General Mathematics Vol. 12, No. 2 (2004), 3-10

Order of certain classes of analytic and univalent functions using Ruscheweyh derivative

B. A. Frasin and Gheorghe Oros

Abstract

Let $D^{\alpha} f(z)$ be the Ruscheweyh derivative defined by using the Hadamard product of f(z) and $z/(1-z)^{\alpha+1}$. The object of this paper is to find the order for certain analytic and univalent functions using the Ruscheweyh derivative $D^{\alpha} f(z)$.

2000 Mathematical Subject Classification: 30C45.

Key words and phrases:Univalent, analytic, Ruscheweyh derivative, starlike, convex, close-to-convex and quasi-convex functions.

1 Introduction and definitions

Let \mathcal{A} denote the class of functions of the form :

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} . A function f(z) belonging to \mathcal{A} is said to be starlike in \mathcal{U} if it satisfies

(1.2)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0$$

for all $z \in \mathcal{U}$. We denote by \mathcal{S}^* the subclass of \mathcal{A} consisting of functions which are starlike in \mathcal{U} . Also, a function f(z) belonging to \mathcal{A} is said to be convex in \mathcal{U} if it satisfies

(1.3)
$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0$$

for all $z \in \mathcal{U}$. We denote by \mathcal{K} the subclass of \mathcal{A} consisting of functions which are convex in \mathcal{U} . A function f(z) in \mathcal{A} is said to be close-to-convex of order δ if there exists a function g(z) belonging to \mathcal{S}^* such that

(1.4)
$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > \delta$$

for some $\delta(0 \leq \delta < 1)$, and for all $z \in \mathcal{U}$. We denote by $\mathcal{C}(\delta)$ the subclass of \mathcal{A} consisting of functions which are close-to-convex of order δ in \mathcal{U} . It is well known that $\mathcal{K} \subset \mathcal{S}^* \subset \mathcal{C} \equiv \mathcal{C}(0) \subset \mathcal{S}$. A function f(z) belonging to \mathcal{A} is said to be quasi-convex of order $\delta(0 \leq \delta < 1)$ if there exists a function g(z)belonging to \mathcal{C} such that

(1.5)
$$\operatorname{Re}\left(\frac{(zf'(z))'}{g'(z)}\right) > \delta$$

for all $z \in \mathcal{U}$. Denote the class of quasi-convex of order δ by $\mathcal{C}^*(\delta)$. The class $\mathcal{C}^*(0)$ was introduced and studied by Noor [1]. We note that every quasi-convex function is close-to-convex and hence univalent in \mathcal{U} .

Let the function f(z) be defined by (1.1) and the function g(z) be defined by

(1.6)
$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$

then the Hadamard product (or convolution) of the functions f(z) and g(z) is defined by

(1.7)
$$f(z) * g(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Using the convolution (1.5), Ruscheweyh [3] introduced what is now referred to as the Ruscheweyh derivative $D^{\alpha}f(z)$ of order α of $f(z) \in \mathcal{A}$ by

B. A. Frasin and Gheorghe Oros

(1.8)
$$D^{\alpha}f(z) = \frac{z}{(1-z)^{\alpha+1}} * f(z) \qquad (\alpha \ge -1).$$

We note that $D^0 f(z) = f(z)$ and $D^1 f(z) = z f'(z)$.

Owa et al. [2] have introduced and studied the following classes:

(1.9)
$$\mathcal{S}^*_{\alpha} = \{ f(z) \in \mathcal{A} \colon D^{\alpha} f(z) \in \mathcal{S}^*, \ \alpha \ge -1 \}$$

and

(1.10)
$$\mathcal{K}_{\alpha} = \{ f(z) \in \mathcal{A} : D^{\alpha} f(z) \in \mathcal{K}, \ \alpha \ge -1 \}.$$

Note that $\mathcal{S}_0^* \equiv \mathcal{S}^*$ and $\mathcal{S}_1^* \equiv \mathcal{K}_0 \equiv \mathcal{K}$. The aim of this paper is to find the order for certain analytic and univalent functions using the Ruscheweyh derivative $D^{\alpha} f(z)$.

In order to show our results, we shall need the following lemmas due to Owa et al. [2].

Lemma 1 . Let the function f(z) be in the class \mathcal{S}^*_{α} with $\alpha \geq -1$. Then

(1.11)
$$\operatorname{Re}\left(\frac{D^{\alpha}f(z)}{z}\right)^{\beta-1} > \frac{1}{2\beta-1} , \qquad z \in \mathcal{U},$$

where $1 < \beta \le 3/2$.

