Fourier transform of the probability measures

Romeo Vomişescu

Abstract

In this paper we make the connection between Fourier transform of a probability measure and the characteristic function in the \mathbb{R}^{2} space; also we establish some the properties.

2000 Mathematical Subject Classification:

1. Let Ω and Ω^{\prime} be any sets, let \mathcal{K} and \mathcal{K}^{\prime} to be two σ-algebras on Ω and Ω^{\prime} respectively and the measurable spaces $(\Omega, \mathcal{K}),\left(\Omega^{\prime}, \mathcal{K}^{\prime}\right)$.

A function $f: \Omega \rightarrow \Omega^{\prime}$ is said to be $\left(\mathcal{K}, \mathcal{K}^{\prime}\right)$ - measurable if the borelian filed $f^{-1}\left(\mathcal{K}^{\prime}\right) \subset \mathcal{K}$. Let $f:(\Omega, \mathcal{K}) \rightarrow\left(\Omega^{\prime}, \mathcal{K}^{\prime}\right)$ be a measurable function and let $\mu: \mathcal{K} \rightarrow[0, \infty)$ be a measure on \mathcal{K}. Then the function of set $\mu \circ f^{-1}$ defined on \mathcal{K}^{\prime} by the rule $\mu \circ f^{-1}$ is called, the image of the measure μ by f.

The triple $(\Omega, \mathcal{K}, \mu)$ where (Ω, \mathcal{K}) is a measurable space, and μ is a measure on \mathcal{K}, is called the space with measure. If $\mu(\Omega)=1$, then μ is called the probability measure.

Let $\varphi:(\Omega, \mathcal{K}) \rightarrow\left(\Omega^{\prime}, \mathcal{K}^{\prime}\right)$ be a measurable function $f:(\Omega, \mathcal{K}) \rightarrow X(\mathbb{R} \vee \mathbb{C})$ is $\mu \circ \varphi^{-1}$ - integrable, if and only if $f \circ \varphi$ is μ-integrable. In this case the following relation holds

$$
\begin{equation*}
\int(f \circ \varphi) d \mu=\int f \cdot d \mu \circ \varphi^{-1} \tag{1}
\end{equation*}
$$

and is called the transport formula.
2. We note with (Ω, \mathcal{K}, P) a probability field and let (X, \mathcal{X}) be a measurable space where \mathcal{X} is a borelian field on X. A measurable functions $f:(\Omega, \mathcal{K}, P) \rightarrow(X, \mathcal{X})$ is called a random variable. If the function f is a random variable, then the image of P by f we will note with $P \circ f^{-1}$ and will be called, distribution of f. In this case the distribution of f is the probability on \mathcal{X} defined by $P \circ f^{-1}(A)=P\left(f^{-1}(A)\right), A \in \mathcal{X}$. This events $f^{-1}(A)$ we also denote by $\{f \in A\}$. If F is a probability on \mathbb{R}^{k}, then we will say that F has the density ρ if $F<m_{k}$ (m_{k} is the Lebesque measure on \mathbb{R}^{k}) and ρ is a version of the Radonikodym derivative $d F / d m$.
(For λ, μ-measures, $\lambda<\mu$ denote that λ is absolutely continuous with respect to μ, i.e. $\mu(A)=0$ implies that $\lambda(A)=0$)

If the function $f:(\Omega, \mathcal{K}, P) \rightarrow \mathbb{R}^{k}$ is a random variable, we will say that f has the density ρ if the distribution $P \circ f^{-1}$ has the density ρ. Hence a function $\rho: \mathbb{R}^{k} \rightarrow \overline{\mathbb{R}}$ is the density of the random variable f if:
i) ρ is measurable and $\rho \geq 0$
ii) $P(f \in A)=\int_{A} \rho(x) d m_{k}(x), A \in \mathcal{B}_{\mathbb{R}^{k}}$, where \mathcal{B} is a borelian field.

