General Mathematics Vol. 12, No. 1 (2004), 23-34

Parametric solutions for some Diophantine equations

Dorin Andrica and Gheorghe M. Tudor

Abstract

Under some hypotheses we show that the Diophantine equation (1) has infinitely many solutions described by a family depending on k+2 parameters. Some applications of the main result are given and some special equations are studied.

2000 Mathematical Subject Classification: 11D72

1 Introduction

Consider the Diophantine equation

(1)
$$a_0 x_0^{p_0} + a_1 x_1^{p_1} + \ldots + a_k x_k^{p_k} = 0$$

where a_0, a_1, \ldots, a_k are integers, $a_0 > 0$, and p_0, p_1, \ldots, p_k are positive integers. Concerning the equation (1) in the book [3] the following general result is presented:

23

Assume that p is relatively prime to the product $P_k = p_1 p_2 \dots p_k$. Then:

a) if $a_1 + a_2 + \ldots + a_k \neq 0$, the equation (1) has infinitely many solutions in integers;

b) if $a_1 + a_2 + \ldots + a_k < 0$, the equation (1) has infinitely many solutions in positive integers.

In both cases mentioned above, the solutions are described by a family depending on a parameter.

In the paper [4], the second author gave a much general result without restrictive conditions a) and b). Moreover, the solutions are described by a family depending on k + 2 parameters. The main result in [4] is contained in the following:

Theorem. Consider the equation (1) with $a_0 > 0$ and assume that p_0 is relatively prime to $m = lcm(p_1, p_2, ..., p_k)$. Then:

a) the equation (1) has infinitely many solutions in integers;

b) if $a_i < 0$, for some $i \in \{1, 2, ..., k\}$, then the equation (1) has infinitely many solutions in positive integers.

In order to construct a family of solutions, let us denote

(2)
$$T_k = a_0^{p_0-1} (-a_1 n_1^{p_1} - a_2 n_2^{p_2} - \dots - a_k n_k^{p_k})$$

where n_1, n_2, \ldots, n_k are arbitrary integers. Taking into account that p and m are relatively prime, it follows that for infinitely many pairs (q, r) of positive integers the relation

$$(3) p_0 q = mr + 1$$

holds. Then a family of solutions to equation (1) is given by

(4)
$$\begin{cases} x_0 = n_0^{mp_0/p_0} \cdot a_0^{-1} \cdot T_k^q \\ x_1 = n_0^{mp_0/p_1} \cdot n_1 \cdot T_k^{rm/p_1} \\ x_2 = n_0^{mp_0/p_2} \cdot n_2 \cdot T_k^{rm/p_2} \\ \dots \\ x_k = n_0^{mp_0/p_k} \cdot n_k \cdot T_k^{rm/p_k} \end{cases}$$

The solutions in (4) depend on the k+2 parameters n_0, n_1, \ldots, n_k, r (or q).

Remarks. 1) If n_0, n_1, \ldots, n_k are rational numbers, the formula (4) point out an infinite family of rational solutions to equation (1).

2) In the particular case $n_0 = a_0$, $n_1 = n_2 = \ldots = n_k = 1$, if we replace m by $p_1 p_2 \ldots p_k$, then the formula (4) is obtained in the book [3].

3) If n_0, n_1, \ldots, n_k are real numbers, then (4) gives us a polynomial parametrization of the algebraic hypersurface defined by (1) in the Euclidean space \mathbb{R}^{k+1} .

4) A simplified form of (4) is obtained when $n_0 = 1$:

(5)
$$x_0 = a_0^{-1} T_k^q, \ x_1 = n_1 T_k^{rm/p_1}, \ x_2 = n_2 T_k^{rm/p_2}, \dots, x_k = n_k T_k^{rm/p_k}$$

i.e. an infinite family depending on k + 1 parameters.

