General Mathematics Vol. 12, No. 2 (2004), 61-68

Finite element approximation of the Navier-Stokes Equation

Mioara Boncuţ

Abstract

In this paper we formulate the variational principle of the problem of stationary flow of a viscous fluid in a pipe with transversal section in the L-form and analyze the finite element approximation (Ritz algorithm on finite elements).

The coefficients and the solutions of the Ritz system and determined with a Turbo-Pascal program.

Numerical results demonstrating these bounds are also presented.

2000 Mathematics Subject Classifications: 76D05, 76M10

1

The Navier-Stokes equation [4] that describes the stationary flow of a viscous fluid in a pipe with an arbitrary transversal section Ω is

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \cdot \frac{dp}{dz}, \ (x, y) \in \Omega$$

where u is the velocity, μ is the coefficient of viscosity and $\frac{dp}{dz}$ is the pressure fall on the length of the pipe. The problem is to determine the repartition of the velocity in the section Ω .

We consider the boundary value problem

(1)
$$\mathcal{L}u \equiv -\nabla^2 u = f \text{ in } \Omega \subset \mathbb{R}^2$$
$$u = 0 \text{ on } \partial\Omega.$$

By using the Gauss formula in $C^2(\Omega)$, the following integral identity is verified by classical solution u:

(2)
$$\int_{\Omega} \nabla^{T} u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega, \ \forall v \in C_{0}^{1}(\Omega)$$
$$(C_{0}(\Omega) = \{ u \in C^{1}(\Omega) | u = 0 \text{ on } \partial\Omega \}).$$

Let us introduce the fundamental Hilbert space and its norm as

$$H_0^1(\Omega) = \{ u \in H^2(\Omega), \ u = 0 \text{ on } \partial\Omega \}$$
$$||u||_{H_0^1(\Omega)}^2 = \int_{\Omega} |\nabla u|^2 d\Omega \ (\equiv ||u||_{1,0}^2).$$

where $H^n(\Omega)$ is the Sobolev space on Ω .

The triplet (H, a, φ) , where H is the Hilbert space, can now be introduced as follows

$$H = H'_0(\Omega)$$
$$a(u, v) = \int_{\Omega} \nabla^T u \cdot \nabla v dt \Omega, \quad \forall u, v \in H^1_0(\Omega)$$
$$\varphi(v) = \int_{\Omega} f v d\Omega, \quad \forall v \in H^1_0(\Omega).$$

It is easy to prove that the form a(u, v) is a bilinear symmetrical functional, boundary, coercive, and the functional $\varphi(v)$ is a linear and bounded form. In this conditions, (2) can be represented as

(3)
$$a(u,v) = \varphi(v), \ \forall v \in H^1_0(\Omega).$$

Definition 1.1. The integral identity (2) is normed weak equation for the boundary value problem 1 and the function $u \in H_0^1(\Omega)$ for which (2) hold is named weak solution.

From the Lax-Milgram theorem the problem (3) has a solution u and it is unique.

Theorem 1.1. The weak solution of u is the unique point of minimum of the functional

$$F(u) = \frac{1}{2}a(u, u) - (f, u).$$

Thus the solving of the problem (1.3) is equivalent to the following minimization problem [2]:

(P_v) Find $u \in H_0^1(\Omega)$ such that $F(u) \le F(v), \ \forall v \in H_0'(\Omega)$

The purpose of this paper is to analyze the finite element approximation of (P_v) . Let Ω^h be a polynomial approximation of Ω defined by $\Omega^h \equiv \bigcup_{\tau \in T^h} \overline{\tau}$, where T^h is a partition of Ω^h into a finite number of disjoint open regular triangles τ , each of maximum diameter bounded above by h. In addition, for any two distinct triangle, their closure are either disjoint, or have a common vertex, or a common side. Let $\{P_j\}_{j=1}^N$ be the vertices associated with the triangulation T^h , where P_j has coordinates (x_j, y_j) . Throughout we assume that $P_j \in \partial \Omega^h$ implies $P_j \in \partial \Omega$ and that $\Omega^h \subseteq \Omega$. The following finite dimensional space is associated to T^h :

$$S^h = \left\{ v \in \overline{C(\Omega^h)}, v|_r \text{ is linear } \forall \tau \in T^h \right\} \subset H'(\Omega^h).$$

Let $\prod_h : \overline{C(\Omega^h)} \to S^h$ denote the interpolation operator such that for any $v \in \overline{C(\Omega^h)}$, the interpolant $\prod_h v \in S^h$ satisfies $\prod_h v(P_v) = v(P_j), j = 1, 2, ..., N$.

The finite element approximation of (P_v) that we shall consider is

$$(P_v^h) \qquad \begin{array}{l} \text{Find } u^h \in S_0^h \text{ such that} \\ F(u^h) \leq F(v^h), \ \forall v^h \in S_0^h \\ \text{where } S_0^h = \{v \in S^h : v = 0 \text{ on } \partial \Omega^h\}. \end{array}$$

The solution of the variational problem (P_v^h) is determined using the Ritz method with finite elements through the procedure of local approximation and assembly.

