
General Mathematics Vol. 12, No. 2 (2004), 41–45

A preserving property of a generalized

Libera integral operator
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Abstract

In this paper we prove that the logarithmically n-spirallike of type

γ functions are preserved by a generalized Libera integral operator.
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1 Introduction

Let H(U) be the set of functions which are regular in the unit disc U and

A = {f ∈ H(U) : f(0) = f ′(0) − 1 = 0}.

Let consider the integral operator La : A → A defined as:

f(z) = LaF (z) =
1 + a

za

z
∫

0

F (t) · ta−1dt , a ∈ C , Re a ≥ 0.(1)
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If we consider a = 1 we obtain the Libera integral operator and for

a = 0 we obtain the Alexander integral operator. In the case a = 1, 2, 3, ...

this operator was introduced by S. D. Bernardi and it was studied by many

authors in different general cases.

Let Dn be the Sălăgean differential operator (see [7]) defined as:

Dn : A → A , n ∈ N and D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z) , Dnf(z) = D(Dn−1f(z)).

2 Preliminary results

Definition 2.1. Let f ∈ A and n ∈ N. We say that f is a n-starlike

function if:

Re
Dn+1f(z)

Dnf(z)
> 0 , z ∈ U.

We denote this class with S∗

n.

Definition 2.2. Let f ∈ A and n ∈ N. We say that f is logarithmically

n-spirallike of type γ ∈
(

−
π

2
,
π

2

)

if Dnf(z) 6= 0 , z ∈ U and

Re

[

eiγ Dn+1f(z)

Dnf(z)

]

> 0 , z ∈ U .

We denote this class with Sγ,n.

Remark 2.1. If we consider γ = 0 we obtain the concept of n-starlike

functions and for n = 0 we obtain the classical spirallike functions. We

denote the set of all spirallike functions with Sγ.

The next theorem is result of the so called ”admissible functions method”

introduced by P. T. Mocanu and S. S. Miller (see [2], [3], [4]).
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Theorem 2.1. Let h convex in U and Re [βh(z) + δ] > 0. If q ∈ H(U)

with q(0) = h(0) and q satisfied q(z) +
zq′(z)

βq(z) + δ
≺ h(z), then q(z) ≺ h(z).

3 Main results

Theorem 3.1. If F (z) ∈ Sγ,n then f(z) = LaF (z) ∈ Sγ,n.

Proof. By differentiating (1) we obtain

(1 + a)F (z) = af(z) + zf ′(z) .

By means of the applications of the linear operator Dn+1 we obtain:

(1 + a)Dn+1F (z) = aDn+1f(z) + Dn+1(zf ′(z))

or

(1 + a)Dn+1F (z) = aDn+1f(z) + Dn+2f(z) .

It is easy to see that in the conditions of the hypothesis we have Dnf(z) 6=

0 , z ∈ U .

With notation
Dn+1f(z)

Dnf(z)
= p(z), where p(z) = 1 + p1z + ...., by simple

calculations we obtain

Dn+1F (z)

DnF (z)
= p(z) +

1

p(z) + a
· zp′(z) .

From here we have

eiγ Dn+1F (z)

DnF (z)
= eiγp(z) +

eiγ

p(z) + a
· zp′(z) .

If we denote eiγp(z) = q(z) we obtain

eiγ Dn+1F (z)

DnF (z)
= q(z) +

1

e−iγq(z) + a
· zq′(z) .(2)
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If we consider h(z) =
1 + z

1 − z
eiγ which is convex in U and maps the unit

disc into a convex domain included in the right half plane, then using the

hypothesis from (2) we obtain:

q(z) +
1

e−iγq(z) + a
· zq′(z) ≺ h(z) .

In this conditions, using Rea ≥ 0, we obtain Re
[

e−iγh(z) + a
]

> 0. From

Theorem (2.1), with β = e−iγ and δ = a, we have q(z) ≺ h(z) or

eiγp(z) = eiγ Dn+1f(z)

Dnf(z)
≺ h(z) ≺

1 + z

1 − z
.

Thus we obtain Re

[

eiγ Dn+1f(z)

Dnf(z)

]

> 0 , z ∈ U or f(z) = LaF (z) ∈ Sγ,n.

If we take γ = 0 in Theorem (3.1) we obtain:

Corollary 3.1. If F (z) ∈ Sn
∗ then f(z) = LaF (z) ∈ Sn

∗.

Remark 3.1. In the case n = 0 from Theorem (3.1) we obtain:

If F (z) ∈ Sγ then f(z) = LaF (z) ∈ Sγ.

This result is a particular case of the more general results given by P.T.

Mocanu and S.S. Miller in [5] and [6].
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