Two diophantine equations ${ }^{1}$

Dumitru Acu

Dedicated to Associated Professor Silviu Crăciunaş on his $60^{\text {th }}$ birthday.

Abstract

In this paper we study the diophantine equations (1) and (2). 2000 Mathematical Subject Classification: 11D61

The diophantine equation play an ever increasing rolled in mathematics and in modern applications(see [6]).

In this paper we study in positive integer numbers the following tho diophantine equations

$$
\begin{equation*}
3+\frac{(x-1) x}{2}=3^{y} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
3^{x-1}\left(3+\frac{(x-1) x}{2}\right)=y^{2} . \tag{2}
\end{equation*}
$$

[^0]
1 The diophantine equation (1)

The equation (1) is equivalent with

$$
x^{2}-x+6-2 \cdot 3^{y}=0
$$

where we obtain

$$
x=\frac{1+\sqrt{\Delta}}{2}
$$

with

$$
\begin{equation*}
\Delta=8 \cdot 3^{y}-23=z^{2} \tag{3}
\end{equation*}
$$

z odd number.

If $y=1$, then we have $\Delta=1$ and $x=1$.

If $y=2$, then we obtain $\Delta=7^{2}$ and $x=4$.

If $y=3$, then we find $\Delta=193 \neq z^{2}, z \in \mathbb{N}$.

If $y=4$, then we have $\Delta=25^{2}$ and $x=13$.

Now we consider $y \geq 5$. We write the equation (3) under the form

$$
\begin{equation*}
z^{2}+23=8 \cdot 3^{y} \tag{4}
\end{equation*}
$$

We consider that $8 \cdot 3^{y} \equiv 0(\bmod 243)$. As we know $x=81 k+r, k \in \mathbb{N}$ and $r \in\{0, \pm 1, \pm 2, \ldots, \pm 40\}$, where we find $x^{2} \equiv r^{2}$ (mod81), with $r^{2} \in\{0,1,4,7,8,9,10,13,16,19,22,25,28,31,33,36,37,40,46,49,52,55$, $58,61,63,64,67,70,76\}$.

From here, it results $x^{2}+23 \equiv 0(\bmod 81)$ only if $x=81 k+25, k \in \mathbb{N}$. From x is odd number, we deduce that $k=2 p, p \in \mathbb{N}$.Thus we have $x=$ $162 p+25, p \in \mathbb{N}$. We now have

$$
x^{2}+23=162^{2} \cdot p^{2}+50 \cdot 162 p+625=243 t+81 p+139 .
$$

The equations (4)has the solutions only if $81 p+139=243 \cdot u, u \in \mathbb{N}$. From here we obtain $139=81(3 u-p)$, which it is not possible.It results that the equation (4) has not the solutions if $y \geq 5$.

Thus we have proved.

Theorem 1.1. The diophantine equation (1) has in positive integer numbers only the solutions: $(x, y) \in\{(1,1),(4,2),(13,4)\}$.

2 The diophantine equation (2).

If $x=1$, then from (2) we obtain $y^{2}=3$, which it is not possible in natural numbers. Let $x \geq 2$ be natural number. We consider two cases.

The cases 2.1. x odd number. Let x be odd number $x=2 t+1$, $t \in \mathbb{N}^{*}, \mathbb{N}^{*}=\mathbb{N}-\{0\}$. Then the diophantine equation (2) takes the form

$$
\begin{equation*}
\left(3^{t}\right)^{2}\left(3+2 t^{2}+t\right)=y^{2} \tag{5}
\end{equation*}
$$

which it is possible only if $2 t^{2}+t+3=u^{2}, u \in \mathbb{N}^{*}$.
From here it results $t=\frac{-1+\sqrt{\Delta}}{4}$ with $\Delta=8 u^{2}-23=v^{2}, v \in \mathbb{N}^{*}$.
Therefore, we obtained that the v and u are the solutions of the diophantine equation:

$$
\begin{equation*}
v^{2}-8 u^{2}=-23 \tag{6}
\end{equation*}
$$

But, as we know, this equation can be reduced to the equation of $\operatorname{Pell}([1],[3],[4],[5])$.

