Angular estimates of analytic functions defined by Carlson - Shaffer linear operator ${ }^{1}$

B. A. Frasin

Abstract

The object of the present paper is to derive some argument properties of analytic functions defined by the Carlson - Shaffer linear operator $L(a, c) f(z)$. Our results contain some interesting corollaries as the special cases.

2000 Mathematics Subject Classification: 30C45.
Keywords: Analytic functions, Argument, Hadamard product, linear operator.

[^0]
1 Introduction and definitions

Let \mathcal{A} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disc} \mathcal{U}=\{z:|z|<1\}$. For two functions $f(z)$ and $g(z)$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

their Hadamard product (or convolution) is defined by

$$
\begin{equation*}
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \tag{1.3}
\end{equation*}
$$

Define the function $\phi(a, c ; z)$ by

$$
\begin{align*}
\phi(a, c ; z) & :=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+1} \tag{1.4}\\
(a & \left.\in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \ldots\}, z \in \mathcal{U}\right),
\end{align*}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol given, in terms of Gamma functions,
$(\lambda)_{n}:=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1, & n=0, \\ \lambda(\lambda+1)(\lambda+2) \ldots(\lambda+n-1), & n \in \mathbb{N}:\{1,2, \ldots\} .\end{cases}$
Corresponding to the function $\phi(a, c ; z)$, Carlson and Shaffer[1] introduced a linear operator $L(a, c): \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\begin{equation*}
L(a, c) f(z):=\phi(a, c ; z) * f(z) \tag{1.5}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
L(a, c) f(z):=z+\sum_{n=1}^{\infty} \frac{(a)_{n}}{(c)_{n}} a_{n+1} z^{n+1} \quad(z \in \mathcal{U}) \tag{1.6}
\end{equation*}
$$

It follows from (1.6) that

$$
\begin{equation*}
z(L(a, c) f(z))^{\prime}=a L(a+1, c) f(z)-(a-1) L(a, c) f(z) \tag{1.7}
\end{equation*}
$$

and $L(1,1) f(z)=f(z), L(2,1) f(z)=z f^{\prime}(z), L(3,1) f(z)=z f^{\prime}(z)+$ $\frac{1}{2} z^{2} f^{\prime \prime}(z)$.

Many properties of analytic functions defined by the Carlson-Shaffer linear operator were studied by (among others) Owa and Srivastava [7], Ding [3], Kim and Lee [4], Ravichandran et al.[6] and Shanmugam et al. [5].

In this paper we shall derive some argument properties of analytic functions defined by the linear operator $L(a, c) f(z)$.

In order to prove our main results, we recall the following lemma:
Lemma 1.1. ([2]). Let $p(z)$ be analytic in \mathcal{U} with $p(0)=1$ and $p(z) \neq 0$ $(z \in \mathcal{U})$ and suppose that

$$
\begin{equation*}
\left|\arg \left(p(z)+\beta z p^{\prime}(z)\right)\right|<\frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \alpha \beta\right) \quad(\alpha>0, \beta>0) \tag{1.8}
\end{equation*}
$$

then we have

$$
\begin{equation*}
|\arg p(z)|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{1.9}
\end{equation*}
$$

2 Main Results

Theorem 2.1. Let $a+1>\mu>0, \alpha>0, \lambda$ is any real number, $L(a, c) f(z) / L(a+1, c) f(z) \neq 0(z \in \mathcal{U})$ and suppose that $\left\lvert\, \arg \left(\frac{(a+1) L(a, c) f(z)}{(a+1-\mu) L(a+1, c) f(z)}\left[\lambda \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-\mu \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+1\right]\right)\right.$

$$
\begin{equation*}
-\left(\frac{(a+1) \lambda-a \mu}{a+1-\mu}\right) \left\lvert\,<\frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\mu}{a+1-\mu} \alpha\right)\right. \tag{2.1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{L(a, c) f(z)}{L(a+1, c) f(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.2}
\end{equation*}
$$

Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\frac{L(a, c) f(z)}{L(a+1, c) f(z)} \tag{2.3}
\end{equation*}
$$

Then $p(z)=1+b_{1} z+b_{2} z+\cdots$ is analytic in \mathcal{U} with $p(0)=1$ and $p(z) \neq 0$ $(z \in \mathcal{U})$. Also, by a simple computation, we find from (2.3) that

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\left(\frac{z(L(a, c) f(z))^{\prime}}{L(a, c) f(z)}-\frac{z(L(a+1, c) f(z))^{\prime}}{L(a+1, c) f(z)}\right) \tag{2.4}
\end{equation*}
$$

by making use of the familiar identity (1.7) in (2.4), we get

$$
\begin{aligned}
& {\left[\lambda \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-\mu \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+1\right] \frac{L(a, c) f(z)}{L(a+1, c) f(z)} } \\
= & {\left[\frac{\lambda}{p(z)}-\frac{\mu}{a+1}\left(1+\frac{a}{p(z)}-\frac{z p^{\prime}(z)}{p(z)}\right)+1\right] p(z) } \\
= & \frac{1}{a+1}\left[(a+1) \lambda-a \mu+(a+1-\mu) p(z)+\mu z p^{\prime}(z)\right]
\end{aligned}
$$

or, equivalently,

$$
\frac{(a+1) L(a, c) f(z)}{(a+1-\mu) L(a+1, c) f(z)}\left[\lambda \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-\mu \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+1\right]
$$

$$
\begin{equation*}
-\left(\frac{(a+1) \lambda-a \mu}{a+1-\mu}\right)=p(z)+\frac{\mu}{a+1-\mu} z p^{\prime}(z) . \tag{2.5}
\end{equation*}
$$