For a random variable $f:(\Omega, \mathcal{K}, P) \rightarrow \mathbb{R}^{k}$ and for a measurable function $\varphi: \mathbb{R}^{k}$ and for a measurable function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{C}$, the transport formula can be written as

$$
\begin{equation*}
\int_{\Omega} \varphi \circ f d P=\int_{\mathbb{R}^{k}} \varphi(x) d P \circ f^{-1}(x) \tag{2}
\end{equation*}
$$

In particular, if f has the density ρ, then

$$
\begin{equation*}
\int_{\Omega} \varphi \circ f d P=\int_{\mathbb{R}^{k}} \varphi(x) \rho(x) d x \tag{3}
\end{equation*}
$$

Let $\zeta=(\xi, \eta)$ be a random vector whose components are the random variables ξ and η. If so, the function F define by the relation

$$
\begin{equation*}
F(z)=F(x, y)=P(\xi \leq x, \eta \leq y), \forall(z)=(x, y) \in \mathbb{R}^{2} \tag{4}
\end{equation*}
$$

is called the distribution function of the random vector ζ, where $P(\xi \leq x, \eta \leq y)$ is the probability that an aleatory point $\xi \in(-\infty, x]$, $\eta \in(-\infty, y]$.

The function F has analogous properties with the distribution function from the unudimensional case:

$$
0 \leq F(x, y) \leq 1, \quad \lim _{x, y \rightarrow-\infty} F(x, y)=0, \lim _{x, y \rightarrow \infty} F(x, y)=1
$$

The monotony condition of the function F will be characterized by the following inequalities:

$$
\begin{aligned}
& F(x+h, y)-F(x, y) \geq 0, F(x, y+h)-F(x, y) \geq 0 \\
& F(x+h, y+h)-F(x+h, y) \geq F(x, y+h)-F(x, y)
\end{aligned}
$$

where h and k represent two positive increases. Let \mathcal{V} be boolean algebra of all B-intervals of the form

$$
\Delta=[a, b] \times[c, d], a, b, c, d \in \mathbb{R}
$$

and let $\mu: \mathcal{V} \rightarrow[0, \infty]$ be a measure on \mathcal{V} so that $\mu(\Delta)<\infty$.
We know (see [3]) that there exists a monotone nondecreasing and leftcontinuous function F on \mathbb{R}^{2}, so that $\forall a, b, c, d \in \mathbb{R}$ we have

$$
\begin{equation*}
\mu([a, b) \times[c, d))=F(b, d)-F(a, d)-F(b, c)+F(a, c)=P(\zeta \in \Delta) \tag{5}
\end{equation*}
$$

The reciprocal being also valid.
If F_{1} and F_{2} are monotone non-decreasing and left-continuous functions on \mathbb{R}^{2}, so that

$$
\begin{aligned}
& \mu([a, b] \times[c, d])=F_{1}(b, d)-F_{1}(a, d)-F_{1}(b, c)+F_{1}(a, c)= \\
& \quad=F_{2}(b, d)-F_{2}(a, d)-F_{2}(b, c)+F_{2}(a, c), \forall a, b, c, d \in \mathbb{R},
\end{aligned}
$$

then there exists a hyperbolic constant.

$$
\psi(x, y)=\varphi(x)+\psi(y) \text { so that } F_{2}(x, y)=F_{1}(x, y)+\psi . \quad \text { If } \mu \text { is a }
$$ measure on \mathcal{V} with $\mu\left(\mathbb{R}^{2}\right)=\alpha<\infty$, then a monotone non-decreasing and left-continuous function F on \mathbb{R}^{2}, can be found, having the properties $\lim _{x, y \rightarrow-\infty} F(x, y)=0, \lim _{x, y \rightarrow \infty} F(x, y)=\alpha$ and (4) holds.

The function F so defined, is unique. If $\alpha=1$, then the function F is called distribution (probability).
3. Let $\zeta=(\xi, \eta)$ be a random vector. Then, one defines for each measure μ on \mathbb{R}^{2}, Fourier transform or otherwise characteristically function of the probability measure

$$
\begin{equation*}
\widehat{\mu}(t)=\int e^{i<t, z>} d F(z), t \in \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

where $t=(u, v), z=(x, y) \in \mathbb{R}^{2}$. This function is called the distribution of μ. We have

$$
\begin{equation*}
\widehat{\mu}(t)=\int_{\mathbb{R}^{2}} e^{<t, z>} d F(z) \tag{7}
\end{equation*}
$$

