General Mathematics Vol. 9, No. 3-4 (2001)

Fourier transform of the probability measures

Romeo Vomişescu

Abstract

In this paper we make the connection between Fourier transform of a probability measure and the characteristic function in the \mathbb{R}^2 space; also we establish some the properties.

2000 Mathematical Subject Classification:

1. Let Ω and Ω' be any sets, let \mathcal{K} and \mathcal{K}' to be two σ -algebras on Ω and Ω' respectively and the measurable spaces $(\Omega, \mathcal{K}), (\Omega', \mathcal{K}')$.

A function $f: \Omega \to \Omega'$ is said to be $(\mathcal{K}, \mathcal{K}')$ - measurable if the borelian filed $f^{-1}(\mathcal{K}') \subset \mathcal{K}$. Let $f: (\Omega, \mathcal{K}) \to (\Omega', \mathcal{K}')$ be a measurable function and let $\mu: \mathcal{K} \to [0, \infty)$ be a measure on \mathcal{K} . Then the function of set $\mu \circ f^{-1}$ defined on \mathcal{K}' by the rule $\mu \circ f^{-1}$ is called, the image of the measure μ by f.

The triple $(\Omega, \mathcal{K}, \mu)$ where (Ω, \mathcal{K}) is a measurable space, and μ is a measure on \mathcal{K} , is called the space with measure. If $\mu(\Omega) = 1$, then μ is called the probability measure.

Let $\varphi : (\Omega, \mathcal{K}) \to (\Omega', \mathcal{K}')$ be a measurable function $f : (\Omega, \mathcal{K}) \to X(\mathbb{R} \vee \mathbb{C})$ is $\mu \circ \varphi^{-1}$ - integrable, if and only if $f \circ \varphi$ is μ -integrable. In this case the following relation holds

(1)
$$\int (f \circ \varphi) d\mu = \int f \cdot d\mu \circ \varphi^{-1}$$

and is called the transport formula.

2. We note with (Ω, \mathcal{K}, P) a probability field and let (X, \mathcal{X}) be a measurable space where \mathcal{X} is a borelian field on X. A measurable functions $f: (\Omega, \mathcal{K}, P) \to (X, \mathcal{X})$ is called a random variable. If the function f is a random variable, then the image of P by f we will note with $P \circ f^{-1}$ and will be called, distribution of f. In this case the distribution of f is the probability on \mathcal{X} defined by $P \circ f^{-1}(A) = P(f^{-1}(A)), A \in \mathcal{X}$. This events $f^{-1}(A)$ we also denote by $\{f \in A\}$. If F is a probability on \mathbb{R}^k , then we will say that F has the density ρ if $F < m_k$ (m_k is the Lebesque measure on \mathbb{R}^k) and ρ is a version of the Radonikodym derivative dF/dm.

(For λ, μ -measures, $\lambda < \mu$ denote that λ is absolutely continuous with respect to μ , i.e. $\mu(A) = 0$ implies that $\lambda(A) = 0$)

If the function $f : (\Omega, \mathcal{K}, P) \to \mathbb{R}^k$ is a random variable, we will say that f has the density ρ if the distribution $P \circ f^{-1}$ has the density ρ . Hence a function $\rho : \mathbb{R}^k \to \overline{\mathbb{R}}$ is the density of the random variable f if:

i) ρ is measurable and $\rho \ge 0$

ii) $P(f \in A) = \int_{A} \rho(x) dm_k(x), \ A \in \mathcal{B}_{\mathbb{R}^k}$, where \mathcal{B} is a borelian field.

