General Mathematics Vol. 12, No. 2 (2004), 41-45

A preserving property of a generalized Libera integral operator

Mugur Acu

Abstract

In this paper we prove that the logarithmically n-spirallike of type γ functions are preserved by a generalized Libera integral operator.

2000 Mathematics Subject Classifications: 30C45

Key words and Phrases: Libera type integral operator, logarithmically n-spirallike of type γ functions, Sălăgean differential operator

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U and $A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}.$

Let consider the integral operator $L_a: A \to A$ defined as:

(1)
$$f(z) = L_a F(z) = \frac{1+a}{z^a} \int_0^z F(t) \cdot t^{a-1} dt$$
, $a \in \mathbb{C}$, $Re \ a \ge 0$.

If we consider a = 1 we obtain the Libera integral operator and for a = 0 we obtain the Alexander integral operator. In the case a = 1, 2, 3, ... this operator was introduced by S. D. Bernardi and it was studied by many authors in different general cases.

Let D^n be the Sălăgean differential operator (see [7]) defined as:

$$\begin{split} D^n: A &\to A \ , \qquad n \in \mathbb{N} \ \text{ and } \ D^0 f(z) = f(z) \\ D^1 f(z) &= D f(z) = z f'(z) \ , \quad D^n f(z) = D (D^{n-1} f(z)). \end{split}$$

2 Preliminary results

Definition 2.1. Let $f \in A$ and $n \in \mathbb{N}$. We say that f is a n-starlike function if:

$$Re \frac{D^{n+1}f(z)}{D^n f(z)} > 0 \ , \ z \in U.$$

We denote this class with S^*_n .

Definition 2.2. Let $f \in A$ and $n \in \mathbb{N}$. We say that f is logarithmically *n*-spirallike of type $\gamma \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ if $D^n f(z) \neq 0$, $z \in U$ and

$$Re\left[e^{i\gamma}\frac{D^{n+1}f(z)}{D^nf(z)}
ight] > 0, \ z \in U.$$

We denote this class with $S_{\gamma,n}$.

Remark 2.1. If we consider $\gamma = 0$ we obtain the concept of n-starlike functions and for n = 0 we obtain the classical spirallike functions. We denote the set of all spirallike functions with S_{γ} .

The next theorem is result of the so called "admissible functions method" introduced by P. T. Mocanu and S. S. Miller (see [2], [3], [4]).

Mugur Acu

Theorem 2.1. Let h convex in U and $Re[\beta h(z) + \delta] > 0$. If $q \in \mathcal{H}(U)$ with q(0) = h(0) and q satisfied $q(z) + \frac{zq'(z)}{\beta q(z) + \delta} \prec h(z)$, then $q(z) \prec h(z)$.

3 Main results

Theorem 3.1. If $F(z) \in S_{\gamma,n}$ then $f(z) = L_a F(z) \in S_{\gamma,n}$.

Proof. By differentiating (1) we obtain

$$(1+a)F(z) = af(z) + zf'(z).$$

By means of the applications of the linear operator D^{n+1} we obtain:

$$(1+a)D^{n+1}F(z) = aD^{n+1}f(z) + D^{n+1}(zf'(z))$$

or

$$(1+a)D^{n+1}F(z) = aD^{n+1}f(z) + D^{n+2}f(z).$$

It is easy to see that in the conditions of the hypothesis we have $D^n f(z) \neq 0$, $z \in U$.

With notation $\frac{D^{n+1}f(z)}{D^n f(z)} = p(z)$, where $p(z) = 1 + p_1 z + \dots$, by simple calculations we obtain

$$\frac{D^{n+1}F(z)}{D^nF(z)} = p(z) + \frac{1}{p(z) + a} \cdot zp'(z) \,.$$

From here we have

$$e^{i\gamma}\frac{D^{n+1}F(z)}{D^nF(z)} = e^{i\gamma}p(z) + \frac{e^{i\gamma}}{p(z)+a} \cdot zp'(z) \,.$$

If we denote $e^{i\gamma}p(z) = q(z)$ we obtain

(2)
$$e^{i\gamma} \frac{D^{n+1}F(z)}{D^n F(z)} = q(z) + \frac{1}{e^{-i\gamma}q(z) + a} \cdot zq'(z).$$

If we consider $h(z) = \frac{1+z}{1-z}e^{i\gamma}$ which is convex in U and maps the unit disc into a convex domain included in the right half plane, then using the hypothesis from (2) we obtain:

$$q(z) + \frac{1}{e^{-i\gamma}q(z) + a} \cdot zq'(z) \prec h(z) \,.$$

In this conditions, using $Re a \ge 0$, we obtain $Re \left[e^{-i\gamma}h(z) + a\right] > 0$. From Theorem (2.1), with $\beta = e^{-i\gamma}$ and $\delta = a$, we have $q(z) \prec h(z)$ or

$$e^{i\gamma}p(z) = e^{i\gamma}\frac{D^{n+1}f(z)}{D^nf(z)} \prec h(z) \prec \frac{1+z}{1-z}$$

Thus we obtain $Re\left[e^{i\gamma}\frac{D^{n+1}f(z)}{D^nf(z)}\right] > 0$, $z \in U$ or $f(z) = L_aF(z) \in S_{\gamma,n}$. If we take $\gamma = 0$ in Theorem (3.1) we obtain:

Corollary 3.1. If $F(z) \in S_n^*$ then $f(z) = L_a F(z) \in S_n^*$.

Remark 3.1. In the case n = 0 from Theorem (3.1) we obtain:

If $F(z) \in S_{\gamma}$ then $f(z) = L_a F(z) \in S_{\gamma}$.

This result is a particular case of the more general results given by P.T. Mocanu and S.S. Miller in [5] and [6].

References

- S. G. Gal and P. T. Mocanu, On the analytic n-starlike and n-spirallike functions, Mathematica, Tome 43(66), No. 2(2001), 203-210.
- [2] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Mich. Math. 28(1981), 157-171.

- [3] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equation, J. Differential Equations 56(1985), 297-308.
- [4] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordination, Mich. Math. 32(1985), 185-195.
- S. S. Miller and P. T. Mocanu, On a class of spiralike integral operators, Rev. Roum. Math. Pures Appl., 31, 3(1986), 225-230.
- S. S. Miller and P. T. Mocanu, Classes of univalent integral operators, J. Math. Anal. Appl., 157, 1(1991), 147-165.
- [7] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.

University "Lucian Blaga" of Sibiu Department of Mathematics Str. Dr. I. Rațiu, No. 5-7 550012 - Sibiu, Romania E-mail address: *acu_muqur@yahoo.com*