where $F(z)$ has the expression (4).
If the random vraiable $f:(\Omega, \mathcal{K}, P) \rightarrow \mathbb{R}^{2}$ and $\mu=P \circ f^{-1}$ is distribution of f, then the characteristically function $\widehat{\mu}$ is

$$
\begin{equation*}
\widehat{\mu}(t)=\int e^{i<t, z>} d \mu(z)=\int_{\Omega} e^{i<t, f\rangle} d P=M \cdot e^{i<t, f\rangle} \tag{8}
\end{equation*}
$$

where M is the mean value. In this case we say that $\widehat{\mu}$ is the characteristically function of the random variable f. If ρ is the density in the point (x, y) of a mass equal with the unit ditributed in plane x, y, then

$$
\begin{equation*}
\widehat{\mu}(u, v)=\int_{\mathbb{R}^{2}} e^{i(u x+v y)} d \mu(x, y)=\int_{\mathbb{R}^{2}} e^{i(u x+v y)} P(x, y) d x d y \tag{9}
\end{equation*}
$$

Theorem 1 For each measure μ on \mathbb{R}^{2} we have:
i) $\widehat{\mu}(0)=1$
ii) $\widehat{\mu}(-t)=\overline{\widehat{\mu}(t)}$
iii) $\forall a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}$ and $t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{R}^{2}$ we have

$$
\sum_{j, k=1}^{n} a_{j} \cdot \overline{a_{k}} \cdot \widehat{\mu}\left(t_{j}-t_{k}\right) \geq 0
$$

iv) $\widehat{\mu}$ is a uniformly continuous function.

Proof. i) This follows from (8)
ii) $\widehat{\mu}(-t)=\int_{\mathbb{R}^{2}} \overline{e^{i<t, z>}} d \mu(z)=\int_{\mathbb{R}^{2}} \overline{e^{i<t, z>} d \mu(z)}=\overline{\widehat{\mu} t}$
iii) $\sum_{j, k} a_{j} \overline{a_{k}} \widehat{\mu}\left(t_{j}-t_{k}\right)=\int_{\mathbb{R}^{2}} \sum_{j, k} a_{j} \cdot \overline{a_{k}} e^{i<t_{j}-t_{k}, z>} d \mu(z)=$

$$
=\int_{\mathbb{R}^{2}}\left|\sum_{j} a_{j} \cdot e^{i<t, z>}\right|^{2} \cdot d \mu(z) \geq 0
$$

iv) $\forall \nu=(h, k) \in \mathbb{R}_{+}^{2},|\widehat{\mu}(u+h, v+k)-\widehat{\mu}(u, v)| \leq \int_{\mathbb{R}^{2}}\left|e^{i<\nu, z>}-1\right| d \mu(z)$, where $|\nu|=\left(h^{2}+k^{2}\right)^{\frac{1}{2}}$.

The integrand is bounded and it tends to zero for $\nu \rightarrow 0$. Then according to Lebesque's dominated convergence theorem, we have

$$
\lim _{|\nu| \rightarrow 0} \sup _{(u, v) \in \mathbb{R}^{2}}|\widehat{\mu}(u+h, v+k)-\widehat{\mu}(u, v)|=0
$$

and so $\widehat{\mu}$ is uniformly continuous.
Theorem 2 Let μ be a measure $O N \mathbb{R}^{2}$ and

$$
\int\left|x_{j}\right| d \mu(x)<\infty, j=\overline{1, k}, x=\left(x_{1}, \ldots, x_{k}\right), t=\left(t_{1}, \ldots, t_{k}\right)
$$

Then $\widehat{\mu}$ is partial derivative with respect to t_{j} and we have

$$
\begin{equation*}
\frac{\partial \widehat{\mu}}{\partial t_{j}}(t)=i \int x_{j} \cdot e^{i<t, z>} d \mu(x) \tag{10}
\end{equation*}
$$

The partial derivatives $\frac{\partial \widehat{\mu}}{\partial t_{j}}(t)$ are uniformly continuous.
Proof. Let e_{j} be the vectors of an orthonormal base. Then we have

$$
\frac{\widehat{\mu}\left(t+h e_{j}\right)-\widehat{\mu}(t)}{h}=\int e^{i<t, x>} \cdot \frac{e^{i h x_{j}}-1}{h} d \mu(x)
$$

and $\left|e^{i<t, x>} \cdot \frac{e^{i h x_{j}}-1}{h}\right| \leq\left|x_{j}\right|$.
For $h \rightarrow 0$ and using the Lebesque's dominated convergence theorem, we obtain (10). The second part of the theorem follows from Theorem (1).