Lemma 2. Let the function f(z) be in the class \mathcal{K}_{α} with $\alpha \geq -1$. Then

(1.12)
$$\operatorname{Re}\left(\left(D^{\alpha}f(z)\right)'\right)^{\beta-1} > \frac{1}{2\beta-1} , \qquad z \in \mathcal{U},$$

where $1 < \beta \leq 3/2$.

Main Results 2

With the aid of Lemma 1, we can prove the following **Theorem 1**. If the function f(z) in \mathcal{A} satisfies the condition

(2.1)
$$\operatorname{Re}\left[\frac{z(D^{\alpha}f(z))''}{(D^{\alpha}f(z))'}\right] > -\beta , \qquad z \in \mathcal{U}$$

then

(2.2)
$$\operatorname{Re}\left[\frac{z(D^{\alpha}f(z))'}{D^{\alpha}g(z)}\right] > \frac{1}{2\beta - 1} , \qquad z \in \mathcal{U},$$

 $where \qquad \alpha \geq -1, \quad 1 < \beta \leq 3/2 \qquad and \qquad$

(2.3)
$$D^{\alpha}g(z) = z \left[(D^{\alpha}f(z))' \right]^{\frac{1}{\beta}}, \qquad z \in \mathcal{U}.$$

Proof. From (2.3) by differentiating, we obtain

(2.4)
$$\frac{z[D^{\alpha}g(z)]'}{D^{\alpha}g(z)} = 1 + \frac{1}{\beta} \frac{z[D^{\alpha}f(z)]''}{[D^{\alpha}f(z)]'}, \qquad z \in \mathcal{U}.$$

Using (2.1) in (2.4) we have

$$\operatorname{Re}\left[\frac{z(D^{\alpha}g(z))'}{D^{\alpha}g(z)}\right] = \operatorname{Re}\left[1 + \frac{1}{\beta}\frac{z(D^{\alpha}f(z))''}{(D^{\alpha}f(z))'}\right] > 1 + \frac{1}{\beta}(-\beta) > 0,$$

from which we deduce $g(z) \in \mathcal{S}^*_{\alpha}, z \in \mathcal{U}$. From (2.3) we obtain

$$[D^{\alpha}f(z)]' = \left[\frac{D^{\alpha}g(z)}{z}\right]^{\beta-1} \cdot \frac{D^{\alpha}g(z)}{z} , \quad z \in \mathcal{U}, \quad z \neq 0$$

and we have

(2.5)
$$\frac{z[D^{\alpha}f(z)]'}{D^{\alpha}g(z)} = \left[\frac{D^{\alpha}g(z)}{z}\right]^{\beta-1}, \qquad z \in \mathcal{U}, \quad z \neq 0.$$

Applying Lemma 1 to (2.5) we obtain

$$\operatorname{Re}\left[\frac{z(D^{\alpha}f(z))'}{D^{\alpha}g(z)}\right] = \operatorname{Re}\left[\frac{D^{\alpha}g(z)}{z}\right]^{\beta-1} > \frac{1}{2\beta-1} , \quad z \in \mathcal{U}, \quad z \neq 0.$$

Letting $\alpha = 0$ in Theorem 1, we obtain:

Corollary 1. If the function f(z) in \mathcal{A} satisfies the condition

(2.6)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) > -\beta , \qquad z \in \mathcal{U}$$

then

$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > \frac{1}{2\beta - 1}, \quad z \in \mathcal{U}.$$

Function f(z) belongs to the class $C(\delta)$, where $\delta = 1/(2\beta - 1)$ and $1 < \beta \leq 3/2$. Therefore f(z) is close-to-convex of order δ . Letting $\beta = 3/2$ in Corollary 1, we have:

Corollary 2. If the function f(z) in \mathcal{A} satisfies the condition

(2.7)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}+1\right) > -1/2 , \qquad z \in \mathcal{U}$$

then

$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > \frac{1}{2}, \ z \in \mathcal{U}, \text{ i.e. } f(z) \text{ is in } \mathcal{C}(1/2).$$

Letting $\alpha = 1$ in Theorem 1, we obtain:

Corollary 3. If the function f(z) in \mathcal{A} satisfies the condition

(2.8)
$$\operatorname{Re}\left[\frac{z(zf'(z))''}{(zf'(z))'}\right] > -\beta , \qquad z \in \mathcal{U}$$

then

(2.9)
$$\operatorname{Re}\left[\frac{(zf'(z))'}{g'(z)}\right] > \frac{1}{2\beta - 1} , \qquad z \in \mathcal{U},$$

where $1 < \beta \leq 3/2$. Therefore f(z) is in $\mathcal{C}^*(\frac{1}{2\beta-1})$.

