Parametric solutions for some Diophantine equations

Dorin Andrica and Gheorghe M. Tudor

Abstract

Under some hypotheses we show that the Diophantine equation (1) has infinitely many solutions described by a family depending on $k+2$ parameters. Some applications of the main result are given and some special equations are studied.

2000 Mathematical Subject Classification: 11D72

1 Introduction

Consider the Diophantine equation

$$
\begin{equation*}
a_{0} x_{0}^{p_{0}}+a_{1} x_{1}^{p_{1}}+\ldots+a_{k} x_{k}^{p_{k}}=0 \tag{1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ are integers, $a_{0}>0$, and $p_{0}, p_{1}, \ldots, p_{k}$ are positive integers. Concerning the equation (1) in the book [3] the following general result is presented:

Assume that p is relatively prime to the product $P_{k}=p_{1} p_{2} \ldots p_{k}$. Then:
a) if $a_{1}+a_{2}+\ldots+a_{k} \neq 0$, the equation (1) has infinitely many solutions in integers;
b) if $a_{1}+a_{2}+\ldots+a_{k}<0$, the equation (1) has infinitely many solutions in positive integers.

In both cases mentioned above, the solutions are described by a family depending on a parameter.

In the paper [4], the second author gave a much general result without restrictive conditions a) and b). Moreover, the solutions are described by a family depending on $k+2$ parameters. The main result in [4] is contained in the following:

Theorem. Consider the equation (1) with $a_{0}>0$ and assume that p_{0} is relatively prime to $m=\operatorname{lcm}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$. Then:
a) the equation (1) has infinitely many solutions in integers;
b) if $a_{i}<0$, for some $i \in\{1,2, \ldots, k\}$, then the equation (1) has infinitely many solutions in positive integers.

In order to construct a family of solutions, let us denote

$$
\begin{equation*}
T_{k}=a_{0}^{p_{0}-1}\left(-a_{1} n_{1}^{p_{1}}-a_{2} n_{2}^{p_{2}}-\ldots-a_{k} n_{k}^{p_{k}}\right) \tag{2}
\end{equation*}
$$

where $n_{1}, n_{2}, \ldots, n_{k}$ are arbitrary integers. Taking into account that p and m are relatively prime, it follows that for infinitely many pairs (q, r) of positive integers the relation

$$
\begin{equation*}
p_{0} q=m r+1 \tag{3}
\end{equation*}
$$

holds. Then a family of solutions to equation (1) is given by

$$
\left\{\begin{array}{l}
x_{0}=n_{0}^{m p_{0} / p_{0}} \cdot a_{0}^{-1} \cdot T_{k}^{q} \tag{4}\\
x_{1}=n_{0}^{m p_{0} / p_{1}} \cdot n_{1} \cdot T_{k}^{r m / p_{1}} \\
x_{2}=n_{0}^{m p_{0} / p_{2}} \cdot n_{2} \cdot T_{k}^{r m / p_{2}} \\
\cdots \\
x_{k}=n_{0}^{m p_{0} / p_{k}} \cdot n_{k} \cdot T_{k}^{r m / p_{k}}
\end{array}\right.
$$

The solutions in (4) depend on the $k+2$ parameters $n_{0}, n_{1}, \ldots, n_{k}, r$ (or q).

Remarks. 1) If $n_{0}, n_{1}, \ldots, n_{k}$ are rational numbers, the formula (4) point out an infinite family of rational solutions to equation (1).
2) In the particular case $n_{0}=a_{0}, n_{1}=n_{2}=\ldots=n_{k}=1$, if we replace m by $p_{1} p_{2} \ldots p_{k}$, then the formula (4) is obtained in the book [3].
3) If $n_{0}, n_{1}, \ldots, n_{k}$ are real numbers, then (4) gives us a polynomial parametrization of the algebraic hypersurface defined by (1) in the Euclidean space \mathbb{R}^{k+1}.
4) A simplified form of (4) is obtained when $n_{0}=1$:

$$
\begin{equation*}
x_{0}=a_{0}^{-1} T_{k}^{q}, x_{1}=n_{1} T_{k}^{r m / p_{1}}, x_{2}=n_{2} T_{k}^{r m / p_{2}}, \ldots, x_{k}=n_{k} T_{k}^{r m / p_{k}} \tag{5}
\end{equation*}
$$

i.e. an infinite family depending on $k+1$ parameters.