In the references [1], [2] and [3] there are many examples of Diophantine equations which are special cases of equation (1). Let us mention the following equations contained in [1]:

(a) $x^p + y^p = z^{p\pm 1}$, (b) $x^2 + y^3 = z^5$, (c) $x^p + y^p + z^p + u^p = v^{p\pm 1}$.

Also, we mention some equations contained in [3]:

(d) $x^2 + y^3 = z^4$, (e) $x^2 + y^3 + z^4 = t^2$, (f) $x^2 + y^4 = 2z^3$.

In what follows we will apply the result in the above mentioned Theorem for some of these equations as well as for some other generalized equations.

2 The equations $x^p + y^p = z^{np\pm 1}$ and $x^p + y^p = z^{p^n\pm 1}$

First of all we will change the notations in order to apply in a direct way the result in our Theorem.

Consider the equation

(6)
$$x_0^{np\pm 1} - x_1^p - x_2^p = 0,$$

where p and n are positive integers. In that case we have $a_0 = 1$, $a_1 = a_2 = -1$ and $p_0 = np \pm 1$ is relatively prime to p. There exist infinitely many positive integers q and r such that

$$(7) (np\pm 1)q = pr+1$$

It is easy to show that

(8)
$$\begin{cases} r(t) = (np \pm 1)t \pm n \\ q(t) = pt \pm 1 \end{cases}$$

where t is any positive integers and the signs + and - correspond. Using formula (5) we find the following family of solutions to equation (6):

(9)
$$\begin{cases} x_0 = (n_1^p + n_2^p)^{pt \pm 1} \\ x_1 = n_1 (n_1^p + n_2^p)^{(np \pm 1)t \pm n} \\ x_2 = n_2 (n_1^p + n_2^p)^{(np \pm 1)t \pm n} \end{cases}$$

Let us note that if n = 1, then we obtain the equations (a). If $n_1 = 1$, $n_2 = k$, t = 1 and $n_1 = k$, $n_2 = 1$, t = 1, respectively, we find the solutions

$$x_0 = k^p + 1, \quad x_1 = k^p + 1, \quad x_2 = k(k^p + 1)$$

when we consider the sign +, and

$$x_0 = (k^p + 1)^{p-1}, \quad x_1 = (k^p + 1)^{p-2}, \quad x_2 = k(k^p + 1)^{p-2}$$

in case of the sign -. These solutions are given in the book [1].

Let us consider the equations

(10)
$$x_0^{p^n \pm 1} - x_1^p - x_2^p = 0,$$

where p and n are positive integers. In that case we have $p_1 = p_2 = p$, $p_0 = p^n \pm 1$ and p_0 is relatively prime to p. Hence

$$(11) \qquad (p^n \pm 1)q = pr + 1$$

for some positive integers r and q. All such pairs (r, q) are given by

(12)
$$\begin{cases} r(t) = (p^{n} \pm 1)t \pm p^{n-1} \\ q(t) = pt \pm 1 \end{cases}$$

where t is any positive integer and signs + and - correspond. From formula (5) we find the following family of solutions to equation (10):

(13)
$$\begin{cases} x_0 = (n_1^p + n_2^p)^{pt \pm 1} \\ x_1 = n_1 (n_1^p + n_2^p)^{(p^n \pm 1)t \pm p^{n-1}} \\ x_2 = n_2 (n_1^p + n_2^p)^{(p^n \pm 1)t \pm p^{n-1}} \end{cases}$$

The signs + and - in (13) correspond to the signs + and - in (10). Let us note that if n = 1, then we obtain again the equations (a). **Remark.** In the book [1] the following equation is given

(14)
$$x_0^{p-1} - x_1^p - x_2^p - x_3^p - x_4^p = 0$$

It is clear that we have $a_0 = 1$, $a_1 = a_2 = a_3 = a_4 = -1$, $p_1 = p_2 = p_3 = p_4 = p$ and $p_0 = p - 1$. An infinite family of solutions to (14) depending on two parameters is obtained in [1] by multiplication principle applied to equation (a) where the sign – is considered. Now we can construct a larger family of solutions depending on five parameters. Indeed, from relation

