A general schlicht integral operator

Eugen Drăghici

Abstract

Let A be the class of analytic functions f in the open complex unit disc $U=\{z \in \mathbb{C}:|z|<1\}$, with $f(0)=0, f^{\prime}(0)=1$ and $f(z) / z \neq 0$ in U. Let define the integral operator $I: A \rightarrow A, I(f)=F$, where: $$
F(z)=\left[(\alpha+\beta+1) \int_{0}^{z} f^{\alpha}(u) g^{\beta}(u)\right]^{1 /(\alpha+\beta+1)}, z \in U
$$

With suitable conditions on the constants α and β and on the function $g \in A$, the author shows that F is analytic and univalent (or schlicht) in U. Additional results are also obtained, such as a new generalization of Becker's condition of univalence and improvements of some known results.

2000 Mathematical Subject Classification: 30C45

Keywords: univalence, subordination chain.

1 Introduction

Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the complex unit disc and let A be the class of analytic functions in U of the form:

$$
f(z)=z+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots
$$

and with $f(z) / z \neq 0$ for all $z \in U$.
Univalence of complex functions is an important property, but, unfortunately, it is difficult, and in many cases impossible, to show directly that a certain complex function is univalent. For this reason, many authors found different types of sufficient conditions of univalence. One of these conditions of univalence is the well-known criterion of Ahlfors and Becker ([1] and [7]), which states that the function $f \in A$ is univalent if:

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f(z)}\right| \leq 1 \tag{1}
\end{equation*}
$$

There are many generalizations of this criterion, such those obtained in [4], [5], [6] and [9]. In this paper, as an additional result, we will also obtain a new generalization of the above-mentioned univalence criterion. The principal result deals with finding sufficient conditions on the constants α and β and on the function $g \in A$ so that the function:

$$
\begin{equation*}
F(z)=\left[(\alpha+\beta+1) \int_{0}^{z} f^{\alpha}(u) g^{\beta}(u) d u\right]^{1 /(\alpha+\beta+1)}, z \in U \tag{2}
\end{equation*}
$$

is univalent.The result improves also former results obtained in [3], [4], [5], [6] and [7].

2 Preliminaries

For proving our principal result we will need the following definitions and lemma:

Definition 1. If f and g are analytic functions in U and g is univalent, then we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$ if $f(0)=g(0)$ and $f(U) \subset g(U)$.

Definition 2. A function $L(z, t), z \in U, t \geq 0$ is called a Löwner chain or a subordination chain if:
(i) $L(\cdot, t)$ is analytic and univalent in U for all $t \geq 0$.
(ii) $L(z, \cdot)$ is continuously differentiable in $[0, \infty)$ for all $t \geq 0$.
(iii) $L(z, s) \prec L(z, t)$ for all real s and t with $0 \leq s<t$.

Let $0<r \leq 1$. We denote by U_{r} the set: $U_{r}=\{z \in \mathbb{C}:|z|<r\}$.
Lemma 1.([8], [9]) \quad Let $0<r_{0} \leq 1, t \geq 0$ and $a_{1}(t) \in \mathbb{C} \backslash\{0\}$. Let:

$$
L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\cdots
$$

be analytic in $U_{r_{0}}$ for all $t \geq 0$, locally absolutely continuous in $[0, \infty)$ locally uniform with respect to $U_{r_{0}}$. For almost all $t \geq 0$ suppose that:

$$
\begin{equation*}
z \frac{\partial L(z, t)}{\partial z}=p(z, t) \frac{\partial L(z, t)}{\partial t}, \quad z \in U_{r_{0}} \tag{3}
\end{equation*}
$$

where $p(z, t)$ is analytic in the unit disc U and $\operatorname{Re} p(z)>0$ in U for all $t \geq 0$.If:

$$
\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty
$$

and $\left\{L(z, t) / a_{1}(t)\right\}$ forms a normal family in $U_{r_{0}}$, then, for each $t \geq 0$, $L(z, t)$ has an analytic and univalent extension to the whole unit disc U and is a Lôwner chain.

Lemma 1 is a variant of the well-known theorem of Pommerenke ([8]) and it's proof can be found in [9].