Observation 1 It is easy to show that, if μ is a measure on \mathbb{R}^{k} and

$$
\int\left|x^{n}\right| d \mu(x)<\infty, x^{n}=x_{1}^{n}, \ldots, x_{k}^{n_{k}}, n_{i} \geq 0,|n|=n_{1}+\ldots+n_{k}
$$

then the $\frac{\partial^{|n|}}{\partial t_{1}^{n_{1}} \ldots \partial t_{k}^{n_{k}}}(\widehat{\mu}(t))$ exists and

$$
\begin{equation*}
\frac{\partial^{|n|}}{\partial t_{1}^{n_{1}} \ldots \partial t_{k}^{n_{k}}} \widehat{\mu}(t)=i^{|n|} \cdot \int x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} \cdot e^{i<t, x>} \cdot d \mu(x) \tag{11}
\end{equation*}
$$

where i-imaginary unit.
Theorem 3 Let μ be a probability measure on \mathbb{R}^{2}, so that $\int|x| d \mu(x, y)<\infty, \int|y| d \mu(x, y)<\infty$. Then
a) If $\int x d \mu(x, y)=0, \int y d \mu(x, y)=0$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\widehat{\mu}\left(\frac{u}{n}, \frac{v}{n}\right)\right]^{n}=1 \tag{12}
\end{equation*}
$$

b) If in addition,

$$
\int x^{2} d \mu(x, y)=1, \int y^{2} d \mu(x, y)=1 \text { and } \int x d y \mu(x, y)=0
$$

we have

$$
\lim _{n \rightarrow \infty}\left[\widehat{\mu}\left(\frac{u}{n}, \frac{v}{n}\right)\right]^{n}=e^{-\frac{1}{2}\left(u^{2}+v^{2}\right)}
$$

Proof. a) From hypothesis and from the theorem (2) follows that $\widehat{\mu}(u, v)$ is differentiable and it's partial derivatives are continuous. Since

$$
\frac{\partial \widehat{\mu}(u, v)}{\partial u}=i \int x \cdot e^{i(u x+v y)} d \mu(x, y), \frac{\partial \widehat{\mu}(u, v)}{\partial v}=i \int y e^{i(u x+v y)} d \mu(x, y)
$$

follows that

$$
\frac{\partial \widehat{\mu}}{\partial u}(0,0)=i \int x d \mu(x, y)=0, \frac{\partial \widehat{\mu}}{\partial v}(0,0)=i \int y d \mu(x, y)=0
$$

Applying the formula Mac-Laurin, we obtain

$$
\widehat{\mu}(t)=\widehat{\mu}(u, v)=\widehat{\mu}(0,0)+u \frac{\partial \widehat{\mu}}{\partial u}(\theta u, \theta v)+v \frac{\partial \widehat{\mu}}{\partial v}(\theta u, \theta v)=
$$

$$
=1+u \cdot \alpha(t)+v \cdot \beta(t)
$$

for $|u| \leq 1,|v| \leq 1$ where $\alpha(t), \beta(t)$ are continuous functions in $(0,0)$, and $\alpha(0)=0, \beta(0)=0,0<\theta<1$. Then,

$$
\widehat{\mu}\left(\frac{t}{n}\right)=\widehat{\mu}\left(\frac{u}{n}, \frac{v}{n}\right)=1+\frac{u}{n} \alpha\left(\frac{t}{n}\right)+\frac{v}{n} \beta\left(\frac{t}{n}\right)=1+\gamma_{n}(t)
$$

where $\gamma_{n}(t)=\frac{u}{n} \alpha\left(\frac{t}{n}\right)+\frac{v}{n} \beta\left(\frac{t}{n}\right)$ with $\lim _{n \rightarrow \infty} n \gamma_{n}(t)=0, \forall(u, v) \in \mathbb{R}^{2}$. Then $\forall(u, v)$, we have

