Order of certain classes of analytic and univalent functions using Ruscheweyh derivative

B. A. Frasin and Gheorghe Oros

Abstract

Let $D^{\alpha} f(z)$ be the Ruscheweyh derivative defined by using the Hadamard product of $f(z)$ and $z /(1-z)^{\alpha+1}$. The object of this paper is to find the order for certain analytic and univalent functions using the Ruscheweyh derivative $D^{\alpha} f(z)$.

2000 Mathematical Subject Classification: 30C45.
Key words and phrases:Univalent, analytic, Ruscheweyh derivative, starlike, convex, close-to-convex and quasi-convex functions.

1 Introduction and definitions

Let \mathcal{A} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z:|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}. A function $f(z)$ belonging to \mathcal{A} is said to be starlike in \mathcal{U} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \tag{1.2}
\end{equation*}
$$

for all $z \in \mathcal{U}$. We denote by \mathcal{S}^{*} the subclass of \mathcal{A} consisting of functions which are starlike in \mathcal{U}. Also, a function $f(z)$ belonging to \mathcal{A} is said to be convex in \mathcal{U} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \tag{1.3}
\end{equation*}
$$

for all $z \in \mathcal{U}$. We denote by \mathcal{K} the subclass of \mathcal{A} consisting of functions which are convex in \mathcal{U}. A function $f(z)$ in \mathcal{A} is said to be close-to-convex of order δ if there exists a function $g(z)$ belonging to \mathcal{S}^{*} such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\delta \tag{1.4}
\end{equation*}
$$

for some $\delta(0 \leq \delta<1)$, and for all $z \in \mathcal{U}$. We denote by $\mathcal{C}(\delta)$ the subclass of \mathcal{A} consisting of functions which are close-to-convex of order δ in \mathcal{U}. It is well known that $\mathcal{K} \subset \mathcal{S}^{*} \subset \mathcal{C} \equiv \mathcal{C}(0) \subset \mathcal{S}$. A function $f(z)$ belonging to \mathcal{A} is said to be quasi-convex of order $\delta(0 \leq \delta<1)$ if there exists a function $g(z)$ belonging to \mathcal{C} such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right)>\delta \tag{1.5}
\end{equation*}
$$

for all $z \in \mathcal{U}$. Denote the class of quasi-convex of order δ by $\mathcal{C}^{*}(\delta)$. The class $\mathcal{C}^{*}(0)$ was introduced and studied by Noor [1]. We note that every quasi-convex function is close-to-convex and hence univalent in \mathcal{U}.

Let the function $f(z)$ be defined by (1.1) and the function $g(z)$ be defined by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.6}
\end{equation*}
$$

then the Hadamard product (or convolution) of the functions $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
f(z) * g(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} . \tag{1.7}
\end{equation*}
$$

Using the convolution (1.5), Ruscheweyh [3] introduced what is now referred to as the Ruscheweyh derivative $D^{\alpha} f(z)$ of order α of $f(z) \in \mathcal{A}$ by

$$
\begin{equation*}
D^{\alpha} f(z)=\frac{z}{(1-z)^{\alpha+1}} * f(z) \quad(\alpha \geq-1) \tag{1.8}
\end{equation*}
$$

We note that $D^{0} f(z)=f(z)$ and $D^{1} f(z)=z f^{\prime}(z)$.
Owa et al. [2] have introduced and studied the following classes:

$$
\begin{equation*}
\mathcal{S}_{\alpha}^{*}=\left\{f(z) \in \mathcal{A}: D^{\alpha} f(z) \in \mathcal{S}^{*}, \alpha \geq-1\right\} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}_{\alpha}=\left\{f(z) \in \mathcal{A}: D^{\alpha} f(z) \in \mathcal{K}, \alpha \geq-1\right\} \tag{1.10}
\end{equation*}
$$

Note that $\mathcal{S}_{0}^{*} \equiv \mathcal{S}^{*}$ and $\mathcal{S}_{1}^{*} \equiv \mathcal{K}_{0} \equiv \mathcal{K}$.
The aim of this paper is to find the order for certain analytic and univalent functions using the Ruscheweyh derivative $D^{\alpha} f(z)$.

In order to show our results, we shall need the following lemmas due to Owa et al. [2].
Lemma 1 . Let the function $f(z)$ be in the class \mathcal{S}_{α}^{*} with $\alpha \geq-1$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{\alpha} f(z)}{z}\right)^{\beta-1}>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U} \tag{1.11}
\end{equation*}
$$

where $1<\beta \leq 3 / 2$.
Lemma 2. Let the function $f(z)$ be in the class \mathcal{K}_{α} with $\alpha \geq-1$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\left(D^{\alpha} f(z)\right)^{\prime}\right)^{\beta-1}>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U} \tag{1.12}
\end{equation*}
$$

where $1<\beta \leq 3 / 2$.