3 Principal result

Let B be the class of analytic functions p in U with $p(0)=1$ and $p(z) \neq 0$ for all $z \in U$.

Theorem 1. Let $f, g \in A, p \in B$ and α, β, γ and δ complex numbers satisfying:

$$
\begin{equation*}
\operatorname{Re} \frac{\gamma}{\alpha+\beta+1}>\frac{1}{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}(\alpha+\beta+1)>0 \tag{5}
\end{equation*}
$$

(6)

$$
\operatorname{Re} \gamma>0
$$

$$
\begin{equation*}
\left|\frac{\delta+1}{\gamma p(z)}-1\right|<1, z \in U \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\delta+1}{\alpha+\beta+1}-1\right|<1 \tag{8}
\end{equation*}
$$

and, for all $z \in U$:

$$
\begin{equation*}
\left.\left.\left|\frac{1-\gamma}{\gamma}+\frac{1+\delta-p(z)}{\gamma p(z)}\right| z\right|^{2 \gamma}+\frac{1-z^{2 \gamma}}{\gamma}\left[\alpha \frac{z f^{\prime}(z)}{f(z)}+\beta \frac{z g^{\prime}(z)}{g(z)}+\frac{z p^{\prime}(z)}{p(z)}\right] \right\rvert\, \leq 1 \tag{9}
\end{equation*}
$$

Then, the function F defined by (2) is analytic and univalent in U.

Proof. Let :

$$
h(u)=\left[\frac{f(u)}{u}\right]^{\alpha}\left[\frac{g(u)}{u}\right]^{\beta}
$$

where the powers are considered with their principal branches. The function h does not vanish in U because f and g are in A.Let define now the function:

$$
h_{1}(z, t)=\frac{\alpha+\beta+1}{\left(\mathrm{e}^{-t} z\right)^{\alpha+\beta+1}} \int_{0}^{\mathrm{e}^{-t} z} h(u) u^{\alpha+\beta} d u=1+b_{1} z+\cdots
$$

where $t \geq 0$ and $z \in U$. We consider now the power development of h :

$$
h(u)=1+\sum_{n=1}^{\infty} c_{n} u^{n}, u \in U .
$$

We denote:

$$
\phi(w)=\frac{\alpha+\beta+1}{w^{\alpha+\beta+1}} \int_{0}^{w} h(u) u^{\alpha+\beta} d u=1+\sum_{n=1}^{\infty} c_{n} \frac{\alpha+\beta+1}{n+\alpha+\beta+1} w^{n} .
$$

From (5) we have that $\operatorname{Re}(\alpha+\beta+1)>0$ and, consequently:
$\operatorname{Re}(\alpha+\beta+1>-n / 2$ for all $n \in \mathbb{N}$. It follows immediately that:

$$
\operatorname{Re} \frac{n}{n+2(\alpha+\beta+1)}>0, n \in \mathbb{N}
$$

and hence:

$$
\left|\frac{\alpha+\beta+1}{n+\alpha+\beta+1}\right|<1
$$

Taking into account that h is analytic in U, we deduce that:

$$
1+\sum_{n=1}^{\infty} c_{n} \frac{\alpha+\beta+1}{n+\alpha+\beta+1} w^{n}
$$

converges locally uniformly in U, and, thus, ϕ is analytic in U. Because for every $t \geq 0$ and for every $z \in U$ we have that $\mathrm{e}^{-t} z \in U$ we deduce that $\phi\left(\mathrm{e}^{-t} z\right)=h_{1}(z, t)$ is analytic in U for all $t \geq 0$. Let now:

$$
m=\frac{\alpha+\beta+1}{\delta+1}
$$

$$
\begin{gathered}
h_{2}(z, t)=p\left(\mathrm{e}^{-t} z\right) h\left(\mathrm{e}^{-t} z\right), z \in U, t \geq 0 \\
h_{3}(z, t)=h_{1}(z, t)+m\left(\mathrm{e}^{2 \gamma t}-1\right) h_{2}(z, t), z \in U, t \geq 0 .
\end{gathered}
$$

