General Mathematics Vol. 12, No. 1 (2004), 13-22

Connected topological generalized groups

M.R. Molaei, A. Tahmoresi

Abstract

In this paper, connected topological generalized groups are studied. We are going to show that: topological generalized groups with *e*-generalized subgroups are connected topological generalized groups. Connected factor spaces and stable connected component under identity are considered.

2000 Mathematical Subject Classification: 22A15, 22A20

Key Words: Semigroup admitting relative inverse, Topological generalized group, Completely simple semigroup.

1 Introduction

Generalized groups as an algebraic structure were deduced from a geometrical problem in 1998 ([8]). We recall that a generalized group is a non-empty

13

set G admitting an operation called multiplication, which satisfies the set of conditions given below:

(i) (xy)z = x(yz) for all x, y, z in G;

(ii) for each x in G there exists a unique z in G such that xz = zx = x (we denote z by e(x));

(iii) for each x in G there exists y in G such that xy = yx = e(x).

This structure has different meaning from Vagner (Wagner) generalized groups ([11]) and semigroups admitting relative inverse ([2,3]). In [1] Araújo and Konieczny by applying Rees theorem ([5,6,10]) proved that the notion of generalized groups is equivalent to the notion of completely simple semigroup. Properties of this structure from topological point of view was presented in [4] and [9]. We recall that ([9]) a topological generalized group Gis a semigroup which satisfies the following conditions:

1. For each $x \in G$ there is a unique $e(x) \in G$ such that xe(x) = e(x)x = x;

- 2. For each $x \in G$ there exists $x^{-1} \in G$ such that $x(x^{-1}) = (x^{-1})x = e(x)$;
- 3. G is a Hausdorff topological space;

4. The mappings

$$\begin{array}{rccc} m_1:G & \to & G \\ \\ g & \mapsto & g^{-1} \end{array}$$

and

$$m_2: G \times G \rightarrow G$$

 $(g,h) \mapsto gh$

are continuous mappings.

If $a \in G$ then $G_a = e^{-1}(\{e(a)\})$ with the product of G is a topological group, and G is disjoint union of such topological groups.

Example 1.1. The set $G = \mathbf{R} \times (\mathbf{R} - \{0\})$ with the topology induced by a Euclidean metric, and with operation (a, b)(c, d) = (bc, bd) is a topological generalized group.

Theorem 1.1. Let G be a topological group, and let $a^2 = e$ for all $a \in G$. Then the space G with the product a * b = aba is a topological generalized group.

Proof. The condition $a^2 = e$, for all $a \in G$, implies that G is an Abelian group.

Let a, b and c belonging to G be given, then

$$(a * b) * c = (aba) * c = ab(aca)ba$$
$$= abcba = a(bcb)a = a(b * c)a = a * (b * c) .$$

If a * b = b * a = a, then aba = a. So ab = e. Hence b = a. Thus e(a) = a.

Similarly $a^{-1} = a$, where a^{-1} is the inverse of a in (G, *).

Therefore (G, *) is a generalized group. The product $(a, b) \mapsto ab$ is a continuous mapping. So $(a, b) \mapsto aba$ is a continuous mapping. Moreover $a \mapsto a$ is also a continuous mapping. Thus (G, *) is a topological generalized group.

A generalized subgroup ([7]) N of a generalized group G is called a generalized normal subgroup of G if there exists a generalized group E and a homomorphism $f: G \to E$ such that for all $a \in G$ we have $N_a = \emptyset$ or $N_a = ker f_a$ where $N_a := N \cap G_a, f_a := f|_{G_a}$ and ker $f_a = \{x \in G_a : f(x) = f(e(a))\}.$

If N is a normal subgroup of G and $\Gamma_N = \{a \in G \mid N_a \neq \phi\}$, then Γ_N is a generalized subgroup of G.

Theorem 1.2. Let N be a generalized normal subgroup of the normal generalized group G, then the set $G/N = \bigcup_{a \in G} G_a/N_a$ with the multiplication

$$\begin{array}{cccc} \cdot : G/N \times G/N & \longrightarrow & G/N \\ (xN_a, yN_b) & \longmapsto & xyN_{ab} \end{array}$$

is a normal generalized group. [7]

Theorem 1.3. Let N be a closed generalized normal subgroup of G, then G/N is a topological generalized group. ([9])

2 Properties which make connected topological generalized groups

In this section we shall study connected topological generalized group.