2 Main Results

With the aid of Lemma 1, we can prove the following
Theorem 1. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime \prime}}{\left(D^{\alpha} f(z)\right)^{\prime}}\right]>-\beta, \quad z \in \mathcal{U} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} g(z)}\right]>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U} \tag{2.2}
\end{equation*}
$$

where $\quad \alpha \geq-1, \quad 1<\beta \leq 3 / 2 \quad$ and

$$
\begin{equation*}
D^{\alpha} g(z)=z\left[\left(D^{\alpha} f(z)\right)^{\prime}\right]^{\frac{1}{\beta}}, \quad z \in \mathcal{U} \tag{2.3}
\end{equation*}
$$

Proof. From (2.3) by differentiating, we obtain

$$
\begin{equation*}
\frac{z\left[D^{\alpha} g(z)\right]^{\prime}}{D^{\alpha} g(z)}=1+\frac{1}{\beta} \frac{z\left[D^{\alpha} f(z)\right]^{\prime \prime}}{\left[D^{\alpha} f(z)\right]^{\prime}}, \quad z \in \mathcal{U} \tag{2.4}
\end{equation*}
$$

Using (2.1) in (2.4) we have

$$
\operatorname{Re}\left[\frac{z\left(D^{\alpha} g(z)\right)^{\prime}}{D^{\alpha} g(z)}\right]=\operatorname{Re}\left[1+\frac{1}{\beta} \frac{z\left(D^{\alpha} f(z)\right)^{\prime \prime}}{\left(D^{\alpha} f(z)\right)^{\prime}}\right]>1+\frac{1}{\beta}(-\beta)>0,
$$

from which we deduce $g(z) \in \mathcal{S}_{\alpha}^{*}, z \in \mathcal{U}$.
From (2.3) we obtain

$$
\left[D^{\alpha} f(z)\right]^{\prime}=\left[\frac{D^{\alpha} g(z)}{z}\right]^{\beta-1} \cdot \frac{D^{\alpha} g(z)}{z}, \quad z \in \mathcal{U}, \quad z \neq 0
$$

and we have

$$
\begin{equation*}
\frac{z\left[D^{\alpha} f(z)\right]^{\prime}}{D^{\alpha} g(z)}=\left[\frac{D^{\alpha} g(z)}{z}\right]^{\beta-1}, \quad z \in \mathcal{U}, \quad z \neq 0 \tag{2.5}
\end{equation*}
$$

Applying Lemma 1 to (2.5) we obtain

$$
\operatorname{Re}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} g(z)}\right]=\operatorname{Re}\left[\frac{D^{\alpha} g(z)}{z}\right]^{\beta-1}>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U}, \quad z \neq 0
$$

Letting $\alpha=0$ in Theorem 1, we obtain:
Corollary 1. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\beta, \quad z \in \mathcal{U} \tag{2.6}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U}
$$

Function $f(z)$ belongs to the class $\mathcal{C}(\delta)$, where $\delta=1 /(2 \beta-1)$ and $1<\beta \leq 3 / 2$. Therefore $f(z)$ is close-to-convex of order δ.

Letting $\beta=3 / 2$ in Corollary 1, we have:
Corollary 2. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>-1 / 2, \quad z \in \mathcal{U} \tag{2.7}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\frac{1}{2}, z \in \mathcal{U} \text {, i.e. } f(z) \text { is in } \mathcal{C}(1 / 2)
$$

Letting $\alpha=1$ in Theorem 1, we obtain:
Corollary 3. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z\left(z f^{\prime}(z)\right)^{\prime \prime}}{\left(z f^{\prime}(z)\right)^{\prime}}\right]>-\beta, \quad z \in \mathcal{U} \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right]>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U} \tag{2.9}
\end{equation*}
$$

where $1<\beta \leq 3 / 2$. Therefore $f(z)$ is in $\mathcal{C}^{*}\left(\frac{1}{2 \beta-1}\right)$.
Letting $\beta=3 / 2$ in Corollary 3, we have:
Corollary 4. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z\left(z f^{\prime}(z)\right)^{\prime \prime}}{\left(z f^{\prime}(z)\right)^{\prime}}+1\right]>-1 / 2, \quad z \in \mathcal{U} \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right]>1 / 2, \quad z \in \mathcal{U} \tag{2.11}
\end{equation*}
$$

