Farthest Points in Normed Linear Spaces ${ }^{1}$

S. Elumalai and R. Vijayaragavan

Abstract

In this paper we established a characterization of farthest points in a normed linear spaces. We also provide some application of farthest points in the space $C(Q)$ and $C_{R}(Q)$.

2000 Mathematics Subject Classification: 41A50, 41A52, 41A65.
Keywords: Farthest Point, Extremal Point, Radon measure.

1 Introduction

The concept of farthest points in normed linear spaces has been investigated by Franchetti and Singer [4]. They obtained some results on characterization and existence of farthest points in normed linear spaces in terms of bounded linear functionals. Section 2 gives some fundamental concepts of farthest points. A characterization of farthest points in normed linear spaces are provided in Section 3. Section 4 delineates some applications of farthest points. Some basic properties of farthest point operator are established in Section 5.

[^0]
2 Preliminaries

Definition 2.1 [4]. Let G be a bounded non-empty subset of a real normed linear space E and $x \in E$. An element $g_{0} \in G$ is called a farthest point to x in G if

$$
\left\|g_{0}-x\right\|=\sup _{g \in G}\|g-x\|, \text { for all } g \in G
$$

The set of all farthest points to x from G is denoted by $F_{G}(x)$, for all $g \in G$.
Example 2.2. Let $E=R^{2}$, the set $G=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1} \leq 2,-1 \leq x_{2} \leq\right.$ $1\}$ and $x=(2,2)$. Then $(0,-1) \in F_{G}(x)$. If $x=(1,2)$, then $(0,-1)$ and $(2,-1)$ belong to $F_{G}(x)$.
Definition 2.3. Let A be a closed convex set of a topological linear space L. A non-empty subset $M \subseteq A$ is said to be an extremal subset of A, if a proper convex combination $\lambda x+(1-\lambda) y, 0<\lambda<1$, of two points x and y of A lies in M only if both x and y are in M.

An extremal subset of A consisting of just one point is called an extremal point of A. The set of all extremal points of A is denoted by $\sigma(A)$.
Definition 2.4. Let E^{*} denote the conjugate space of E, that is, the space of all continuous linear functionals on E, endowed with the usual vector operations and with the norm

$$
\|f\|=\sup _{\substack{x \in E \\\|x\| \leq 1}}|f(x)|
$$

Let $S_{E^{*}}$ represent an unit cell defined by

$$
S_{E^{*}}=\left\{f \in E^{*}:\|f\| \leq 1\right\} .
$$

Definition 2.5. Let Q be a compact space and $C(Q)$ be the space of all numerical continuous functions on Q, endowed with the usual vector operations and with the norm

$$
\|x\|=\max _{q \in Q}|x(q)| .
$$

We shall denote by $C_{R}(Q)$ the space of all continuous real-valued functions on Q, endowed with the usual vector operations and with the norm

$$
\|x\|=\max _{q \in Q}|x(q)| .
$$

The following results are required to prove the main result of this paper.
Lemma 2.6 [7]. Let M be an extremal subset of a closed convex set A in a topological linear space L. Then

$$
\sigma(M)=\sigma(A) \cap M
$$

Lemma 2.7 [7]. Let E be a normed linear space and let F be a non-empty convex subset of the set $\{x \in E:\|x\|=1\}$. Then the set

$$
M_{F}=\bigcap_{x \in F}\left\{f \in E^{*}:\|f\|=1, f(x)=1\right\}
$$

is a non-empty extremal subset of the cell $S_{E^{*}}$ endowed with weak topology $\sigma\left(E^{*}, E\right)$.
Corollary 2.8 [7]. Let E be a normed linear space and $x \in E, x \neq 0$. Then the set

$$
M_{x}=\left\{f \in E^{*}:\|f\|=1, f(x)=\|x\|\right\}
$$

is a non-empty extremal subset of the cell $S_{E^{*}}$ endowed with $\sigma\left(E^{*}, E\right)$.
A characterization of farthest points is presented in the next section.