$$
\lim _{n \rightarrow \infty}\left[\widehat{\mu}\left(\frac{t}{n}\right)\right]^{n}=\lim _{n \rightarrow \infty}\left[1+\gamma_{n}(t)\right]^{n}=\lim _{n \rightarrow \infty}\left[\left(1+\gamma_{n}(t)\right)^{\frac{1}{\gamma_{n}(t)}}\right]^{n \cdot \gamma_{n}(t)}=1
$$

b) From the theorem (2) follows that $\widehat{\mu}$ is twice differentiable with the partial derivatives of the second continuous order and

$$
\frac{\partial \widehat{\mu}}{\partial u}(0,0)=0, \frac{\partial \widehat{\mu}}{\partial v}(0,0)=0, \frac{\partial^{2} \widehat{\mu}}{\partial u^{2}}(0,0)=-1, \frac{\partial^{2} \widehat{\mu}}{\partial v^{2}}(0,0)=-1, \frac{\partial^{2} \widehat{\mu}}{\partial u \partial v}(0,0)=0
$$

Applying again the formula Mac-Laurin for $|u| \leq 1,|v| \leq 1,0<\theta<1$ we have

$$
\begin{gathered}
\widehat{\mu}(t)=\widehat{\mu}(u, v)=\widehat{\mu}(0,0)+u \frac{\partial \widehat{\mu}}{\partial u}(0,0)+v \frac{\partial \widehat{\mu}}{\partial v}(0,0)+ \\
+\frac{1}{2}\left[u^{2} \frac{\partial^{2} \widehat{\mu}}{\partial u^{2}}(\theta u, \theta v)+2 u v \frac{\partial^{2} \widehat{\mu}}{\partial u, \partial v}+v^{2} \cdot \frac{\partial^{2} \widehat{\mu}}{\partial v^{2}}(\theta u, \theta v)\right] \text { or } \\
\widehat{\mu}(t)=\widehat{\mu}(u, v)=1+\frac{1}{2} u^{2} \theta_{1}(t)+u v \theta_{2}(t)+\frac{1}{2} v^{2} \theta_{3}(t) \text { where } \\
\theta_{1}(0,0)=-1, \theta_{3}(0,0)=-1, \theta_{2}(0,0)=0 . \text { Then, } \\
\widehat{\mu}\left(\frac{t}{\sqrt{n}}\right)=\widehat{\mu}\left(\frac{u}{\sqrt{n}}, \frac{v}{\sqrt{n}}\right)=1+\frac{1}{2} \cdot \frac{u^{2}}{n} \theta_{1}\left(\frac{t}{\sqrt{n}}\right)+\frac{u v}{n} \theta_{2}\left(\frac{t}{\sqrt{n}}\right)+ \\
+\frac{1}{2} \cdot \frac{v^{2}}{n} \theta_{3}\left(\frac{t}{\sqrt{n}}\right)=1+\sigma_{n}(t), \text { where } \\
\sigma_{n}(t)=\frac{1}{2} \frac{u^{2}}{n} \theta_{1}\left(\frac{t}{\sqrt{n}}\right)+\frac{u v}{n} \theta_{2}\left(\frac{t}{\sqrt{n}}\right)+\frac{1}{2} \frac{v^{2}}{n} \theta_{3}\left(\frac{t}{\sqrt{n}}\right)
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} n \sigma_{n}(t)=-\frac{1}{2}\left(u^{2}+v^{2}\right), \forall(u, v)
$$

Then

$$
\lim _{n \rightarrow \infty}\left[\widehat{\mu}\left(\frac{t}{\sqrt{n}}\right)\right]^{n}=e^{-\frac{1}{2}\left(u^{2}+v^{2}\right)}
$$

References

[1] E. Kamke, Integrala Lebega-Stieltesa, Fizmatgiz - Moscova
[2] A.N. Şiriaev, Veroiatnosti, Moscova, 1989.
[3] R. Vomişescu, Stieltjes integrals with probability interpretations, Acta Technica Napocensis, 1994.

Department of Mathematics
University "Lucian Blaga" of Sibiu, Str. Dr. I. Ratiu Nr. 7
2400 Sibiu, Romania

