On the Univalence of Some Integral Operators ${ }^{1}$

Virgil Pescar

Abstract

In this paper some integral operators are studied and are determined conditions for the univalence of these operators.

2000 Mathematics Subject Classification: 30C45.
Key words and phrases: Univalent, Integral operator.

1 Introduction

Let A be the class of the functions f which are regular in the unit disc $U=\{z \in C,|z|<1\}$ and $f(0)=f^{\prime}(0)-1=0$. We denote by S the class of the functions $f \in A$ which are univalent in U.
L.V. Ahlfors [1] and J. Becker [2] had obtained the next univalence criterion.

[^0]Theorem A. Let c be a complex number, $|c| \leq 1, c \neq-1$. If $f(z)=z+a_{2} z^{2}+\ldots$ is a regular function in U and

$$
\begin{equation*}
\left.\left.|c| z\right|^{2}+\left(1-|z|^{2}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \right\rvert\, \leq 1 \tag{1}
\end{equation*}
$$

for all $z \in U$, then the function $f(z)$ is regular and univalent in U.
Further, V. Pescar [6] gave
Theorem B. Let α be a complex number, Re $\alpha>0$, and c a complex number, $|c| \leq 1, c \neq-1$ and $f(z)=z+\cdots$ a regular function in U. If

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z f^{\prime \prime}(z)}{\alpha f^{\prime}(z)} \right\rvert\, \leq 1 \tag{2}
\end{equation*}
$$

for all $z \in U$, then the function

$$
\begin{equation*}
F_{\alpha}(z)=\left[\alpha \int_{0}^{z} u^{\alpha-1} f^{\prime}(u) d u\right]^{\frac{1}{\alpha}}=z+\ldots \tag{3}
\end{equation*}
$$

is regular and univalent in U.

In this paper we will need the following theorems.
Theorem C. [5] Let $f \in A$ satisfy the condition

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, z \in U \tag{4}
\end{equation*}
$$

then f is univalent in U.
Theorem D. [8] Let α be a complex number, Re $\alpha>0$ and c a complex number, $|c| \leq 1, c \neq-1$ and $f \in A$. If

$$
\begin{equation*}
\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-|c| \tag{5}
\end{equation*}
$$

for all $z \in U$, then for any complex number β, Re $\beta \geq$ Re α, the function

$$
\begin{equation*}
F_{\beta}(z)=\left[\beta \int_{0}^{z} u^{\beta-1} f^{\prime}(u) d u\right]^{\frac{1}{\beta}} \tag{6}
\end{equation*}
$$

is in the class S.
Schwarz Lemma. [3] Let $f(z)$ the function regular in the disk $U_{R}=\{z \in C:|z|<R\}$, with $|f(z)|<M, M$ fixed. If $f(z)$ has in $z=0$ one zero with multiply $\geq m$, then

$$
\begin{equation*}
|f(z)| \leq \frac{M}{R^{m}}|z|^{m}, z \in U_{R} \tag{7}
\end{equation*}
$$

the equality (in (7) for $z \neq 0$) can hold only if $f(z)=e^{i \theta} \frac{M}{R^{m}} z^{m}$, where θ is constant.

2 Main results

Theorem 1. Let the function $g \in A$ satisfy (4), M be a positiv real number fixed and c be a complex number. If $\alpha \in\left[\frac{2 M+1}{2 M+2}, \frac{2 M+1}{2 M}\right]$,

$$
\begin{equation*}
|c| \leq 1-\left|\frac{\alpha-1}{\alpha}\right|(2 M+1), c \neq-1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(z)| \leq M \tag{9}
\end{equation*}
$$

for all $z \in U$, then the function

$$
\begin{equation*}
\left.G_{\alpha}(z)=\left[\alpha \int_{0}^{z}[g(u)]^{\alpha-1} d u\right]\right]^{\frac{1}{\alpha}} \tag{10}
\end{equation*}
$$

is in the class S.
Proof. From (10) we have

$$
\begin{equation*}
G_{\alpha}(z)=\left[\alpha \int_{0}^{z} u^{\alpha-1}\left(\frac{g(u)}{u}\right)^{\alpha-1} d u\right]^{\frac{1}{\alpha}} \tag{11}
\end{equation*}
$$

Let us consider the function

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left(\frac{g(u)}{u}\right)^{\alpha-1} d u \tag{12}
\end{equation*}
$$