3 Characterizations of Farthest Points

Theorem 3.1. Let G be a bounded subset of a normed linear space $E, x \in E$ and $g_{0} \in G$. Then $g_{0} \in F_{G}(x)$ if and only if there exists an $f_{0} \in E^{*}$ such that

$$
\begin{align*}
& f_{0} \in \sigma\left(S_{E^{*}}\right) \tag{3.1}\\
& f_{0}\left(g_{0}-x\right)=\sup _{g \in G}\|g-x\| \tag{3.2}
\end{align*}
$$

Proof. Let $g_{0} \in F_{G}(x)$. Then by the theorem 3.1[4], there exists $f \in E^{*}$ such that $\|f\|=1$,

$$
\begin{aligned}
& f\left(g_{0}-x\right)=\sup _{g \in G}\|g-x\| . \text { By Corollary 2.8, the set } \\
& \qquad M=\left\{f \in E^{*}:\|f\|=1, f\left(g_{0}-x\right)=\sup _{g \in G}\|g-x\|\right\}
\end{aligned}
$$

is a non-empty extremal subset of the cell $S_{E^{*}}$ endowed with $\sigma\left(E^{*}, E\right)$. So, by the Krein - Milman theorem, the set $\sigma(M)$ is non-empty and hence, by Lemma 2.6, there exists an $f_{0} \in E^{*}$ such that (3.1) and (3.2) hold.
Conversely, assume that (3.1) and (3.2) hold. Then, by (3.1) and (3.2)

$$
\left\|g_{0}-x\right\| \geq\|g-x\|, \text { for all } g \in G
$$

Whence it follows that $g_{0} \in F_{G}(x)$.
Corollary 3.2. Let G be a bounded subset of a normed linear space E, $x \in E$ and $g_{0} \in G$. Then the following statements are equivalent:
(a) $g_{0} \in F_{G}(x)$.
(b) There exists an $f \in E^{*}$ such that f satisfies

$$
\begin{align*}
\left|f\left(g_{0}-x\right)\right| & =\sup _{g \in G}| | g-x| | \tag{3.3}\\
\left|f\left(g_{0}-x\right)\right| & \geq|f(g-x)|, \text { for all } g \in G . \tag{3.4}
\end{align*}
$$

(c) There exists an $f \in E^{*}$ such that f satisfies (3.3) and

$$
\begin{equation*}
\operatorname{Re}\left[f\left(g_{0}-g\right) \overline{f\left(g_{0}-x\right)}\right] \geq 0 \tag{3.5}
\end{equation*}
$$

Proof. Let $g_{0} \in F_{G}(x)$. Then by Theorem 3.1, we have (3.3) and

$$
\left|f\left(g_{0}-x\right)\right| \geq||g-x \| \geq|f(g-x)|, \text { for all } g \in G
$$

Which proves (3.4). Thus, (a) \Rightarrow (b).

To prove (b) \Rightarrow (c) assume that (b) holds.
Then, by (3.4),

$$
\begin{gathered}
\left|f\left(g_{0}-x\right)\right|^{2} \geq|f(g-x)|^{2}=\left|f\left(g-g_{0}\right)\right|^{2}+\left|f\left(g_{0}-x\right)\right|^{2}+ \\
\quad+2 \operatorname{Re} f\left(g-g_{0}\right) \overline{f\left(g_{0}-x\right)} \geq \\
\geq\left|f\left(g_{0}-x\right)\right|^{2}+2 \operatorname{Re} f\left(g-g_{0}\right) \overline{f\left(g_{0}-x\right)}
\end{gathered}
$$

whence it follows that $\operatorname{Re}\left[f\left(g_{0}-g\right) \overline{f\left(g_{0}-x\right)}\right] \geq 0$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$ is trivial.
Let G be a non-empty bounded subset of a normed linear space E and for each $b>0$, the b extension of G denoted by G_{b} and defined by

$$
G_{b}=\{x \in E: d(x, G)=\sup \|x-g\| \leq b\}, b \neq 0
$$

Proposition 3.3. Let $G \subset E, x_{0} \in E$ and $b \leq \sup _{g \in G}\left\|x_{0}-g\right\|$. Then $\mathcal{F}\left(x_{0}, G\right)=\mathcal{F}\left(x_{0}, G_{b}\right)$.
Proof. For each $z \in E$ such that $\sup _{g \in G}\|z-g\| \geq b$,

$$
\begin{equation*}
\sup _{g \in G_{b}}\|z-g\|=\sup _{g \in G}\|z-g\|+b . \tag{3.6}
\end{equation*}
$$