Suppose now that $h_{3}\left(0, t_{1}\right)=0$ for a certain positive rel number t_{1}, that is $1+m\left(\mathrm{e}^{2 \gamma t_{1}}-1\right)=0$ or:

$$
\begin{equation*}
\mathrm{e}^{2 \gamma t_{1}}=\frac{m-1}{m}=\frac{\alpha+\beta-\delta}{\alpha+\beta+1} . \tag{10}
\end{equation*}
$$

From (6) we have that $\left|\mathrm{e}^{2 \gamma t_{1}}\right|=\mathrm{e}^{2 t_{1} \operatorname{Re} \gamma} \geq 1$ and from (8) we deduce that $\left|\frac{\alpha+\beta-\delta}{\alpha+\beta+1}\right|<1$. It follows immediately that (10) is false and then, we have:

$$
\begin{equation*}
h_{3}(0, t) \neq 0 \text { for all } t \geq 0 \tag{11}
\end{equation*}
$$

Let now suppose that for all r with $0<r \leq 1$ it exists at least one $t_{r} \geq 0$ so that $h_{3}\left(z, t_{r}\right)$ has at least one zero in $U_{r}=\{z \in \mathbb{C}:|z|<r\}$. We choose $r=1,1 / 2,1 / 3, \ldots$ and form a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ so that $h_{3}\left(z, t_{n}\right)$ has at least one zero in $U_{1 / n}$.

If $\left(t_{n}\right)_{n \in \mathbb{N}}$ is bounded, we can find a subsequence $\left(t_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(t_{n}\right)_{n \in \mathbb{N}}$ that converges to $\tau_{0} \geq 0$. Because h_{3} is continuously with respect to t we obtain:

$$
\lim _{k \rightarrow \infty} h_{3}\left(z, t_{n_{k}}\right)=h_{3}\left(z, \tau_{0}\right) \text { for all } z \in U
$$

But in this case $h_{2}\left(\cdot, \tau_{0}\right)$ has at least one zero in every disc $U_{1 / n_{k}}$. If we let now $k \rightarrow \infty$ we deduce that $h_{3}\left(0, \tau_{0}\right)=0$, which contradicts (11).

If the sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ is umbounded we can consider, without loss of generality, that $\lim _{n \rightarrow \infty} t_{n}=\infty$. We have now:

$$
h_{3}(z, t)=h_{1}(z, t)+m\left(\mathrm{e}^{2 \gamma t}-1\right) h_{2}(z, t)=\phi\left(\mathrm{e}^{-t} z\right)+m\left(\mathrm{e}^{2 \gamma t}-1\right) h_{2}(z, t)
$$

Because $\phi(0)=1$ we deduce that $M=\max _{z \in \bar{U}}\left|\phi\left(\mathrm{e}^{-t} z\right)\right|>0$. Because $p(0) h(0)=1$, there exists $r_{1} \in(0,1]$ so that $p(w) h(w) \neq 0$ in $\bar{U}_{r_{1}}$. Then, $h_{2}(w, t)=p\left(\mathrm{e}^{-t} z\right) h\left(\mathrm{e}^{-t} z\right)$ do not vanish in $\bar{U}_{r_{1}}$ for every $t \geq 0$ and, thus, we have: $K=\min _{w \in \bar{U}_{r_{1}}}\left|h_{2}(w, t)\right|>0$. From (5) we deduce that $m \neq 0$ and thus, $|m|>0$. It follows immediately that:

$$
\lim _{t \rightarrow \infty}\left|1-\mathrm{e}^{2 \gamma t}\right|=\lim _{t \rightarrow \infty} \mathrm{e}^{2 t \operatorname{Re} \gamma} \sqrt{\mathrm{e}^{-4 t \operatorname{Re} \gamma}-2 \mathrm{e}^{-2 t \operatorname{Re} \gamma} \cos 2 t \operatorname{Im} \gamma+1}=\infty
$$

because $\operatorname{Re} \gamma>0$.
Hence, for sufficiently large t we have:

$$
\begin{equation*}
|m|\left|1-\mathrm{e}^{2 \gamma t}\right|\left|h_{2}(z, t)\right|>|m|\left|1-\mathrm{e}^{2 \gamma t}\right| K>M+1>\left|\phi\left(\mathrm{e}^{-t} z\right)+1\right| \tag{12}
\end{equation*}
$$

In the same time we have:

From (12) it follows immediately that $\left|h_{3}(z, t)\right|>1$ for all $z \in U_{r_{1}}$ and for sufficiently large t. Thus, it exists $N \in \mathbb{N}$ so that $h_{3}\left(\cdot, t_{n}\right)$ does not vanish in $U_{r_{1}}$ for all $n>N$. For $n \in[0, N]$ we have that $h_{3}\left(z, t_{n}\right)$ does not vanish in $U_{r 2}$ where:

$$
r_{2}=\min \left\{r_{t_{n}}: h_{3}(z, t) \neq 0, z \in U_{r_{t_{n}}}, t \geq 0, n \in[0, N]\right\}
$$

If we let now $r_{0}=\min \left\{r_{1}, r_{2}\right\}$ we have that $h_{3}\left(\cdot, t_{n}\right)$ does not vanish in $U_{r_{0}}$ for every $n \in \mathbb{N}$. It follows that the supposition of the nonexistence of a positive real number $r_{0}<1$ with the property that $h_{3}(z, t) \neq 0$ for all $t \geq 0$ and all $z \in U_{r_{0}}$ is false. Hence, we can choose $r_{0} \in(0,1]$ so that $h_{3}(z, t) \neq 0$
for all $t \geq 0$ and all $z \in U_{r_{0}}$.
Let $h_{4}(z, t)$ be the uniform branch of $\left[h_{3}(z, t)\right]^{1 /(\alpha+\beta+1)}$ which takes the value $\left[1+m\left(\mathrm{e}^{2 \gamma t}-1\right)\right]^{1 /(\alpha+\beta+1)}$ at the origin. Let us define:

$$
\begin{equation*}
L(z, t)=\mathrm{e}^{-t} z h_{4}(z, t) \tag{13}
\end{equation*}
$$

which is analytic for all $t \geq 0$.If $L(z, t)=a_{1}(t) z+a_{2}(z) z^{2}+\cdots$, it is clear that $L(0, t)=0$ for every $t \geq 0$ and:

$$
a_{1}(t)=\mathrm{e}^{-t}\left[1+m\left(\mathrm{e}^{2 \gamma t}-1\right)\right]^{1 /(\alpha+\beta+1)} .
$$

From the above written equations we can formally write:

$$
\begin{array}{r}
L(z, t)=\left[L_{1}(z, t)\right]^{1 /(\alpha+\beta+1)}=\left[(\alpha+\beta+1) \int_{0}^{\mathrm{e}^{-t} z} f^{\alpha}(u) g^{\beta}(u) d u+\right. \\
\left.4) \quad+m\left(\mathrm{e}^{2 \gamma t}-1\right) \mathrm{e}^{-t} z f^{\alpha}\left(\mathrm{e}^{-t} z\right) g^{\beta}\left(\mathrm{e}^{-t} z\right) p\left(\mathrm{e}^{-t} z\right)\right]^{1 /(\alpha+\beta+1)} \tag{14}
\end{array}
$$

By simple calculations we obtain:

$$
a_{1}(t)=(c+1)^{-\frac{1}{\alpha+\beta+1}} \mathrm{e}^{\frac{2 \gamma-\alpha-\beta-1}{\alpha+\beta+1}}\left[\alpha+\beta+1-(\alpha+\beta-c) \mathrm{e}^{-2 \gamma t}\right]^{\frac{1}{\alpha+\beta+1}} .
$$

Thus, $\mathrm{e}^{t} a_{1}(t)=h_{4}(0, t)=\left[h_{3}(0, t)\right]^{1 /(\alpha+\beta+1)}$ with the choosen uniform branch. Because $h_{3}(\cdot, t)$ does not vanish in $U_{r_{0}}$ for all $t \geq 0$, we obtain that $a_{1}(t) \neq 0$ for every $t \geq 0$. If we let $t \rightarrow \infty$, from (4) and (6) we easily obtain:

$$
\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty .
$$

Because $h_{4}(\cdot, t)$ is analytic in $U_{r_{0}}$ for every $t \geq 0$, we deduce that $L(z, t)=$ $\mathrm{e}^{-t} z h_{4}(z, t)$ is also analytic in $U_{r_{0}}$ for all $t \geq 0$. The family $\left\{L(z, t) / a_{1}(t)\right\}_{t \geq 0}$ consists of analytic functions in $U_{r_{0}}$. Hence, this family is uniformly bounded
in $U_{r_{1}}$, where $0<r_{1} \leq r_{0}$. By applying Montel's theorem we have that $\left\{L(z, t) / a_{1}(t)\right\}$ forms a normal family in $U_{r_{1}}$. Let denote:

$$
\begin{equation*}
J(z, t)=m\left(\mathrm{e}^{22 t}-1\right)\left[\alpha \frac{\mathrm{e}^{-t} z f^{\prime}\left(\mathrm{e}^{-t} z\right)}{f\left(\mathrm{e}^{-t} z\right)}+\beta \frac{\mathrm{e}^{-t} z g^{\prime}\left(\mathrm{e}^{-t} z\right)}{g\left(\mathrm{e}^{-t} z\right)}+\frac{\mathrm{e}^{-t} z p^{\prime}\left(\mathrm{e}^{-t} z\right)}{p\left(\mathrm{e}^{-t} z\right)}\right] p\left(\mathrm{e}^{-t} z\right) \tag{15}
\end{equation*}
$$

From (14) we obtain:

$$
\begin{gathered}
\frac{\partial L(z, t)}{\partial t}=\frac{1}{\alpha+\beta+1}\left[L_{1}(z, t)\right]^{-\frac{\alpha+\beta}{\alpha+\beta+1}} \mathrm{e}^{-t} z f^{\alpha}\left(\mathrm{e}^{-t} z\right) g^{\beta}\left(\mathrm{e}^{-t} z\right) . \\
\cdot\left[2 \gamma m \mathrm{e}^{2 \gamma t} p\left(\mathrm{e}^{-t} z\right)-m\left(\mathrm{e}^{2 \gamma t}-1\right) p\left(\mathrm{e}^{-t} z\right)-\alpha-\beta-1-J(z, t)\right]
\end{gathered}
$$

It is clear that $\partial L(z, t) / \partial t$ is analytic in $U_{r_{2}}$, where $0<r_{2} \leq r_{1}$. Consequently, $L(z, t)$ is locally absolutely continuous and we have also:

$$
\begin{array}{r}
\frac{\partial L(z, t)}{\partial z}=\frac{1}{\alpha+\beta+1}\left[L_{1}(z, t)\right]^{-\frac{\alpha+\beta}{\alpha+\beta+1}} \mathrm{e}^{-t} z f^{\alpha}\left(\mathrm{e}^{-t} z\right) g^{\beta}\left(\mathrm{e}^{-t} z\right) . \\
\cdot\left[m\left(\mathrm{e}^{2 \gamma t}-1\right) p\left(\mathrm{e}^{-t} z\right)+\alpha+\beta+1+J(z, t)\right]
\end{array}
$$

Let:

$$
p_{1}(z, t)=\frac{z \partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}=\frac{m\left(\mathrm{e}^{2 \gamma t}-1\right) p\left(\mathrm{e}^{-t} z\right)+\alpha+\beta+1+J(z, t)}{(2 \gamma-1) m \mathrm{e}^{2 \gamma t} p\left(\mathrm{e}^{-t} z\right)+m p\left(\mathrm{e}^{-t} z\right)}
$$

Consider now the function:

$$
w(z, t)=\frac{p_{1}(z, t)-1}{p_{1}(z, t)+1}
$$

Further calculations show that:

$$
w(z, t)=\frac{m(1-\gamma) \mathrm{e}^{2 \gamma t} p\left(\mathrm{e}^{-t} z\right)-m p\left(\mathrm{e}^{-t} z\right)+\alpha+\beta+1+J(z, t)}{\gamma m \mathrm{e}^{2 \gamma t} p\left(\mathrm{e}^{-t} z\right)}
$$

It is clear that $w(\cdot, t)$ is analytic in $U_{r_{2}}$ for all $t \geq 0$. Hence, $w(\cdot, t)$ has an analytic extension $\tilde{w}(\cdot, t)$.