(15)
$$(p-1)q = pr + 1$$

we deduce

(17)

(16)
$$\begin{cases} r(t) = (p-1)t - 1\\ q(t) = pt - 1 \end{cases}$$

where t is any positive integer. Formula (5) gives us the following family of solutions:

$$x_0 = S^{pt-1}, \ x_1 = n_1 S^{(p-1)t-1}, \ x_2 = n_2 S^{(p-1)t-1}$$

$$x_3 = n_3 S^{(p-1)t-1}, \ x_4 = n_4 S^{(p-1)t-1},$$

where $S = n_1^{p_1} + n_2^{p_2} + n_3^{p_3} + n_4^{p_4}$ and n_1, n_2, n_3, n_4, t are arbitrary positive integers.

3 The equation
$$x_0^p - x_1^{2p-1} - x_2^{2p+1} = 0$$

Consider the equation

(18)
$$x_0^p - x_1^{2p-1} - x_2^{2p+1} = 0$$

In that case we have $a_0 = 1$, $a_1 = a_2 = -1$, $p_1 = 2p - 1$, $p_2 = 2p + 1$, $p_0 = p$. It is clear that p_0 is relatively prime to $p_1p_2 = 4p^2 - 1$. In the case p = 2 we obtain equation (b) also studied in the book [1].

Because p_0 is relatively prime to $4p^2 - 1$, we have

(19)
$$pq = (4p^2 - 1)r + 1$$

and all pairs (r, q) of such positive integers are given by

(20)
$$\begin{cases} r(t) = pt + 1 \\ q(t) = 4p^{2}t + 4p - t \end{cases}$$

for any positive integer t. Applying formula (4) we obtain the following family of solutions to equation (18):

(21)
$$\begin{cases} x_0 = n_0^{4p^2 - 1} (n_1^{2p - 1} + n_2^{2p + 1})^{(4p^2 - 1)t + 4p} \\ x_1 = n_0^{p(2p + 1)} n_1 (n_1^{2p - 1} + n_2^{2p + 1})^{(2p + 1)(pt + 1)} \\ x_2 = n_0^{p(2p - 1)} n_2 (n_1^{2p - 1} + n_2^{2p + 1})^{(2p - 1)(pt + 1)} \end{cases}$$

The family (21) depends on four parameters n_0, n_1, n_2, t . In the case p = 2 we obtain a family of solutions to equation (b):

(22)
$$\begin{cases} x_0 = n_0^{15} (n_1^3 + n_2^5)^{15t+8} \\ x_1 = n_0^{10} n_1 (n_1^3 + n_2^5)^{10t+5} \\ x_2 = n_0^6 n_2 (n_1^3 + n_2^5)^{6t+3} \end{cases}$$

where n_0, n_1, n_2, t are any positive integers.

4 The equation

$$b_m x_m^{2n+m} + b_{m+1} x_{m+1}^{2n+m+1} + \ldots + b_{m+p} x_{m+p}^{2n+m+p} = 0$$

In the above equation n and p are positive integers and m is an integer. The coefficients b_i , i = m, m + 1, ..., m + p, are integers. In what follows we will study three special cases of this equation. We use the notations in our Theorem.

4.1. Let us consider the equation

(23)
$$a_0 x_0^{2n+1} + a_1 x_1^{2n-1} + a_2 x_2^{2n} + a_3 x_3^{2n+2} + a_4 x_4^{2n+3} = 0$$

where $a_0 > 0$, $a_1^2 + a_2^2 + a_3^2 + a_4^2 \neq 0$ and $n \ge 2$ is a positive integer.