Let $z \in \mathcal{F}\left(G, x_{0}\right)$. Then

$$
\sup _{g \in G}\|z-g\|=\sup _{g \in G}\left\|x_{0}-g\right\|+\left\|z-x_{0}\right\| \geq b
$$

By (3.6),

$$
\sup _{g \in G_{b}}\|z-g\|=\sup _{g \in G}\|z-g\|+b
$$

and

$$
\sup _{g \in G_{b}}\left\|x_{0}-g\right\|=\sup _{g \in G}\left\|x_{0}-g\right\|+b
$$

Hence

$$
\begin{aligned}
\sup _{g \in G_{b}}\|z-g\| & =\sup _{g \in G}\|z-g\|+b \\
& =\left\|z-x_{0}\right\|+\sup _{g \in G}\left\|x_{0}-g\right\|+b \\
& =\left\|z-x_{0}\right\|+\sup _{g \in G_{b}}\left\|x_{0}-g\right\|
\end{aligned}
$$

$$
\text { which implies } \mathcal{F}\left(G, x_{0}\right) \subseteq \mathcal{F}\left(G_{b}, x_{0}\right)
$$

Let $z \in \mathcal{F}\left(G_{b}, x_{0}\right), z \neq x_{0}$. Then

$$
\sup _{g \in G_{b}}\|z-g\|=\left\|z-x_{0}\right\|+\sup _{g \in G_{b}}\left\|x_{0}-g\right\| \geq b
$$

Therefore,

$$
\begin{aligned}
\sup _{g \in G}\|z-g\| & =\sup _{g \in G_{b}}\|z-g\|-b \\
& =\sup _{g \in G_{b}}\left\|x_{0}-g\right\|+\left\|z-x_{0}\right\|-b \\
& =\left\|z-x_{0}\right\|+\sup _{g \in G}\left\|x_{0}-g\right\|
\end{aligned}
$$

which implies $\mathcal{F}\left(G_{b}, x_{0}\right) \subseteq \mathcal{F}\left(G, x_{0}\right)$.
Hence the result follows.
Some applications of farthest points are explored in the next section.

4 Applications of Farthest Points in the Spaces $C(Q)$ and $C_{R}(Q)$.

Theorem 4.1. Let $E=C(Q)$ (Q compact), G be a bounded subset of $E, x \in E$ and $g_{0} \in G$. Then $g_{0} \in F_{G}(x)$ if and only if there exists a Radon measure μ (real or complex) on Q such that

$$
\begin{equation*}
|\mu|(Q)=1 \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
g_{0}(q)-x(q)=\left[\operatorname{sign} \frac{d \mu}{d|\mu|}(q)\right] \sup _{g \in G} \max _{q \in Q}|g(q)-x(q)| q \in S(\mu) \tag{4.3}
\end{equation*}
$$

where (4.2) is meant in the sense that $\frac{d \mu}{d|\mu|}$ can be made continuous on Q by changing its values on a set of $|\mu|$ - measure zero, in (4.3) is taken this continuous function $\frac{d \mu}{d|\mu|}$ and $S(\mu)$ is the carrier of the measure μ.
Proof. By theorem 3.1 [4], we have $g_{0} \in F_{G}(x)$ if and only if there exists a Radon measure μ on Q such that we have (4.1) and

$$
\begin{equation*}
\int_{Q}\left[g_{0}(q)-x(q)\right] d \mu(q)=\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)| \tag{4.4}
\end{equation*}
$$

We shall now show that these conditions are equivalent to (4.1)-(4.3). Assume first that we have (4.1) and (4.4). Then from (4.4), (4.1) and $x-g_{0} \neq 0$ it follows that

$$
\begin{equation*}
\frac{d \mu}{d|\mu|}(q)=\frac{\overline{g_{0}(q)-x(q)}}{\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)|} \quad|\mu|-\text { a.e. on } Q \tag{4.5}
\end{equation*}
$$

Indeed, assume the contrary, that is that there exists a set $A \subset Q$ with $|\mu|(A)>0$, such that

$$
\begin{equation*}
\frac{d \mu}{d|\mu|}(q) \neq \frac{\overline{g_{0}(q)-x(q)}}{\sup _{g \in G}\|g-x\|} \quad|\mu|-\text { a.e. on } A \tag{4.6}
\end{equation*}
$$