Theorem 2.1. Let G be a topological generalized group and let $card(e(G)) < \infty$. Then G_a is an open and closed subset of G, where $a \in G$. **Proof.** If card(e(G)) = 1, then $G_a = G$ for all $a \in G$. So G_a is a closed and open set for all $a \in G$.

Let $1 < card(e(G)) < \infty$. Since $e : G \to G$ is a continuous map ,

 $G_a = e^{-1}(\{e(a)\})$ is a closed subset of G, where $a \in G$. Moreover

$$G_{e(a)} = G - \left(\bigcup_{e(b) \in e(G), e(b) \neq e(a)} G_{e(b)}\right)$$

So $G_{e(a)}$ is also an open subset of G, for $a \in G$.

Corollary 2.1. Let G be a topological generalized group and let $1 < card(e(G)) < \infty$, then G is not a connected set.

Proof. $G = \bigcup_{e(a) \in e(G)} G_{e(a)}$ and $G_{e(a)} \cap G_{e(b)} = \phi$ for $e(a) \neq e(b)$. So corollary follows from Theorem 2.1.

Theorem 2.2. If G is a topological generalized group, N is an open generalized normal subgroup of G, and $card(e(G)) < \infty$, then N is a closed subset of G.

Proof. Let $a \in G$ be given, then $N_{e(a)} = N \cap G_{e(a)}$ is an open set in $G_{e(a)}$, and N_a is a normal subgroup of the topological group $G_{e(a)}$. So $G_{e(a)} - N_{e(a)}$ is an open set in $G_{e(a)}$. Thus $N_{e(a)}$ is a closed subgroup of $G_{e(a)}$, where the topology of $G_{e(a)}$ is the relative topology. Hence there exists a closed subset $F_{e(a)}$ in G such that $N_{e(a)} = F_{e(a)} \cap G_{e(a)}$. Thus

$$N = \bigcup_{e(a) \in e(G)} N_{e(a)} = \bigcup_{e(a) \in e(G)} (F_{e(a)} \cap G_{e(a)})$$

is a closed subgroup of G.

Example 2.1. Let G be the set of non-zero real numbers, then G with the product a * b = a|b| is a topological generalized group. In this case $e(G) = \{1, -1\}$, and G is not a connected set.

Definition 2.1. A generalized subgroup H of G is called an e-generalized subgroup of G if $e(G) \subseteq H$, where e is the identity mapping.

Theorem 2.3. Let G be a topological generalized group and let G_a be a connected set, where $a \in G$. Suppose further that G has a connected e-generalized subgroup, then G is a connected set.

Proof. Let $a \in G$ be given, and let N be a connected e-generalized subgroup of G, then $e(a) \in N \cap G_a$. So $N \cap G_a \neq \phi$. Thus $N \cup G_a$ is a connected set for all $a \in G$. Since N is a subset of $(N \cup G_a) \cap (N \cup G_b)$ for all $a, b \in G, \bigcup_{a \in G} (N \cup G_a)$ is a connected set. We have $G = \bigcup_{a \in G} (N \cup G_a)$. So Gis a connected set.

Example 2.2. The set $G = \mathbb{R} \times \mathbb{R}$ with the product

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2),$$

and Euclidean topology is a topological normal generalized group. If $(x_1, x_2) \in \mathbb{R}^2$, then

$$G_{(x_1,x_2)} = \mathbb{R} \times \{x_2\}$$
, and $e(G) = \{0\} \times \mathbb{R}$

are connected sets. So G is a connected set.

3 Connected factor spaces

In this section we are going to consider conditions which imply that a topological factor group is a connected topological factor group.

Proposition 3.1. Let N be a closed generalized normal subgroup of a topological normal generalized group G, and let Γ_N be a connected space, then G/N is a connected topological generalized group.

Proof. Since N is a closed generalized normal subgroup of G, G/N is a

topological generalized group . Moreover the mapping $\pi : \Gamma_N \to G/N$ defined by $\pi(x) = xN_x$ is a continuous map . So G/N is a connected topological generalized group.

Corollary 3.1. Let N be a closed e-generalized normal subgroup of a connected topological generalized group G, then G/N with the topology induced by π is a connected generalized group.

Proof. Since $e(G) \subseteq N$, we have $e(a) \in N \cap G_a$ for all $a \in G$. So $\Gamma_N = G$, and corollary follows from proposition 3.1.