Let now $t=0$. Taking into account that $m=(\alpha+\beta+1) /(\delta+1)$, we easily obtain from (15):

$$
\tilde{w}(z, 0)=-1+\frac{c+1}{\gamma p(z)}
$$

and from (7) it follows immediately that $|\tilde{w}(z, 0)|<1$.
Let now $t>0$. We observe that $\tilde{w}(\cdot, t)$ is analytic in $\bar{U}=\{z \in \mathbb{C}:|z| \leq 1\}$ because if $t \geq 0$, for every $z \in \bar{U}$ we have that $\mathrm{e}^{-t} z \in U$. In this case we have:

$$
|\tilde{w}(z, t)|=\max _{z \in \bar{U}^{\mid}}^{|\tilde{w}(z, t)|=\max }|z|=1|\tilde{w}(z, t)|=\left|\tilde{w}\left(\mathrm{e}^{\mathrm{i} \theta}, t\right)\right|
$$

with $\theta \in \mathbb{R}$. Let $v=\mathrm{e}^{-t} \mathrm{e}^{\mathrm{i} \theta} \in U$. After simple calculations we obtain:

$$
\begin{array}{r}
\tilde{w}\left(\mathrm{e}^{\mathrm{i} \theta}, t\right)=\frac{1-\gamma}{\gamma}+\frac{\alpha+\beta+1-m p(v)}{\gamma m p(v)}|v|^{2 \gamma}+ \\
\quad+\frac{1-|v|^{2 \gamma}}{\gamma}\left[\alpha \frac{v f^{\prime}(v)}{f(v)}+\beta \frac{v g^{\prime}(v)}{g(v)}+\frac{v p^{\prime}(v)}{p(v)}\right]
\end{array}
$$

But:

$$
\frac{\alpha+\beta+1-m p(v)}{\gamma m p(v)}=\frac{\delta+1-p(v)}{\gamma p(v)}
$$

and from (9) we deduce that $\left|\tilde{w}\left(\mathrm{e}^{\mathrm{i} \theta}, t\right)\right| \leq 1$ and hence, $|\tilde{w}(z, t)|<1$ in U for all $t \geq 0$. From the definition of w and \tilde{w} we deduce that $p_{1}(\cdot, t)$ has an analytic extension $\tilde{p}_{1}(\cdot, t)$ to the whole disc U for all $t \geq 0$ and $\operatorname{Re} \tilde{p}_{1}(z, t)>0$ in U for all $t \geq 0$. By applying Lemma 1 we obtain that $L(z, t)$ is a subordination chain and thus, $L(z, 0)=F(z)$ is analytic and univalent in U and the proof of the theorem is complete.

Remark 1. We can write a variant of Theorem 1 with $\gamma \in \mathbb{R}$. In this case, condition (8) can be replaced by:

$$
\begin{equation*}
1-\frac{\delta+1}{\alpha+\beta+1} \notin[1, \infty) \tag{16}
\end{equation*}
$$

However, condition (8) was necessary only for showing that $h_{2}(0, t) \neq 0$ for all $t \geq 0$. But if $\gamma \in \mathbb{R}$ then $h_{2}(0, t)=0$ is equivalent to $\mathrm{e}^{2 \gamma t}=$ $(m-1) / m \in \mathbb{R}$. Bat this last equality is impossible because $\mathrm{e}^{2 \gamma t}>1$ and $(m-1) / m \notin[1, \infty)$.

4 Some particular cases

If we let in Theorem $1 \gamma=1$ and $p(z)=1$ for all $z \in U$, then we obtain, using Remark 1 also, the following result:

Corollary 1. If $f, g \in A$ and α, β and δ are complex numbers satisfying:

$$
\begin{gather*}
1-(\delta+1) /(\alpha+\beta+1) \notin[1, \infty) \tag{19}\\
\left.\left.|c| z\right|^{2}+\left(1-|z|^{2}\right)\left[\alpha \frac{z f^{\prime}(z)}{f(z)}+\beta \frac{z g^{\prime}(z)}{g(z)}\right] \right\rvert\, \leq 1, z \in U
\end{gather*}
$$

then the function F defined in (2) is analytic and univalent in U.
If in Corollary 1 we let $\delta=\alpha+\beta$ we obtain Theorem 1 from [5] and if we let additionally $g(z)=z$ for all $z \in U$ we obtain Theorem 1 from [4]. For $\beta=-1$ in this last theorem we obtain Theorem 1 from [3].