Then

$$
\operatorname{Re}\left(\frac{d \mu}{d|\mu|}(q)\left[g_{0}(q)-x(q)\right]\right)<\sup _{g \in G}\|g-x\| \quad|\mu|-\text { a.e. on } A
$$

since otherwise, by taking into account that we have

$$
\begin{equation*}
\left|\frac{d \mu}{d|\mu|}(q)\right|=1 \quad|\mu|-\text { a.e on } Q \tag{4.7}
\end{equation*}
$$

there would exist a set $A_{1} \subset A$ with $|\mu|\left(A_{1}\right)>0$ such that

$$
\begin{aligned}
\sup _{g \in G}\|g-x\| & \leq \operatorname{Re}\left(\frac{d \mu}{d|\mu|}(q)\left[g_{0}(q)-x(q)\right]\right) \\
& \leq\left|\frac{d \mu}{d|\mu|}(q)\left[g_{0}(q)-x(q)\right]\right| \\
& \leq\left\|g_{0}-x\right\| \\
& \leq \sup _{g \in G}\|g-x\| \quad|\mu|-\text { a.e on } A_{1},
\end{aligned}
$$

which implies that $\frac{d \mu}{d|\mu|}(q)\left[g_{0}(q)-x(q)\right]$ is real and positive $|\mu|-$ a.e on A_{1}, hence equal to $\left\|g_{0}-x\right\||\mu|$ a.e. on A_{1}, and thus

$$
\frac{d \mu}{d|\mu|}(q)\left[g_{0}(q)-x(q)\right]=\sup _{g \in G}\|g-x\| \quad \quad|\mu|-\text { a.e. on } A_{1}
$$

So

$$
\frac{d \mu}{d|\mu|}(q)=\frac{\sup _{g \in G}\|g-x\|}{g_{0}(q)-x(q)}=\frac{\overline{g_{0}(q)-x(q)}}{\sup _{g \in G}\|g-x\|} \quad|\mu|-\text { a.e on } A_{1}
$$

which contradicts the hypothesis. Consequently, we obtain

$$
\begin{aligned}
\operatorname{Re} \int_{Q}\left[g_{0}(q)-x(q)\right] d \mu(q) & =\operatorname{Re} \int_{Q}\left[g_{0}(q)-x(q)\right] \frac{d \mu}{d|\mu|}(q) d|\mu|(q) \\
& =\int_{Q} \operatorname{Re}\left(\left[g_{0}(q)-x(q)\right] \frac{d \mu}{d|\mu|}(q)\right) d|\mu|(q) \\
& <\int_{Q} \sup _{g \in G} \| g-x| | d|\mu|(q) \\
& =\sup _{g \in G} \| g-x| |
\end{aligned}
$$

which contradicts (4.4). Hence we obtain (4.5).
By changing the values of $\frac{d \mu}{d|\mu|}$ so as to have (4.5) every where on Q, we will have (4.2), whence, taking into account (4.7), there follow the relations

$$
\begin{equation*}
\left|\frac{d \mu}{d|\mu|}(q)\right|=1 \quad(q \in S(\mu)) \tag{4.8}
\end{equation*}
$$

and thus, by (4.5) (every where on Q), we obtain (4.3).
Conversely, assume that we have (4.1) - (4.3). Then by (4.3), (4.2), (4.7) and (4.1), it follows that

$$
\begin{aligned}
\int_{Q}\left[g_{0}(q)-x(q)\right] d \mu(q) & =\sup _{g \in G}\|g-x\| \int_{Q}\left[\operatorname{sign} \frac{d \mu}{d|\mu|}(q)\right] d \mu(q) \\
& =\sup _{g \in G}\|g-x\| \int_{Q}\left[\operatorname{sign} \frac{d \mu}{d|\mu|}(q)\right] \frac{d \mu}{d|\mu|}(q) d|\mu|(q) \\
& =\sup _{g \in G}| | g-x| | \int_{Q}\left|\frac{d \mu}{d|\mu|}(q)\right| d|\mu|(q) \\
& =\sup _{g \in G} \| g-x| | \mu \mid(Q) \\
& =\sup _{g \in G}\|g-x\|
\end{aligned}
$$