In the references [1], [2] and [3] there are many examples of Diophantine equations which are special cases of equation (1). Let us mention the following equations contained in [1]:
(a) $x^{p}+y^{p}=z^{p \pm 1}$,
(b) $x^{2}+y^{3}=z^{5}$,
(c) $x^{p}+y^{p}+z^{p}+u^{p}=v^{p \pm 1}$.

Also, we mention some equations contained in [3]:
(d) $x^{2}+y^{3}=z^{4}$,
(e) $x^{2}+y^{3}+z^{4}=t^{2}$,
(f) $x^{2}+y^{4}=2 z^{3}$.

In what follows we will apply the result in the above mentioned Theorem for some of these equations as well as for some other generalized equations.

2 The equations $x^{p}+y^{p}=z^{n p \pm 1}$ and

$$
x^{p}+y^{p}=z^{p^{n} \pm 1}
$$

First of all we will change the notations in order to apply in a direct way the result in our Theorem.

Consider the equation

$$
\begin{equation*}
x_{0}^{n p \pm 1}-x_{1}^{p}-x_{2}^{p}=0, \tag{6}
\end{equation*}
$$

where p and n are positive integers. In that case we have $a_{0}=1, a_{1}=a_{2}=$ -1 and $p_{0}=n p \pm 1$ is relatively prime to p. There exist infinitely many positive integers q and r such that

$$
\begin{equation*}
(n p \pm 1) q=p r+1 \tag{7}
\end{equation*}
$$

It is easy to show that

$$
\left\{\begin{array}{l}
r(t)=(n p \pm 1) t \pm n \tag{8}\\
q(t)=p t \pm 1
\end{array}\right.
$$

where t is any positive integers and the signs + and - correspond. Using formula (5) we find the following family of solutions to equation (6):

$$
\left\{\begin{array}{l}
x_{0}=\left(n_{1}^{p}+n_{2}^{p}\right)^{p t \pm 1} \tag{9}\\
x_{1}=n_{1}\left(n_{1}^{p}+n_{2}^{p}\right)^{(n p \pm 1) t \pm n} \\
x_{2}=n_{2}\left(n_{1}^{p}+n_{2}^{p}\right)^{(n p \pm 1) t \pm n}
\end{array}\right.
$$

Let us note that if $n=1$, then we obtain the equations (a). If $n_{1}=1$, $n_{2}=k, t=1$ and $n_{1}=k, n_{2}=1, t=1$, respectively, we find the solutions

$$
x_{0}=k^{p}+1, \quad x_{1}=k^{p}+1, \quad x_{2}=k\left(k^{p}+1\right)
$$

when we consider the sign + , and

$$
x_{0}=\left(k^{p}+1\right)^{p-1}, \quad x_{1}=\left(k^{p}+1\right)^{p-2}, \quad x_{2}=k\left(k^{p}+1\right)^{p-2}
$$

in case of the sign -. These solutions are given in the book [1].
Let us consider the equations

$$
\begin{equation*}
x_{0}^{p^{n} \pm 1}-x_{1}^{p}-x_{2}^{p}=0, \tag{10}
\end{equation*}
$$

where p and n are positive integers. In that case we have $p_{1}=p_{2}=p$, $p_{0}=p^{n} \pm 1$ and p_{0} is relatively prime to p. Hence

$$
\begin{equation*}
\left(p^{n} \pm 1\right) q=p r+1 \tag{11}
\end{equation*}
$$