Therefore $f(z)$ is in $\mathcal{C}^{*}(1 / 2)$.
Next, we prove:

Theorem 2. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}\right]>1-\beta, \quad z \in \mathcal{U} \tag{2.12}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left[\frac{D^{\alpha} f(z)}{z\left(D^{\alpha} g(z)\right)^{\prime}}\right]>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U}, \quad z \neq 0 \tag{2.13}
\end{equation*}
$$

where $\alpha \geq-1, \quad 1<\beta \leq 3 / 2$ and

$$
\begin{equation*}
\left[D^{\alpha} g(z)\right]^{\prime}=\left[\frac{D^{\alpha} f(z)}{z}\right]^{\frac{1}{\beta}}, \quad z \in \mathcal{U}, \quad z \neq 0 \tag{2.14}
\end{equation*}
$$

Proof. From (2.12) we obtain

$$
\operatorname{Re} \frac{1}{\beta}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}\right]>\frac{1}{\beta}-1, \quad z \in \mathcal{U}
$$

which is equivalent to

$$
\begin{equation*}
\operatorname{Re} \frac{1}{\beta}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}-1\right]>-1, \quad z \in \mathcal{U} . \tag{2.15}
\end{equation*}
$$

From (2.14), by differentiating we have

$$
\frac{\left[D^{\alpha} g(z)\right]^{\prime \prime}}{\left[D^{\alpha} g(z)\right]^{\prime}}=\frac{1}{\beta}\left[\frac{\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}-\frac{1}{z}\right], \quad z \in \mathcal{U}
$$

which is equivalent to

$$
\begin{equation*}
\frac{z\left[D^{\alpha} g(z)\right]^{\prime \prime}}{\left[D^{\alpha} g(z)\right]^{\prime}}=\frac{1}{\beta}\left[\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}-1\right], \quad z \in \mathcal{U} \tag{2.16}
\end{equation*}
$$

Using (2.15) in (2.16) we have

$$
\operatorname{Re}\left[\frac{z\left(D^{\alpha} g(z)\right)^{\prime \prime}}{\left(D^{\alpha} g(z)\right)^{\prime}}+1\right]>0, \quad z \in \mathcal{U}
$$

from which $g(z) \in \mathcal{K}_{\alpha}$.

From (2.14) we obtain

$$
\frac{D^{\alpha} f(z)}{z}=\left[\left(D^{\alpha} g(z)\right)^{\prime}\right]^{\beta}, \quad z \in \mathcal{U}, \quad z \neq 0
$$

from which we obtain

$$
\begin{equation*}
\frac{D^{\alpha} f(z)}{z\left[D^{\alpha} g(z)\right]^{\prime}}=\left[\left(D^{\alpha} g(z)\right)^{\prime}\right]^{\beta-1}, \quad z \in \mathcal{U}, \quad z \neq 0 \tag{2.17}
\end{equation*}
$$

Applying Lemma 2 in (2.17) we obtain

$$
\operatorname{Re}\left[\left(D^{\alpha} g(z)\right)^{\prime}\right]^{\beta-1}=\operatorname{Re}\left[\frac{D^{\alpha} f(z)}{z\left(D^{\alpha} g(z)\right)^{\prime}}\right]>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U}, \quad z \neq 0
$$

Letting $\alpha=0$ in Theorem 2, we obtain:
Corollary 5. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>1-\beta, \quad z \in \mathcal{U} \tag{2.18}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(\frac{f(z)}{z g^{\prime}(z)}\right)>\frac{1}{2 \beta-1}, \quad z \in \mathcal{U}, \quad z \neq 0
$$

where $1<\beta \leq 3 / 2$.
Letting $\beta=3 / 2$ in Corollary 5, we have:
Corollary 6. If the function $f(z)$ in \mathcal{A} satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>-1 / 2, \quad z \in \mathcal{U} \tag{2.19}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g^{\prime}(z)}\right)>1 / 2, \quad z \in \mathcal{U}
$$

References

[1] K.I. Noor, On quasi-convex functions and related topics, Internat.J. Math. \& Math. Sci. 10 (2) (1987) 241-258.
[2] S. Owa, S. Fukui, X. Sakaguchi and S. Ogawa, An application of the Ruscheweyh derivatives, Internat.J. Math. \& Math. Sci. 9 (4) (1986) 721-730.
[3] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.

Department of Mathematics,
Al al-Bayt University,
Mafraq, Jordan.
E-mail address: bafrasin@yahoo.com.

Department of Mathematics,
University of Oradea
Str. Armatei Române 3-5
410087 Oradea, Romania
E-mail address: gh_oros@yahoo.com

