Finite element approximation of the Navier-Stokes Equation

Mioara Boncuţ

Abstract

In this paper we formulate the variational principle of the problem of stationary flow of a viscous fluid in a pipe with transversal section in the L-form and analyze the finite element approximation (Ritz algorithm on finite elements).

The coefficients and the solutions of the Ritz system and determined with a Turbo-Pascal program.

Numerical results demonstrating these bounds are also presented.

\section*{2000 Mathematics Subject Classifications: 76D05, 76M10}

The Navier-Stokes equation [4] that describes the stationary flow of a viscous fluid in a pipe with an arbitrary transversal section Ω is

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{\mu} \cdot \frac{d p}{d z},(x, y) \in \Omega
$$

where u is the velocity, μ is the coefficient of viscosity and $\frac{d p}{d z}$ is the pressure fall on the length of the pipe. The problem is to determine the repartition of the velocity in the section Ω.

We consider the boundary value problem

$$
\begin{gather*}
\mathcal{L} u \equiv-\nabla^{2} u=f \text { in } \Omega \subset \mathbb{R}^{2} \tag{1}\\
u=0 \text { on } \partial \Omega
\end{gather*}
$$

By using the Gauss formula in $\mathrm{C}^{2}(\Omega)$, the following integral identity is verified by classical solution u :

$$
\begin{align*}
& \int_{\Omega} \nabla^{T} u \cdot \nabla v d \Omega=\int_{\Omega} f v d \Omega, \forall v \in C_{0}^{1}(\Omega) \tag{2}\\
& \quad\left(C_{0}(\Omega)=\left\{u \in C^{1}(\Omega) \mid u=0 \text { on } \partial \Omega\right\}\right)
\end{align*}
$$

Let us introduce the fundamental Hilbert space and its norm as

$$
\begin{gathered}
H_{0}^{1}(\Omega)=\left\{u \in H^{2}(\Omega), u=0 \text { on } \partial \Omega\right\} \\
\|u\|_{H_{0}^{1}(\Omega)}^{2}=\int_{\Omega}|\nabla u|^{2} d \Omega \quad\left(\equiv\|u\|_{1,0}^{2}\right) .
\end{gathered}
$$

where $H^{n}(\Omega)$ is the Sobolev space on Ω.
The triplet (H, a, φ), where H is the Hilbert space, can now be introduced as follows

$$
\begin{gathered}
H=H_{0}^{\prime}(\Omega) \\
a(u, v)=\int_{\Omega} \nabla^{T} u \cdot \nabla v d t \Omega, \quad \forall u, v \in H_{0}^{1}(\Omega) \\
\varphi(v)=\int_{\Omega} f v d \Omega, \quad \forall v \in H_{0}^{1}(\Omega) .
\end{gathered}
$$

It is easy to prove that the form $a(u, v)$ is a bilinear symmetrical functional, boundary, coercive, and the functional $\varphi(v)$ is a linear and bounded form.

In this conditions, (2) can be represented as

$$
\begin{equation*}
a(u, v)=\varphi(v), \forall v \in H_{0}^{1}(\Omega) \tag{3}
\end{equation*}
$$

Definition 1.1. The integral identity (2) is normed weak equation for the boundary value problem 1 and the function $u \in H_{0}^{1}(\Omega)$ for which (2) hold is named weak solution.

From the Lax-Milgram theorem the problem (3) has a solution u and it is unique.