that is (4.4), which completes the proof.
Theorem 4.2. Let $E=C_{R}(Q)$ (Qcompact), G be a bounded subset of $E, x \in E$ and $g_{0} \in G$. Then $g_{0} \in F_{G}(x)$ if and only if there exist two disjoint sets $Y_{g_{0}}^{+}$and $Y_{g_{0}}^{-}$closed in Q, and a Radon measure μ on Q, with the following properties:

$$
\begin{equation*}
|\mu|(Q)=1 \tag{4.9}
\end{equation*}
$$

μ is non-decreasing on $Y_{g_{0}}^{+}$, non-increasing on $Y_{g_{0}}^{-}$and

$$
\begin{gather*}
S(\mu) \subset Y_{g_{0}}^{+} \cup Y_{g_{0}}^{-} \quad(S(\mu)-\text { the carrier of } \mu), \tag{4.10}\\
g_{0}(q)-x(q)=\left\{\begin{array}{l}
\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)| \text { for } q \in Y_{g_{0}}^{+} \\
-\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)| \text { for } q \in Y_{g_{0}}^{-} .
\end{array}\right. \tag{4.11}
\end{gather*}
$$

Proof. By Theorem 4.1, we have $g_{0} \in F_{G}(x)$ if and only if there exists a real Radon measure μ on Q such that we have (4.1) and (4.4). We shall show that these conditions are equivalent to (4.9) - (4.11).

Assume that we have (4.1) and (4.4). Now we define

$$
\begin{gather*}
Y_{g_{0}}^{+}=\left\{q \in Q: g_{0}(q)-x(q)=\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)|\right\}, \tag{4.12}\\
Y_{g_{0}}^{-}=\left\{q \in Q: g_{0}(q)-x(q)=-\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)|\right\} . \tag{4.13}
\end{gather*}
$$

Then, $Y_{g_{0}}^{+}$and $Y_{g_{0}}^{-}$are disjoint and closed in Q and we have (4.11).
To prove (4.10), let μ be decreasing on $Y_{g_{0}}^{+}$. Then there would exist a set $A \subset Y_{g_{0}}^{+}$with $|\mu|(A)>0$, such that $\mu(A)<|\mu|(A)$. So

$$
\begin{aligned}
\int_{A}\left[g_{0}(q)-x(q)\right] d \mu(q) & =\sup _{g \in G}\|g-x\| \mu(A) \\
& <|\mu|(A) \sup _{g \in G}\|g-x\| \\
& =\int_{A} \sup _{g \in G} \| g-x| | d|\mu|(q)
\end{aligned}
$$

Whence, taking into account (4.1),

$$
\int_{Q}\left[g_{0}(q)-x(q)\right] d \mu(q)<\int_{Q} \sup _{g \in G}\|g-x\| d|\mu|(q)=\sup _{g \in G}\|g-x\|,
$$

which contradicts (4.4). Hence μ is non-decreasing on $Y_{g_{0}}^{+}$.
Similarly it can be shown that μ is non-increasing on $Y_{g_{0}}^{-}$.
If there exists a $q_{0} \in S(\mu)$ such that $q_{0} \notin Y_{g_{0}}^{+} \cup Y_{g_{0}}^{-}$, then

$$
\left|g_{0}\left(q_{0}\right)-x\left(q_{0}\right)\right|<\sup _{g \in G}\|g-x\|,
$$

then, taking an open neighbourhood U of q_{0} such that

$$
\left|g_{0}\left(q_{0}\right)-x(q)\right|<\sup _{g \in G}\|g-x\| \quad(q \in U),
$$

We would have $|\mu|(U)>0$ (since $\left.q_{0} \in S(\mu)\right)$ and

$$
\begin{aligned}
\int_{U}\left[g_{0}(q)-x(q)\right] d \mu(q) & \leq \int_{U}\left|g_{0}(q)-x(q)\right| d|\mu|(q) \\
& <\int_{U} \sup _{g \in G}| | g-x| | d|\mu|(q)
\end{aligned}
$$