for some positive integers r and q. All such pairs (r, q) are given by

$$
\left\{\begin{array}{l}
r(t)=\left(p^{n} \pm 1\right) t \pm p^{n-1} \tag{12}\\
q(t)=p t \pm 1
\end{array}\right.
$$

where t is any positive integer and signs + and - correspond. From formula (5) we find the following family of solutions to equation (10):

$$
\left\{\begin{array}{l}
x_{0}=\left(n_{1}^{p}+n_{2}^{p}\right)^{p t \pm 1} \tag{13}\\
x_{1}=n_{1}\left(n_{1}^{p}+n_{2}^{p}\right)^{\left(p^{n} \pm 1\right) t \pm p^{n-1}} \\
x_{2}=n_{2}\left(n_{1}^{p}+n_{2}^{p}\right)^{\left(p^{n} \pm 1\right) t \pm p^{n-1}}
\end{array}\right.
$$

The signs + and - in (13) correspond to the signs + and - in (10). Let us note that if $n=1$, then we obtain again the equations (a).
Remark. In the book [1] the following equation is given

$$
\begin{equation*}
x_{0}^{p-1}-x_{1}^{p}-x_{2}^{p}-x_{3}^{p}-x_{4}^{p}=0 \tag{14}
\end{equation*}
$$

It is clear that we have $a_{0}=1, a_{1}=a_{2}=a_{3}=a_{4}=-1, p_{1}=p_{2}=p_{3}=$ $p_{4}=p$ and $p_{0}=p-1$. An infinite family of solutions to (14) depending on two parameters is obtained in [1] by multiplication principle applied to equation (a) where the sign - is considered. Now we can construct a larger family of solutions depending on five parameters. Indeed, from relation

$$
\begin{equation*}
(p-1) q=p r+1 \tag{15}
\end{equation*}
$$

we deduce

$$
\left\{\begin{array}{l}
r(t)=(p-1) t-1 \tag{16}\\
q(t)=p t-1
\end{array}\right.
$$

where t is any positive integer. Formula (5) gives us the following family of solutions:

$$
x_{0}=S^{p t-1}, x_{1}=n_{1} S^{(p-1) t-1}, x_{2}=n_{2} S^{(p-1) t-1}
$$

$$
\begin{equation*}
x_{3}=n_{3} S^{(p-1) t-1}, x_{4}=n_{4} S^{(p-1) t-1} \tag{17}
\end{equation*}
$$

where $S=n_{1}^{p_{1}}+n_{2}^{p_{2}}+n_{3}^{p_{3}}+n_{4}^{p_{4}}$ and $n_{1}, n_{2}, n_{3}, n_{4}, t$ are arbitrary positive integers.

3 The equation $x_{0}^{p}-x_{1}^{2 p-1}-x_{2}^{2 p+1}=0$

Consider the equation

$$
\begin{equation*}
x_{0}^{p}-x_{1}^{2 p-1}-x_{2}^{2 p+1}=0 \tag{18}
\end{equation*}
$$

In that case we have $a_{0}=1, a_{1}=a_{2}=-1, p_{1}=2 p-1, p_{2}=2 p+1$, $p_{0}=p$. It is clear that p_{0} is relatively prime to $p_{1} p_{2}=4 p^{2}-1$. In the case $p=2$ we obtain equation (b) also studied in the book [1].

