W 1

L2
(M ; 0, 1);

1

n

)
=

M

2n
√

3
.

The quadrature formula (12) has the degree of exactness 1.

The best from the quadrature formula (10) is obtained for a = 1
3n , i.e.

1∫

0

f(x)dx =
1

n

[
n−1∑

k=1

f

(
k

n

)
+

1

2
f(1) +

1

6
f(0) +

1

3
f

(
1

3n

)]
+(13)
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+Rn

(
f,

1

3n

)
,

with

Rn

(
W 1

L2
(M ; 0, 1);

1

3n

)
=

M

2n
√

3

√
1− 4

9n
.

We denote by β, β1, respectively β the algorithm which approximates
1∫
0

f(x)dx

according to (10), (12), respectively (13).

By (5), from straightforward computation, we obtain

CPA(β(I(f))) = (n+2)CP (f)+ (n+2)CP (+)+ (n+1)CP (∗)+ 4CP (/),

CPA(β1(I(f))) = (n + 1)CP (f) + (2n− 2)CP (+) + CP (∗) + 2CP (/),

CPA(β(I(f))) = (n+2)CP (f)+ (n+2)CP (+)+ (n− 2)CP (∗)+ 5CP (/).

For efficiencies, we have

E(β(I(f))) =
1

CPA(β(I(f)))
,

E(β1(I(f))) =
log2 3

CPA(β1(I(f)))
,

E(β(I(f))) =
1

CPA(β(I(f)))
.

So, we deduce that:

Proposition 3.2. E(β(I(f))) < E(β(I(f))) < E(β1(I(f))).
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de doctorat), Cluj - Napoca, 1980 (in Romanian).



56 Monica Hossu

[2] Gh. Coman, Optimal quadratures with regard to the efficiency , Calcolo,

vol. XXIV, 1987, 85 - 100.

[3] Gh. Coman, D.L. Johnson, Complexitatea algoritmilor, Cluj - Napoca,

1987.

”Lucian Blaga” University of Sibiu

Department of Mathematics

Str. Dr. I. Raţiu, no. 5-7
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