On a particular second-order nonlinear differential subordination I

Georgia Irina Oros

Abstract

We find conditions on the complex-valued functions A, B, C, D in the unit disc U such that the differential inequality

$$
\left|A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p^{2}(z)+D(z) p(z)\right|<M
$$

implies $|p(z)|<N$, where p is analytic in U, with $p(0)=0$.
2000 Mathematical Subject Classification: 30C80

1 Introduction and preliminaries

We let $\mathcal{H}[U]$ denote the class of holomorphic functions in the unit disc

$$
U=\{z \in \mathbb{C}:|z|<1\} .
$$

For $a \in \mathbb{C}$ and $n \in \mathbb{N}^{*}$ we let

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}[U], f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, z \in U\right\}
$$

and

$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}[U], f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots, z \in U\right\}
$$

with $\mathcal{A}_{1}=\mathcal{A}$.
In [1] chapter IV, the authors have analyzed a second-order linear differential subordination

$$
\begin{equation*}
A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p(z)+D(z)<h(z) \tag{1}
\end{equation*}
$$

where A, B, C, D and h are complex-valued functions in the unit disc, where $p \in \mathcal{H}[0, n]$. A more general version of (1) is given by:

$$
A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p(z)+D(z) \in \Omega
$$

where $\Omega \subset \mathbb{C}$.
In [2] we found conditions on the complex-valued functions A, B, C, D in the unit disc U and the positive numbers M and N such that

$$
\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)\right|<M
$$

implies $|p(z)|<N$, where $p \in \mathcal{H}[0, n]$.
In this paper we shall consider the following particular second-order nonlinear differential subordination given by the inequality

$$
\begin{equation*}
\left|A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p^{2}(z)+D(z) p(z)\right|<M, \tag{2}
\end{equation*}
$$

where $p \in \mathcal{H}[0, n]$.

We find conditions on complex-valued functions A, B, C, D and the positive numbers M and N such that (2) implies

$$
|p(z)|<N
$$

where $p \in \mathcal{H}[0, n]$.
In order to prove the new results we shall use the following lemma:
Lemma A. [1, p. 34] Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ and $M>0, N>0$, n positive integer, satisfy

$$
\begin{equation*}
\left|\psi\left(N e^{i \theta}, K e^{i \theta}, L ; z\right)\right| \geq M \tag{3}
\end{equation*}
$$

whenever

$$
\operatorname{Re}\left[L e^{-i \theta}\right] \geq(n-1) K, \quad K \geq n N
$$

$z \in U$ and $\theta \in \mathbb{R}$.
If $p \in \mathcal{H}[0, n]$ and

$$
\left|\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime}(z) ; z\right)\right|<M
$$

then $|p(z)|<N$.

2 Main results

Theorem. Let $M>0, N>0$, and let n be a positive integer. Suppose that the functions $A, B, C, D: U \rightarrow \mathbb{C}$ satisfy $A(z) \neq 0$,
(i) $\operatorname{Re} \frac{B(z)}{A(z)} \geq-n$
(ii) $\operatorname{Re} \frac{B(z)+D(z)}{A(z)} \geq \frac{M+N^{2}|C(z)|}{N|A(z)|}$.

If $p \in \mathcal{H}[0, n]$ and

$$
\left|A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p^{2}(z)+D(z) p(z)\right|<M
$$

then

$$
|p(z)|<N
$$

Proof. Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ be defined by

$$
\begin{gather*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime}(z) ; z\right)=A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+ \tag{4}\\
+C(z) p^{2}(z)+D(z) p(z) .
\end{gather*}
$$

From (2) we have

$$
\begin{equation*}
\left|\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime}(z) ; z\right)\right|<M, \text { for } z \in U \tag{5}
\end{equation*}
$$

Using (ii) in (4) we have

$$
\begin{gathered}
\left|\psi\left(N e^{i \theta}, K e^{i \theta}, L ; z\right)\right|=\left|A(z) L+B(z)+K e^{i \theta}+C(z) N^{2} e^{2 i \theta}+D(z) N e^{i \theta}\right|= \\
=\left|A(z) L e^{-i \theta}+B(z) K+C(z) N^{2} e^{i \theta}+D(z) N\right|= \\
=|A(z)|\left|L e^{-i \theta}+\frac{B(z)}{A(z)} K+\frac{C(z)}{A(z)} N^{2} e^{i \theta}+\frac{D(z)}{A(z)} N\right| \geq \\
\geq|A(z)|\left[\left|L e^{-i \theta}+K \frac{B(z)}{A(z)}+N \frac{D(z)}{A(z)}\right|-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq \\
\geq|A(z)|\left[\operatorname{Re} L e^{-i \theta}+K \operatorname{Re} \frac{B(z)}{A(z)}+N \operatorname{Re} \frac{D(z)}{A(z)}-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq
\end{gathered}
$$