From Theorem 1 we can obtain many other results by choosing properly the constants. An interesting example can be obtained if we let $\alpha+\beta=\omega$, $p(z)=1$ and $g(z)=f(z)\left[f^{\prime}(z)\right]^{1 / \beta}$ for all $z \in U$ in Theorem 1. For the power we choose the principal branch and obtain:

Corollary 2. If $f \in A$ and γ, δ and ω are complex numbers satisfying:

$$
\begin{equation*}
\operatorname{Re} \frac{2 \gamma}{\omega+1}>1 \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re} \gamma>0,\left|\frac{\delta+1}{\gamma}-1\right|<1, \operatorname{Re} \omega>-1 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{\delta+1}{\omega+1}-1\right|<1 \tag{23}
\end{equation*}
$$

and for all $z \in U$:

$$
\begin{equation*}
\left.\left.\left|\frac{1-\gamma}{\gamma}+\frac{\delta}{\gamma}\right| z\right|^{2 \gamma}+\frac{\omega}{\gamma}\left(1-|z|^{2 \gamma}\right) \frac{z f^{\prime}(z)}{f(z)}+\frac{1-|z|^{2 \gamma}}{\gamma} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \right\rvert\, \leq 1 \tag{24}
\end{equation*}
$$

then f is univalent in u.
If we let in Corollary $2 \gamma=1$ and use also Remark 1 we obtain a generalization of the well-known criterion of univalence of L.V.Ahlfors and J.Becker ([1], [2]), given in (1):

Corollary 3. If $f \in A, \delta$ and $\omega \in \mathbb{C}$ satisfie:

$$
\frac{\omega-\delta}{\delta+1} \notin[1, \infty)
$$

$$
\begin{equation*}
\left.\left.|\delta| z\right|^{2}+\omega\left(1-|z|^{2}\right) \frac{z f^{\prime}(z)}{f(z)}+\left(1-|z|^{2}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \right\rvert\, \leq 1, z \in U \tag{28}
\end{equation*}
$$

then f is univalent in U.

For $\delta=\omega=0$ we obtain from Corollary 3 the criterion of univalence of Ahlfors and Becker.

For $\delta=\omega=(1-\alpha) / \alpha$, conditions (25) and (26) are equivalent to: $\operatorname{Re} \alpha>1 / 2$ and we obtain the result from [6].

If in Corollary 2 we let $\omega=0$ and $\gamma=(m+1) / 2, m \in \mathbb{R}$ we obtain the result from [7].

References

[1] L.V.Ahlfors. Sufficient conditions for quasiconformal extension. Princeton Annales of Math. Studies 79(1974), 23-29.
[2] J.Becker. Lőwnersche Differentialgleichung und quasiconform vorsetzbare schlichte Functionen. J. Reine Angew. Math. 225(1972), 23-43. MR. 458828.
[3] D.Blezu, E.Drăghici, H.Ovesea, N.N.Pascu. Sufficient conditions for univalence of a large class of functions. Studia Univ. Babeş-Bolyai (Cluj-Romania), Math. XXXV, 4, 1990, 41-47.
[4] E.Drăghici. A generalization of Becker's univalence criterion. Studia Univ. Babeş-Bolyai (Cluj-Romania), Math. XXXV, 2, 1990, 41-47.
[5] E.Drăghici. An improvement of Becker's condition of univalence. Mathematica (Cluj-Romania), Tome 34(57) No. 2, 1992, 139-144.
[6] S.Moldoveanu, N.N.Pascu. A sufficient condition for univalence. Seminar of Geometric Function Theory, Preprint No. 2, Braşov-Romania, 1991, 57-62.
[7] N.N.Pascu, V.Pescar. An integral operator which preserves the univalency. Seminar of Geometric Function Theory, Preprint, BraşovRomania, 1991, 91-98.
[8] Ch.Pommerenke. Univalent functions, Vanderhoek \& Ruprecht, Gőttingen, 1975.
[9] S.Rusheweyh. An extension of Becker's univalence condition. Math. Annalen 220(1976), 285-290.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Ratiu, no. 5-7
550012 - Sibiu, Romania