Theorem 1.1. The weak solution of u is the unique point of minimum of the functional

$$
F(u)=\frac{1}{2} a(u, u)-(f, u) .
$$

Thus the solving of the problem (1.3) is equivalent to the following minimization problem [2]:

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
F(u) \leq F(v), \forall v \in H_{0}^{\prime}(\Omega) \tag{v}
\end{equation*}
$$

The purpose of this paper is to analyze the finite element approximation of $\left(P_{v}\right)$. Let Ω^{h} be a polynomial approximation of Ω defined by $\Omega^{h} \equiv \bigcup_{\tau \in T^{h}} \bar{\tau}$, where T^{h} is a partition of Ω^{h} into a finite number of disjoint open regular triangles τ, each of maximum diameter bounded above by h. In addition, for any two distinct triangle, their closure are either disjoint, or have a common vertex, or a common side. Let $\left\{P_{j}\right\}_{j=1}^{N}$ be the vertices associated with the triangulation T^{h}, where P_{j} has coordinates $\left(x_{j}, y_{j}\right)$. Throughout we assume that $P_{j} \in \partial \Omega^{h}$ implies $P_{j} \in \partial \Omega$ and that $\Omega^{h} \subseteq \Omega$. The following finite dimensional space is associated to T^{h} :

$$
S^{h}=\left\{v \in C \overline{\left(\Omega^{h}\right)},\left.v\right|_{r} \text { is linear } \forall \tau \in T^{h}\right\} \subset H^{\prime}\left(\Omega^{h}\right)
$$

Let $\prod_{h}: C \overline{\left(\Omega^{h}\right)} \rightarrow S^{h}$ denote the interpolation operator such that for any $v \in C \overline{\left(\Omega^{h}\right)}$, the interpolant $\prod_{h} v \in S^{h}$ satisfies $\prod_{h} v\left(P_{v}\right)=v\left(P_{j}\right), j=$ $1,2, \ldots, N$.

The finite element approximation of $\left(P_{v}\right)$ that we shall consider is
$\left(P_{v}^{h}\right) \quad$ Find $u^{h} \in S_{0}^{h}$ such that

$$
F\left(u^{h}\right) \leq F\left(v^{h}\right), \forall v^{h} \in S_{0}^{h}
$$

where $S_{0}^{h}=\left\{v \in S^{h}: v=0\right.$ on $\left.\partial \Omega^{h}\right\}$.
The solution of the variational problem $\left(P_{v}^{h}\right)$ is determined using the Ritz method with finite elements through the procedure of local approximation and assembly.

The approximate solution is chosen for the finite element τ as follows:

$$
\begin{equation*}
u_{r}^{h}=\{N(x, y)\}_{\tau}^{T}\{U\}_{\tau}^{h} \tag{4}
\end{equation*}
$$

where $\{N\}$ and $\{U\}$ represent the column vectors of the local linear basis for the element τ and of the nodal values of the approximate solution:

$$
\{N\}_{\tau}^{T}=\left(N_{1} N_{2} N_{3}\right) ; \quad\{U\}_{\tau}^{h}=\left(U_{1} U_{2} U_{3}\right)^{T}
$$

where

$$
N_{r}=\frac{1}{2 \Delta_{r}}\left(a_{r}+b_{r} x+c_{r} y\right) ; \quad U_{r}=u_{\tau}^{h}\left(x_{r}, y_{r}\right), r=1,2,3
$$

$a_{i}=x_{j} y_{k}-x_{k} j ; b_{i}=y_{j}-y_{k} ; c_{i}=-\left(x_{j}-x_{k}\right)$ with permutation $i \rightarrow j \rightarrow k$, Δ_{τ} being the area of the finite element τ.

Now we invoke the principle of stationary functional energy $F^{\tau}=F\left(u_{\tau}^{h}\right)$:

$$
\frac{\partial F^{\tau}}{\partial u_{r}}=0, r=1,2,3
$$

We obtain the matrix equation on the τ element (Ritz system) in the form:

$$
\begin{equation*}
[R]_{\tau}\{U\}_{\tau}^{h}=\{P\}_{\tau} . \tag{5}
\end{equation*}
$$

In this case we have

$$
[K]_{r}=\frac{1}{4 \Delta_{r}}\left[\begin{array}{ccc}
b_{1}^{2}+c_{1}^{2} & b_{1} b_{2}+c_{1} c_{2} & b_{1} b_{3}+c_{1} c_{3} \\
b_{1} b_{2}+c_{1} c_{2} & b_{2}^{2} c_{2}^{2} & b_{2} b_{3}+c_{2} c_{3} \\
b_{1} b_{3}+c_{1} c_{3} & b_{2} b_{3}+c_{2} c_{3} & b_{3}^{2}+c_{3}^{2}
\end{array}\right]
$$

Remark 1.1. We note that the matrix $[K]_{\tau}$ is the same for all the elements if the following local counting is used (fig.1).