The approximate solution is chosen for the finite element τ as follows:

(4)
$$u_r^h = \{N(x,y)\}_{\tau}^T \{U\}_{\tau}^h$$

where $\{N\}$ and $\{U\}$ represent the column vectors of the local linear basis for the element τ and of the nodal values of the approximate solution:

$$\{N\}_{\tau}^{T} = (N_1 N_2 N_3); \ \{U\}_{\tau}^{h} = (U_1 U_2 U_3)^{T}$$

where

$$N_r = \frac{1}{2\Delta_r}(a_r + b_r x + c_r y); \quad U_r = u_\tau^h(x_r, y_r), \ r = 1, 2, 3$$

 $a_i = x_j y_k - x_k j; b_i = y_j - y_k; c_i = -(x_j - x_k)$ with permutation $i \to j \to k$, Δ_{τ} being the area of the finite element τ .

Now we invoke the principle of stationary functional energy $F^{\tau} = F(u^{h}_{\tau})$:

$$\frac{\partial F^{\tau}}{\partial u_r} = 0, \ r = 1, 2, 3.$$

We obtain the matrix equation on the τ element (Ritz system) in the form:

(5)
$$[R]_{\tau} \{U\}_{\tau}^{h} = \{P\}_{\tau}.$$

In this case we have

$$[K]_r = \frac{1}{4\Delta_r} \begin{bmatrix} b_1^2 + c_1^2 & b_1b_2 + c_1c_2 & b_1b_3 + c_1c_3 \\ b_1b_2 + c_1c_2 & b_2^2c_2^2 & b_2b_3 + c_2c_3 \\ b_1b_3 + c_1c_3 & b_2b_3 + c_2c_3 & b_3^2 + c_3^2 \end{bmatrix}.$$

Remark 1.1. We note that the matrix $[K]_{\tau}$ is the same for all the elements if the following local counting is used (fig.1).

The column vector $\{P\}_{\tau}$ is $\{P\}_{\tau} = f \frac{\Delta}{3} \begin{cases} 1\\ 1\\ 1 \end{cases}$. The coefficients of the

matrix $\{P\}_{\tau}$ are determined by using the local coordinates (L_1, L_2, L_3) of the point P(x, y) and the formula

$$\frac{1}{\Delta_{\tau}}I_{\alpha\beta\gamma} = \frac{a}{b}$$

where

$$I_{\alpha\beta\gamma} \equiv \int_{\tau} L_1^{\alpha} L_2^{\beta} L_3^{\gamma} d\tau = 2\Delta_c \frac{\alpha!\beta!\gamma!}{(\alpha+\beta+\gamma)!}.$$

An equation of the type (5) is written for each element. The column vector $\{U\}^h_{\tau}$ is extended to the N number of nodes in the mesh by the

introduction of all the nodal values. Taking into account the correspondence between the local counting and the overall counting the matrices $[K]_{\tau}$ and $\{P\}_{\tau}$ are also extended at dimensions $N \times N$ and $N \times 1$. We obtain the matrix of the mesh

(6)
$$[K] \cdot \{U\} = \{P\}$$

to which we attach conditions on main boundary.

The coefficients k_{ij} and p_i of the matrices [K] and $\{P\}$ and the solutions of the Ritz system (by means of the Gauss elimination method) are determined with a Turbo-Pascal program. The program has been applied for the following numerical example:

$$\mu = 1, 5 \cdot 10^{-4} Ns/m^2;$$
$$\frac{dp}{dz} = -5000 N/m^3;$$
$$\Omega \text{ in } L - \text{ form (fig.2)};$$
$$a = 0, 1m.$$

Fig. 2

0.00	0.00	0.00	0.00			
0.00	4866.45	4884.50	0.00			
0.00	7253.47	7308.98	0.00			
0.00	8481.01	8670.66	0.00			
0.00	9164.11	9807.93	0.00	0.00	0.00	0.00
0.00	9431.55	11615.97	8368.64	7008.61	5013.84	0.00
0.00	8567.15	11271.05	10467.33	9165.95	6517.56	0.00
0.00	5792.50	7690.83	7637.64	6872.63	4989.36	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00

The values of velocity at nodes are listed in Table 1, in the case N = 51.

Table 1. Numerical results for velocity.

References

- Baretti J. W., Liu W. B., Finite element approximation of the p-Laplacian, Math. Comp., vol. 61, 1993, 523 - 537.
- [2] Berdicevski V. L., Variaționnîe prințipî mehanikipleşnoi sredî, Moskova, 1983.
- Boncuţ M., Brădeanu P., Some error estimates for finite element method applied to Navier-Stokes equation, 3rd INternational Conference on Boundary and Finite Element, Constanţa - May 1995, vol. 3, 86 - 92.
- [4] Boncuţ M., A variational method applied to the Navier-Stoke Equation, International Conference on Approximation and Optimization, Cluj-Napoca - July 1996, vol. 2, 29 - 32.

[5] Pironneau O., Methodes des elemtes finis pour les fluides, Recherches en Mathematiques Appliquees, Paris, 1988.

"Lucian Blaga" University of Sibiu Department of Mathematics Str. Dr. I. Rațiu, No. 5-7 550012 - Sibiu, Romania E-mail address:*mioara.boncut@ulbsibiu.ro*

68