For a random variable $f : (\Omega, \mathcal{K}, P) \to \mathbb{R}^k$ and for a measurable function $\varphi : \mathbb{R}^k$ and for a measurable function $\varphi : \mathbb{R}^k \to \mathbb{C}$, the transport formula can be written as

(2)
$$\int_{\Omega} \varphi \circ f dP = \int_{\mathbb{R}^k} \varphi(x) dP \circ f^{-1}(x)$$

In particular, if f has the density ρ , then

(3)
$$\int_{\Omega} \varphi \circ f dP = \int_{\mathbb{R}^k} \varphi(x) \rho(x) dx$$

Let $\zeta = (\xi, \eta)$ be a random vector whose components are the random variables ξ and η . If so, the function F define by the relation

(4)
$$F(z) = F(x, y) = P(\xi \le x, \eta \le y), \ \forall (z) = (x, y) \in \mathbb{R}^2$$

is called the distribution function of the random vector ζ , where $P(\xi \leq x, \eta \leq y)$ is the probability that an aleatory point $\xi \in (-\infty, x]$, $\eta \in (-\infty, y]$.

The function F has analogous properties with the distribution function from the unudimensional case:

$$0 \le F(x,y) \le 1, \lim_{x,y \to -\infty} F(x,y) = 0, \lim_{x,y \to \infty} F(x,y) = 1.$$

The monotony condition of the function F will be characterized by the following inequalities:

$$F(x+h,y) - F(x,y) \ge 0, \ F(x,y+h) - F(x,y) \ge 0$$
$$F(x+h,y+h) - F(x+h,y) \ge F(x,y+h) - F(x,y)$$

where h and k represent two positive increases. Let \mathcal{V} be boolean algebra of all B-intervals of the form

$$\Delta = [a,b] \times [c,d], \ a,b,c,d \in \mathbb{R}$$

and let $\mu: \mathcal{V} \to [0, \infty]$ be a measure on \mathcal{V} so that $\mu(\Delta) < \infty$.

We know (see [3]) that there exists a monotone nondecreasing and leftcontinuous function F on \mathbb{R}^2 , so that $\forall a, b, c, d \in \mathbb{R}$ we have

(5)
$$\mu([a,b) \times [c,d)) = F(b,d) - F(a,d) - F(b,c) + F(a,c) = P(\zeta \in \Delta)$$

The reciprocal being also valid.

If F_1 and F_2 are monotone non-decreasing and left-continuous functions on \mathbb{R}^2 , so that

$$\mu([a,b] \times [c,d]) = F_1(b,d) - F_1(a,d) - F_1(b,c) + F_1(a,c) =$$
$$= F_2(b,d) - F_2(a,d) - F_2(b,c) + F_2(a,c), \ \forall a,b,c,d \in \mathbb{R},$$

then there exists a hyperbolic constant.

 $\psi(x,y) = \varphi(x) + \psi(y)$ so that $F_2(x,y) = F_1(x,y) + \psi$. If μ is a measure on \mathcal{V} with $\mu(\mathbb{R}^2) = \alpha < \infty$, then a monotone non-decreasing and left-continuous function F on \mathbb{R}^2 , can be found, having the properties $\lim_{x,y\to\infty} F(x,y) = 0$, $\lim_{x,y\to\infty} F(x,y) = \alpha$ and (4) holds. The function F so defined, is unique. If $\alpha = 1$, then the function F is

The function F so defined, is unique. If $\alpha = 1$, then the function F is called distribution (probability).

3. Let $\zeta = (\xi, \eta)$ be a random vector. Then, one defines for each measure μ on \mathbb{R}^2 , Fourier transform or otherwise characteristically function of the probability measure

(6)
$$\widehat{\mu}(t) = \int e^{i \langle t, z \rangle} dF(z), \ t \in \mathbb{R}^2$$

where $t = (u, v), \ z = (x, y) \in \mathbb{R}^2$. This function is called the distribution of μ . We have

(7)
$$\widehat{\mu}(t) = \int_{\mathbb{R}^2} e^{\langle t, z \rangle} dF(z)$$

where F(z) has the expression (4).