Fig. 1
The column vector $\{P\}_{\tau}$ is $\{P\}_{\tau}=f \frac{\Delta}{3}\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\}$. The coefficients of the matrix $\{P\}_{\tau}$ are determined by using the local coordinates $\left(L_{1}, L_{2}, L_{3}\right)$ of the point $P(x, y)$ and the formula

$$
\frac{1}{\Delta_{\tau}} I_{\alpha \beta \gamma}=\frac{a}{b}
$$

where

$$
I_{\alpha \beta \gamma} \equiv \int_{\tau} L_{1}^{\alpha} L_{2}^{\beta} L_{3}^{\gamma} d \tau=2 \Delta_{c} \frac{\alpha!\beta!\gamma!}{(\alpha+\beta+\gamma)!}
$$

An equation of the type (5) is written for each element. The column vector $\{U\}_{\tau}^{h}$ is extended to the N number of nodes in the mesh by the
introduction of all the nodal values. Taking into account the correspondence between the local counting and the overall counting the matrices $[K]_{\tau}$ and $\{P\}_{\tau}$ are also extended at dimensions $N \times N$ and $N \times 1$. We obtain the matrix of the mesh

$$
\begin{equation*}
[K] \cdot\{U\}=\{P\} \tag{6}
\end{equation*}
$$

to which we attach conditions on main boundary.
The coefficients $k_{i j}$ and p_{i} of the matrices $[K]$ and $\{P\}$ and the solutions of the Ritz system (by means of the Gauss elimination method) are determined with a Turbo-Pascal program. The program has been applied for the following numerical example:

$$
\begin{gathered}
\mu=1,5 \cdot 10^{-4} \mathrm{Ns} / \mathrm{m}^{2} ; \\
\frac{d p}{d z}=-5000 \mathrm{~N} / \mathrm{m}^{3} ; \\
\Omega \text { in } L-\text { form (fig. } 2 \text {); } \\
\quad a=0,1 \mathrm{~m} .
\end{gathered}
$$

Fig. 2

The values of velocity at nodes are listed in Table 1, in the case $N=51$.

0.00	0.00	0.00	0.00			
0.00	4866.45	4884.50	0.00			
0.00	7253.47	7308.98	0.00			
0.00	8481.01	8670.66	0.00			
0.00	9164.11	9807.93	0.00	0.00	0.00	0.00
0.00	9431.55	11615.97	8368.64	7008.61	5013.84	0.00
0.00	8567.15	11271.05	10467.33	9165.95	6517.56	0.00
0.00	5792.50	7690.83	7637.64	6872.63	4989.36	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 1. Numerical results for velocity.

References

[1] Baretti J. W., Liu W. B., Finite element approximation of the p-Laplacian, Math. Comp., vol. 61, 1993, 523-537.
[2] Berdicevski V. L., Variaţionnîe prinţipî mehanikipleşnoi sredî, Moskova, 1983.
[3] Boncuţ M., Brădeanu P., Some error estimates for finite element method applied to Navier-Stokes equation, 3rd INternational Conference on Boundary and Finite Element, Constanţa - May 1995, vol. 3, 86-92.
[4] Boncuţ M., A variational method applied to the Navier-Stoke Equation, International Conference on Approximation and Optimization, ClujNapoca - July 1996, vol. 2, 29-32.
[5] Pironneau O., Methodes des elemtes finis pour les fluides, Recherches en Mathematiques Appliquees, Paris, 1988.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, No. 5-7
550012 - Sibiu, Romania
E-mail address:mioara.boncut@ulbsibiu.ro