Theorem 3.1. Let G be a generalized topological group and N be a connected and closed generalized normal subgroup of G containing e(G). Moreover let G_a/N_a and G be connected sets, for every $a \in G$, then G/N and G are connected sets.

Proof. Case 1. If card(e(G)) = 1, then G is a group and theorem follows from topological group theory.

Case 2. If card(e(G)) > 1, then the mapping $\pi|_{G_a} : G_a \to G_a/N_a$ is an open and onto mapping.

So G_a is a connected set. Thus theorem 3.1 shows that G is a connected set. The continuity of the mapping $\pi : G \to G/N$ implies that G/N is a connected set.

Remark. In theorem 3.1 if $1 < card(e(G)) < \infty$, then Theorem 2.1 and Theorem 2.3 show that there is no such N.

4 Conclusion

A connected subset S of a topological generalized group G is called a stable connected components under identity if it satisfies the following conditions.

(i) $e(S) \subseteq S$;

(ii) If N is a connected subset of G and $S \subset N$, then S = N.

Example 4.1. The non-empty set G with the product a * b = a and discrete topology is a topological generalized group. The set $\{a\}$ is a stable connected components under identity, where $a \in G$.

Theorem 4.1. If G is a topological generalized group and S is a stable connected component under identity of G, then S is a closed generalized subgroup of G.

Proof. $S^{-1} = \{s^{-1} : s \in S\}$ is a connected subset of G, because the mapping $m_1 : G \to G$ in the form $m_1(g) = g^{-1}$ is a connected set, and $S \subseteq S \cup S^{-1}$. Hence $S \cup S^{-1} = S$, as a result $S^{-1} \subseteq S$. Moreover xS is a connected set, for all $x \in G$. Because the mapping $m_2 : G \times G$ in the form $m_2(x, y) = xy$ is a continuous map. If $x \in S$, then $x = xe(x) \in xS$. So $(xS) \cap S \neq \phi$. Hence $(xS) \cup S$ is a connected set and $S \subseteq (xS) \cup S$. Thus $xS \subseteq S$. So $xy \in S$, for all $x, y \in S$. Therefore S is a generalized subgroup of S. \overline{S} is also a connected set and $S \subseteq \overline{S}$. So $\overline{S} = S$.

We shall bring this paper to an end by posing the following problem: Is every stable connected component under identity of G a normal subgroup of G?

References

- J.Araujo, J. Konieczny, Molaei's Generalized Groups are Completely Simple Semigroupes, Buletinul Institului Polithnic Din Iasi (to appear).
- [2] A.H. Clifford., Semi-groups Admitting Relative Inverses, Annals of Mathematics, Vol. 42, No. 4 (1941), 1037-1049.
- [3] A.H. Clifford, G.B. Preston, *The Algebraic Theory of Semigroups*, American Mathematical Society, 1964.
- [4] K.H. Hofmann, P.S. Mostert, *Elements of Compact Semigroups*, Charles E. Merrill Books, Inc., 1966.
- [5] J.M. Howie., An Introduction to Semi-group Theory, Academic Press INC(London) LTD, 1978.
- [6] J.M. Howie, Fundamental of Semigroup Theory, Oxford University Press, 1995.
- [7] Mehrabi M., M.R. Molaei, A. Olomi, Generalized Subgroups and Homomorphisms, Arab Journal of Mathematical Sciences, Vol. 6, Number 2 (2000), 1-7.
- [8] Molaei M.R., Generalized Groups, International Conference on Algebra, October 14-17, Romania, 1998, Buletinul Institului Polithnic Din Iasi, Tomul XLV (XLIX) (1999), 21-24.

- [9] M.R. Molaei, Topological Generalized Groups, International Journal of Pure and Applied Mathematics, Vol. 2, 9 (2000), 1055-1060.
- [10] D. Rees, On Semi-groups, Proceedings of the Cambridge Philosophical Society, 36 (1940), 387-400.
- [11] Vagner (Wagner) V., Generalized Groups, Doklady Akademii Nauk SSSR,84, 1119-1122 (1952) (Russian).

Department of Mathematics University of Kerman P.O.Box 76135-133, Kerman, Iran E-mail: mrmolaei@mail.uk.ac.ir

Department of Mathematics, Azad University of Kerman Kerman, Iran