$$
\begin{aligned}
& \geq|A(z)|\left[(n-1) K+K \operatorname{Re} \frac{B(z)}{A(z)}+N \operatorname{Re} \frac{D(z)}{A(z)}-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq \\
& \geq|A(z)|\left[n(n-1) N+n N \operatorname{Re} \frac{B(z)}{A(z)}+N \operatorname{Re} \frac{D(z)}{A(z)}-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq \\
& \geq|A(z)|\left[n N \operatorname{Re} \frac{B(z)}{A(z)}+N \operatorname{Re} \frac{D(z)}{A(z)}-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq \\
& \geq|A(z)|\left[N \operatorname{Re} \frac{B(z)}{A(z)}+N \operatorname{Re} \frac{D(z)}{A(z)}-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq \\
& \quad \geq|A(z)|\left[N \operatorname{Re} \frac{B(z)+D(z)}{A(z)}-N^{2}\left|\frac{C(z)}{A(z)}\right|\right] \geq M .
\end{aligned}
$$

Hence condition (3) holds and by Lemma A we deduce that (5) implies $|p(z)|<N$.

Instead of prescribing the constant N in Theorem, in some cases we can use (ii) to determine an appropriate $N=N(M, n, A, B, C, D)$ so that (2) implies $|p(z)|<N$. This can be accomplished by solving (ii) for N by taking the supremum of the resulting function over U.

Condition (ii) is equivalent to:

$$
\begin{equation*}
N^{2}|C(z)|-N|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)}+M \leq 0 \tag{6}
\end{equation*}
$$

If we suppose $C(z) \neq 0$, then the inequality (6) holds if

$$
\begin{equation*}
|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)} \geq 2 \sqrt{|C(z)| M} \tag{7}
\end{equation*}
$$

If (7) holds, the roots of the trinomial in (6) are
$N_{1,2}=\frac{|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)} \pm \sqrt{\left[|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)}\right]^{2}-4 M|C(z)|}}{2|C(z)|}$.

We let

$$
N=\frac{2 M}{|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)}+\sqrt{\left[|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)}\right]^{2}-4 M|C(z)|}} .
$$

If this supremum is finite, the Theorem can be rewritten as follows:
Corollary 1. Let $M>0$ and let n be a positive integer. Suppose that $p \in \mathcal{H}[0, n]$ and that the functions $A, B, C, D: U \rightarrow \mathbb{C}$, with $A(z) \neq 0$, satisfy
(i) $\operatorname{Re} \frac{B(z)}{A(z)} \geq-n$
(ii) $N=\sup _{|z|<1} \frac{2 M}{|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)}+\sqrt{\left[|A(z)| \operatorname{Re} \frac{B(z)+D(z)}{A(z)}\right]^{2}-4 M|C(z)|}}<\infty$
then

$$
\left|A(z) z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p^{2}(z)+D(z) p(z)\right|<M
$$

implies

$$
|p(z)|<N .
$$

Let $n=1, A(z)=3, B(z)=2+4 z, C(z)=2, D(z)=10-4 z, M=8$, $N=\frac{4}{3+\sqrt{5}}$.

In this case from Corollary 1 we deduce:
Example 1. If $p \in \mathcal{H}[0,1]$, then

$$
\left|3 z^{2} p^{\prime}(z)+(2+4 z) z p^{\prime}(z)+2 p^{2}(z)+(10-4 z) p(z)\right|<8
$$

implies

$$
|p(z)|<\frac{4}{3+\sqrt{5}}
$$

If $n=2, A(z)=6, B(z)=8-2 z, C(z)=-4, D(z)=4+2 z, M=5$, $N=\frac{1}{2}$.

Let this case from Corollary 1 we deduce
Example 2. If $p \in \mathcal{H}[0,2]$ then

$$
\left|6 z^{2} p^{\prime}(z)+(8-2 z) z p^{\prime}(z)-4 p^{2}(z)+(4+2 z) p(z)\right|<5
$$

implies

$$
|p(z)|<\frac{1}{2}
$$

If $A(z)=A>0$ then the Theorem can be rewritten as follows:
Corollary 2. Let $M>0, N>0$ and let n be a positive integer. Suppose that the functions $B, C, D: U \rightarrow \mathbb{C}$ satisfy
(i) $\operatorname{Re} B(z) \geq-n A, A>0$,
(ii) $\operatorname{Re}[B(z)+D(z)] \geq \frac{M+N^{2}|C(z)|}{N}$.

If $p \in \mathcal{H}[0, n]$ and

$$
\left|A z^{2} p^{\prime}(z)+B(z) z p^{\prime}(z)+C(z) p^{2}(z)+D(z) p(z)\right|<M
$$

then

$$
|p(z)|<N .
$$

References

[1] S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[2] Gh. Oros and Georgia Irina Oros, On a particular first-order nonlinear differential subordination I (submitted).

Faculty of Mathematics and Computer Sciences
Babeş-Bolyai University
3400 Cluj-Napoca, Romania