We have $p_0 = 2n + 1$, $p_1 = 2n - 1$, $p_2 = 2n$, $p_3 = 2n + 2$, $p_4 = 2n + 3$ and p_0 is relatively prime to each of the integers p_1, p_2, p_3, p_4 . Applying the result in our main Theorem we obtain:

Proposition 1. a) The equation (23) has infinitely many solutions in integers.

b) If $a_i < 0$ for some $i \in \{1, 2, 3, 4\}$, then the equation (23) has infinitely many solutions in positive integers.

Let us indicate how we can construct an infinite family of solutions. Because $p_0 = 2n + 1$ is relatively prime to each p_1, p_2, p_3, p_4 it follows that

(24)
$$(2n+1)q = (2n-1)2n(2n+2)(2n+3)r + 1$$

for some positive integers r and q. That is equivalent to

(25)
$$p_0 q = (p_0^2 - 4)(p_0^2 - 1)r + 1$$

From (25) it follows that $4r + 1 = p_0 s$, where s is a positive integer. We

can choose $s = 4t + p_0$ for any positive integer t and we find

$$\begin{cases} r(t) = \frac{1}{4}(4p_0t + p_0^2 - 1) \\ q(t) = \frac{1}{4p_0}[(p_0^2 - 4)(p_0^2 - 1)(4p_0t + p_0^2 - 1) + 4] \end{cases}$$

Using formula (4) or (5) we obtain an infinite family of integral solutions to equation (23).

As an example, let consider n = 2 i.e. the equation

(27)
$$a_0 x_0^5 + a_1 x_1^3 + a_2 x_2^4 + a_3 x_3^6 + a_4 x_4^7 = 0$$

We take $T_4 = a_0^4(-a_1n_1^3 - a_2n_2^4 - a_3n_3^6 - a_4n_4^7)$, r(t) = 5t + 6, q(t) = 504t + 605, where n_1, n_2, n_3, n_4, t are arbitrary integers.

4.2. Consider the equation

(26)

$$(28) \quad a_0 x_0^{2n+1} + a_1 x_1^{2n-3} + a_2 x_2^{2n-1} a_3 x_3^{2n} + a_4 x_4^{2n+2} + a_5 x_5^{2n+3} + a_6 x_6^{2n+5} = 0$$

where *n* is a positive integer ≥ 3 , the coefficients a_i are integers, $a_0 > 0$ and $a_1^2 + a_2^2 + \ldots + a_6^2 \neq 0$. We have $p_0 = 2n + 1$ and it is relatively prime to any $p_1 = 2n - 3$, $p_2 = 2n - 1$, $p_3 = 2n$, $p_4 = 2n + 2$, $p_5 = 2n + 3$, $p_6 = 2n + 5$. From our main Theorem it follows:

Proposition 2. a) The equation (28) has infinitely many solutions in integers.

b) If $a_i < 0$ for some $i \in \{1, 2, 3, 4, 5, 6\}$, then the equation (28) has infinitely many solutions in positive integers.

We can construct an infinite family of solutions in the following way. The integers p_0 and $p_1p_2p_3p_4p_5p_6$ are relatively prime, hence

$$(29) \quad (2n_1)q = (2n-3)(2n-1)(2n)(2n+2)(2n+3)(2n+5)r + 1$$

for some positive integers r and q. That is equivalent to

(30)
$$p_0q = (p_0^2 - 16)(p_0^2 - 4)(p_0^2 - 1)r + 1$$

It follows $64r - 1 = p_0 s$, where s is a positive integer. In order to find convenient pairs (r, q) of positive integers satisfying (30) let us use the following obvious property: For any positive integers $n, k \ge 1$, the integer $(2n+1)^{2^k} - 1$ is divisible by 2^{k+2} . In that case we can consider

(31)
$$\begin{cases} r(t) = \frac{1}{64}(64t - 1)p_0^{16} + 1\\ q(t) = \frac{1}{p_0}[(p_0^2 - 16)(p_0^2 - 4)(p_0^2 - 1)r(t) + 1], \end{cases}$$

where t is any positive integer.