Because p_{0} is relatively prime to $4 p^{2}-1$, we have

$$
\begin{equation*}
p q=\left(4 p^{2}-1\right) r+1 \tag{19}
\end{equation*}
$$

and all pairs (r, q) of such positive integers are given by

$$
\left\{\begin{array}{l}
r(t)=p t+1 \tag{20}\\
q(t)=4 p^{2} t+4 p-t
\end{array}\right.
$$

for any positive integer t. Applying formula (4) we obtain the following family of solutions to equation (18):

$$
\left\{\begin{array}{l}
x_{0}=n_{0}^{4 p^{2}-1}\left(n_{1}^{2 p-1}+n_{2}^{2 p+1}\right)^{\left(4 p^{2}-1\right) t+4 p} \tag{21}\\
x_{1}=n_{0}^{p(2 p+1)} n_{1}\left(n_{1}^{2 p-1}+n_{2}^{2 p+1}\right)^{(2 p+1)(p t+1)} \\
x_{2}=n_{0}^{p(2 p-1)} n_{2}\left(n_{1}^{2 p-1}+n_{2}^{2 p+1}\right)^{(2 p-1)(p t+1)}
\end{array}\right.
$$

The family (21) depends on four parameters n_{0}, n_{1}, n_{2}, t.
In the case $p=2$ we obtain a family of solutions to equation (b):

$$
\left\{\begin{array}{l}
x_{0}=n_{0}^{15}\left(n_{1}^{3}+n_{2}^{5}\right)^{15 t+8} \tag{22}\\
x_{1}=n_{0}^{10} n_{1}\left(n_{1}^{3}+n_{2}^{5}\right)^{10 t+5} \\
x_{2}=n_{0}^{6} n_{2}\left(n_{1}^{3}+n_{2}^{5}\right)^{6 t+3}
\end{array}\right.
$$

where n_{0}, n_{1}, n_{2}, t are any positive integers.

4 The equation

$$
b_{m} x_{m}^{2 n+m}+b_{m+1} x_{m+1}^{2 n+m+1}+\ldots+b_{m+p} x_{m+p}^{2 n+m+p}=0
$$

In the above equation n and p are positive integers and m is an integer. The coefficients $b_{i}, i=m, m+1, \ldots, m+p$, are integers. In what follows we will study three special cases of this equation. We use the notations in our Theorem.
4.1. Let us consider the equation

$$
\begin{equation*}
a_{0} x_{0}^{2 n+1}+a_{1} x_{1}^{2 n-1}+a_{2} x_{2}^{2 n}+a_{3} x_{3}^{2 n+2}+a_{4} x_{4}^{2 n+3}=0 \tag{23}
\end{equation*}
$$

where $a_{0}>0, a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \neq 0$ and $n \geq 2$ is a positive integer.
We have $p_{0}=2 n+1, p_{1}=2 n-1, p_{2}=2 n, p_{3}=2 n+2, p_{4}=2 n+3$ and p_{0} is relatively prime to each of the integers $p_{1}, p_{2}, p_{3}, p_{4}$. Applying the result in our main Theorem we obtain:

Proposition 1. a) The equation (23) has infinitely many solutions in integers.
b) If $a_{i}<0$ for some $i \in\{1,2,3,4\}$, then the equation (23) has infinitely many solutions in positive integers.

Let us indicate how we can construct an infinite family of solutions. Because $p_{0}=2 n+1$ is relatively prime to each $p_{1}, p_{2}, p_{3}, p_{4}$ it follows that

$$
\begin{equation*}
(2 n+1) q=(2 n-1) 2 n(2 n+2)(2 n+3) r+1 \tag{24}
\end{equation*}
$$

for some positive integers r and q. That is equivalent to

$$
\begin{equation*}
p_{0} q=\left(p_{0}^{2}-4\right)\left(p_{0}^{2}-1\right) r+1 \tag{25}
\end{equation*}
$$

From (25) it follows that $4 r+1=p_{0} s$, where s is a positive integer. We
can choose $s=4 t+p_{0}$ for any positive integer t and we find
(26) $\quad\left\{\begin{aligned} r(t) & =\frac{1}{4}\left(4 p_{0} t+p_{0}^{2}-1\right) \\ q(t) & =\frac{1}{4 p_{0}}\left[\left(p_{0}^{2}-4\right)\left(p_{0}^{2}-1\right)\left(4 p_{0} t+p_{0}^{2}-1\right)+4\right]\end{aligned}\right.$

Using formula (4) or (5) we obtain an infinite family of integral solutions to equation (23).