The result of Theorem 2.1 now follows by an application of Lemma1.1.
Letting $a=c=1$ in Theorem 2.1, we have
Corollary 2.2. Let $2>\mu>0, \alpha>0, \lambda$ is any real number, $f(z) / z f^{\prime}(z) \neq 0(z \in \mathcal{U})$ and suppose that

$$
\left|\arg \left(\frac{2 f(z)}{(2-\mu) z f^{\prime}(z)}\left[\lambda \frac{z f^{\prime}(z)}{f(z)}-\frac{\mu z f^{\prime \prime}(z)}{2 f^{\prime}(z)}+1-\mu\right]-\left(\frac{2 \lambda-\mu}{2-\mu}\right)\right)\right|
$$

$$
\begin{equation*}
<\frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\mu}{2-\mu} \alpha\right) \tag{2.6}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{f(z)}{z f^{\prime}(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.7}
\end{equation*}
$$

Theorem 2.3. Let $a \neq-1, \lambda \neq-\mu, \alpha, \lambda>0, \delta(a+1)(\lambda+\mu)>0$, $L(a+1, c) f(z) / z \neq 0(z \in \mathcal{U})$ and suppose that

$$
\begin{aligned}
& \left|\arg \left(\frac{1}{\lambda+\mu}\left(\frac{L(a+1, c) f(z)}{z}\right) \delta\left(\lambda \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+\mu\right)\right)\right| \\
(2.8)< & \frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\lambda}{\delta(a+1)(\lambda+\mu)} \alpha\right)
\end{aligned}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{L(a+1, c) f(z)}{z}\right) \delta\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.9}
\end{equation*}
$$

Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\left(\frac{L(a+1, c) f(z)}{z}\right) \delta . \tag{2.10}
\end{equation*}
$$

Then $p(z)=1+b_{1} z+b_{2} z+\cdots$ is analytic in \mathcal{U} with $p(0)=1$ and $p(z) \neq 0$ $(z \in \mathcal{U})$. Also, by a simple computation and by making use of the familiar identity (1.7) we find from (2.10) that

$$
\begin{equation*}
\frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}=\frac{1}{\delta(a+1)} \frac{z p^{\prime}(z)}{p(z)}+1 \tag{2.11}
\end{equation*}
$$

by using (2.10) and (2.11), we get

$$
\begin{gather*}
\frac{1}{\lambda+\mu}\left(\frac{L(a+1, c) f(z)}{z}\right) \delta\left(\lambda \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}+\mu\right) \\
=p(z)+\frac{\lambda}{\delta(a+1)(\lambda+\mu)} z p^{\prime}(z) \tag{2.12}
\end{gather*}
$$

Using Lemma 1.1, we obtain the required result.
Letting $a=c=1$ in Theorem 2.3, we have
Corollary 2.4. Let $\lambda \neq-\mu, \alpha, \lambda>0,2 \delta(\lambda+\mu)>0, f^{\prime}(z) \neq 0(z \in \mathcal{U})$ and suppose that

$$
\begin{align*}
& \left|\arg \left(\left(f^{\prime}(z)\right) \delta\left(1+\frac{\lambda z f^{\prime \prime}(z)}{2(\lambda+\mu) f^{\prime}(z)}\right)\right)\right| \\
< & \frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\lambda}{2 \delta(\lambda+\mu)} \alpha\right) \tag{2.13}
\end{align*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(f^{\prime}(z)\right) \delta\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.14}
\end{equation*}
$$

Theorem 2.5. Let $a \neq-1, \alpha, \lambda, \eta, \gamma>0, L(a+1, c) f(z) / L(a, c) f(z) \neq$ $0(z \in \mathcal{U})$ and suppose that
$\arg \left|\left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right) \gamma\left[\frac{\gamma \eta}{\lambda}\left((a+1) \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}-a \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-1\right)+1\right]\right|$

$$
\begin{equation*}
<\frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\lambda}{\eta} \alpha\right) \tag{2.15}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right) \gamma\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.16}
\end{equation*}
$$

Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right) \gamma \tag{2.17}
\end{equation*}
$$

Then $p(z)=1+b_{1} z+b_{2} z+\cdots$ is analytic in \mathcal{U} with $p(0)=1$ and $p(z) \neq 0$ $(z \in \mathcal{U})$. Also, by a simple computation and by making use of the familiar identity (1.7), we find from (2.17) that

$$
\begin{gather*}
\left(\frac{L(a+1, c) f(z)}{L(a, c) f(z)}\right) \gamma\left[\frac{\gamma \lambda}{\eta}\left((a+1) \frac{L(a+2, c) f(z)}{L(a+1, c) f(z)}-a \frac{L(a+1, c) f(z)}{L(a, c) f(z)}-1\right)+1\right] \\
=p(z)+\frac{\lambda}{\eta} z p^{\prime}(z) \tag{2.18}
\end{gather*}
$$