Thus we consider the diophantine equation of Pell:

$$
\begin{equation*}
v^{2}-8 u^{2}=1 \tag{7}
\end{equation*}
$$

which it has the least solution $\left(v_{0}, u_{0}\right)=(3,1)$. Now we find the solutions of the equation (6) $v+u \sqrt{8}$ for which we have $|v| \leq 1$ and $|u| \leq 4$. Thus we find for the equation (6) the solutions $(v, u)=(3,2)$ and $(v, u)=(7,3)$. Starting with $(v, u)=(3,2)$ we find the solutions for (1) from the identities

$$
\begin{aligned}
& v_{k}+u_{k} \sqrt{8}=(3+\sqrt{8})^{k}(3+2 \sqrt{8}) \text { or } \\
& v_{k}+u_{k} \sqrt{8}=(3+\sqrt{8})^{k}(3-2 \sqrt{8}), k \in \mathbb{N}^{*}
\end{aligned}
$$

From here we obtain for the equation (6) the solutions

$$
\begin{equation*}
v_{k}=3 A_{k}+16 B_{k}, u_{k}=2 A_{k}+3 B_{k} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{k}=-3 A_{k}+16 B_{k}, u_{k}=2 A_{k}-3 B_{k} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}=3^{k}+\binom{k}{2} 3^{k-2} 8+\binom{k}{4} 3^{k-4} 8^{2}+\cdots \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k}=\binom{k}{1} 3^{k-1}+\binom{k}{3} 3^{k-3} 8+\binom{k}{5} 3^{k-5} 8^{2}+\cdots, k \in \mathbb{N}^{*} \tag{11}
\end{equation*}
$$

For the solutions (8) we have

$$
t_{k}=\frac{-1+v_{k}}{4}=4 B_{k}+\frac{3 A_{k}-1}{4}
$$

which is number natural only if $4 \mid 3 A_{k}-1$, that is $4 \mid 3^{k+1}-1$, whence it results that k is odd number. Thus, if k is odd number, we have for the equation (2) the following solutions

$$
\begin{equation*}
x_{k}=\frac{1+v_{k}}{2}, y_{k}=3^{\frac{-1+v_{k}}{4}} \cdot u_{k} \tag{12}
\end{equation*}
$$

where u_{k} and v_{k} are given by (8).
Example 1. For $k=1$ we have $A_{1}=3, B_{1}=1, v_{1}=3 A_{1}+16 B_{1}=25, u_{1}=$ $2 A_{1}+3 B_{1}=9, x_{1}=13, y_{1}=3^{8}$, that is the equation (2) has the solution $\left(x_{1}, y_{1}\right)=\left(13,3^{8}\right)$. Similarly starting from the solutions (9) we obtain for the equation (2) the solutions:

$$
\begin{equation*}
x_{k}=\frac{1+v_{k}}{2}, y_{k}=3^{\frac{-1+v_{k}}{4}} \cdot u_{k} \tag{13}
\end{equation*}
$$

k even number.
Example 2. For $k=2$, we obtain $A_{2}=17, B_{2}=16, v_{2}=-3 A_{2}+16 B_{2}=$ 45, $u_{2}=2 A_{1} 2-3 B_{2}=16, x_{2}=23, y_{2}=3^{11} \cdot 16$, that is the diophantine equation (2) has the solution $\left(x_{2}, y_{2}\right)=\left(23,3^{11} \cdot 16\right)$.

Now, we start with the solutions $(u, v)=(7,3)$ for the equation (6). We find for this equation the following solutions:

$$
\begin{equation*}
v_{k}=7 A_{k}+24 B_{k}, u_{k}=3 A_{k}+7 B_{k} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{k}=-7 A_{k}+24 B_{k}, u_{k}=3 A_{k}-7 B_{k} \tag{15}
\end{equation*}
$$

where A_{k}, B_{k} are given by (10) and (11), $k \in \mathbb{N}^{*}$.
From these we obtain the solutions

$$
\begin{equation*}
x_{k}=\frac{1+v_{k}}{2}, y_{k}=3^{\frac{-1+v_{k}}{4}} \cdot u_{k} \tag{16}
\end{equation*}
$$

where u_{k} and v_{k} are given by (14) for k odd number and (15) for k even number.