Whence, by (4.1),

$$
\begin{aligned}
\int_{Q}\left[g_{0}(q)-x(q)\right] d \mu(q) & <\int_{Q} \sup _{g \in G}\|g-x\| d|\mu|(q) \\
& =\sup _{g \in G}\|g-x\|
\end{aligned}
$$

which contradicts (4.4). Thus (4.1) and (4.4) imply (4.9) - (4.11).
Conversely, assume that there exist two disjoint closed sets $Y_{g_{0}}^{+}$and $Y_{g_{0}}^{-}$ in Q and a real Radon measure μ on Q such that we have (4.9) - (4.11). Then, by (4.10), (4.11) and (4.9), we have

$$
\begin{aligned}
\int_{Q}\left[g_{0}(q)-x(q)\right] d \mu(q)= & \int_{S(\mu) \cap Y_{g_{0}}^{+}} \sup _{g \in G} \max _{q \in Q}|g(q)-x(q)| d \mu(q) \\
& +\int_{S(\mu) \cap Y_{g_{0}}^{-}}\left(-\sup _{g \in G} \max _{q \in Q}|g(q)-x(q)|\right) d \mu(q) \\
= & \int_{Q} \sup _{g \in G} \max _{q \in Q}|g(q)-x(q)| d|\mu|(q) \\
= & \sup _{g \in G} \max _{q \in Q}|g(q)-x(q)|
\end{aligned}
$$

which gives (4.4). Thus (4.9)-(4.11) imply (4.1) and (4.4).

5 Operator F_{G} and Farthest Approximations

Let E be a normed linear space, G be a nonempty bounded subset of E and $D\left(F_{G}\right)$ denote domain of F_{G}. Then define a mapping $F_{G}: D\left(F_{G}\right) \rightarrow G$ by $F_{G}(x) \in \mathcal{F}_{G}(x)\left(x \in D\left(F_{G}\right)\right)$. In general $D\left(F_{G}\right) \neq E$.
Theorem 5.1. Let E be a normed linear space and G be a nonempty bounded subset of E. Then
(1) $\left|\left|\left|x-F_{G}(x)\|-\| y-F_{G}(y)\|\mid \leq\| x-y \|\right.\right.\right.$
(2) $\|x-y\| \leq\left\|x-F_{G}(x)\right\|+\left\|y-F_{G}(y)\right\|$
(3) $\left\|x-F_{G}(x)\right\| \geq\|x\|$
(4) If G_{1} is a nonempty subset of G, then $\left\|x-F_{G}(x)\right\| \geq\left\|x-F_{G_{1}}(x)\right\|$, for all $x \in\left(D\left(F_{G}\right) \cap D\left(F_{G_{1}}\right)\right)$

Proof. (1) By definition of farthest points, we have

$$
\begin{aligned}
&\left\|x-F_{G}(x)\right\| \geq\left\|x-F_{G}(y)\right\|=\left\|x-y+y-F_{G}(y)\right\| \\
& \geq\left\|y-F_{G}(y)\right\|-\|x-y\| \\
& \Rightarrow\|x-y\| \geq\left\|y-F_{G}(y)\right\|-\left\|x-F_{G}(x)\right\|
\end{aligned}
$$

interchanging x and y, we have

$$
\|x-y\| \geq\left\|x-F_{G}(x)\right\|-\left\|y-F_{G}(y)\right\|
$$

hence

$$
\left|\left\|x-F_{G}(x)\right\|-\left\|y-F_{G}(y)\right\|\right| \leq\|x-y\|
$$

also

$$
\begin{align*}
&\left\|x-F_{G}(x)\right\| \geq\left\|x-F_{G}(y)\right\|=\left\|x-y+y-F_{G}(y)\right\| \tag{2}\\
& \geq\|x-y\|-\left\|y-F_{G}(y)\right\| \\
& \Rightarrow\|x-y\| \leq\left\|x-F_{G}(x)\right\|+\left\|y-F_{G}(y)\right\|
\end{align*}
$$