An application of Lemma 1.1, we obtain the required result.
Letting $a=c=1$ in Theorem 2.5, we have
Corollary 2.6. Let $\alpha, \lambda, \eta, \gamma>0, z f^{\prime}(z) / f(z) \neq 0 \quad(z \in \mathcal{U})$ and suppose that

$$
\begin{align*}
& \left|\arg \left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right) \gamma\left[\frac{\gamma \eta}{\lambda}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)+1\right]\right\}\right| \\
< & \frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\lambda}{\eta} \alpha\right) \tag{2.19}
\end{align*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right) \gamma\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.20}
\end{equation*}
$$

Letting $\lambda=\eta=\gamma=1$ in Corollary 2.6, we have
Corollary 2.7. Let $0<\alpha \leq 1, z f^{\prime}(z) / f(z) \neq 0 \quad(z \in \mathcal{U})$ and suppose that

$$
\begin{equation*}
\left|\arg \left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}\right|<\frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \alpha\right) \tag{2.21}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.22}
\end{equation*}
$$

that is, $f(z)$ is strongly starlike function of order α in \mathcal{U}.
Theorem 2.8. Let $a \neq-1, \alpha, \lambda, \gamma>0,(\gamma-\lambda)(a+1)>0, z / L(a+$ 1, c) $f(z) \neq 0(z \in \mathcal{U})$ and suppose that

$$
\begin{align*}
& \left|\arg \left[\frac{1}{\gamma-\lambda}\left(\gamma \frac{z}{L(a+1, c) f(z)}-\lambda z \frac{L(a+2, c) f(z)}{[L(a+1, c) f(z)]^{2}}\right)\right]\right| \\
< & \frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\lambda}{(\gamma-\lambda)(a+1)} \alpha\right) \tag{2.23}
\end{align*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{z}{L(a+1, c) f(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.24}
\end{equation*}
$$

Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\frac{z}{L(a+1, c) f(z)} \tag{2.25}
\end{equation*}
$$

Then $p(z)=1+b_{1} z+b_{2} z+\cdots$ is analytic in \mathcal{U} with $p(0)=1$ and $p(z) \neq 0$ $(z \in \mathcal{U})$. Also, by a simple computation and by making use of the familiar identity (1.7), we find from (2.25) that

$$
\begin{gather*}
\frac{1}{\gamma-\lambda}\left(\gamma \frac{z}{L(a+1, c) f(z)}-\lambda z \frac{L(a+2, c) f(z)}{[L(a+1, c) f(z)]^{2}}\right)= \tag{2.26}\\
\quad=p(z)+\frac{\lambda}{(\gamma-\lambda)(a+1)} z p^{\prime}(z)
\end{gather*}
$$

The result of Theorem 2.8 now follows by an application of Lemma1.1.
Letting $a=c=1$ in Theorem 2.8, we have
Corollary 2.9. Let $\alpha, \lambda, \gamma>0,(\gamma-\lambda)(a+1)>0,1 / f^{\prime}(z) \neq 0(z \in \mathcal{U})$ and suppose that

$$
\begin{equation*}
\left|\arg \left(\frac{1}{f^{\prime}(z)}-\frac{\lambda z f^{\prime \prime}(z)}{2(\gamma-\lambda)\left(f^{\prime}(z)\right)^{2}}\right)\right|<\frac{\pi}{2}\left(\alpha+\frac{2}{\pi} \tan ^{-1} \frac{\lambda}{2(\gamma-\lambda)} \alpha\right) \tag{2.27}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left|\arg \left(\frac{1}{f^{\prime}(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathcal{U}) \tag{2.28}
\end{equation*}
$$

References

[1] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. (4)15 (1984), 737-745.
[2] A.Y. Lashin, Applications of Nunokawaş theorem, J. Inequal. Pure Appl. Math. 5(2) (2004), Art. 111, 1-5.
[3] S. Ding, Some properties of a class of analytic functions, J. Math. Ana. Appl., 195 (1995), 71-81.
[4] Y.C. Kim, K.S. Lee, Some applications of fractional integral operators and Ruscheweyh derivatives, J. Math. Ana. Appl., 197 (1996), 505-517.
[5] T.N. Shanmugam, V. RAvichandran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Ana. Appl., 3 (1) (2006), 1-11.
[6] V. Ravichandran, H. Selverman, S.S Kumar, K.G. Subramanian, On differentail subordinations for a class of analytic functions defined by a linear opertator, IJMMS, 42 (2004), 2219-2230.
[7] S. Owa, H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.

Department of Mathematics, Al al-Bayt University, P.O. Box: 130095

Mafraq, Jordan.
E-mail address: bafrasin@yahoo.com.

[^0]: ${ }^{1}$ Received 12 July, 2006
 Accepted for publication (in revised form) 15 September, 2006