The function f is regular in U.
From (12) we get $f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{\alpha-1}, f^{\prime \prime}(z)=(\alpha-1)\left(\frac{g(z)}{z}\right)^{\alpha-2} \frac{z g^{\prime}(z)-g(z)}{z^{2}}$ and

$$
\begin{align*}
& \left.\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z f^{\prime \prime}(z)}{\alpha f^{\prime}(z)} \right\rvert\,= \tag{13}\\
& \left.=\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{\alpha-1}{\alpha}\left(\frac{z g^{\prime}(z)}{g(z)}-1\right) \right\rvert\, \leq \\
& \leq|c|+\left|\frac{\alpha-1}{\alpha}\right|\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}\right| \frac{|g(z)|}{|z|}+1\right)
\end{align*}
$$

for all $z \in U$.
We have $g(0)=0$ and $|g(z)|<M$ and by the Schwarz-Lemma we obtain $|g(z)|<M|z|$. Using (13), we have

$$
\begin{align*}
& \left.\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z f^{\prime \prime}(z)}{\alpha f^{\prime}(z)} \right\rvert\, \leq \tag{14}\\
& \leq|c|+\left|\frac{\alpha-1}{\alpha}\right|\left[\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}-1\right|+1\right) M+1\right]
\end{align*}
$$

From (14) and since g satisfies the condition (4) we have

$$
\begin{equation*}
\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z f^{\prime \prime}(z)}{\alpha f^{\prime}(z)}\left|\leq|c|+\left|\frac{\alpha-1}{\alpha}\right|(2 M+1)\right. \tag{15}
\end{equation*}
$$

For $\alpha \in\left[\frac{2 M+1}{2 M+2}, \frac{2 M+1}{2 M}\right]$ we have

$$
\begin{equation*}
|c| \leq 1-\left|\frac{\alpha-1}{\alpha}\right|(2 M+1) \leq 1 \tag{16}
\end{equation*}
$$

and, hence, we get

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z f^{\prime \prime}(z)}{\alpha f^{\prime}(z)} \right\rvert\, \leq 1, z \in U . \tag{17}
\end{equation*}
$$

for all $z \in U$.
From (12) we have $f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{\alpha-1}$ and by Theorem B for α real number, $\alpha>0$, it results that the function G_{α} is in the class S.

Theorem 2. Let $g \in A, \alpha$ be a real number, $\alpha \geq 1$, and c a complex number, $|c| \leq \frac{1}{\alpha}, c \neq-1$. If

$$
\begin{equation*}
\left|\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \leq 1, z \in U \tag{18}
\end{equation*}
$$

then the function

$$
\begin{equation*}
H_{\alpha}(z)=\left\{\alpha \int_{0}^{z}\left[u g^{\prime}(u)\right]^{\alpha-1} d u\right\}^{\frac{1}{\alpha}} \tag{19}
\end{equation*}
$$

is in the class S.
Proof. We observe that

$$
\begin{equation*}
H_{\alpha}(z)=\left[\alpha \int_{0}^{z} u^{\alpha-1}\left(g^{\prime}(u)\right)^{\alpha-1} d u\right]^{\frac{1}{\alpha}} \tag{20}
\end{equation*}
$$

Let us consider the function

$$
\begin{equation*}
p(z)=\int_{0}^{z}\left[g^{\prime}(u)\right]^{\alpha-1} d u \tag{21}
\end{equation*}
$$

The function p is regular in U.
From (21) we have

$$
p^{\prime}(z)=\left(g^{\prime}(z)\right)^{\alpha-1}, p^{\prime \prime}(z)=(\alpha-1)\left[g^{\prime}(z)\right]^{\alpha-2} g^{\prime \prime}(z)
$$

and we obtain

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z p^{\prime \prime}(z)}{\alpha p^{\prime}(z)}|=|c| z|^{2 \alpha}+\left(1-|z|^{2 \alpha}\right) \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)} \frac{\alpha-1}{\alpha} \right\rvert\, . \tag{22}
\end{equation*}
$$

From (22), (18) and the conditions of theorem we get

$$
\begin{equation*}
\left.|c| z\right|^{2 \alpha}+\left(1-|z|^{2 \alpha} \frac{z p^{\prime \prime}(z)}{\alpha p^{\prime}(z)}\right)\left|\leq|c|+\frac{\alpha-1}{\alpha} \leq 1\right. \tag{23}
\end{equation*}
$$

for all $z \in U$.
By Theorem B for α real number, $\alpha \geq 1$, and since $p^{\prime}(z)=\left[g^{\prime}(z)\right]^{\alpha-1}$ it results that the function H_{α} is in the class S.
Theorem 3. Let $g \in A$ satisfies (4), α be a complex number, $M>1$ fixed, Rea >0 and c be a complex number, $|c|<1$. If

