Two diophantine equations ¹

Dumitru Acu

Dedicated to Associated Professor Silviu Crăciunaș on his 60^{th} birthday.

Abstract

In this paper we study the diophantine equations (1) and (2).

2000 Mathematical Subject Classification: 11D61

The diophantine equation play an ever increasing rolled in mathematics and in modern applications(see [6]).

In this paper we study in positive integer numbers the following the diophantine equations

(1)
$$3 + \frac{(x-1)x}{2} = 3^y$$

and

(2)
$$3^{x-1}(3 + \frac{(x-1)x}{2}) = y^2.$$

¹Received 15 January, 2006

Accepted for publication (in revised form) 1 July, 2006

1 The diophantine equation (1)

The equation (1) is equivalent with

$$x^2 - x + 6 - 2 \cdot 3^y = 0$$

where we obtain

$$x = \frac{1 + \sqrt{\Delta}}{2}$$

with

$$\Delta = 8 \cdot 3^y - 23 = z^2,$$

z odd number.

If $y = 1$, then we have $\Delta = 1$ and $x = 1$.
If $y = 2$, then we obtain $\Delta = 7^2$ and $x = 4$.
If $y = 3$, then we find $\Delta = 193 \neq z^2, z \in \mathbb{N}$.
If $y = 4$, then we have $\Delta = 25^2$ and $x = 13$.

Now we consider $y \ge 5$. We write the equation (3) under the form

(4)
$$z^2 + 23 = 8 \cdot 3^y$$
.

We consider that $8 \cdot 3^y \equiv 0 \pmod{243}$. As we know $x = 81k + r, k \in \mathbb{N}$ and $r \in \{0, \pm 1, \pm 2, \dots, \pm 40\}$, where we find $x^2 \equiv r^2 \pmod{81}$, with $r^2 \in \{0, 1, 4, 7, 8, 9, 10, 13, 16, 19, 22, 25, 28, 31, 33, 36, 37, 40, 46, 49, 52, 55, 58, 61, 63, 64, 67, 70, 76\}.$

From here, it results $x^2 + 23 \equiv 0 \pmod{81}$ only if $x = 81k + 25, k \in \mathbb{N}$. From x is odd number, we deduce that $k = 2p, p \in \mathbb{N}$. Thus we have $x = 162p + 25, p \in \mathbb{N}$. We now have

 $x^{2} + 23 = 162^{2} \cdot p^{2} + 50 \cdot 162p + 625 = 243t + 81p + 139.$

The equations (4) has the solutions only if $81p + 139 = 243 \cdot u, u \in \mathbb{N}$. From here we obtain 139 = 81(3u - p), which it is not possible. It results that the equation (4) has not the solutions if $y \ge 5$.

Thus we have proved.

Theorem 1.1. The diophantine equation (1) has in positive integer numbers only the solutions: $(x, y) \in \{(1, 1), (4, 2), (13, 4)\}.$

2 The diophantine equation (2).

If x = 1, then from (2) we obtain $y^2 = 3$, which it is not possible in natural numbers. Let $x \ge 2$ be natural number. We consider two cases.

The cases 2.1. x odd number. Let x be odd number x = 2t + 1, $t \in \mathbb{N}^*$, $\mathbb{N}^* = \mathbb{N} - \{0\}$. Then the diophantine equation (2) takes the form

(5)
$$(3^t)^2(3+2t^2+t) = y^2,$$

which it is possible only if $2t^2 + t + 3 = u^2, u \in \mathbb{N}^*$.

From here it results $t = \frac{-1+\sqrt{\Delta}}{4}$ with $\Delta = 8u^2 - 23 = v^2, v \in \mathbb{N}^*$.

Therefore, we obtained that the v and u are the solutions of the diophantine equation:

(6)
$$v^2 - 8u^2 = -23.$$

Thus we consider the diophantine equation of Pell:

(7)
$$v^2 - 8u^2 = 1$$

which it has the least solution $(v_0, u_0) = (3, 1)$. Now we find the solutions of the equation (6) $v + u\sqrt{8}$ for which we have $|v| \le 1$ and $|u| \le 4$. Thus we find for the equation (6) the solutions (v, u) = (3, 2) and (v, u) = (7, 3). Starting with (v, u) = (3, 2) we find the solutions for (1) from the identities

$$v_k + u_k \sqrt{8} = (3 + \sqrt{8})^k (3 + 2\sqrt{8})$$
 or
 $v_k + u_k \sqrt{8} = (3 + \sqrt{8})^k (3 - 2\sqrt{8}), k \in \mathbb{N}^*.$

From here we obtain for the equation (6) the solutions

(8)
$$v_k = 3A_k + 16B_k, \ u_k = 2A_k + 3B_k$$

or

(9)
$$v_k = -3A_k + 16B_k , \ u_k = 2A_k - 3B_k$$

where

(10)
$$A_k = 3^k + \binom{k}{2} 3^{k-2} 8 + \binom{k}{4} 3^{k-4} 8^2 + \cdots$$

and

(11)
$$B_k = \binom{k}{1} 3^{k-1} + \binom{k}{3} 3^{k-3} 8 + \binom{k}{5} 3^{k-5} 8^2 + \cdots, k \in \mathbb{N}^*.$$

For the solutions (8) we have

$$t_k = \frac{-1 + v_k}{4} = 4B_k + \frac{3A_k - 1}{4}$$

which is number natural only if $4 | 3A_k - 1$, that is $4 | 3^{k+1} - 1$, whence it results that k is odd number. Thus, if k is odd number, we have for the equation (2) the following solutions

(12)
$$x_k = \frac{1+v_k}{2}, \ y_k = 3^{\frac{-1+v_k}{4}} \cdot u_k,$$

where u_k and v_k are given by (8).