If the random vraiable $f: (\Omega, \mathcal{K}, P) \to \mathbb{R}^2$ and $\mu = P \circ f^{-1}$ is distribution of f, then the characteristically function $\hat{\mu}$ is

(8)
$$\widehat{\mu}(t) = \int e^{i < t, z >} d\mu(z) = \int_{\Omega} e^{i < t, f >} dP = M \cdot e^{i < t, f >}$$

where M is the mean value. In this case we say that $\hat{\mu}$ is the characteristically function of the random variable f. If ρ is the density in the point (x, y) of a mass equal with the unit distributed in plane x, y, then

(9)
$$\widehat{\mu}(u,v) = \int_{\mathbb{R}^2} e^{i(ux+vy)} d\mu(x,y) = \int_{\mathbb{R}^2} e^{i(ux+vy)} P(x,y) dx dy$$

Theorem 1 For each measure μ on \mathbb{R}^2 we have:

 $\begin{array}{l} i) \ \widehat{\mu}(0) = 1 \\ ii) \ \widehat{\mu}(-t) = \overline{\widehat{\mu}(t)} \\ iii) \ \forall a_1, a_2, ..., a_n \in \mathbb{C} \ and \ t_1, t_2, ..., t_n \in \mathbb{R}^2 \ we \ have \end{array}$

$$\sum_{j,k=1}^{n} a_j \cdot \overline{a_k} \cdot \widehat{\mu}(t_j - t_k) \ge 0$$

iv) $\hat{\mu}$ is a uniformly continuous function.

Proof. i) This follows from (8)
ii)
$$\widehat{\mu}(-t) = \int_{\mathbb{R}^2} \overline{e^{i < t, z >}} d\mu(z) = \int_{\mathbb{R}^2} \overline{e^{i < t, z >}} d\mu(z) = \overline{\widehat{\mu}t}$$

$$\begin{aligned} \text{iii)} & \sum_{j,k} a_j \overline{a_k} \widehat{\mu}(t_j - t_k) = \int_{\mathbb{R}^2} \sum_{j,k} a_j \cdot \overline{a_k} e^{i < t_j - t_k, z >} d\mu(z) = \\ & = \int_{\mathbb{R}^2} |\sum_j a_j \cdot e^{i < t, z >}|^2 \cdot d\mu(z) \ge 0 \\ \end{aligned}$$
$$\begin{aligned} \text{iv)} \quad \forall \nu = (h,k) \in \mathbb{R}^2_+, |\widehat{\mu}(u+h,v+k) - \widehat{\mu}(u,v)| \le \int_{\mathbb{R}^2} |e^{i < \nu, z >} - 1| d\mu(z), \end{aligned}$$
$$\end{aligned}$$
$$\end{aligned}$$
$$\end{aligned}$$
$$\end{aligned}$$
$$\end{aligned}$$

wł

The integrand is bounded and it tends to zero for $\nu \to 0$. Then according to Lebesque's dominated convergence theorem, we have

$$\lim_{|\nu|\to 0} \sup_{(u,v)\in\mathbb{R}^2} |\widehat{\mu}(u+h,v+k) - \widehat{\mu}(u,v)| = 0$$

and so $\hat{\mu}$ is uniformly continuous.

Theorem 2 Let μ be a measure $ON \mathbb{R}^2$ and

$$\int |x_j| d\mu(x) < \infty, \ j = \overline{1, k}, x = (x_1, ..., x_k), t = (t_1, ..., t_k).$$

Then $\widehat{\mu}$ is partial derivative with respect to t_j and we have

(10)
$$\frac{\partial \widehat{\mu}}{\partial t_j}(t) = i \int x_j \cdot e^{i \langle t, z \rangle} d\mu(x)$$

The partial derivatives $\frac{\partial \hat{\mu}}{\partial t_i}(t)$ are uniformly continuous.