(3) By definition of farthest points, we have

$$
\left\|x-F_{G}(x)\right\| \geq\|x-g\|, \text { for all } g \in G
$$

In particular

$$
\left\|x-F_{G}(x)\right\| \geq\|x\|, \quad \text { if } \quad 0 \in G
$$

(4) $\left\|x-F_{G}(x)\right\|=\sup _{g \in G}\|x-g\|$

$$
\geq \sup _{g \in G_{1}}\|x-g\|, \text { since } G_{1} \subset G
$$

$$
=\left\|x-F_{G_{1}}(x)\right\|, \text { for all } x \in\left(D\left(F_{G}\right) \cap D\left(F_{G_{1}}\right)\right)
$$

Theorem 5.2. Let E be a normed linear space, G be a nonempty bounded subset of E and $g_{0} \in G$. Then the set $F_{G}^{-1}\left(g_{0}\right)$ is closed and $x \in F_{G}^{-1}\left(g_{0}\right) \Rightarrow$ $\alpha x+(1-\alpha) g_{0} \in F_{G}^{-1}\left(g_{0}\right)(\alpha$-scalar $)$.
Proof. Let $x_{n} \in F_{G}^{-1}\left(g_{0}\right)$ and $x \in E$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

Then, since norm is a continuous function and $g_{0} \in F_{G}\left(x_{n}\right)$, we have

$$
\begin{array}{rlll}
& \lim _{n \rightarrow \infty}\left\|x_{n}-g_{0}\right\| & \geq \lim _{n \rightarrow \infty}\left\|x_{n}-g\right\|, & \\
\text { for all } g \in G \\
\Rightarrow\left\|\lim _{n \rightarrow \infty}\left(x_{n}-g_{0}\right)\right\| & \geq\left\|\lim _{n \rightarrow \infty}\left(x_{n}-g\right)\right\|, & & \text { for all } g \in G \\
\Rightarrow\left\|x-g_{0}\right\| & & \geq\|x-g\|, & \\
\text { for all } g \in G \\
\Rightarrow g_{0} \in F_{G}(x) & \Rightarrow x \in F_{G}^{-1}\left(g_{0}\right) & &
\end{array}
$$

which proves that $F_{G}^{-1}\left(g_{0}\right)$ is closed.
Now let $x \in F_{G}^{-1}\left(g_{0}\right)$ be arbitrary and α be an arbitrary scalar and let $y=\alpha x+(1-\alpha) g_{0}$.

If $\alpha=0$, then $y=g_{0} \in F_{G}^{-1}\left(g_{0}\right)$. If $\alpha \neq 0$ then for every $g \in G$, by taking into account that $x \in F_{G}^{-1}\left(g_{0}\right)$,

$$
\begin{aligned}
\|y-g\| & =\left\|\alpha x+(1-\alpha) g_{0}-g\right\| \\
& =\alpha\left\|x-\left(1-\frac{1}{\alpha}\right) g_{0}-g\right\| \\
& \leq \alpha\left\|x-g_{0}\right\| \\
& =\left\|\alpha x+(1-\alpha) g_{0}-g_{0}\right\| \\
& =\left\|y-g_{0}\right\|
\end{aligned}
$$

whence it follows that $g_{0} \in \mathcal{F}_{G}(y)$ if $y \in \mathcal{F}_{G}^{-1}\left(g_{0}\right)$.

References

[1] G. C. Ahuja, T. D. Narang and T. Swaran, On farthest points, J.Indian Math. Soc. 39(1975), 293-297.
[2] N. Dunford and J. Schwartz, Linear Operators. Part-I. General Theory. Pure and Applied Mathematics, Vol.7. Interscience, New York, 1958.
[3] S. Elumalai, A study of interpolation, approximation and strong approximation, Ph.D. Thesis, University of Madras, 1981.
[4] C. Franchetti and I. Singer, Deviation and farthest points in normed linear spaces, Rev. Roum Math. Pures et appl, XXIV(1979), 373-381.
[5] I. Singer, Choquest spaces and Best Approximation, Math. Ann. 148(1962), 330-340.
[6] I. Singer, The theory of Best Approximation and functional Analysis, CBMS Reg. Confer. Series in Applied Math. No.13, SIAM, Philedelphia, 1974.
[7] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York, Heidelberg, Berlin, 1970.

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India.

Vellore Institute of Technology (Deemed University),
Vellore - 632 014, India.

[^0]: ${ }^{1}$ Received 19 August, 2006
 Accepted for publication (in revised form) 10 September, 2006