As an example, let consider $n=2$ i.e. the equation

$$
\begin{equation*}
a_{0} x_{0}^{5}+a_{1} x_{1}^{3}+a_{2} x_{2}^{4}+a_{3} x_{3}^{6}+a_{4} x_{4}^{7}=0 \tag{27}
\end{equation*}
$$

We take $T_{4}=a_{0}^{4}\left(-a_{1} n_{1}^{3}-a_{2} n_{2}^{4}-a_{3} n_{3}^{6}-a_{4} n_{4}^{7}\right), r(t)=5 t+6, q(t)=$ $504 t+605$, where $n_{1}, n_{2}, n_{3}, n_{4}, t$ are arbitrary integers.
4.2. Consider the equation
(28) $a_{0} x_{0}^{2 n+1}+a_{1} x_{1}^{2 n-3}+a_{2} x_{2}^{2 n-1} a_{3} x_{3}^{2 n}+a_{4} x_{4}^{2 n+2}+a_{5} x_{5}^{2 n+3}+a_{6} x_{6}^{2 n+5}=0$
where n is a positive integer ≥ 3, the coefficients a_{i} are integers, $a_{0}>0$ and $a_{1}^{2}+a_{2}^{2}+\ldots+a_{6}^{2} \neq 0$. We have $p_{0}=2 n+1$ and it is relatively prime to any $p_{1}=2 n-3, p_{2}=2 n-1, p_{3}=2 n, p_{4}=2 n+2, p_{5}=2 n+3, p_{6}=2 n+5$. From our main Theorem it follows:

Proposition 2. a) The equation (28) has infinitely many solutions in integers.
b) If $a_{i}<0$ for some $i \in\{1,2,3,4,5,6\}$, then the equation (28) has infinitely many solutions in positive integers.

We can construct an infinite family of solutions in the following way. The integers p_{0} and $p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}$ are relatively prime, hence

$$
\begin{equation*}
\left(2 n_{1}\right) q=(2 n-3)(2 n-1)(2 n)(2 n+2)(2 n+3)(2 n+5) r+1 \tag{29}
\end{equation*}
$$

for some positive integers r and q. That is equivalent to

$$
\begin{equation*}
p_{0} q=\left(p_{0}^{2}-16\right)\left(p_{0}^{2}-4\right)\left(p_{0}^{2}-1\right) r+1 \tag{30}
\end{equation*}
$$

It follows $64 r-1=p_{0} s$, where s is a positive integer. In order to find convenient pairs (r, q) of positive integers satisfying (30) let us use the following obvious property: For any positive integers $n, k \geq 1$, the integer $(2 n+1)^{2^{k}}-1$ is divisible by 2^{k+2}. In that case we can consider
(31) $\left\{\begin{aligned} r(t) & =\frac{1}{64}(64 t-1) p_{0}^{16}+1 \\ q(t) & =\frac{1}{p_{0}}\left[\left(p_{0}^{2}-16\right)\left(p_{0}^{2}-4\right)\left(p_{0}^{2}-1\right) r(t)+1\right],\end{aligned}\right.$
where t is any positive integer.
In the particular case $n=3$, we have

$$
T_{6}=a_{0}^{6}\left(-a_{1} n_{1}^{3}-a_{2} n_{2}^{5}-a_{3} n_{3}^{6}-a_{4} n_{4}^{8}-a_{5} n_{5}^{9}-a_{6} n_{6}^{11}\right)
$$

and

$$
r(t)=\frac{1}{64}\left[(64 t-1) 7^{16}+1\right], \quad q(t)=\frac{1}{7}(33 \cdot 45 \cdot 48 r(t)+1)
$$