Example 1. For k = 1 we have $A_1 = 3, B_1 = 1, v_1 = 3A_1 + 16B_1 = 25, u_1 = 2A_1 + 3B_1 = 9, x_1 = 13, y_1 = 3^8$, that is the equation (2) has the solution $(x_1, y_1) = (13, 3^8)$. Similarly starting from the solutions(9) we obtain for the equation (2) the solutions:

(13)
$$x_k = \frac{1+v_k}{2} , \ y_k = 3^{\frac{-1+v_k}{4}} \cdot u_k,$$

k even number.

Example 2. For k = 2, we obtain $A_2 = 17, B_2 = 16, v_2 = -3A_2 + 16B_2 = 45, u_2 = 2A_12 - 3B_2 = 16$, $x_2 = 23, y_2 = 3^{11} \cdot 16$, that is the diophantine equation (2) has the solution $(x_2, y_2) = (23, 3^{11} \cdot 16)$.

Now , we start with the solutions (u, v) = (7, 3) for the equation (6). We find for this equation the following solutions:

(14)
$$v_k = 7A_k + 24B_k , \ u_k = 3A_k + 7B_k$$

or

(15)
$$v_k = -7A_k + 24B_k , \ u_k = 3A_k - 7B_k$$

where A_k, B_k are given by (10) and (11), $k \in \mathbb{N}^*$.

From these we obtain the solutions

(16)
$$x_k = \frac{1+v_k}{2}, \ y_k = 3^{\frac{-1+v_k}{4}} \cdot u_k$$

where u_k and v_k are given by (14) for k odd number and (15) for k even number.

The cases 2.2. x even number.

Let x be even number x = 2t, $t \in \mathbb{N}^*$. Then the diophantine equation (2) can be written in the form

(17)
$$(3^{t-1})^2(6t^2 - 3t + 9) = y^2.$$

This last diophantine equation is possible only if $6t^2 - 3t + 9 = u^2, u \in \mathbb{N}^*$. From here it results $t = \frac{3+\sqrt{\Delta}}{12}$, with $\Delta = 24u^2 - 2007 = v^2, v \in \mathbb{N}^*$.

Hence, we obtained that the (v, u) are the solutions of the diophantine equation:

(18)
$$v^2 - 24u^2 = -207.$$

Using the same method that to the case 2.1, we obtain that all the solutions of the equation (18) are

(19)
$$v_k = 3(C_k + 24D_k), \ u_k = 3(C_k + D_k)$$

or

(20)
$$v_k = 3(-C_k + 24D_k), \ u_k = 3(C_k - D_k)$$

with

$$C_{k} = 5^{k} + {\binom{k}{2}} 5^{k-2} 24 + {\binom{k}{4}} 5^{k-4} 24^{2} + \cdots$$

and
$$D_{k} = {\binom{k}{1}} 5^{k-1} + {\binom{k}{3}} 5^{k-3} 24 + {\binom{k}{5}} 5^{k-5} 24^{2} + \cdots, \ k \in \mathbb{N}^{*}.$$

For the solutions (19) we have

 $t_k = \frac{3+3(C_k+24D_k)}{12} = 6D_k + \frac{1+C_k}{4}, k \in \mathbb{N}^*.$

The numbers $t_k \in \mathbb{N}^*$ only if $4 \mid 5^k + 1$ which is impossible since $1 + 5^k = 1 + (4+1)^k \equiv 2 \pmod{4}$. For the solutions (20) we have $t_k \in \mathbb{N}^*, k \in \mathbb{N}^*$, and we find for the equation (2) the following solutions

(21)
$$x_k = \frac{3+v_k}{6} , \ y_k = 3^{\frac{v_k-9}{12}} \cdot u_k,$$

where v_k and u_k are given by (20) $k \in \mathbb{N}^*$.

Example 3. For k = 1 we find $C_1 = 5, D_1 = 1, u_1 = 3(C_1 - D_1) = 12$, $v_1 = 3(-C_1 + 24D_1) = 57, x_1 = 10, y_1 = 4 \cdot 3^5$, that is the diophantine equation (2) has the solution $(x_1, y_1) = (10, 4 \cdot 3^5)$.

Finally, we obtain:

Theorem 2.1. All the solutions of the diophantine equation (2) are given of (12), (13), (16) and (21).

References

- Andreescu, T., Cercetări de analiză diofantică şi aplicaţii, Teza de doctorat, 2003, Timişoara (in Romanian).
- [2] Andreescu T., Andrica D , O introducere in studiul ecuaţiilor diofantiene,Ed. Gil (Zalău), 2002 (in Romanian).
- [3] Cucurezeanu, I. Ecuații in numere întregi, Ed.Aramis (Bucureşti), 2006 (in Romanian).
- [4] Gica, Al., Algoritms for the equation $x^2 dy^2 = k$ Bull. Math. Soc. Sci. Math.Roum., Nouv. Sér. 38 (1995), No.3-4,153-156.

- [5] Panaitopol,L.,Gica,Al., O introducere in aritmetică şi teoria numerelor, Ed.Universității din Bucureşti, 2001 (in Romanian).
- [6] Schroeder, M.R., Number Theory in Science and Communication, Springer-Verlay, 1986.
- [7] Sierpinski, W., Elementary theory of numbers, Warszawa, 1964.

"Lucian Blaga" University of Sibiu Faculty of Sciences Department of Mathematics Str. dr. Ion Raţiu, nr. 5-7, 550012 - Sibiu, Romania E-mail address: *acu_dumitru@yahoo.com*