$$
\begin{equation*}
|g(z)| \leq M \tag{24}
\end{equation*}
$$

for all $z \in U$, then for any complex number β

$$
\begin{equation*}
\operatorname{Re} \beta \geq \operatorname{Re} \alpha \geq \frac{2 M+1}{|\alpha|(1-|c|)} \tag{25}
\end{equation*}
$$

the function

$$
\begin{equation*}
H_{\beta}(z)=\left[\beta \int_{0}^{z} u^{\beta-1}\left(\frac{g(u)}{u}\right)^{\frac{1}{\alpha}} d u\right]^{\frac{1}{\beta}} \tag{26}
\end{equation*}
$$

is in the class S.
Proof. Let us consider the function

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left(\frac{g(u)}{u}\right)^{\frac{1}{\alpha}} d u \tag{27}
\end{equation*}
$$

The function f is regular in U. From (27) we have:

$$
f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{\frac{1}{\alpha}}, \quad f^{\prime \prime}(z)=\frac{1}{\alpha}\left(\frac{g(z)}{z}\right)^{\frac{1}{\alpha-1}} \frac{z g^{\prime}(z)-g(z)}{z^{2}}
$$

and

$$
\begin{equation*}
\frac{1-|z|^{2 \text { Re } \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{1-|z|^{2 \text { Re } \alpha}}{|\alpha| \text { Re } \alpha}\left|\frac{z g^{\prime}(z)}{g(z)}\right|+\frac{1-|z|^{2 \text { Re } \alpha}}{|\alpha| \text { Re } \alpha} \tag{28}
\end{equation*}
$$

for all $z \in U$ and hence, we have

$$
\begin{equation*}
\frac{1-|z|^{2 \text { Rea }}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{1-|z|^{2 \operatorname{Re}} \alpha}{|\alpha| \operatorname{Re} \alpha}\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}\right| \cdot\left|\frac{g(z)}{z}\right|+1\right) \tag{29}
\end{equation*}
$$

for all $z \in U$.
By the Schwarz-Lemma also $|g(z)| \leq M|z|, \quad z \in U$ and using (29) we obtain

$$
\begin{equation*}
\frac{1-|z|^{2 \text { Re } \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{1-|z|^{2 \text { Re } \alpha}}{|\alpha| \operatorname{Re} \alpha}\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}-1\right|+1\right) M+1 \tag{30}
\end{equation*}
$$

for all $z \in U$.
From (30) and since g satisfies the condition (4) we get

$$
\begin{equation*}
\frac{1-|z|^{2 \text { Re }}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{1-|z|^{2 \text { Re } \alpha}}{\operatorname{Re} \alpha} \frac{2 M+1}{|\alpha|} \leq \frac{2 M+1}{|\alpha| \operatorname{Re} \alpha} \tag{31}
\end{equation*}
$$

for all $z \in U$.
From (25) we have $\frac{2 M+1}{|\alpha| \text { Rea }} \leq 1-|c|$ and using (31) we obtain

$$
\begin{equation*}
\frac{1-|z|^{2 R e \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-|c| . \tag{32}
\end{equation*}
$$

From (27) we obtain $f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{\frac{1}{\alpha}}$ and using (32) by Theorem D we conclude that the function H_{β} is in the class S.

References

[1] L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Proc. 1973, Conf. Univ. of Maryland, Ann. of Math. Studies 79 [1973], 23-29.
[2] J. Becker, Lownersche Differential gleichung und Schlichteits-Kriterion, Math. Ann. 202, 4(1973), 321-335.
[3] O. Mayer, The functions theory of one variable complex, Bucureşti, 1981.
[4] Z. Nehari, Conformal mapping, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975)
[5] S. Ozaki, M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2), 1972, 392-394.
[6] V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (Second Series) 19 (1996), 53-54.
[7] V. Pescar, New univalence criteria, "Transilvania" University of Braşov, Braşov, 2002.
[8] V. Pescar, Univalence criteria of certain integral operators,Acta Ciencia Indica, Vol. XXIXM, No.1, 135(2003), 135-138.
[9] C. Pommerenke, Univalent functions, Gottingen, 1975.
"Transilvania" University of Braşov
Faculty of Mathematics and Computer Science
Department of Mathematics
Str. Iuliu Maniu Nr. 50, Braşov - 500091, ROMANIA
E-mail address: virgilpescar@unitbv.ro

[^0]: ${ }^{1}$ Received May 10, 2006
 Accepted for publication (in revised form) June 12, 2006