A family of integral solutions to equation (28) can be obtained by using formula (4) or (5).
4.3. Let us consider the equation

$$
\begin{align*}
& a_{0} x_{0}^{2 n+3}+a_{1} x_{1}^{2 n-1}+a_{2} x_{2}^{2 n}+a_{3} x_{3}^{2 n+1}+a_{4} x_{4}^{2 n+2}+ \tag{32}\\
& \quad+a_{5} x_{5}^{2 n+4}+a_{6} x_{6}^{2 n+5}+a_{7} x_{7}^{2 n+6}+a_{8} x_{8}^{2 n+7}=0
\end{align*}
$$

where $n \geq 2$ is a positive integer, the coefficients a_{i} are integers, $a_{0}>0$ and $a_{1}^{2}+a_{2}^{2}+\ldots+a_{8}^{2} \neq 0$. Assume that n is not divisible by 3 . Then $p_{0}=2 n+3$ is relatively prime to all $p_{i}, i=1,2, \ldots, 8$. We have many integral solutions.
b) If $a_{i}<0$ for some $i \in\{1,2, \ldots, 8\}$, then equation (32) has infinitely many solutions in positive integers.

We will indicate the effective construction of an infinite family of integral solutions. Taking into account that $p_{0}=2 n+3$ is relatively prime to the product $p_{1} p_{2} \ldots p_{8}$, we have

$$
\begin{equation*}
(2 n+3) q= \tag{33}
\end{equation*}
$$

$$
=(2 n-1)(2 n)(2 n+1)(2 n+2)(2 n+4)(2 n+5)(2 n+6)(2 n+7) r+1,
$$

for some positive integers r and q. The relation (33) is equivalent to

$$
\begin{equation*}
p_{0} q=\left(p_{0}^{2}-16\right)\left(p_{0}^{2}-9\right)\left(p_{0}^{2}-4\right)\left(p_{0}^{2}-1\right) r+1 \tag{34}
\end{equation*}
$$

Therefore, the relation $9 \cdot 64 r+1=p_{0} s$, for a positive integer s.
Taking into account that $(2 n+3)^{16}-1=(2(n+1)+1)^{16}-1$ is divisible by 64 (see the general property in 4.2) and $\left[(2 n+3)^{2}-1\right]^{2}$ is divisible by 9 , it follows that we can choose $r(t)$ and $q(t)$ as

$$
\left\{\begin{align*}
r(t) & =\frac{1}{9 \cdot 64}\left(p_{0} t+1\right)\left(p_{0}^{16}-1\right)\left(p_{0}^{2}-1\right)^{2} \tag{35}\\
q(t) & =\frac{1}{p_{0}}\left[\left(p_{0}^{2}-16\right)\left(p_{0}^{2}-9\right)\left(p_{0}^{2}-4\right)\left(p_{0}^{2}-1\right) r(t)+1\right]
\end{align*}\right.
$$

where t is any positive integer. Using (3) we can derive an infinite family of integral solutions to equation (32) directly from formula (4) or (5).

References

[1] Andreescu, T., Andrica, D., An Introduction to Diophantine Equations, GIL Publishing House, 2002.
[2] Mordell, L. J., Diophantine Equations, Academic Press, London and New York, 1969.
[3] Sierpinski, W., What we know and what we don't know about prime numbers (Romanian), Bucharest, 1966.
[4] Tudor, Gh. M., Sur l'equation diophantienne $a_{0} x_{0}^{p_{0}}+a_{1} x_{1}^{p_{1}}+\ldots+$ $a_{k} x_{k}^{p_{k}}=0$, The $10^{\text {th }}$ International Symposium of Mathematics and its Applications, Timişoara, November 6-9, 2003.
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
400084, Str. Kogălniceanu 1, Cluj-Napoca, Romania
e-mail:dandrica@math.ubbcluj.ro
"Politehnica" University of Timişoara
Department of Mathematics
P-ţa Regina Maria, No. 1
300223, Timişoara, Romania