The cases 2.2. x even number.
Let x be even number $x=2 t, t \in \mathbb{N}^{*}$. Then the diophantine equation (2) can be written in the form

$$
\begin{equation*}
\left(3^{t-1}\right)^{2}\left(6 t^{2}-3 t+9\right)=y^{2} \tag{17}
\end{equation*}
$$

This last diophantine equation is possible only if $6 t^{2}-3 t+9=u^{2}, u \in \mathbb{N}^{*}$.
From here it results $t=\frac{3+\sqrt{\Delta}}{12}$, with $\Delta=24 u^{2}-2007=v^{2}, v \in \mathbb{N}^{*}$.
Hence, we obtained that the (v, u) are the solutions of the diophantine equation:

$$
\begin{equation*}
v^{2}-24 u^{2}=-207 \tag{18}
\end{equation*}
$$

Using the same method that to the case 2.1, we obtain that all the solutions of the equation (18) are

$$
\begin{equation*}
v_{k}=3\left(C_{k}+24 D_{k}\right), u_{k}=3\left(C_{k}+D_{k}\right) \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{k}=3\left(-C_{k}+24 D_{k}\right), u_{k}=3\left(C_{k}-D_{k}\right) \tag{20}
\end{equation*}
$$

with
$C_{k}=5^{k}+\binom{k}{2} 5^{k-2} 24+\binom{k}{4} 5^{k-4} 24^{2}+\cdots$
and
$D_{k}=\binom{k}{1} 5^{k-1}+\binom{k}{3} 5^{k-3} 24+\binom{k}{5} 5^{k-5} 24^{2}+\cdots, k \in \mathbb{N}^{*}$.
For the solutions (19) we have

$$
t_{k}=\frac{3+3\left(C_{k}+24 D_{k}\right)}{12}=6 D_{k}+\frac{1+C_{k}}{4}, k \in \mathbb{N}^{*} .
$$

The numbers $t_{k} \in \mathbb{N}^{*}$ only if $4 \mid 5^{k}+1$ which is impossible since $1+5^{k}=$ $1+(4+1)^{k} \equiv 2(\bmod 4)$. For the solutions (20) we have $t_{k} \in \mathbb{N}^{*}, k \in \mathbb{N}^{*}$, and we find for the equation (2) the following solutions

$$
\begin{equation*}
x_{k}=\frac{3+v_{k}}{6}, y_{k}=3^{\frac{v_{k}-9}{12}} \cdot u_{k}, \tag{21}
\end{equation*}
$$

where v_{k} and u_{k} are given by (20) $k \in \mathbb{N}^{*}$.
Example 3. For $k=1$ we find $C_{1}=5, D_{1}=1, u_{1}=3\left(C_{1}-D_{1}\right)=12$, $v_{1}=3\left(-C_{1}+24 D_{1}\right)=57, x_{1}=10, y_{1}=4 \cdot 3^{5}$, that is the diophantine equation (2) has the solution $\left(x_{1}, y_{1}\right)=\left(10,4 \cdot 3^{5}\right)$.

Finally, we obtain:

Theorem 2.1. All the solutions of the diophantine equation (2) are given of (12), (13), (16) and (21).

References

[1] Andreescu,T.,Cercetări de analiză diofantică şi aplicatiii, Teza de doctorat,2003, Timişoara (in Romanian).
[2] Andreescu T., Andrica D , O introducere in studiul ecuaţiilor diofantiene,Ed. Gil (Zalău), 2002 (in Romanian).
[3] Cucurezeanu,I. Ecuaţii in numere întregi, Ed.Aramis (Bucureşti), 2006 (in Romanian).
[4] Gica,Al., Algoritms for the equation $x^{2}-d y^{2}=k$ Bull. Math. Soc. Sci.
Math.Roum., Nouv. Sér. 38 (1995), No.3-4,153-156.
[5] Panaitopol,L.,Gica,Al., O introducere in aritmetică şi teoria numerelor, Ed.Universităţii din Bucureşti, 2001 (in Romanian).
[6] Schroeder,M.R., Number Theory in Science and Communication, Springer-Verlay, 1986.
[7] Sierpinski,W., Elementary theory of numbers, Warszawa, 1964.
"Lucian Blaga" University of Sibiu
Faculty of Sciences
Department of Mathematics
Str. dr. Ion Raţiu, nr. 5-7, 550012 - Sibiu, Romania

E-mail address: acu_dumitru@yahoo.com

[^0]: ${ }^{1}$ Received 15 January, 2006
 Accepted for publication (in revised form) 1 July, 2006