Proof. Let e_j be the vectors of an orthonormal base. Then we have

$$\frac{\widehat{\mu}(t+he_j) - \widehat{\mu}(t)}{h} = \int e^{i \langle t, x \rangle} \cdot \frac{e^{ihx_j} - 1}{h} d\mu(x)$$

and $\left| e^{i < t, x >} \cdot \frac{e^{ihx_j} - 1}{h} \right| \le |x_j|.$

For $h \to 0$ and using the Lebesque's dominated convergence theorem, we obtain (10). The second part of the theorem follows from Theorem (1). **Observation 1** It is easy to show that, if μ is a measure on \mathbb{R}^k and

$$\int |x^n| d\mu(x) < \infty, x^n = x_1^n, \dots, x_k^{n_k}, n_i \ge 0, |n| = n_1 + \dots + n_k,$$

then the $\frac{\partial^{|n|}}{\partial t_1^{n_1}...\partial t_k^{n_k}}(\widehat{\mu}(t))$ exists and

(11)
$$\frac{\partial^{|n|}}{\partial t_1^{n_1} \dots \partial t_k^{n_k}} \widehat{\mu}(t) = i^{|n|} \cdot \int x_1^{n_1} \dots x_k^{n_k} \cdot e^{i \langle t, x \rangle} \cdot d\mu(x)$$

where *i*-imaginary unit.

Theorem 3 Let μ be a probability measure on \mathbb{R}^2 , so that $\int |x| d\mu(x, y) < \infty$, $\int |y| d\mu(x, y) < \infty$. Then

a) If $\int x d\mu(x,y) = 0$, $\int y d\mu(x,y) = 0$ we have

(12)
$$\lim_{n \to \infty} \left[\widehat{\mu} \left(\frac{u}{n}, \frac{v}{n} \right) \right]^n = 1$$

b) If in addition,

$$\int x^{2} d\mu(x, y) = 1, \int y^{2} d\mu(x, y) = 1 \text{ and } \int x dy \mu(x, y) = 0$$

we have

$$\lim_{n \to \infty} \left[\widehat{\mu} \left(\frac{u}{n}, \frac{v}{n} \right) \right]^n = e^{-\frac{1}{2}(u^2 + v^2)}$$

Proof. a) From hypothesis and from the theorem (2) follows that $\hat{\mu}(u, v)$ is differentiable and it's partial derivatives are continuous. Since

$$\frac{\partial \widehat{\mu}(u,v)}{\partial u} = i \int x \cdot e^{i(ux+vy)} d\mu(x,y), \ \frac{\partial \widehat{\mu}(u,v)}{\partial v} = i \int y e^{i(ux+vy)} d\mu(x,y)$$

follows that

$$\frac{\partial \widehat{\mu}}{\partial u}(0,0) = i \int x d\mu(x,y) = 0, \ \frac{\partial \widehat{\mu}}{\partial v}(0,0) = i \int y d\mu(x,y) = 0$$

Applying the formula Mac-Laurin, we obtain

$$\widehat{\mu}(t) = \widehat{\mu}(u,v) = \widehat{\mu}(0,0) + u \frac{\partial \widehat{\mu}}{\partial u}(\theta u,\theta v) + v \frac{\partial \widehat{\mu}}{\partial v}(\theta u,\theta v) =$$

$$= 1 + u \cdot \alpha(t) + v \cdot \beta(t)$$

for $|u| \leq 1$, $|v| \leq 1$ where $\alpha(t), \beta(t)$ are continuous functions in (0,0), and $\alpha(0) = 0, \beta(0) = 0, 0 < \theta < 1$. Then,

$$\widehat{\mu}\left(\frac{t}{n}\right) = \widehat{\mu}\left(\frac{u}{n}, \frac{v}{n}\right) = 1 + \frac{u}{n}\alpha\left(\frac{t}{n}\right) + \frac{v}{n}\beta\left(\frac{t}{n}\right) = 1 + \gamma_n(t)$$

where $\gamma_n(t) = \frac{u}{n} \alpha\left(\frac{t}{n}\right) + \frac{v}{n} \beta\left(\frac{t}{n}\right)$ with $\lim_{n \to \infty} n \gamma_n(t) = 0, \forall (u, v) \in \mathbb{R}^2$. Then $\forall (u, v)$, we have