Letting $\beta = 3/2$ in Corollary 3, we have:

Corollary 4. If the function f(z) in \mathcal{A} satisfies the condition

(2.10)
$$\operatorname{Re}\left[\frac{z(zf'(z))''}{(zf'(z))'}+1\right] > -1/2, \qquad z \in \mathcal{U}$$

then

(2.11)
$$\operatorname{Re}\left[\frac{(zf'(z))'}{g'(z)}\right] > 1/2 , \qquad z \in \mathcal{U}.$$

Therefore f(z) is in $\mathcal{C}^*(1/2)$.

Next, we prove:

Theorem 2. If the function f(z) in \mathcal{A} satisfies the condition

(2.12)
$$\operatorname{Re}\left[\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)}\right] > 1 - \beta , \qquad z \in \mathcal{U}$$

then

(2.13)
$$\operatorname{Re}\left[\frac{D^{\alpha}f(z)}{z(D^{\alpha}g(z))'}\right] > \frac{1}{2\beta - 1} , \qquad z \in \mathcal{U}, \quad z \neq 0$$

where $\alpha \geq -1, \quad 1 < \beta \leq 3/2$ and

(2.14)
$$[D^{\alpha}g(z)]' = \left[\frac{D^{\alpha}f(z)}{z}\right]^{\frac{1}{\beta}}, \qquad z \in \mathcal{U}, \quad z \neq 0.$$

Proof. From (2.12) we obtain

Re
$$\frac{1}{\beta} \left[\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} \right] > \frac{1}{\beta} - 1$$
, $z \in \mathcal{U}$

which is equivalent to

From (2.14), by differentiating we have

$$\frac{[D^{\alpha}g(z)]''}{[D^{\alpha}g(z)]'} = \frac{1}{\beta} \left[\frac{(D^{\alpha}f(z))'}{D^{\alpha}f(z)} - \frac{1}{z} \right] , \qquad z \in \mathcal{U}$$

which is equivalent to

(2.16)
$$\frac{z[D^{\alpha}g(z)]''}{[D^{\alpha}g(z)]'} = \frac{1}{\beta} \left[\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} - 1 \right] , \qquad z \in \mathcal{U}.$$

Using (2.15) in (2.16) we have

$$\operatorname{Re}\left[\frac{z(D^{\alpha}g(z))''}{(D^{\alpha}g(z))'}+1\right] > 0 , \qquad z \in \mathcal{U}$$

from which $g(z) \in \mathcal{K}_{\alpha}$.

From (2.14) we obtain

$$\frac{D^{\alpha}f(z)}{z} = \left[(D^{\alpha}g(z))' \right]^{\beta} , \qquad z \in \mathcal{U}, \quad z \neq 0$$

from which we obtain

(2.17)
$$\frac{D^{\alpha}f(z)}{z[D^{\alpha}g(z)]'} = \left[(D^{\alpha}g(z))' \right]^{\beta-1} , \qquad z \in \mathcal{U}, \quad z \neq 0.$$

Applying Lemma 2 in (2.17) we obtain

$$\operatorname{Re}\left[\left(D^{\alpha}g(z)\right)'\right]^{\beta-1} = \operatorname{Re}\left[\frac{D^{\alpha}f(z)}{z(D^{\alpha}g(z))'}\right] > \frac{1}{2\beta-1} , \qquad z \in \mathcal{U}, \quad z \neq 0.$$

Letting $\alpha = 0$ in Theorem 2, we obtain:

Corollary 5. If the function f(z) in \mathcal{A} satisfies the condition

(2.18)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 1 - \beta , \qquad z \in \mathcal{U}$$

then

$$\operatorname{Re}\left(\frac{f(z)}{zg'(z)}\right) > \frac{1}{2\beta - 1}, \qquad z \in \mathcal{U}, \quad z \neq 0$$

where $1 < \beta \leq 3/2$.

Letting $\beta = 3/2$ in Corollary 5, we have:

Corollary 6. If the function f(z) in \mathcal{A} satisfies the condition

(2.19)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > -1/2, \qquad z \in \mathcal{U}$$

then

$$\operatorname{Re}\left(\frac{zf'(z)}{g'(z)}\right) > 1/2 , \qquad z \in \mathcal{U}.$$

References

- K.I. Noor, On quasi-convex functions and related topics, Internat.J. Math. & Math. Sci. 10 (2) (1987) 241-258.
- [2] S. Owa, S. Fukui, X. Sakaguchi and S. Ogawa, An application of the Ruscheweyh derivatives, Internat.J. Math. & Math. Sci. 9 (4) (1986) 721-730.
- [3] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.

Department of Mathematics, Al al-Bayt University, Mafraq, Jordan. E-mail address: bafrasin@yahoo.com.

Department of Mathematics, University of Oradea Str. Armatei Române 3-5 410087 Oradea, Romania E-mail address: gh_oros@yahoo.com