In the particular case n = 3, we have

$$T_6 = a_0^6 \left(-a_1 n_1^3 - a_2 n_2^5 - a_3 n_3^6 - a_4 n_4^8 - a_5 n_5^9 - a_6 n_6^{11}\right)$$

and

$$r(t) = \frac{1}{64}[(64t - 1)7^{16} + 1], \quad q(t) = \frac{1}{7}(33 \cdot 45 \cdot 48r(t) + 1)$$

A family of integral solutions to equation (28) can be obtained by using formula (4) or (5).

4.3. Let us consider the equation

(32)
$$a_0 x_0^{2n+3} + a_1 x_1^{2n-1} + a_2 x_2^{2n} + a_3 x_3^{2n+1} + a_4 x_4^{2n+2} + a_5 x_5^{2n+4} + a_6 x_6^{2n+5} + a_7 x_7^{2n+6} + a_8 x_8^{2n+7} = 0,$$

where $n \ge 2$ is a positive integer, the coefficients a_i are integers, $a_0 > 0$ and $a_1^2 + a_2^2 + \ldots + a_8^2 \ne 0$. Assume that n is not divisible by 3. Then $p_0 = 2n + 3$ is relatively prime to all p_i , $i = 1, 2, \ldots, 8$. We have many integral solutions.

b) If $a_i < 0$ for some $i \in \{1, 2, ..., 8\}$, then equation (32) has infinitely many solutions in positive integers.

We will indicate the effective construction of an infinite family of integral solutions. Taking into account that $p_0 = 2n + 3$ is relatively prime to the product $p_1 p_2 \dots p_8$, we have

$$(33) \qquad (2n+3)q =$$

$$= (2n-1)(2n)(2n+1)(2n+2)(2n+4)(2n+5)(2n+6)(2n+7)r + 1,$$

for some positive integers r and q. The relation (33) is equivalent to

(34)
$$p_0q = (p_0^2 - 16)(p_0^2 - 9)(p_0^2 - 4)(p_0^2 - 1)r + 1$$

Therefore, the relation $9 \cdot 64r + 1 = p_0 s$, for a positive integer s.

Taking into account that $(2n+3)^{16} - 1 = (2(n+1)+1)^{16} - 1$ is divisible by 64 (see the general property in 4.2) and $[(2n+3)^2 - 1]^2$ is divisible by 9, it follows that we can choose r(t) and q(t) as

(35)
$$\begin{cases} r(t) = \frac{1}{9 \cdot 64} (p_0 t + 1) (p_0^{16} - 1) (p_0^2 - 1)^2 \\ q(t) = \frac{1}{p_0} [(p_0^2 - 16) (p_0^2 - 9) (p_0^2 - 4) (p_0^2 - 1) r(t) + 1] \end{cases}$$

where t is any positive integer. Using (3) we can derive an infinite family of integral solutions to equation (32) directly from formula (4) or (5).

References

 Andreescu, T., Andrica, D., An Introduction to Diophantine Equations, GIL Publishing House, 2002.

- [2] Mordell, L. J., *Diophantine Equations*, Academic Press, London and New York, 1969.
- [3] Sierpinski, W., What we know and what we don't know about prime numbers (Romanian), Bucharest, 1966.
- [4] Tudor, Gh. M., Sur l'equation diophantienne $a_0 x_0^{p_0} + a_1 x_1^{p_1} + \ldots + a_k x_k^{p_k} = 0$, The 10th International Symposium of Mathematics and its Applications, Timişoara, November 6-9, 2003.

"Babeş-Bolyai" University Faculty of Mathematics and Computer Science 400084, Str. Kogălniceanu 1, Cluj-Napoca, Romania e-mail:dandrica@math.ubbcluj.ro

"Politehnica" University of Timişoara Department of Mathematics P-ţa Regina Maria, No. 1 300223, Timişoara, Romania