$$\lim_{n \to \infty} \left[\widehat{\mu} \left(\frac{t}{n} \right) \right]^n = \lim_{n \to \infty} \left[1 + \gamma_n(t) \right]^n = \lim_{n \to \infty} \left[\left(1 + \gamma_n(t) \right)^{\frac{1}{\gamma_n(t)}} \right]^{n \cdot \gamma_n(t)} = 1$$

b) From the theorem (2) follows that $\hat{\mu}$ is twice differentiable with the partial derivatives of the second continuous order and

$$\frac{\partial \widehat{\mu}}{\partial u}(0,0) = 0, \ \frac{\partial \widehat{\mu}}{\partial v}(0,0) = 0, \ \frac{\partial^2 \widehat{\mu}}{\partial u^2}(0,0) = -1, \ \frac{\partial^2 \widehat{\mu}}{\partial v^2}(0,0) = -1, \ \frac{\partial^2 \widehat{\mu}}{\partial u \partial v}(0,0) = 0.$$

Applying again the formula Mac-Laurin for $|u| \le 1$, $|v| \le 1$, $0 < \theta < 1$ we have

$$\hat{\mu}(t) = \hat{\mu}(u, v) = \hat{\mu}(0, 0) + u \frac{\partial \hat{\mu}}{\partial u}(0, 0) + v \frac{\partial \hat{\mu}}{\partial v}(0, 0) + \\ + \frac{1}{2} \left[u^2 \frac{\partial^2 \hat{\mu}}{\partial u^2}(\theta u, \theta v) + 2uv \frac{\partial^2 \hat{\mu}}{\partial u, \partial v} + v^2 \cdot \frac{\partial^2 \hat{\mu}}{\partial v^2}(\theta u, \theta v) \right] \text{ or } \\ \hat{\mu}(t) = \hat{\mu}(u, v) = 1 + \frac{1}{2}u^2\theta_1(t) + uv\theta_2(t) + \frac{1}{2}v^2\theta_3(t) \text{ where} \\ \theta_1(0, 0) = -1, \theta_3(0, 0) = -1, \theta_2(0, 0) = 0. \text{ Then}, \\ \hat{\mu}\left(\frac{t}{\sqrt{n}}\right) = \hat{\mu}\left(\frac{u}{\sqrt{n}}, \frac{v}{\sqrt{n}}\right) = 1 + \frac{1}{2} \cdot \frac{u^2}{n}\theta_1\left(\frac{t}{\sqrt{n}}\right) + \frac{uv}{n}\theta_2\left(\frac{t}{\sqrt{n}}\right) + \\ + \frac{1}{2} \cdot \frac{v^2}{n}\theta_3\left(\frac{t}{\sqrt{n}}\right) = 1 + \sigma_n(t), \text{ where} \\ \sigma_n(t) = \frac{1}{2}\frac{u^2}{n}\theta_1\left(\frac{t}{\sqrt{n}}\right) + \frac{uv}{n}\theta_2\left(\frac{t}{\sqrt{n}}\right) + \frac{1}{2}\frac{v^2}{n}\theta_3\left(\frac{t}{\sqrt{n}}\right)$$

and

$$\lim_{n \to \infty} n\sigma_n(t) = -\frac{1}{2}(u^2 + v^2), \ \forall (u, v)$$

Then

.

$$\lim_{n \to \infty} \left[\widehat{\mu} \left(\frac{t}{\sqrt{n}} \right) \right]^n = e^{-\frac{1}{2}(u^2 + v^2)}.$$

References

- [1] E. Kamke, Integrala Lebega-Stieltesa, Fizmatgiz Moscova
- [2] A.N. Şiriaev, Veroiatnosti, Moscova, 1989.
- [3] R. Vomişescu, *Stieltjes integrals with probability interpretations*, Acta Technica Napocensis, 1994.

Department of Mathematics University "Lucian Blaga" of Sibiu, Str. Dr. I. Ratiu Nr.7 2400 Sibiu, Romania